GYMNÁZIUM BUDĚJOVICKÁ. MATEMÁTICAS. TRIGONOMETRÍA. EJERCICIOS IV: RESOLUCIÓN DE TRIÁNGULOS. PROBLEMAS.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "GYMNÁZIUM BUDĚJOVICKÁ. MATEMÁTICAS. TRIGONOMETRÍA. EJERCICIOS IV: RESOLUCIÓN DE TRIÁNGULOS. PROBLEMAS."

Transcripción

1 GYMNÁZIUM BUDĚJOVICKÁ MATEMÁTICAS TRIGONOMETRÍA EJERCICIOS IV: RESOLUCIÓN DE TRIÁNGULOS PROBLEMAS - Determinr ls longitudes de los ldos y los tmños de los ángulos interiores del triángulo ABC si semos: ) 0 m, α 6º, β 34º ) 5 m, α 0º, β 8º ) 8, 4 m, α 4º 05', γ 6º 55' d) 5, 66 m, β 56º 3', γ 44º 47' ) 6, 3m, 3, m, γ 84º, ) 0, 0 m, 7m,, γ 4º ), m, 7, m, β º 0' d) 4, 8 m, 4, 07 m, α 78º 4' - Determinr ls longitudes de los ldos y los tmños de los ángulos interiores del triángulo ABC si semos: ) 6 m, 7 m, γ 40º ) 6 m, 9 m, β 75º ) 8 m, 5 m, γ 6º55' d) 6 m, 3 m, β 30º ) 0, 4 m, α 33º 6', β 06º 34', ) no se puede, ) 0, 6 m, β 46º 5', α 06º 40' ;, 7 m, β 33º 35', α 9º 30', d) 5, m, α 90º, γ 60º 3 3- Determinr ls longitudes de los ldos y los tmños de los ángulos interiores del triángulo ABC si semos: ) m, 3 m, 4 m ) 3 m, 8 m, 4 m ) 5 m, 7 m, γ 9º4' d) 7 m, m, β 4º ) α 8 º 57', β 46º 34', γ 04º 9', ) no se puede, ) 3, 6 m, α 4º 48', β 07º 58', d) 6, 9 m, α 0º 06', γ 36º 04' 4- Determinr ls longitudes de los ldos del triángulo ABC si semos: ) t 6 m, t 9 m, 8 m ) 6 m, t 5 m, γ 45º ) 6 m, t 5 m, 8 m d) 6 m, t 9 m, t 4 m e) 0 m, t 8 m, 6 m f) t 6 m, t 4 m, t 8 m ), 7 m, 8, 7 m, ) 3, 8 m, 0, 5 m; 3, m, 4, 4 m, ) 6,8 m, d) 7, 6 m,, m, e), 4 m, 6, 9 m; 3, 4 m,, 9 m, f) 7, 4 m, 9, 0 m,, 4, m 5- Clul el tmño del ángulo menos en el triángulo ABC si semos ls longitudes de los ldos 7 m, 8 9 m ) α 48º' m y

2 6- En el triángulo ABC onoemos l longitud del ldo 8 m y el tmño del ángulo α 30º Disutir sore el número de soluiones y hllr el tmño de β undo l longitud del ldo tomndo los lores del onjunto { 4, 6, 80, }, Los dtos están en entímetros m 4 m 6 m 8 m 0 m Número de Soluiones 0 0 β No hy No hy 4 º 49'; 38º ' 30 º 3 º35' 7- Clul el tmño de los ángulos del triángulo ABC si onoemos ls longitudes de los ldos 0 m, 4 m y los ángulos están en proporión β : γ : α 43 º 7', β 9º 09', γ 45º 34' 8- Clul el tmño de los ángulos interiores del triángulo ABC siendo que : 3 : y β α α 30 º, β 60º, γ 90º 9- En el triángulo ABC onoemos ls proporiones de los ldos : : : 4 : 5 Clulr los ángulos α º 0', β 49º 7', γ 08º 3' 0- en el triángulo ABC onoemos los ángulos α 45 º, β 60º, γ 75º Clulr l proporión de ls longitudes de los ldos : : : 3 : ( 6 + ) - En el triángulo ABC onoemos 4 m, 5 m, α 45º ) Clulr el ldo on el teorem del oseno (Hllr el resultdo on un ifr deiml, es deir, l milímetro) ) Construir el triángulo según los dtos ddos Medir el ldo y omprr el resultdo on l soluión otenid en el prtdo ) ), 4 m, 7 m 5, - Demostrr on el teorem del oseno que todos los ángulos en el triángulo equilátero len 60º 3- Demostrr on el teorem del oseno que en un triángulo isóseles de se AB se tiene ) osα ) ( osγ ) 4- Determinr ls longitudes de los ldos, ls digonles y ls lturs y los tmños de los ángulos interiores del prlelogrmo ABCD si semos: ) AB 6, m, BC 5, 4 m, AC 4, 8 m ) AB 0, 8 m, 4, m, α 7º '

3 ) BD 0, 6 m, 4, 0 m, 4, 6 m, α 3º 43', β 48º 7' ) BC 9, m, BD 5, 0 m, AC 9, 4 m, 4, 9 m, β 5º 49' 5- En el trpeio ABCD onoemos los ldos AB 30 m, BC 5 m, CD 0 m, AD m Clulr los ángulos interiores ) α 85 º 8', β 5º 53', γ 7º 07', δ 94º 3' 6- Clulr el ldo NK y el tmño del ángulo NK ˆ L en el udrilátero KLMN si semos KL 0 m, LM m, MN 6 m, K LM ˆ 65º, K NM ˆ 98º KN 9, 5 m, NKˆ L 96º 00' 7- L distni entre dos puntos A y B que no podemos medir diretmente l determinmos sí: tommos dos puntos ulesquier K y L desde los que podemos er A y B Todos los puntos son oplnrios (están en el mismo plno) Medimos KL 50 m y los siguientes ángulos: K LM ˆ 54 º, ALK ˆ 4º, AKL ˆ 8º, BKˆ L 76 º Clulr l distni AB AB 65,9 m 8- Clulr l nhur de un río si en un ldo del río est señldo el segmento KL on longitud 40m y semos los ángulos L KS ˆ 76º 4 ' y K LS ˆ 43º 5 ', donde S es un punto en el otro ldo del río 3, m 9- Sore un uerpo tún dos fuerzs F 40 N y F 70 N, en un mismo punto del uerpo, formndo un ángulo entre ells de 50º Determinr el tmño de l resultnte F y el ángulo que form on F F 00 N, < FF 3º 0- L fuerz F 00 N se desompone en dos fuerzs F 50 N y F 00 N Clulr el ángulo que formn ls fuerzs F y F < F F 76º - L fuerz F 00 N se desompone en dos fuerzs que formn ángulos on ell de α 7º y β 74º tmño de ls fuerzs F 9 N, F 96 N Clulr el - Tres fuerz F 0 N, F 0 N, F 7 N oplnris tún sore el mismo punto de un uerpo y están en 3 equilirio Clulr los ángulos que formn entre ells

4 < F F 55º, < FF3 6º, < FF3 43º 3- En el triángulo ABC onoemos 5 m, 4 m, m Hllr el áre del triángulo y l ltur S 5m,, 5m 4- En el triángulo ABC onoemos 4 m, 6 m, γ 60º Clulr el áre del triángulo y ls lturs,, 6 S 3m, 3 3m, 3m, m Clul el áre del triángulo ABC si los ldos miden 5m, 6 m y 9m Clulr el áre del triángulo S ABSBCS AC donde S, S, S son los puntos medios de los ldos AB, BC y AC respetimente AB BC AC 5 S 0 m, S m 6- En el prlelogrmo ABCD onoemos AB 8 m, AD m, D AB ˆ 30 º ABCD y ls lturs otenidos nteriormente S 8m, m, Clulr el áre del prlelogrmo, Después onstruir el prlelogrmo y midiéndolo omprr los álulos on los dtos 4 m 7- Clulr el áre del trpeio ABCD si onoemos los ldos AB 8 m, BC 6 m, CD m AD 6 m S 5 3m 8- El udrdo ABCD ( 4m) se gir sore el értie A un ángulo de 45º Apree un nueo udrdo A BCD Clulr el áre del udrilátero que se form omo interseión de los dos udrdos S 6 m & 6, 6m ( ) 9- Clulr el rdio de l irunfereni irunsrit y l irunfereni insrit l triángulo ABC siendo 4 m, 6 m y α 45º r 3, 0m, ρ, m 30- Clulr l longitud del ldo, el perímetro o y el áre S del pentágono regulr insrito en un irunfereni de rdio 6m 7, 05m, o 35, 3m, S 85, 6m 3- El ldo de un eneágono (9 ldos) regulr es 5 m Clulr el rdio de l irunfereni que podemos: ) insriir en el eneágono ) irunsriir en el eneágono

5 ) ρ 6,9m, ) r 7, 3m 3- ) En un dodeágono ( ldos) regulr A A A K ( 6 m) mrmos los puntos medios S, S, K, S de los ldos A A, A A3, K, A A Hllr l proporión de ls áres de los dodeágonos A AK A y SSK S ) Her lo mismo que en el prtdo nterior pero on un polígono de n ldos y on longitud del ldo ) En un irunfereni de rdio R insriir un polígono regulr de n ldos y, l ez, es irunfereni, irunsriir un polígono regulr de n ldos Después lulr l proporión de ls áres de los polígonos insrito y irunsrito l irunfereni ) S : S ( 8 4 3) A A A : SS KS K, ) S S SS KSn 80 n A AKAn º : os, ) S insrito : S irunsrito os 80º n

22. Trigonometría, parte II

22. Trigonometría, parte II 22. Trigonometrí, prte II Mtemátis II, 202-II 22. Trigonometrí, prte II Extensión del dominio Se P un punto sore l irunfereni x 2 + 2 =. Est irunfereni tiene rdio entro el origen O(0, 0). Denotmos por

Más detalles

TRIGONOMETRÍA. 4º E.S.O. Académicas AB = OA

TRIGONOMETRÍA. 4º E.S.O. Académicas AB = OA ÁNGULO. GRDO. TRIGONOMETRÍ El grdo es l medid de d uno de los ángulos que resultn l dividir el ángulo reto en 90 prtes igules. Su símolo es el º. 4º E.S.O. démis IRUNFERENI GONIOMÉTRI ÁNGULO. RDIÁN. 90º

Más detalles

LÁMINAS 2º ESO TRAZADOS FUNDAMENTALES Y POLÍGONOS

LÁMINAS 2º ESO TRAZADOS FUNDAMENTALES Y POLÍGONOS LÁMINAS 2º ESO TRAZADOS FUNDAMENTALES Y POLÍGONOS Prlels y Perpendiulres Lámin nº 1 Prlels y Perpendiulres Lámin nº 1 Trzr un perpendiulr en el extremo de un segmento de 60 mm. de longitud. Trzr un perpendiulr

Más detalles

Problemas de trigonometría

Problemas de trigonometría Prolems de trigonometrí Reliones trigonométris de un ángulo. Clulr ls rzones trigonométris de un ángulo α, que pertenee l primer udrnte, y siendo que 8 sin α. 7 sin α + os α 8 7 + os α os α 64 5 5 osα

Más detalles

MATEMÁTICA MÓDULO 3 Eje temático: Geometría

MATEMÁTICA MÓDULO 3 Eje temático: Geometría MATEMÁTICA MÓDULO 3 Eje temátio: Geometrí 1. SEGMENTOS PROPORCIONALES EN EL TRIÁNGULO RECTÁNGULO En el ABC retángulo en C de l figur: Se pueden estbleer ls siguientes semejnzs: 1) De est semejnz, se obtienen

Más detalles

TRIGONOMETRÍA. 1. ÁNGULOS 1.1. Ángulo en el plano Criterios de orientación de ángulo Sistema de medida de ángulos. Sistema sexagesimal

TRIGONOMETRÍA. 1. ÁNGULOS 1.1. Ángulo en el plano Criterios de orientación de ángulo Sistema de medida de ángulos. Sistema sexagesimal . ÁNGULOS.. Ángulo en el plno TRIGONOMETRÍA Dos semirrets en el plno, r y s, on un origen omún O, dividen diho plno en dos regiones. Cd un de de ests regiones determin un ángulo. O es el vértie de los

Más detalles

SECRETARÍA ACADÉMICA ÁREA DE INGRESO MATEMÁTICA

SECRETARÍA ACADÉMICA ÁREA DE INGRESO MATEMÁTICA SECRETARÍA ACADÉMICA ÁREA DE INGRESO MATEMÁTICA - Septiemre de 007 - Noiones de Trigonometrí: L trigonometrí se dedi l estudio de ls reliones que existen entre ls medids de los ángulos y ldos de un triángulo.

Más detalles

En todo triángulo rectángulo se cumple el Teorema de Pitágoras. sen C hipotenusa. cos C. BC : hipotenusa B AC. (Regla: SOHCAHTOA)

En todo triángulo rectángulo se cumple el Teorema de Pitágoras. sen C hipotenusa. cos C. BC : hipotenusa B AC. (Regla: SOHCAHTOA) RAZONES TRIGONOMÉTRICAS Recordmos los siguientes conceptos: ABC es un triángulo rectángulo en A : BC : hipotenus AB : cteto dycente B ó cteto opuesto C AC : cteto opuesto B ó cteto dycente C Propiedd de

Más detalles

PB' =. Además A PB = APB por propiedad de

PB' =. Además A PB = APB por propiedad de limpid de Mtemátis, Querétro GEMETRÍ: Trigonometrí, Áres, ílios, Ptolomeo Rosrio Velázquez 0 y de Junio, 005 PRLEM EL EXMEN ESTTL P es ulquier punto del interior de un triángulo. Sen, y los puntos medios

Más detalles

Departamento de Matemática

Departamento de Matemática Deprtmento de Mtemáti Trjo Prátio N 2: PROPORCIONALIDAD Y SEMEJANZA TEOREMA DE PITÁGORAS RAZONES TRIGONOMÉTRICAS EN EL TRIÁNGULO RECTÁNGULO Segundo Año 1) Clulen x en los siguientes gráfios si te informn

Más detalles

3- Calcula la amplitud de los ángulos interiores de los siguientes cuadriláteros. b c s t

3- Calcula la amplitud de los ángulos interiores de los siguientes cuadriláteros. b c s t 3- Clul l mplitud de los ángulos interiores de los siguientes udriláteros. s t 36 r u rstu trpeio isóseles û x 16 tˆ x 30 TRIÁNGULOS Se llm triángulo tod figur de tres ldos. Un triángulo tiene tres vérties,

Más detalles

SECRETARÍA ACADÉMICA ÁREA DE INGRESO MATEMÁTICA

SECRETARÍA ACADÉMICA ÁREA DE INGRESO MATEMÁTICA Ministerio de Eduión Universidd Tenológi Nionl Fultd Regionl Rosrio SECRETARÍA ACADÉMICA ÁREA DE INGRESO MATEMÁTICA - Septiemre de 03 - Ministerio de Eduión Universidd Tenológi Nionl Fultd Regionl Rosrio

Más detalles

Cabri. Construcciones RECURSOS.

Cabri. Construcciones RECURSOS. ri. Atividd 1.- Diujr: Un heptágono regulr, un pentágono estrelldo, un vetor, un elipse y un ro on dos puntos sore un ret punted. Atividd 2.- onstruir el punto medio del ldo B del triángulo AB y ls rets

Más detalles

1 RESOLUCIÓN DE TRIÁNGULOS RECTÁNGULOS

1 RESOLUCIÓN DE TRIÁNGULOS RECTÁNGULOS T3: TRIGONOMETRÍ 1º T 1 RESOLUIÓN DE TRIÁNGULOS RETÁNGULOS Resolver un triángulo es llr ls longitudes de sus ldos y ls mplitudes de sus ángulos. Ls fórmuls que se plin son: ) Ls rzones trigonométris: ˆ

Más detalles

Lección 10: TRIÁNGULOS. Un triángulo es un polígono de tres ángulos y tres lados. También tiene tres vértices.

Lección 10: TRIÁNGULOS. Un triángulo es un polígono de tres ángulos y tres lados. También tiene tres vértices. 1.- QUÉ ES UN TRIÁNGULO? Leión 10: TRIÁNGULOS Un triángulo es un polígono de tres ángulos y tres ldos. Tmién tiene tres vérties. ELEMENTOS DE UN TRIÁNGULO Ldo: Cd uno de los tres segmentos que limitn l

Más detalles

Departamento: Física Aplicada III

Departamento: Física Aplicada III Fund mentos Físi os de l Ingenierí. (Ind ustri les) Prlelogrmo insrito en trpezoide Ddo un trpezoide (udrilátero irregulr que no tiene ningún ldo prlelo otro), demuestre, usndo el álger vetoril, que los

Más detalles

2.7. POLÍGONO REGULAR INSCRITO EN UNA CIRCUNFERENCIA (Método general)

2.7. POLÍGONO REGULAR INSCRITO EN UNA CIRCUNFERENCIA (Método general) 2.7. POLÍGONO REGULR INSRITO EN UN IRUNFERENI (Método generl) Reuerd: Ddo el rdio del polígono de n ldos (3 m) 1. Diuj un irunfereni de 3 m. de rdio. 2. Trz su diámetro, y divídelo en n prtes igules. 3.

Más detalles

7 Semejanza. y trigonometría. 1. Teorema de Thales

7 Semejanza. y trigonometría. 1. Teorema de Thales 7 Semejnz y trigonometrí 1. Teorem de Tles Si un person que mide 1,70 m proyet un sombr de,40 m y el mismo dí, l mism or y en el mismo lugr l sombr de un árbol mide 15 m, uánto mide de lto el árbol? Se

Más detalles

Resumen creado por Hernán Verdugo Fabiani, profesor de Matemática y Física, abril 2011.

Resumen creado por Hernán Verdugo Fabiani, profesor de Matemática y Física, abril 2011. Reliones métris en un triángulo Resumen redo or Hernán Verdugo Fini, rofesor de Mtemáti y Físi, ril 011. El estudio de un triángulo siemre revestido interés y or ello es ue existen un serie de desriiones,

Más detalles

CONSTRUCCION DE TRIANGULOS

CONSTRUCCION DE TRIANGULOS ONSTRUION DE TRINGULOS INTRODUION Ls exigenis que se imponen un figur que se dese onstruir son ls siguientes: 1) l mgnitud de segmentos, ros, ángulos y áres. 2) l posiión reltiv de puntos y línes. 3) l

Más detalles

APUNTE: TRIGONOMETRIA

APUNTE: TRIGONOMETRIA APUNTE: TRIGONOMETRIA UNIVERSIDAD NACIONAL DE RIO NEGRO Asigntur: Mtemáti Crrers: Li. en Eonomí Profesor: Prof. Mel S. Chresti Cutrimestre: ero Año: 06 o Coneptos Previos o Definiión de ángulo Un ángulo

Más detalles

Unidad didáctica 4. Trigonometría plana

Unidad didáctica 4. Trigonometría plana Interpretión Gráfi Unidd didáti 4. Trigonometrí pln 4.1 Medids de ros y ángulos omo en un mism irunfereni ros igules orresponden ángulos igules, se quiere enontrr un medid de ros que sirv pr ángulos y

Más detalles

TRIGONOMETRÍA II = = ; procediendo igual que antes, pero con h : longitudes de los lados son proporcionales a los senos de los ángulos opuestos).

TRIGONOMETRÍA II = = ; procediendo igual que antes, pero con h : longitudes de los lados son proporcionales a los senos de los ángulos opuestos). TEMA: 1. TEOREMA DE LOS SENOS despejndo h de ms igulddes: En generl tendremos que resolver triángulos no retángulos, y, en ellos, no es posile plir ls definiiones de ls rzones trigonométris de sus ángulos.

Más detalles

Qué tienes que saber?

Qué tienes que saber? Trigonometrí Qué tienes que sber? QUÉ tienes que sber? tividdes Finles Ten en uent Rzones trigonométris de un ángulo gudo, α: teto opuesto sen α hipotenus teto dyente os α hipotenus teto opuesto tgα teto

Más detalles

SenB. SenC. c SenC = 3.-

SenB. SenC. c SenC = 3.- TRIANGULOS OBLICUANGULOS Se llmn oliuángulos por que los ldos son oliuos on relión uno l otro, no formndo nun ángulos retos. Hy seis elementos fundmentles en un tringulo: los tres ldos y los tres ángulos,

Más detalles

SOLUCIONES ABRIL 2018

SOLUCIONES ABRIL 2018 Págin de OLUCIONE ABRIL 08 AUTOR: Ricrd Peiró i Estruch IE Abstos lènci ABRIL -8: Clculr el ángulo que formn dos digonles de un cubo Nivel: A prtir de EO olución: e ABCDA B C D el cubo de rist AB Aplicndo

Más detalles

Triángulos: Puntos notables y construcciones. Traza el ORTOCENTRO de este triángulo. Traza el INCENTRO de este triángulo y la circunferencia INSCRITA

Triángulos: Puntos notables y construcciones. Traza el ORTOCENTRO de este triángulo. Traza el INCENTRO de este triángulo y la circunferencia INSCRITA Trz el INNTRO de este triángulo y l circunferenci INSRIT Trz el IRUNNTRO de este triángulo y l circunferenci IRUNRIT Trz el RINTRO de este triángulo. Trz el ORTONTRO de este triángulo. onstruye el triángulo

Más detalles

10 Figuras planas. Semejanza

10 Figuras planas. Semejanza 10 Figurs plns. Semejnz Qué tienes que ser 10 QUÉ tienes que ser Atividdes Finles 10 Ten en uent Teorem de Pitágors. En un triángulo retángulo, el udrdo de l hipotenus es igul l sum de los udrdos de los

Más detalles

4. Trigonometría II. c) c 2 b 2 a 2 2ba cos C c 11,17 cm a A 61,84. B 38,11 se n B sen C d) A B C 180 A 70 a b 5,32. l 40 sen.

4. Trigonometría II. c) c 2 b 2 a 2 2ba cos C c 11,17 cm a A 61,84. B 38,11 se n B sen C d) A B C 180 A 70 a b 5,32. l 40 sen. 9 ) os 11,17 m se n 61,84 38,11 se n d) 180 70 se n 5,3 se n 10,48 lul un ulquier de ls lturs de los triángulos resueltos en el ejeriio nterior y utilízl después pr lulr su áre. Pr resolver este ejeriio

Más detalles

Una condición necesaria y suficiente para que el triangulo PBP sea equilátero es que el ángulo HBP sea 30º. b que es la relación buscada.

Una condición necesaria y suficiente para que el triangulo PBP sea equilátero es que el ángulo HBP sea 30º. b que es la relación buscada. Hoj de Prolems Geometrí III 49. Dd l elipse, si tommos el etremo B de ordend positiv del eje menor omo entro, se desrie un irunfereni de rdio igul diho eje menor, ortr l elipse en dos punto P P. Determinr

Más detalles

Compilado por CEAVI: Centro de Educación de Adultos

Compilado por CEAVI: Centro de Educación de Adultos olígonos Un polígono es l región del plno limitd por tres o más segmentos. lementos de un polígono Ldos: on los segmentos que lo limitn. Vértices: on los puntos donde concurren dos ldos. Ángulos interiores

Más detalles

10 Figuras planas. Semejanza

10 Figuras planas. Semejanza Figurs plns. Semejnz Qué tienes que ser? QUÉ tienes que ser? Atividdes Finles Ten en uent Teorem de Pitágors. En un triángulo retángulo, el udrdo de l hipotenus es igul l sum de los udrdos de los tetos.

Más detalles

RESOLUCIÓN DE TRIÁNGULOS

RESOLUCIÓN DE TRIÁNGULOS RESOLUIÓN DE TRIÁNGULOS Págin 103 REFLEXION Y RESUELVE Prolem 1 Pr lulr l ltur de un árol, podemos seguir el proedimiento que utilizó Tles de Mileto pr hllr l ltur de un pirámide de Egipto: omprr su somr

Más detalles

a vectores a y b se muestra en la figura del lado derecho.

a vectores a y b se muestra en la figura del lado derecho. Produto ruz o produto vetoril Otr form nturl de definir un produto entre vetores es trvés del áre del prlelogrmo determindo por dihos vetores. El prlelogrmo definido por los h vetores y se muestr en l

Más detalles

Tema 5. Semejanza. Tema 5. Semejanza

Tema 5. Semejanza. Tema 5. Semejanza Tem 5. Semejnz Tem 5. Semejnz 1. Definiión de Semejnz. Esls. Teorem de Tles 3. Semejnz de Triángulos. riterios 4. riterios de Semejnz en triángulos retángulos 5. Teorems en triángulos retángulos 6. Relión

Más detalles

Perímetros. Cuadrado: EL PERÍMETRO: a a P = a + a + a + a P = 4a

Perímetros. Cuadrado: EL PERÍMETRO: a a P = a + a + a + a P = 4a Perímetros EL PEÍMETO: udrdo: P El perímetro de ls figurs puede medirse usndo uniddes de medid de longitud. Por lo tnto se puede medir en centímetros, decímetros, metros. Ejemplo: El perímetro del triángulo

Más detalles

Guía - 4 de Matemática: Trigonometría

Guía - 4 de Matemática: Trigonometría 1 entro Eduionl Sn rlos de rgón. oordinión démi Enseñnz Medi. Setor: Mtemáti. Nivel: NM Prof.: Ximen Gllegos H. Guí - de Mtemáti: Trigonometrí Nomre(s): urso: Feh. ontenido: Trigonometrí. prendizje Esperdo:

Más detalles

XVI Encuentro Departamental de Matemáticas: La innovación en el proceso docente educativo en Matemáticas a partir de diferentes medios de aprendizaje

XVI Encuentro Departamental de Matemáticas: La innovación en el proceso docente educativo en Matemáticas a partir de diferentes medios de aprendizaje XVI Enuentro Deprtmentl de Mtemátis: L innovión en el proeso doente edutivo en Mtemátis prtir de diferentes medios de prendizje y I Enuentro Deprtmentl de GeoGer Netmente intuitivos. Inextitud de los

Más detalles

Semejanza. 2. Relación entre perímetros, áreas y volúmenes de figuras semejantes 51

Semejanza. 2. Relación entre perímetros, áreas y volúmenes de figuras semejantes 51 Semejnz 1. Teorem de Tles 50 2. Relión entre perímetros, áres y volúmenes de figurs semejntes 51 3. Teorem de Pitágors, teorem del teto y teorem de l ltur 52 4. Rzones trigonométris de un ángulo gudo y

Más detalles

Colegio Nuestra Señora de Loreto TRIGONOMETRÍA 4º E.S.O.

Colegio Nuestra Señora de Loreto TRIGONOMETRÍA 4º E.S.O. TRIGONOMETRÍ 4º E.S.O. Frniso Suárez Bluen TRIGONOMETRÍ PREVIOS. Teorem de Tles (Semejnz) Si ortmos dos rets por un serie de rets prlels, los segmentos determindos en un de ells son proporionles los segmentos

Más detalles

CAPÍTULO 4: RELACIÓN ENTRE ÁNGULOS Y ARCOS DE CIRCUNFERENCIA (III)

CAPÍTULO 4: RELACIÓN ENTRE ÁNGULOS Y ARCOS DE CIRCUNFERENCIA (III) PÍTULO 4: RELIÓN ENTRE ÁNGULOS Y ROS DE IRUNFERENI (III) Dnte Guerrero-hnduví Piur, 2015 FULTD DE INGENIERÍ Áre Deprtmentl de Ingenierí Industril y de Sistems PÍTULO 4: RELIÓN ENTRE ÁNGULOS Y ROS DE IRUNFERENI

Más detalles

CAPÍTULO 3: ALGUNAS PROPIEDADES DEL TRIÁNGULO (III)

CAPÍTULO 3: ALGUNAS PROPIEDADES DEL TRIÁNGULO (III) PÍTULO 3: LGUNS PROPIEDDES DEL TRIÁNGULO (III) Dnte Guerrero-hnduví Piur, 2015 FULTD DE INGENIERÍ Áre Deprtmentl de Ingenierí Industril y de Sistems PÍTULO 3: LGUNS PROPIEDDES DEL TRIÁNGULO (III) Est or

Más detalles

1. Definición de Semejanza. Escalas

1. Definición de Semejanza. Escalas Tem 5. Semejnz Tem 5. Semejnz 1. Definiión de Semejnz. Esls. Teorem de Tles 3. Semejnz de Triángulos. riterios 4. riterios de Semejnz en triángulos retángulos 5. Teorems en triángulos retángulos 6. Relión

Más detalles

Clasifica los siguientes polígonos. a) b) c) d)

Clasifica los siguientes polígonos. a) b) c) d) 1 FIGURS PLNS EJERIIS PR ENTRENRSE Polígonos 1.44 lsific los siguientes polígonos. ) b) c) d) ) Pentágono irregulr cóncvo. b) Heptágono regulr convexo. c) ctógono irregulr cóncvo. d) Hexágono irregulr

Más detalles

RAZONES TRIGONOMÉTRICAS EN EL TRIÁNGULO RECTÁNGULO

RAZONES TRIGONOMÉTRICAS EN EL TRIÁNGULO RECTÁNGULO Geometrí y Trigonometrí Rzones trigonométris en el triángulo retángulo 7. RZONES TRIGONOMÉTRIS EN EL TRIÁNGULO RETÁNGULO 7.1 onepto de trigonometrí Trigonometrí L plr trigonometrí es un volo ltino ompuesto

Más detalles

GEOMETRÍA 2º DE ESO CURSO

GEOMETRÍA 2º DE ESO CURSO EJERCICIOS DE GEOMETRÍ 2º ESO Profesors: Mónic Mrtínez Espín Inmculd Grcí Ruiz Mónic Mrtínez Espín Lámins GEOMETRÍ 2º DE ESO CURSO 2018-2019 1. CRTÓN. Indic el vlor de los ángulos que formn un crtón. Ángulo

Más detalles

1.6 Perímetros y áreas

1.6 Perímetros y áreas 3 1.6 Perímetros y áres Perímetro: es l medid del contorno de un figur. Superficie (pln): es el conjunto de puntos del plno encerrdos por un figur geométric pln. Áre: es l medid de un superficie. Represente

Más detalles

GEOMETRÍA DEL ESPACIO

GEOMETRÍA DEL ESPACIO Mtemáti Diseño Industril Poliedros Ing. Gustvo Moll GEOMETRÍA DEL ESPACIO L geometrí pln estudi el onjunto de todos los puntos del plno, l geometrí del espio se refiere l onjunto de puntos del espio, es

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. 1 PÁGINA 70 EJERCICIOS Áres y perímetros de figurs sencills Hll el áre y el perímetro de ls figurs coloreds de los siguientes ejercicios: 1 ) b) 3 m 3 m 1,8 m 4 m 6 m ) S3 m3 m9 m b) S 6m 1,8 m 5,4

Más detalles

RESOLUCIÓN DE TRIÁNGULOS

RESOLUCIÓN DE TRIÁNGULOS RESOLUIÓN DE TRIÁNGULOS Págin 103 REFLEXION Y RESUELVE Prolem 1 Pr lulr l ltur de un árol, podemos seguir el proedimiento que utilizó Tles de Mileto pr hllr l ltur de un pirámide de Egipto: omprr su somr

Más detalles

Visualización de triángulos. Curso de Matemáticas para Física. Trigonometría. Trigonometría. Física I, Internet A b.

Visualización de triángulos. Curso de Matemáticas para Física. Trigonometría. Trigonometría. Física I, Internet A b. Visulizión de triángulos Curso de Mtemátis pr Físi Curso de Mtemátis pr Físi Físi I, vi@ Internet 2004 B A C Físi I, vi@ Internet 2004 Visulizión de triángulos Fijémonos en un triángulo ulquier. Curso

Más detalles

LA PROPORCIONALIDAD EN LOS TRIÁNGULOS

LA PROPORCIONALIDAD EN LOS TRIÁNGULOS Proorionlidd en los triángulos Tles Mtemáti º Año Cód. 104-15 P r o f. J u n C r l o s B u e P r o f. D n i e l C n d i o P r o f. N o e m í L g r e P r o f. M r í d e l L u j á n M r t í n e z Dto. de

Más detalles

Matemática. Desafío. GUÍA DE EJERCITACIÓN AVANZADA Conceptos generales de ángulos, polígonos y cuadriláteros GUICEN022MT22-A16V1

Matemática. Desafío. GUÍA DE EJERCITACIÓN AVANZADA Conceptos generales de ángulos, polígonos y cuadriláteros GUICEN022MT22-A16V1 GUÍA DE EJERCITACIÓN AVANZADA Conceptos generles de ángulos, polígonos y cudriláteros Progrm Entrenmiento Desfío En l figur I se muestr un crtulin cudrd PQRS de ldo 1. Se doln los ldos SP y RQ por ls línes

Más detalles

MANEJAR UNIDADES DE LONGITUD Y SUPERFICIE

MANEJAR UNIDADES DE LONGITUD Y SUPERFICIE 12 MANEJAR UNIDADES DE LONGITUD Y SUPERICIE REPASO Y APOYO OBJETIVO 1 Nombre: Curso: ech: UNIDADES DE LONGITUD El metro es l unidd principl de longitud. Abrevidmente se escribe m.?????? dm m dm cm mm ACTIVIDADES

Más detalles

Problemas de fases nacionales e internacionales

Problemas de fases nacionales e internacionales Problems de fses ncionles e interncionles 1.- (Chin 1993). Ddo el prlelogrmo ABCD, se considern dos puntos E, F sobre l digonl AC e interiores l prlelogrmo. Demostrr que si existe un circunferenci psndo

Más detalles

Nombre y apellidos:... Curso:... Fecha:... TEOREMA DE PITÁGORAS SEMEJANZA FIGURAS SEMEJANTES

Nombre y apellidos:... Curso:... Fecha:... TEOREMA DE PITÁGORAS SEMEJANZA FIGURAS SEMEJANTES 8 Teorem de Pitágors. Semejnz Esquem de l unidd Nomre y pellidos:... Curso:... Feh:... En un triángulo retángulo el áre del udrdo onstruido sore l hipotenus es igul l TEOREM DE PITÁGORS sum de... 2 2 =

Más detalles

TEMA 6: INTEGRAL DEFINIDA. APLICACIONES.

TEMA 6: INTEGRAL DEFINIDA. APLICACIONES. TEMA 6: INTEGRAL DEFINIDA. APLICACIONES.. Áre jo un urv El prolem que pretendemos resolver es el álulo del áre limitd por l gráfi de un funión f() ontinu y positiv, el eje X y ls siss = y =. Si l gráfi

Más detalles

tg 3 SOLUCIONARIO UNIDAD 5: Trigonometría II 2 x 2k2 ACTIVIDADES-PÁG. 112

tg 3 SOLUCIONARIO UNIDAD 5: Trigonometría II 2 x 2k2 ACTIVIDADES-PÁG. 112 MtemáticsI UNIDAD 5: Trigonometrí II ACTIVIDADES-PÁG.. L primer iguldd es verdder y ls otrs dos son flss. Pr probrlo bst con utilizr l clculdor.. El áre del círculo es π 0 = 56,64 cm. El ldo y l potem

Más detalles

Triángulos y generalidades

Triángulos y generalidades Geometrí Pln y Trigonometrí (ldor) Septiemre Diiemre 2008 INOE 5/1 pítulo 5. Ejeriios Resueltos (pp. 62 63) (1) Los ldos de un triángulo miden 6 m, 7 m y 9 m. onstruir el triángulo y lulr su perímetro

Más detalles

FIGURAS SEMEJANTES. r B CRITERIOS DE SEMEJANZA DE TRIÁNGULOS. Dos triángulos son semejantes si cumplen alguna de las siguientes condiciones:

FIGURAS SEMEJANTES. r B CRITERIOS DE SEMEJANZA DE TRIÁNGULOS. Dos triángulos son semejantes si cumplen alguna de las siguientes condiciones: Lo fundmentl de l unidd Nombre y pellidos:... urso:... Feh:... FIGURS SEMEJNTES Dos figurs son semejntes si sus ángulos orrespondientes son... y sus distnis... D F D' ' F' ' ' Por ejemplo, si ls figurs

Más detalles

DETERMINACIÓN DE LOS PUNTOS NOTABLES DE UN TRIÁNGULO EN TÉRMINOS DE SUS LADOS HERNAN DARIO ORTIZ ALZATE

DETERMINACIÓN DE LOS PUNTOS NOTABLES DE UN TRIÁNGULO EN TÉRMINOS DE SUS LADOS HERNAN DARIO ORTIZ ALZATE DETERMINACIÓN DE LOS PUNTOS NOTABLES DE UN TRIÁNGULO EN TÉRMINOS DE SUS LADOS HERNAN DARIO ORTIZ ALZATE ESPECIALISTA EN LA ENSEÑANZA DE LAS MATEMÁTICAS U de A INTRODUCCIÓN En el desrrollo de l geometrí

Más detalles

UNIVERSIDAD NACIONAL AGRARIA LA MOLINA CENTRO DE ESTUDIOS PREUNIVERSITARIOS SEXTO SEMINARIO DE GEOMETRÍA

UNIVERSIDAD NACIONAL AGRARIA LA MOLINA CENTRO DE ESTUDIOS PREUNIVERSITARIOS SEXTO SEMINARIO DE GEOMETRÍA UNIVRSI NINL GRRI L LIN NTR STUIS PRUNIVRSITRIS SXT SINRI GTRÍ ÁR RGINS URNGULRS 0. n l figur, G es prlelo y el áre del prlelogrmo es 8. Hlle el áre sombred. ) ) 8 ) 9 ) ) 6 0. n un trpecio ( // ), se

Más detalles

INSTITUCION EDUCATIVA NUESTRA SEÑORA DE GUADALUPE

INSTITUCION EDUCATIVA NUESTRA SEÑORA DE GUADALUPE Áre: MTEMÁTIS Dignostio Trigonometrí Feh: Enero de 07 onoimiento: Rzones Trigonométris y TP Doente: Sntigo Vásquez Grdo: UNDEIMO Estudinte: Ojetivo: Repsr los oneptos ásios sore rzones trigonométris, teorem

Más detalles

UNIVERSIDAD NACIONAL AGRARIA LA MOLINA CENTRO DE ESTUDIOS PREUNIVERSITARIOS SEXTO SEMINARIO DE GEOMETRIA

UNIVERSIDAD NACIONAL AGRARIA LA MOLINA CENTRO DE ESTUDIOS PREUNIVERSITARIOS SEXTO SEMINARIO DE GEOMETRIA UNIVRSI NINL GRRI L LIN NTR STUIS PRUNIVRSITRIS SXT SINRI GTRI ÁR RGINS URNGULRS 0. n l figur, G // y el áre del prlelogrmo es 8. Hlle el áre de l región sombred. ) ) 8 ) 9 ) ) 6 0. n un trpecio ( // ),

Más detalles

Los triángulos se clasifican según la magnitud de sus lados y de sus ángulos internos. SEGÚN SUS LADOS EQUILÁTERO ISÓSCELES ESCALENO

Los triángulos se clasifican según la magnitud de sus lados y de sus ángulos internos. SEGÚN SUS LADOS EQUILÁTERO ISÓSCELES ESCALENO Unidd uno Geometrí y Trigonometrí 4. TRIÁNGULOS 4.1 Definiión y notión de triángulos El triángulo es un polígono de tres ldos. Los puntos donde se ortn se llmn vérties. Los elementos de un triángulo son:

Más detalles

UNIVERSIDAD NACIONAL AGRARIA LA MOLINA CENTRO DE ESTUDIOS PREUNIVERSITARIOS SEXTO SEMINARIO DE GEOMETRÍA

UNIVERSIDAD NACIONAL AGRARIA LA MOLINA CENTRO DE ESTUDIOS PREUNIVERSITARIOS SEXTO SEMINARIO DE GEOMETRÍA UNIVRSI NINL GRRI L LIN NTR STUIS PRUNIVRSITRIS SXT SINRI GTRÍ ÁR RGINS URNGULRS 0. n l figur, G es prlelo y el áre del prlelogrmo es m. Hlle el áre sombred. ) m ) m ) 9 m ) m ) 6m G 0. n un trpecio (

Más detalles

TEMA 8.- TRIGONOMETRÍA. RESOLUCIÓN DE TRIÁNGULOS

TEMA 8.- TRIGONOMETRÍA. RESOLUCIÓN DE TRIÁNGULOS TEMA 8.- TRIGONOMETRÍA. RESOLUCIÓN DE TRIÁNGULOS L trigonometrí es l prte de ls mtemátis que estudi ls reliones métris entre los elementos de un tringulo. A) RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO AGUDO

Más detalles

UNIVERSIDAD NACIONAL AGRARIA LA MOLINA CENTRO DE ESTUDIOS PREUNIVERSITARIOS SEXTO SEMINARIO DE GEOMETRÍA

UNIVERSIDAD NACIONAL AGRARIA LA MOLINA CENTRO DE ESTUDIOS PREUNIVERSITARIOS SEXTO SEMINARIO DE GEOMETRÍA UNIVRSI NINL GRRI L LIN NTR STUIS PRUNIVRSITRIS SXT SINRI GTRÍ ÁR RGINS URNGULRS 0. n l figur, G // y el áre del prlelogrmo es 8. Hlle el áre sombred. ) ) 8 ) 9 ) ) 6 0. n un trpecio ( // ), se tom punto

Más detalles

EJERCICIOS DE 1º BACHILLERATO CIENCIAS DE LA SALUD

EJERCICIOS DE 1º BACHILLERATO CIENCIAS DE LA SALUD EJERCICIOS DE º BACHILLERATO CIENCIAS DE LA SALUD TRIGONOMETRÍA I - Sin utilizr l clculdor, hll el vlor de l siguientes expresiones: π π 5 π π 7π 4π π sen. 4sen + senπ sen sen cos + tg + tg 6 6 - Comprueb:

Más detalles

344 MATEMÁTICAS 2. ESO MATERIAL FOTOCOPIABLE SANTILLANA EDUCACIÓN, S. L. OBJETIVO 1 LA RAZÓN DE DOS SEGMENTOS NOMBRE: CURSO: FECHA:

344 MATEMÁTICAS 2. ESO MATERIAL FOTOCOPIABLE SANTILLANA EDUCACIÓN, S. L. OBJETIVO 1 LA RAZÓN DE DOS SEGMENTOS NOMBRE: CURSO: FECHA: LULR OJETIVO 1 L RZÓN DE DOS SEGMENTOS NOMRE: URSO: EH: RET, SEMIRRET Y SEGMENTO Un ret es un líne ontinu formd por infinitos puntos, que no tiene ni prinipio ni finl. Dos puntos definen un ret. Por un

Más detalles

CAPÍTULO 6: RELACIONES MÉTRICAS EN EL TRIÁNGULO (II)

CAPÍTULO 6: RELACIONES MÉTRICAS EN EL TRIÁNGULO (II) CAPÍTULO 6: ELACIONES MÉTICAS EN EL TIÁNGULO (II) Dnte Guerrero-Chnduví Piur, 015 FACULTAD DE INGENIEÍA Áre Deprtmentl de Ingenierí Industril y de Sistems CAPÍTULO 6: ELACIONES MÉTICAS EN EL TIÁNGULO (II)

Más detalles

Resolución de triángulos de cualquier tipo

Resolución de triángulos de cualquier tipo Resoluión de triángulos de ulquier tipo Ejeriio nº 1.- Hll los ldos y los ángulos de este triángulo: Ejeriio nº.- Clul los ldos y los ángulos del siguiente triángulo: Ejeriio nº 3.- Hll los ldos y los

Más detalles

Objet ivo. Aplicar las propiedades aprendidas anteriormente; en. los cuadriláteros y clasificarlos.

Objet ivo. Aplicar las propiedades aprendidas anteriormente; en. los cuadriláteros y clasificarlos. URILÁTEROS I Objet ivo plicr ls propieddes prendids nteriormente; en los cudriláteros y clsificrlos. EFINIIÓN Son los polígonos que tienen cutro ldos.. Trpecio Es el cudrilátero convexo que tiene dos ldos

Más detalles

TERCER NIVEL (3º Y 4º DE ESO) 2ª FASE: Sábado 9 de Abril de 2.001

TERCER NIVEL (3º Y 4º DE ESO) 2ª FASE: Sábado 9 de Abril de 2.001 TERCER CONCURSO DE PRIMAVERA DE MATEMÁTICAS TERCER NIVEL (º Y 4º DE ESO) ª FASE: Sádo 9 de Aril de.001 LEE DETENIDAMENTE LAS SIGUIENTES INSTRUCCIONES: No pses l págin hst que se te indique. Durción de

Más detalles

Matemática. Desafío. GUÍA DE EJERCITACIÓN AVANZADA Conceptos generales de triángulos GUICEN023MT22-A16V1

Matemática. Desafío. GUÍA DE EJERCITACIÓN AVANZADA Conceptos generales de triángulos GUICEN023MT22-A16V1 GUÍ DE EJERITIÓN VNZD onceptos generles de triángulos rogrm Entrenmiento Desfío GUIEN023MT22-16V1 Mtemátic En l figur, RQ = 24 cm, RS SQ y RM SN. Si M es el punto medio de SQ y N es el punto medio de RQ,

Más detalles

d) Área del triángulo = mitad de la base por la altura. Área del rectángulo = base por altura.

d) Área del triángulo = mitad de la base por la altura. Área del rectángulo = base por altura. CAPÍTULO VI 9 RELACIONES MÉTRICAS EN EL TRIÁNGULO Conoimientos previos: ) L líne más ort que puede trzrse entre dos puntos, es el segmento de ret que los une. ) El menor segmento que une un punto P on

Más detalles

12. Los polígonos y la circunferencia

12. Los polígonos y la circunferencia l: ldo SLUINI 107 1. Los polígonos y l circunferenci 1. PLÍGNS PIENS Y LUL lcul cuánto mide el ángulo centrl mrcdo en los siguientes polígonos:? l: ldo? 4. ivide un circunferenci de de rdio en seis prtes

Más detalles

Trigonometría Ing. Avila Ing. Moll

Trigonometría Ing. Avila Ing. Moll Trigonometrí Ing. vil Ing. Moll TRIGONOMETRÍ Es l rm de l mtemáti que tiene por ojeto el estudio de ls reliones numéris que existen entre los elementos retilíneos y ngulres de un triángulo o de un figur

Más detalles

UNIDAD 7 Trigonometría

UNIDAD 7 Trigonometría UNIDAD 7 Trigonometrí 5. Ampliión teóri: resoluión de triángulos ulesquier: teorems de los senos y del oseno Pág. 1 de 6 Hemos visto que, medinte l estrtegi de l ltur, podemos resolver triángulos ulesquier

Más detalles

Los elementos de un polígono son los lados, los vértices, los ángulos interiores, los ángulos exteriores, las diagonales, el perímetro y el área.

Los elementos de un polígono son los lados, los vértices, los ángulos interiores, los ángulos exteriores, las diagonales, el perímetro y el área. POLÍGONOS. ELEMENTOS DE UN POLÍGONO. Los elementos de un polígono son los ldos, los vértices, los ángulos interiores, los ángulos exteriores, ls digonles, el perímetro y el áre. LADO REGIÓN EXTERIOR A

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD 8 Pág. Págin 88 PRACTICA Vectores y puntos Ddos los puntos A 0 B0 C y D hll ls coordends de los vectores AB BC CD DA AC y BD. AB = 0 0 = DA = 0 = BC = 0 = AC = 0 = 7 CD = = 6 BD = 0 = 8 Ls coordends del

Más detalles

( ) [ ( )( ) ] ( ) ( ( ) ) =

( ) [ ( )( ) ] ( ) ( ( ) ) = Ejeriios pr reuperr º ESO Nomre : Deprtmento de mtemátis Grupo: º Clulr el resultdo de ls siguientes epresiones: ; : ( [ ( ( ] ( ( ( º Clulr el resultdo de ls siguientes epresiones : ; 9 0 [( ( ( ] [ (

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD 7 Pág. Págin 66 PRTI Rzones trigonométris de un ángulo gudo Hll ls rzones trigonométris del ángulo en d uno de estos triángulos: ) ) ), m, m,6 m 8, m m 8, m ) sen, 0, os 0, 0,89 tg 0, 0,, 0,89 ) tg,6,

Más detalles

Triángulos congruentes

Triángulos congruentes Leión#4 Triángulos ongruentes y triángulos similres Ojetivos Aplir ls propieddes de triángulos ongruentes Aplir ls propieddes de ongrueni Aplir ls propieddes de triángulos similres Aplir el teorem de Pitágors

Más detalles

6 Aplicaciones de la trigonometría

6 Aplicaciones de la trigonometría 6 Apliiones de l trigonometrí LEE Y COMPRENDE El relto nrr ómo se luló l medid de l Tierr pr estleer un medid de longitud universl: el metro. Cómo se llevó o? El álulo de l medid de l Tierr se llevó o

Más detalles

UNIVERSIDAD NACIONAL AGRARIA LA MOLINA CENTRO DE ESTUDIOS PREUNIVERSITARIOS SEXTO SEMINARIO DE GEOMETRIA

UNIVERSIDAD NACIONAL AGRARIA LA MOLINA CENTRO DE ESTUDIOS PREUNIVERSITARIOS SEXTO SEMINARIO DE GEOMETRIA UNIVRSI NINL GRRI L LIN NTR STUIS PRUNIVRSITRIS SXT SINRI GTRI 0. n l figur, G es prlelo y el áre del prlelogrmo es 8 m. Hlle el áre sombred. ) m ) 8 m ) 9 m ) m ) 6m 0. n un trpecio ( // ), se tom punto

Más detalles

2ª.- Halla el valor de Xˆ, Yˆ, Z ˆ, en los siguientes polígonos regulares:

2ª.- Halla el valor de Xˆ, Yˆ, Z ˆ, en los siguientes polígonos regulares: TRABAJO DE RECUPERACIÓN DE GEOMETRÍA de 3º ESO 1ª.- Calcula el valor de Xˆ, Yˆ, Z ˆ, en los siguientes polígonos regulares: a) b) 2ª.- Halla el valor de Xˆ, Yˆ, Z ˆ, en los siguientes polígonos regulares:

Más detalles

Departamento de Matemáticas

Departamento de Matemáticas Deprtmento e Mtemátis PROBLEMAS DE TRIGONOMETRÍA. RESOLUCIÓN DE TRIÁNGULOS. 1º Un señl e rreter ini que l peniente e ese trmo es el 1%, lo que quiere eir que por metros que reorre en horizontl siene 1

Más detalles

UNIDAD: GEOMETRÍA POLÍGONOS CUADRILÁTEROS

UNIDAD: GEOMETRÍA POLÍGONOS CUADRILÁTEROS u r s o : Mtemátic Mteril N 13 GUÍ TÓRIO PRÁTI Nº 11 UNI: GOMTRÍ POLÍGONOS URILÁTROS POLÍGONOS FINIIÓN: Un polígono es un figur pln, cerrd, limitd por trzos llmdos ldos y que se intersectn sólo en sus

Más detalles

2 Números reales: la recta real

2 Números reales: la recta real Unidd. Números reles ls Enseñnzs Aplicds Números reles: l rect rel Págin. ) Justific que el punto representdo es. 0 Represent 7 (7 ) y 0 (0 + ). ) Aplicndo Pitágors: x x + x + x x 0 7 7 0 0 7 0 0 7. Qué

Más detalles

OBJETIVO 1 CalCUlaR la RazÓN DE DOS SEGMENTOS NOMBRE: CURSO: FECHA: RECTA, SEMIRRECTA Y SEGMENTO

OBJETIVO 1 CalCUlaR la RazÓN DE DOS SEGMENTOS NOMBRE: CURSO: FECHA: RECTA, SEMIRRECTA Y SEGMENTO OJETIVO 1 lulr l RzÓN DE DOS SEGMENTOS NOMRE: URSO: EH: RET, SEMIRRET Y SEGMENTO Un ret es un líne ontinu formd por infinitos puntos, que no tiene ni prinipio ni finl. Dos puntos definen un ret. Por un

Más detalles

Resolución de triángulos rectángulos

Resolución de triángulos rectángulos Resoluión de triángulos retángulos Ejeriio nº 1.- Uno de los tetos de un triángulo retángulo mide 4,8 m y el ángulo opuesto este teto mide 4. Hll l medid del resto de los ldos y de los ángulos del triángulo.

Más detalles

UNIDAD 7 Trigonometría

UNIDAD 7 Trigonometría UNIDAD 7 Trigonometrí 5. Ampliión teóri: resoluión de triángulos ulesquier: teorems de los senos y del oseno Pág. 1 de 6 Hemos visto que, medinte l estrtegi de l ltur, podemos resolver triángulos ulesquier

Más detalles

HOJA 6 GEOMETRÍA Y TRIGONOMETRÍA

HOJA 6 GEOMETRÍA Y TRIGONOMETRÍA 2x x + 30 x 2x x + 20 5x 2x x -2 x 3x + 18 x 4. Rects prlels cortds por un trnsversl. lculr los vlores de x e y en cd cso y fundmentr ls relciones estblecids Ejercicio 1 Ejercicio 2 3x -20º y 2x x + y

Más detalles

Clasificación de los polígonos convexos. Polígono. Definición. 1. Polígono equiángulo. 2. Polígono equilátero

Clasificación de los polígonos convexos. Polígono. Definición. 1. Polígono equiángulo. 2. Polígono equilátero olígonos y udriláteros olígono efinición Es l reunión de tres o más segmentos consecutivos y coplnres, tl que el etremo del primero coincid con el etremo del último; ningún pr de segmentos se intercepten,

Más detalles

de Thales y Pitágoras

de Thales y Pitágoras 8 Teorems de Thles y Pitágors 8.1. Cuents y problem del dí 1. Reliz l siguiente operción: 874,53 + 3 607,8 + 875,084 2. Reliz l siguiente operción, obtén dos decimles en el cociente y hz l prueb de l división:

Más detalles

RELACIÓN DE PROBLEMAS DEL ESPACIO AFÍN EUCLÍDEO.

RELACIÓN DE PROBLEMAS DEL ESPACIO AFÍN EUCLÍDEO. RELACIÓN DE PROBLEMAS DEL ESPACIO AFÍN EUCLÍDEO. 1- Ddo el triángulo de vértices A=(1,-3,), B=(3,-1,0) y C(-1,5,4). ) Determinr ls coordends del bricentro. b) Si ABCD es un prlelogrmo, determinr ls coordends

Más detalles

Se traza la paralela al lado a y distancia la altura h a.

Se traza la paralela al lado a y distancia la altura h a. Hojs de Problems Geometrí IV 56. Construir un triángulo conocido el ldo, l medin reltiv l ldo b y l ltur reltiv l ldo. Tomndo como ldos de un rectángulo los ldos, b del triángulo nterior clculr los ldos

Más detalles

UNIDAD VI LA ELIPSE 6.1. ECUACIÓN EN FORMA COMÚN O CANÓNICA DE LA ELIPSE

UNIDAD VI LA ELIPSE 6.1. ECUACIÓN EN FORMA COMÚN O CANÓNICA DE LA ELIPSE UNIDAD VI LA ELIPSE OBJETIVO PARTIULAR Al onluir l unidd, el lumno onoerá plirá ls propieddes relionds on el lugr geométrio llmdo elipse, determinndo los distintos prámetros, su euión respetiv vievers.

Más detalles