Gráficas de funciones elementales
|
|
- Gregorio Espejo Toledo
- hace 4 años
- Vistas:
Transcripción
1 Gráficas de funciones elementales. Hacer la gráfica de las guientes parábolas, hallando previamente los puntos de corte con los ejes de coordenadas, el eje de metría y las coordenadas del vértice: () f() = 4 () g() = 4 5 () h() =. Representar gráficamente las guientes funciones a trozos o a intervalos: f() = 4 < 5 4 < > 8 0 g() = 8 0 < < 5 > 5. Hacer la gráfica de las guientes funciones valor absoluto: () f() = 6 () g() = Representar gráficamente las guientes hipérbolas (funciones de proporcionalidad inversa), hallando previamente el dominio, las asíntotas y el centro, y dando todos aquellos valores que se conderen necesarios: () f() = () g() = () h() = 5- Representar gráficamente en unos mismos ejes de coordenadas las funciones f() = y g() =, y calcular las coordenadas de los puntos en los que ambas funciones se cortan. 6- Representa gráficamente en unos mismos ejes de coordenadas las guientes funciones logarítmicas: () f() = L () g() = L( ) () h() = L( )
2 Características de una función a partir de su gráfica. Identifica cada una de las guientes funciones y define su dominio, recorrido, metría, la monotonía, la curvatura y los etremos relativos y los puntos de infleión, los tuviera: f () = f () = f () = 4 f 4 () = f 5 () = f 6 () = a) b) c) d) e) f). Determina el periodo de las guientes funciones
3 Dominios y recorridos. A la vista de las gráficas de las guientes funciones, definir su dominio y su recorrido.. Calcular el domino de las guientes funciones: () f() = 5 4 () f() = 7 ( )( )( 6) () f() = (4) f() = (7) f() = 6 (5) f() = 0 (6) f() = 9 5 (8) f() = e 5 (9) f() = e 6 (0) f() = L( 8) () f() = L( 6 6) () f() = L 8
4 4 Operaciones con funciones. Estudiar la metría de las gráficas de las guientes funciones: () f() = () f() = 4 () f() = (4) f() = 4 4 (5) f() = 5 4 (6) f() = (7) f() = sen (8) f() = L( 4). Hallar las funciones las funciones (f g)(), (f g)() y (f g)() y sus dominios, endo: f() = y g() =. Dadas las funciones f() = y g() = 5, calcula la función f g (). 4. Dadas las funciones f() = y g() =. Hallar (f(g()) y (g(f()) y sus dominios. 5. Hallar las funciones (f g)() y (g f)(), así como sus correspondientes dominios, endo: f() = y g() = 5 6. Dadas las funciones f() = y g() =, escribir la epreón de: () f(f()) () f(g()) () g f() (4) f f f() 7. Representa las guientes funciones y sus inversas, calculando su epreón analítica previamente: () f() = () f() = () f() = (4) f() = 7 (5) f() =
5 5 Idea de Límite. A la vista de la gráfica de la función f(), que es la que aparece a continuación, contesta a las guientes cuestiones: () Calcula el valor de: f(a ), f(a ), f(a), f(a4) y f(a5 ) () Halla el valor de los guientes límites laterales: f() a f() a f() a f() a f() a f() a f() a 4 f() a 4 f() a 5 f() a 5 f() f() () Con los resultados obtenidos en el anterior apartado, calcula el valor de los guientes límites en caso de que eistan: f() f() f() f() a a a a4 a5 f() <.- Dada la función: f() = 5 <, representar gráficamente la función y definir, es poble, los guientes límites: f() f() f() f() f() f()
6 6 Cálculo de límites (). Calcula los guientes límites de funciones elementales. Utiliza la gráfica de la función o una tabla numérica cuando sea necesario: lim = lim = lim 0 = lim 6 = lim = lim = 0 lim = lim = = lim lim = e = lim e lim = lim = lim = = lim = lim log() = lim log() lim = lim log() = lim log() = 0 0 sen() = lim cos() lim = tg() lim = lim tg() = π/. Calcula los guientes límites de funciones polinómicas: a. lim ( 5 7) b. lim (5 47 5) c. lim ( 6). Calcular los límites de las guientes funciones racionales, eliminando cuando las haya las diferentes indeterminaciones: () 5 5 () 5 7 () (4) (5) ( ) ( 5) ( )( ) (6) ( 5)( 5) ( ) 4 (7) 4 4 (8) 0 ( ) (9) 0 4 (0) () () 6 4
7 7 Cálculo de límites (). Calcular los límites de las guientes funciones con radicales, eliminando las indeterminaciones por los procedimientos que se conderen oportunos: () () () 0 (4) 9 (5) ( ) (6) ( ) (7) ( ) (8) ( ) (9) (0) () () Calcular los guientes límites, eliminando las indeterminaciones en el caso de que las haya: () 4 () () 4 (4) 5 4 (5) 6 5 (6) 7 4 (7) 5 4 (8) 6 5 (9) 7 4 (0) () 5 () 5 5 7
8 8 Continuidad. Dada < f() = < 4 hallar estos límites y decidir la continuidad de f en esos puntos: 4 () 0 f() () f() () f() (4) f() (5) f() (6) f() 4 (7) f() 4 (8) 4 f(). Dada la función 0 f() = >, estudiar la continuidad en el punto de abscisas 0 = 0 y representarla posteriormente para comprobar el resultado obtenido es correcto. 5 <. Sea la función f() =. Estudiar es continua en el punto de abscisas > = y en el caso de que sea discontinua, claficar la discontinuidad La función f() = no está definida para =, por lo tanto no es continua en dicho punto. 7 Qué valor se debería dar a f(), para que la función así definida fuese continua en dicho punto? 9 5. Estudiar la función f() = es continua en los puntos de abscisas = y =. En aquellos que sea discontinua, analizar la discontinuidad es evitable o inevitable. 6. Sea f() = Qué valor debe tener a para que la función sea continúa en R? a >
9 9 Asíntotas. Calcula todas las asíntotas de las guientes funciones. Representa las asíntotas e intenta esbozar la gráfica de las funciones. a) f() = b) f() = c) f() = d) f() = e) f() = 9 f) f() = ln( 4) g) f () = h) f() = e i) f () = cosec() ln(). Comprobar, haciendo los cálculos adecuados, que las ecuaciones de las asíntotas que aparecen en las diferentes figuras, corresponden con las funciones cuyas gráficas están dibujadas:
10 0 Idea de Derivada. Tasa de variación media e instantánea.- La variación de la altura de un niño con el paso de los años, se recoge en la guiente tabla: Edad (años) Altura (cm.) a) Representar en una gráfica la altura en función de la edad. b) Calcular la variación de la altura para cada intervalo que plantea el problema. (Tasa de variación media). c) En qué intervalo de tiempo se produce un crecimiento más acusado? d) En qué momento es menor la velocidad de crecimiento?.- Calcular, aplicando la interpretación geométrica de derivada, la Tasa de variación instantánea de la guiente función, en los puntos señalados:.- Calcular, aplicando la definición de derivada, la Tasa de variación instantánea de las guientes funciones, en los puntos que se indican: a) f() = 8 0 en el punto o = b) f() = 5 en el punto o = 0 c) f() = 5 en el punto o = Comprueba después tus resultados utilizando la función derivada (calcúlala utilizando las reglas de derivación y después evalúala en el punto del que desees calcular la derivada).
11 Cálculo de derivadas (). Calcular la función derivada de las guientes funciones: 4 () f() = 6 5 () f() = f() = (4) f() = () (5) f() = (6) f() = f() = (8) f() = 5 (7) ( ) (9) f() = (0) ( ) f() =. Calcular la función derivada de las guientes funciones elementales: () f() = ln() () f() = 5ln() 7 f() = (4) f() = ln() 5 4 () ln() (5) = log (6) f() f() = log 5 (7) (9) f() = 8 (8) f() = (0) f() = f() = 5 π () f() = e () f() = e () 5 f() = e (4) ) f() = sen( (5) f() = 5sen() (6) sen() f() = 7 7 (7) f() = cos() (8) f() = cos() 6 () tg() f() = () f() = arccos()
12 Cálculo de derivadas (). Calcular la función derivada de las guientes funciones utilizando las reglas bácas de derivación: a) f() = ( 5 8) b) f() = ( )( 5 ) c) ( 5) 6 f() = 8 d) f() = L e) f) g) f() = f() = () = 8 f h) i) j) k) l) f () = f() = f() = f() = f() = ( 5 ) ( ) ( )( 5) ( ). Calcular la función derivada de las guientes funciones compuestas:. Calcular la función derivada segunda y tercera en cada caso: () f() = e () g() = () h() = ln -
13 Cálculo de derivadas () Deriva las guientes funciones, recordando las reglas bácas de derivación:
14 4 Continuidad y derivabilidad. Estudia la continuidad y la derivabilidad de las guientes funciones: a) 0 > 0 d) 6 > b) c) > > e) 4 5 =. Dada la función f()= 4 > a) Estudia la continuidad de la función en = b) Estudia la derivabilidad de la función en =. Dada la función f()= ( ) e > a) Estudia la continuidad de la función en = b) Estudia la derivabilidad de la función en = 4. Sea la función f() = a 4 a > a) Para que valores de a la función es continua en =. b) Estudiar, para los valores en los que la función es continua, es también derivable.
15 5 Recta tangente. Dada la función f() =, determina la ecuación de la recta tangente y normal en =.. Halla la ecuación de la recta tangente a la curva y = en el punto de abcisas =. se puede hallar la recta tangente en =? Razónalo. Calcular los puntos de la curva f() = en los que la recta tangente a la función es paralela a la recta de ecuación y = Halla en qué punto, la recta tangente a la curva f() = es paralela a la recta y = 0. Es f derivable en todo su dominio? 5. En la gráfica de la función f() = 8 hay dos puntos cuya recta tangente es paralela al eje X. Calcular dichos puntos y las respectivas ecuaciones de las rectas tangentes. 6. En qué punto de la gráfica de la función f() = 7 8, la recta tangente es paralela a la bisectriz del primer cuadrante? Calcula la ecuación de la recta tangente. 7. Halla las ecuaciones de las rectas tangentes y normales a la curva f() = en los puntos de intersección con la recta de ecuación y =. a 8. Calcular a para que la derivada de la función f() = sea igual a, en 0 = 4. Es f derivable en todo su dominio? a 9. Calcular el valor de a, para que la pendiente de la recta tangente a la función f() = sea a igual a ( ) en el punto de abscisa 0 =. Es f derivable en todo su dominio? 0. Calcular el valor de m para que la tangente a la curva f() = 5 en el punto de abscisa 0 = 4, sea perpendicular a la recta y = m. Es f derivable en todo su dominio?
16 6 Monotonía y curvatura. Representación de funciones. Estudiar las asíntotas ( las hay), la monotonía (intervalos de crecimiento, decrecimiento y etremos relativos) y la curvatura (intervalos de concavidad, conveidad y puntos de infleión) de las guientes funciones y esbozar su gráfica: a) y = 6 b) y = 4 6 c) y = 6 d) y = 5 e) f) y = 4 y = 9 g) y = 6 9 h) y = 6 6 i) y = ( ) j) k) y = y = l) y = ( ) m) n) o) y = y = y = e p) y = ( ). De las guientes funciones se pide: a) Calcular el dominio y estudiar la metría. b) Calcular asíntotas, las hubiera. c) Calcula sus intervalos de crecimiento y decrecimiento y los etremos relativos. d) Calcular los intervalos de concavidad y conveidad y los puntos de infleión. e) Con la información obtenida en los anteriores apartados, haz un esbozo de la gráfica de la función. e a) f() = 6 f) f() = k) f() = e b) f() = g) f() = 4 l) f() = c) f() = e 4 h) f() = m) f() = L( 5 6) d) f() = i) f() = n) f() = L( ) e) f() = e j) f() = e f() = e Se condera la función f() =, se pide: > a) Estudiar f() es continua en el punto =. b) Calcular la ecuación de la recta tangente a la función f() en el punto de abscisas =. c) Calcular las asíntotas de la función. o) ( )
Idea de Derivada. Tasa de variación media e instantánea
Idea de Derivada. Tasa de variación media e instantánea.- La variación de la altura de un niño con el paso de los años, se recoge en la guiente tabla: Edad (años) 0 6 9 8 Altura (cm.) 8 6 74 78 80 a) Representar
Idea de Derivada. Tasa de variación media e instantánea
TEMA 6. Derivadas Nombre CURSO: BACH CCSS Idea de Derivada. Tasa de variación media e instantánea.- La variación de la altura de un niño con el paso de los años, se recoge en la guiente tabla: Edad (años)
Selectividad hasta el año incluido = 0. Página 1 de 13 ANÁLISIS
ANÁLISIS Selectividad hasta el año 9- incluido Ejercicio. Calificación máima: puntos. (Junio 99 A) Hallar la longitud de los lados del triángulo isósceles de área máima cuyo perímetro sea 6 m. Ejercicio.
1. Estudia la derivabilidad de la función )En qué punto del intervalo (0,ð) la recta tangente a y=tg(x) tiene pendiente 2?.
ejerciciosyeamenes.com EXAMEN DERIVADAS. Estudia la derivabilidad de la función si f ()= si > 3. )En qué punto del intervalo (0,ð) la recta tangente a y=tg() tiene pendiente?. 4. Ecuación de la recta tangente
a) Calcular las asíntotas, el máximo y el mínimo absolutos de f (x). 4. (SEP 04) Sabiendo que una función f (x) tiene como derivada
Matemáticas II - Curso - EJERCICIOS DE CÁLCULO DIFERENCIAL E INTEGRAL PROPUESTOS EN LAS PRUEBAS DE ACCESO COMUNIDAD DE MADRID (JUN ) Calcular la base y la altura del triángulo isósceles de perímetro 8
Matemáticas II Hoja 9: Derivadas y Aplicaciones. Representación de Funciones.
Profesor: Miguel Ángel Baeza Alba (º Bachillerato) Matemáticas II Hoja 9: Derivadas y Aplicaciones Representación de Funciones Ejercicio 1: (Continuación del Ejercicio 1 de la Hoja 8) + 1 a 1 e < 0 0 Para
Profesor: Fernando Ureña Portero
MATEMÁTICAS º BACH CC. Y TECNOL. CURSO 13-14 1.-Dada la función a) (3p.) Dominio de f() b) (3 p.) Calcular. Es posible calcular? Por qué? c) (4p.) Calcular.- Estudiar la continuidad de la función: { 3.-a)
Alumno/a: Curso: PLAN DE RECUPERACIÓN PARA ALUMNOS/AS PEDIENTES DE MATEMÁTICAS I
Alumno/a: Curso: PLAN DE RECUPERACIÓN PARA ALUMNOS/AS PEDIENTES DE MATEMÁTICAS I Se realizarán tres pruebas a lo largo del Curso: 1ª prueba: 19 de noviembre (jueves), a las 9:1 en el Salón de Actos. ª
IES PADRE SUÁREZ MATEMÁTICAS II DEPARTAMENTO DE MATEMÁTICAS
Ejercicios de continuidad y derivabilidad. Selectividad de 008, 009, 00 y 0 Anális 008 Ejercicio.- Sean f : R R y g : R R las funciones definidas por f() = + a + b y g() = c e -(+). Se sabe que las gráficas
MATEMÁTICAS CC.SS. I ACTIVIDADES PAU Y CURVATURA TEMA 8. 1 Estudia la curvatura de las siguientes funciones: 1 f(x) x b) (x)
MATEMÁTICAS CC.SS. I ACTIVIDADES PAU Y CURVATURA TEMA 8 1 Estudia la curvatura de las siguientes funciones: 1 f() 1 f() Estudia la curvatura de las siguientes funciones: 5 7 Estudia la curvatura de las
Ficha 1. Formas de expresar una función
Ficha 1. Formas de expresar una función 1. En unas instalaciones deportivas cobran 5 euros por la entrada, que da derecho a la utilización de todas las dependencias salvo las pistas de tenis, por las que
dx 9 (x 1) . (1 punto) . (1 punto) . Se pide:
Septiembre 008: Calcular d 9 ( ). ( Septiembre 008: Calcular Ln Junio 008: Sea f() = d (. ( ) con 0,. Se pide: a) Calcular los intervcalos de crecimiento y decrecimiento, los etremos relativos y las asíntotas.
L A D E R I V A D A. C Á L C U L O Y A P L I C A C I O N E S
L A D E R I V A D A. C Á L C U L O Y A P L I C A C I O N E S 1. T A S A D E V A R I A C I Ó N M E D I A Definimos la variación media de una función f en un intervalo [, + ], y la designamos por t m o TVM[,
Criterio 1: Sea f una función derivable en (a,b). f es estrictamente creciente en el intervalo abierto (a, b) si f es positiva en dicho intervalo.
UNIDAD. APLICACIONES DE LAS DERIVADAS.. Información etraída de la primera derivada.. Información etraída de la segunda derivada.. Derivabilidad en intervalos: Teorema de Rolle, del valor medio y Caucy..4
Estudio de funciones mediante límites y derivadas
Estudio de funciones mediante límites y derivadas CVS0. El precio del billete de una línea de autobús se obtiene sumando dos cantidades, una fija y otra proporcional a los kilómetros recorridos. Por un
TRABAJO DE SEPTIEMBRE Matemáticas 1º Bachillerato
Trabajo de Verano 04 º BACHILLERATO TRABAJO DE SEPTIEMBRE Matemáticas º Bachillerato. Página Trabajo de Verano 04 º BACHILLERATO BLOQUE I: CÁLCULO TEMA (UNIDAD DIDÁCTICA 9): Propiedades globales de las
x = 1 Asíntota vertical
EJERCICIO Sea la función f ( ). a) Indique el dominio de definición de f, sus puntos de corte con los ejes, sus máimos mínimos, eisten, sus intervalos de crecimiento decrecimiento. b) Obtenga las ecuaciones
en el intervalo - 1-cos(x) 2 si x > 0 sen(x)
. [04] [ET-A] Sea la función f() = e -. Determinar sus intervalos de crecimiento y decrecimiento, etremos relativos, intervalos de concavidad y conveidad, puntos de infleión y asíntotas. Esbozar su gráfica..
Colegio Portocarrero. Curso Departamento de matemáticas. Análisis. (Límites/Asíntotas/Continuidad/Derivadas/Aplicaciones de las derivadas)
Análisis (Límites/Asíntotas/Continuidad/Derivadas/Aplicaciones de las derivadas) Problema 1: Sea la función Determina: a) El dominio de definición. b) Las asíntotas si existen. c) El o los intervalos de
TEMA 7. FUNCIONES ELEMENTALES
TEMA 7. FUNCIONES ELEMENTALES 8.1. Funciones cuya gráfica es una recta. - Función constante. - Función de proporcionalidad. - Función lineal. - Pendiente. 8.2. Función cuadrática. - Representación gráfica
f : IR IR 1. FUNCIÓN REAL DE VARIABLE REAL Una función real f de variable real es una relación que asocia a cada número real, x, un único número real
Apuntes de Análisis Curso 18/19 Esther Madera Lastra 1. FUNCIÓN REAL DE VARIABLE REAL Una función real f de variable real es una relación que asocia a cada número real,, un único número real y = f (. A
TEMA 3: CONTINUIDAD Y DERIVABILIDAD DE FUNCIONES REALES DE UNA VARIABLE REAL. f : R R
TEMA 3: CONTINUIDAD Y DERIVABILIDAD DE FUNCIONES REALES DE UNA VARIABLE REAL. Concepto de función. Definición Se llama función (real de variable real) a toda aplicación f : R R f() que a cada número le
MATEMÁTICAS EXAMEN CURSO COMPLETO 2º DE BACHILLER CC SS
MATEMÁTICAS EXAMEN CURSO COMPLETO º DE BACHILLER CC SS ACTIVIDADES PARA ALUMNOS DE º DE BACHILLERATO QUE TIENEN PENDIENTE MATEMÁTICAS APLICADAS A LAS CCSS I SEGUNDA PARTE Determine los dominios de las
-, se pide: b) Calcula el área del recinto limitado por dicha gráfica, el eje horizontal y la vertical que pasa por el máximo relativo de la curva.
EJERCICIOS PARA PREPARAR EL EXAMEN GLOBAL DE ANÁLISIS ln ) Dada la función f ( ) = +, donde ln denota el logaritmo - 4 neperiano, se pide: a) Determinar el dominio de f y sus asíntotas b) Calcular la recta
MATEMÁTICAS 2º BACH CIENCIAS ANÁLISIS: Ejercicios de Exámenes Profesor: Fernando Ureña Portero
MATEMÁTICAS º BACH CIENCIAS ANÁLISIS: Ejercicios de Eámenes.-Calcular los siguientes límites: CURSO 5-6 a) (4 p.)lim +e/ 0 +e / b) (3 p.)lim 0 cos() e sen() c) (3 p.)lim 0 ( e + )/.-a)(4 p.)calcular el
RELACIÓN EJERCICIOS ANÁLISIS SELECTIVIDAD MATEMÁTICAS II
1.- Sea f : R R la función definida como f() = e X.( ). (a) [1 punto] Calcula la asíntotas de f. (b) [1 punto] Halla los etremos relativos (abscisas donde se obtienen y valores que se alcanzan) y los intervalos
xln(x+1). 5. [2013] [EXT-A] a) Hallar lim x+1+1 dx. x+1 b) Calcular
. [0] [ET-A] a) Hallar el punto en el que la recta tangente a la gráfica de la función f() = -+ es paralela a la recta de ecuación y = 5-7. b) Calcular el área delimitada por la parábola de ecuación y
Solución La función raíz cuadrada tiene sentido cuando lo de dentro de la raíz es mayor o igual que cero, por tanto:
Análisis Matématico Matemáticas Aplicadas a las CCSS º Bachillerato Ejercicio nº Para qué valores de tiene sentido la siguiente función? Es continua la función? f () La función raíz cuadrada tiene sentido
Derivadas 1 1. FUNCIÓN DERIVABLE EN UN PUNTO, DERIVADA DE UNA FUNCIÓN EN UN PUNTO. CONCEPTO DE FUNCIÓN DERIVADA, DERIVADA SEGUNDA DE UNA FUNCIÓN.
Derivadas. FUNCIÓN DERIVABLE EN UN PUNTO, DERIVADA DE UNA FUNCIÓN EN UN PUNTO. CONCEPTO DE FUNCIÓN DERIVADA, DERIVADA SEGUNDA DE UNA FUNCIÓN.. Función derivable en un punto, derivada de una función en
Alumno/a: Curso: PENDIENTES DE MATEMÁTICAS I
Alumno/a: Curso: PENDIENTES DE MATEMÁTICAS I Se realiarán tres evaluaciones, la fecha de los eámenes de recuperación de la entrega de los materiales propuestos se realiarán los días asignados por el Departamento
APLICACIONES DE LAS DERIVADAS
APLICACIONES DE LAS DERIVADAS Apuntes de A. Cabañó. Calcula la tasa de variación media de la función +- en los intervalos: a) [-,0], b) [0,], c) [,]. Sol: a) 0; b) ; c) 6. Calcula la tasa de variación
3.3 Propiedades locales de una función derivable: continuidad, crecimiento y decrecimiento.
DERIVADAS. Función derivable en un punto. laterales. Interpretación geométrica de la derivada. Ecuaciones de las rectas tangente normal a la gráfica de una función en un punto.. Concepto de función derivada.
ejerciciosyexamenes.com
ejerciciosyeamenes.com Eamen de derivadas 1. Razona la verdad o falsedad de las siguientes afirmaciones: a) f() toma todos los valores entre f(a) y f(b), es continua? b) Si f'() > 0 y g'() > 0 en [a,b]
Cálculo Diferencial e Integral
Cálculo Diferencial e Integral (Junio-96 Un comerciante vende un determinado producto Por cada unidad de producto cobra la cantidad de 5 pesetas No obstante, se le encargan más de unidades, decide disminuir
CONTINUIDAD Y DERIVABILIDAD 1.- CONTINUIDAD
CONTINUIDAD Y DERIVABILIDAD Continuidad. Derivabilidad. 1.- CONTINUIDAD 1.1 FUNCIÓN CONTINUA EN UN PUNTO Decimos que f es continua en a si: Lim f( ) = f( a) a Para que una función sea continua en un punto
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2008 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 008 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva,
( ) según los valores del parámetro a. Ejercicio 3. Calcula el valor de los siguientes determinantes teniendo en cuenta estos datos:
MATEMÁTICAS II ÁLGEBRA Y ANÁLISIS ACTIVIDADES PAU Ejercicio. Condera las matrices A = m, B = y C =. (a) Para qué valores de m tiene solución la ecuación matricial A.X + B = C? (b) Resuelve la ecuación
ANTES DE COMENZAR RECUERDA
ANTES DE COMENZAR RECUERDA 00 Determina cuáles de estos vectores son paralelos y cuáles son perpendiculares a v (, ). a) v ( 6, ) b) v (, ) c) v (, ) a) v v Los vectores son paralelos. b) v v 0 Los vectores
FUNDAMENTOS MATEMÁTICOS (Grado en Ingeniería Informática) Práctica 4. DERIVACIÓN
FUNDAMENTOS MATEMÁTICOS (Grado en Ingeniería Informática) Práctica 4. DERIVACIÓN 1.- Derivada de una función en un punto. El estudio de la derivada de una función en un punto surge con el problema geométrico
Parte II. DERIVADAS. APLICACIONES.
Parte II. DERIVADAS. APLICACIONES. DERIVADA DE UNA FUNCIÓN EN UN PUNTO. FUNCIÓN DERIVADA. f ( a + h ) f ( a ) Se dice que f es derivable en = a si eiste el límite lim. Este número se denomina derivada
3x2 2x x 1 + x 3x 5 5x2 5x x3 3x 2. 1
1. Calcula la derivada de las funciones: y = Ln3 4 3 ) 5 y = Ln [ 1) )]. Calcula la derivada de las funciones: y = sen y = sen 3 y = sen 3 y = sen 3 3 y = sen 3 ) y = sen 4 3 4 5) 3 3. Calcula la derivada
ANÁLISIS MATEMÁTICO I (2012)
ANÁLISIS MATEMÁTICO I (2012) TRABAJO PRÁCTICO 4 Etremos y teorema del valor medio Ejercicio 1. Decir si las siguientes afirmaciones son correctas. En caso contrario, justificar la respuesta. 1. El teorema
x 2-4x+3 si -1 < x < 0 x 2 +a 2. [ANDA] [JUN-B] Se sabe que la función f:(-1,+ ), definida por f(x) = es continua en (-1,+ ). x+1
Selectividad CCNN 004. [ANDA] [JUN-A] Considerar la función f: definida por f() = (+)(-)(-). (a) Hallar las ecuaciones de las rectas tangente y normal a la gráfica de f en el punto de abscisa =. (b) Determinar
CONTINUIDAD Y DERIVABILIDAD
. Sea la función f ( ) = 6 CONTINUIDAD Y DERIVABILIDAD a. Determine sus puntos de corte con los ejes. b. Calcule sus etremos relativos y su punto de infleión. c. Represente gráficamente la función.. Sea
3 x. x, escribe el coeficiente de x 3.
MATEMÁTICAS I ACTIVIDADES REFUERZO VERANO Ejercicio 1. Resuelve utilizando el método de Gauss y clasifica los siguientes sistemas de ecuaciones: + z = a) { y + z = 8 + y z = 1 9y + 5z = b) { + y z = 9
REPRESENTACIÓN DE CURVAS - CCSS
REPRESENTACIÓN DE CURVAS - CCSS Esquema Para representar gráficamente una función se debe estudiar: 1. Dominio. Puntos de corte con los ejes coordenados. Paridad y periodicidad 4. Asíntotas 5. Monotonía
12.- DERIVADAS 2.- DERIVADA DE UNA FUNCIÓN 3.- REGLAS DE DERIVACIÓN
DERIVADAS DERIVADA EN UN PUNTO Calcula la derivada de y = + en o = utilizando la definición Solución: y'() = 8 Calcula la derivada de en o = utilizando la definición Solución: y '() = 6 Calcula la derivada
Cálculo de derivadas
0 Cálculo de derivadas. La derivada Piensa y calcula La gráfica f() representa el espacio que recorre un coche en función del tiempo. Calcula mentalmente: a) la pendiente de la recta secante, r, que pasa
EJERCICIOS DE REPASO DE MATEMÁTICAS I PENDIENTES
EJERCICIOS DE REPASO DE MATEMÁTICAS I PENDIENTES 1 er PARCIAL 1. Obtén los valores reales que cumplen las siguientes condiciones: x+ x 3 5 x 1/ =1. Opera y expresa el resultado en notación científic (5,
1º BACHILLERATO MATEMÁTICAS CIENCIAS SOCIALES TEMA 4.- LÍMITES, CONTINUIDAD Y DERIVADAS
1º BACHILLERATO MATEMÁTICAS CIENCIAS SOCIALES TEMA 4.- LÍMITES, CONTINUIDAD Y DERIVADAS 1 1.- LÍMITE DE UNA FUNCIÓN EN UN PUNTO Límite de una función f por la izquierda de un punto x = a. Es el valor al
MODELO 1 EXAMEN DE CÁLCULO DIFERENCIAL. siendo a un nº real
MODELO 1 EXAMEN DE CÁLCULO DIFERENCIAL 1. Escribe la ecuación de la recta normal a la curva de ecuación: arcsen abscisa 1. Haz un estudio de todas las asíntotas de la función: 1 e f ( ). Halla los valores
1) (1,6p) Estudia y clasifica las discontinuidades de la función: x+4-3 x-5. f(x)=
2 de diciembre de 2008. ) (,6p) Estudia y clasifica las discontinuidades de la función: f()= +4-3 -5 2) (,6p) Halla las ecuaciones de las asíntotas de la siguiente función y estudia la posición relativa:
Matemáticas II. * Análisis III: Integrales * o) x x. p) 3. q) 5. r) 1. s) e 2x 3 dx. t) 5 dx. u) x2 5 x 4. v) x3 3x 2 x 1. z) 3
I.E.S. Juan Carlos I Ciempozuelos (Madrid) Matemáticas II * Análisis III: Integrales *. Integrales inmediatas (o casi inmediatas): a) 4 2 5 7 b) 3 3 5 2 +3 +4 c) 2 7 d) 5 e) sen f) sen +7cos g) tg 2 h)
REPRESENTACIÓN DE CURVAS
ºBachillerato REPRESENTACIÓN DE CURVAS Esquema Para representar gráficamente una función se debe estudiar:. Dominio. Puntos de corte con los ejes coordenados. Paridad y periodicidad 4. Asíntotas 5. Monotonía
Ejercicios de integración
1. Calcular las siguientes integrales: 1) ) 8) + 1 d ) + 6 6 + 1 d 5) + + 1 + 1 7) d 8) + Ejercicios de integración d ) + + 1 d 6) ( + 1) + + d + d 9) ( + + 1) ln d + 1 + + 1) d 11) d 1) + + 1 d + 1 1)
Tema 12. Derivabilidad de funciones.
Tema. Derivabilidad de funciones.. Tasa de Variación media. Derivada en un punto. Interpretación.... Tasa de variación Media.... Definición de derivada de una función en un punto.... Interpretación geométrica
DEPARTAMENTO DE MATEMÁTICAS
DOMINIO Y PUNTOS DE CORTE 1. Se considera la función que tiene la siguiente gráfica: a) Cuál es su dominio de definición? Cuáles son los puntos de corte con los ejes de coordenadas? c) Presenta algún tipo
EJERCICIOS UNIDADES 6 y 7: DERIVADAS Y APLICACIONES
IES Padre Poveda (Guadi) EJERCICIOS UNIDADES 6 y 7: DERIVADAS Y APLICACIONES + a) (15 puntos) Estudie la continuidad y la derivabilidad de f b) (1 punto) Halle las ecuaciones de las asíntotas de esta función
FUNCIONES. Calcule las derivadas de las siguientes funciones (no es necesario simplificar el resultado):
FUNCIONES EJERCICIO Calcule las funciones derivadas de las guientes: L a punto f L indica logaritmo neperiano de b punto g cos c punto h EJERCICIO e Calcule las derivadas de las guientes funciones no es
FUNCIONES. 7.(99).- Hallar la longitud de los lados del triángulo isósceles de área máxima cuyo perímetro sea 60 m.
Enunciados de problemas de selectividad. Matemáticas II. Funciones FUNCIONES.(97).- Hay alguna función f() que no tenga límite cuando y que, sin embargo, [f()] sí tenga límite cuando?. Si la respuesta
Tema 4: Representación de Funciones
Tema 4: Representación de Funciones.- Dominio y recorrido: Dominio: Valores de para los que está definida (eiste) f () Recorrido: Valores que toma f () Funciones Polinómicas, son de la forma f ( ) ao a...
APLICACIONES DE LA DERIVADA
APLICACIONES DE LA DERIVADA Ejercicio -Sea f: R R la función definida por f ( ) = + a + b + a) [ 5 puntos] Determina a, b R sabiendo que la gráfica de f pasa por el punto (, ) y tiene un punto de infleión
A) IMÁGENES Y ANTI-IMÁGENES. DOMINIO E IMAGEN DE UNA FUNCIÓN. COMPOSICIÓN DE FUNCIONES Y FUNCIÓN INVERSA. ( (
A) IMÁGENES Y ANTI-IMÁGENES. DOMINIO E IMAGEN DE UNA FUNCIÓN. COMPOSICIÓN DE FUNCIONES Y FUNCIÓN INVERSA. 1. Calcula el dominio de las siguientes funciones: ( ( ( ( ( ( 2. Calcula la imagen de las siguientes
Razonar si son ciertas o falsas las siguientes igualdades: Asociar cada función con su gráfica. (19) Si x 2 > 0, entonces x > 0.
Razonar si son ciertas o falsas las siguientes igualdades: ) a + b) = a + b ) ) a + b = a + b e = e 4) a + ab b + a = a 5) 8 + = 6) a ) = a 5 7) 8) a = a 4 = 4 9) 9 = 0) ) e ) = e + = ) e ln = ) ln 0 =
Apuntes de Análisis Curso 2017/2018 Esther Madera Lastra REPASO INICIAL
REPASO INICIAL 1 1. CONCEPTOS BÁSICOS SOBRE FUNCIONES Definición: Una función real de variable real la primera le corresponde un único valor de la segunda. es una relación entre dos variables, de tal manera
tema09 24/6/04 09:35 Página CÁLCULO DE DERIVADAS
tema09 24/6/04 09:35 Página 166 9 CÁLCULO DE DERIVADAS tema09 24/6/04 09:35 Página 167 Introducción En muchas ocasiones se realizan cálculos de valores medios; por ejemplo, la velocidad media ha sido de
TEMA 0 FUNCIONES ***************
TEMA 0. Definición y terminología.. Funciones conocidas. 3. Operaciones con funciones. 4. Funciones inversas. FUNCIONES ***************. DEFINICIÓN Y TERMINOLOGÍA.. Definición de función real de variable
Departamento de matemáticas
Análisis con solución (Límites, derivadas y aplicaciones) Problema 1: Determina los valores de a y b para los cuales Problema 2: Calcula Problema 3: Una persona camina a la velocidad constante de 3 m/s
1 1. [2014] [EXT-A] Dada la función f(x) = x+1 + x
. [4] [ET-A] Dada la función f() = + +, se pide: +4 a) Determinar el dominio de f y sus asíntotas. b) Calcular f'() y determinar los etremos relativos de f(). c) Calcular f()d 5sen + si
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2006 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 006 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva 1, Ejercicio, Opción A Reserva
La variable independiente x es aquella cuyo valor se fija previamente. La variable dependiente y es aquella cuyo valor se deduce a partir de x.
Bloque 8. FUNCIONES. (En el libro Temas 10, 11 y 12, páginas 179, 197 y 211) 1. Definiciones: función, variables, ecuación, tabla y gráfica. 2. Características o propiedades de una función: 2.1. Dominio
EJERCICIOS RESUELTOS TEMA 2: DERIVADA DE UNA FUNCIÓN EN UN PUNTO. FUNCIÓN DERIVADA. APLICACIONES.
EJERCICIOS RESUELTOS TEMA : DERIVADA DE UNA FUNCIÓN EN UN PUNTO. FUNCIÓN DERIVADA. APLICACIONES. Ejercicio 1 Calcula las funciones derivadas de las siguientes funciones y simplifícalas: a) f ( ) sine b)
ACTIVIDADES INICIALES
0 Derivadas 0.I. Dada la función f() + : ACTIVIDADES INICIALES a) Calcula las rectas secantes que pasan por los puntos A(, ) y B(5, ), y por A y C(4, 5), respectivamente. Cuáles son sus pendientes? f(
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2017 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 07 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva,
Trabajo de verano. MATEMÁTICAS I ***** 1º de Bachto. CyT. INSTITUTO DE EDUCACIÓN SECUNDARIA LA FLOTA. x 5 3 R. x c) log. log 14, 25 11, 16.
INSTITUTO DE EDUCACIÓN SECUNDARIA LA FLOTA Trabajo de verano MATEMÁTICAS I ***** º de Bachto. CT. UNIDAD I. Números reales. Suceones aritmos. Epresar como intervalos representar gráficamente los guientes
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 6 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva,
f : IR IR 1. FUNCIÓN REAL DE VARIABLE REAL Una función real f de variable real es una relación que asocia a cada número real, x, un único número real
Apuntes de Análisis Curso 7/8 Esther Madera Lastra. FUNCIÓN REAL DE VARIABLE REAL Una función real f de variable real es una relación que asocia a cada número real,, un único número real y = f (). A la
Cálculo I (Grados TICS UAH) Cálculo diferencial Curso 2018/19
Cálculo I (Grados TICS UAH Cálculo diferencial Curso 08/9. Calcular, utilizando la definición rigurosa de derivada, las derivadas de las siguientes funciones: (a f( = 3 (b f( = 3 + 3 (c f( = + (d f( =
Construye la gráfica de las funciones propuestas a continuación, y estudia el signo de las mismas: (h)
Construye la gráfica de las funciones propuestas a continuación, y estudia el signo de las mismas: (a) y 6 ; (b) y ( )( ) + ; (c) (e) y + 6 ; + 4; (d) y ( ) 9 + 5 5; (f) 4 y y 9 ; ; (h) y ( + ) ; 4 (g)
Colegio Portocarrero. Curso Departamento de matemáticas. Derivadas; aplicaciones de las derivadas
Derivadas; aplicaciones de las derivadas Problema 1: La función f(t), 0 t 10, en la que el tiempo t está expresado en años, representa los beneficios de una empresa (en cientos de miles de euros) entre
1. Calcula la tasa de variación media de las siguientes funciones en los intervalos que se indican. 1
6 Derivadas CRITERIOS DE EVALUACIÓN ACTIVIDADES DE EVALUACIÓN A. Calcular la tasa de variación media de una función en un intervalo.. Calcula la tasa de variación media de las siguientes funciones en los
12 Representación de funciones
Representación de funciones ACTIVIDADES INICIALES.I. Factorizando previamente las epresiones, resuelve las siguientes ecuaciones: 3 a) 6 7 4 + 5 = 0 6 4 c) 4 + 4 = 0 7 b) 6 d) + + + + 3 = 0.II. Resuelve
Problemas Tema 2 Enunciados de problemas de Límite y Continuidad
página /2 Problemas Tema 2 Enunciados de problemas de Límite y Continuidad Hoja. Estudiar la continuidad y derivabilidad de la función f ()=. solución: continua en toda la recta real. Punto anguloso en
TEMA 2: DERIVADAS. 3. Conocer las derivadas de las funciones elementales: potencias, raíces, exponenciales y logaritmos.
TEMA 2: DERIVADAS 1. Conocer el concepto de tasa de variación media de una función y llegar al concepto de derivada como límite de la tasa de variación media. 2. Conocer, sin demostración, las reglas dederivación
BLOQUE TEMÁTICO III: ANÁLISIS
BLOQUE TEMÁTICO III: ANÁLISIS 9.- LÍMITES Y CONTINUIDAD 1.- Funciones reales Una función es una relación de dependencia entre dos conjuntos en la que a cada elemento del conjunto inicial le corresponde
Ejercicios de Funciones: derivadas y derivabilidad
Matemáticas 2ºBach CNyT. Ejercicios Funciones: Derivadas, derivabilidad. Pág 1/15 Ejercicios de Funciones: derivadas y derivabilidad 1. Calcular las derivadas en los puntos que se indica: 1., en x = 5.
5x 2 +2 (x-6) 1-2x-e x +sen(3x) 1. [2014] [JUN-A] Calcular justificadamente: a) lim. ; b) lim x. x 2-1 (2x-1)
--e +sen(). [04] [JUN-A] Calcular justificadamente: a) lim ; b) lim 5 + (-6) - (-) a+ln(-) si < 0. [04] [JUN-B] Dada la función f() = e - (donde ln denota logaritmo neperiano) se pide: si 0 a) Calcular
Matemáticas II TEMA 9 Aplicaciones de las derivadas: Representación gráfica de funciones y Optimización Problemas Propuestos
Matemáticas II TEMA 9 Aplicaciones de las derivadas: Representación gráfica de funciones y Optimización Problemas Propuestos Crecimiento y decrecimiento. Máimos y mínimos relativos; puntos de infleión
2 = ( ) = con vértice en (0, 3) y cortes con el. Tomando la parte continua de cada una de ellas se obtiene la grafica de la función.
Septiembre. Ejercicio B. Puntuación máima: puntos) Se considera la función real de variable real definida por: a si f ) Ln ) si > b) Represéntese gráficamente la función para el caso a. Nota: Ln denota
( ) ( ) ( ) f h f h h h h. h 0 h h 0 h h 0 h h 0. f h f h h h h
Eamen de cálculo diferencial e integral /4/9 Opción A Ejercicio. (Puntuación máima: puntos) Sea la función f ( ) = 4 a. Estudiar su continuidad y derivabilidad. b. Dibujar su gráfica. c. Calcular el área
PROPIEDADES GLOBALES DE LAS FUNCIONES. =, para x 0.
PROPIEDADES GLOBALES DE LAS FUNCIONES Ejercicio. Sea f: R R la función definida por f ( ) Ln( + ), siendo Ln la función logaritmo neperiano. (a) [ punto] Determina los intervalos de crecimiento y decrecimiento
SELECTIVIDAD APLICACIÓN DE LAS DERIVADAS
SELECTIVIDAD APLICACIÓN DE LAS DERIVADAS Septiembre 008: Calcula los valores del número real a sabiendo que punto) 0 a e a = 8. ( Septiembre 008: Hallar, de entre los puntos de la parábola de ecuación
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2006 MATEMÁTICAS II TEMA 5: INTEGRALES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 6 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,
Examen de Análisis Matemático. a) (1 punto) Calcula las derivadas de las siguientes funciones: (1 + 3x) 1 2
Curso º Bachillerato 16/05/017 Ejercicio 1 a) (1 punto) Calcula las derivadas de las siguientes funciones: f() = 1+3 ; g() = ln(1 5) + e7 b) (1 punto) Estudia la derivabilidad de la función dada por: a)
f(x) = xe para x -1 y x 0, MATEMÁTICAS II PROBLEMAS DE FUNCIONES. Ejercicio 1. (Reserva 1 Septiembre 2013 Opción A) Sea f la función definida por
MATEMÁTICAS II PROBLEMAS DE FUNCIONES. Ejercicio. (Reserva Septiembre 0 Opción A) f() = para > 0, (donde ln denota el logaritmo neperiano). ln() a) [ 5 puntos] Estudia y determina las asíntotas de la gráfica
Colegio Agave Matemáticas I
Derivadas y aplicaciones de la derivada (con solución) Problema 1: Se considera la función definida por a) Calcula las asíntotas de la gráfica de f(x) b) Estudia la posición de la gráfica de f(x) respecto
Unidad 8: Derivadas. Técnicas de derivación. Aplicación al estudio y representación de funciones. Primitiva de una función (integración).
representación de funciones Primitiva de una función (integración) 1 Unidad 8: Derivadas Técnicas de derivación Aplicación al estudio y representación de funciones Primitiva de una función (integración)