ESTADÍSTICA. 2.- Halla las siguientes probabilidades en una distribución N (0, 1): Página 1 de 8
|
|
- Cristina Alcaraz Valverde
- hace 4 años
- Vistas:
Transcripción
1 ESTADÍSTICA 1.- En determinada provincia hay cuatro comarcas, C1, C2, C3 y C4, con un total de personas censadas. De ellas, residen en C1, en C2 y en C3. Se quiere realizar un estudio sobre las costumbres alimenticias en esa provincia basado en una muestra de 3000 personas. a) Qué tipo de muestreo deberíamos realizar si queremos que en la muestra resultante haya representación de todas las comarcas? b) Qué número de personas habría que seleccionar en cada comarca, atendiendo a razones de proporcionalidad? c) Cómo seleccionarías las personas en cada comarca? 2.- Halla las siguientes probabilidades en una distribución N (0, 1): Página 1 de 8
2 3.- Calcula el valor de k (exacta o aproximadamente) en cada uno de los siguientes casos: 4.- En una distribución N(18, 4), halla las siguientes probabilidades: Página 2 de 8
3 5.- En una distribución N (20, 6), tomamos muestras de tamaño 64. a) Cuál es la distribución de las medias de las muestras? b) Cuál es la probabilidad de extraer una muestra cuya media esté comprendida entre 19 y 21? 6.- Se sabe que el cociente intelectual de los alumnos de una universidad se distribuye según una ley normal de media 100 y varianza 729. a) Halla la probabilidad de que una muestra de 81 alumnos tenga un cociente intelectual medio inferior a 109. b) Halla la probabilidad de que una muestra de 36 alumnos tenga un cociente intelectual medio superior a 109. Página 3 de 8
4 7.- El tiempo de espera, en minutos, de los pacientes en un servicio de urgencias, es N(14, 4). a) Cómo se distribuye el tiempo medio de espera de 16 pacientes? b) En una media jornada se ha atendido a 16 pacientes. Cuál es la probabilidad de que el tiempo medio de su espera esté comprendido entre 10 y 15 minutos? 8.- Se sabe que el peso en kilogramos de los alumnos de Bachillerato de Madrid es una variable aleatoria, x, que sigue una distribución normal de desviación típica igual a 5 kg. En el caso de considerar muestras de 25 alumnos, qué distribución tiene la variable aleatoria media muestral? 9.- En una ciudad, la altura media de sus habitantes tiene una desviación típica de 8 cm. Si la altura media de dichos habitantes fuera de 175 cm, cuál sería la probabilidad de que la altura media de una muestra de 100 individuos tomada al azar fuera superior a 176 cm? 10.- La estatura de los jóvenes de una ciudad sigue una distribución N (µ, σ). Si el 90% de las medias de las muestras de 81 jóvenes están en (173,4; 175,8), halla µ y σ Página 4 de 8
5 11.- Si la distribución de la media de las alturas en muestras de tamaño 49 de los niños de 10 años tiene como media 135 cm y como desviación típica 1,2 cm, cuánto valen la media y la varianza de la altura de los niños de esa ciudad? 12.- Los paquetes recibidos en un almacén tienen un peso medio de 300 kg y una desviación típica de 50 kg. Cuál es la probabilidad de que 25 de los paquetes, elegidos al azar, excedan el límite de carga del montacargas donde se van a meter, que es de kg? 13.- Se ha tomado una muestra aleatoria de 100 individuos a los que se ha medido el nivel de glucosa en sangre, obteniéndose una media muestral de 110 mg/cm3. Se sabe que la desviación típica de la población es de 20 mg/cm3. a) Obtén un intervalo de confianza, al 90%, para el nivel de glucosa en sangre en la población. b) Qué error máximo se comete con la estimación anterior? 14.- Las medidas de los diámetros de una muestra al azar de 200 cojinetes de bolas, hechos por una determinada máquina dieron una media de 2 cm y una desviación típica de 0,1 cm. Halla los intervalos de confianza del 68,26% 95,44% y 99,73% para el diámetro medio de todos los cojinetes. Página 5 de 8
6 15.- Sabemos que al lanzar al suelo 100 chinchetas, en el 95% de los casos, la proporción de ellas que quedan con la punta hacia arriba está en el intervalo (0,1216; 0,2784). Calcula la probabilidad p de que una de esas chinchetas caiga con la punta hacia arriba y comprueba que la amplitud del intervalo dado es correcta De 120 alumnos, la proporción de que tengan dos o más hermanos es de 48/120. Indica los parámetros de la distribución a la que se ajustarían las muestras de tamaño De qué tamaño conviene tomar la muestra de una línea de producción para tener una confianza del 95% de que la proporción estimada no difiere de la verdadera en más de un 4%? Se sabe, por estudios previos, que la proporción de objetos defectuosos es del orden del 0,05. Página 6 de 8
7 18.- En una encuesta realizada a 800 personas elegidas al azar del censo electoral, 240 declaran su intención de votar al partido A.12 a) Estima, con un nivel de confianza del 95,45%, entre qué valores se encuentra la intención de voto al susodicho partido en todo el censo. b) Discute, razonadamente, el efecto que tendría sobre el intervalo de confianza el aumento, o la disminución, del nivel de confianza 19.- Una reciente encuesta, realizada en un cierto país sobre una muestra aleatoria de 800 personas, arroja el dato de que 300 de ellas son analfabetas. Para estimar la proporción de analfabetos del país hemos obtenido el siguiente intervalo de confianza: (0,3414; 0,4086) Cuál es el nivel de confianza con el que se ha hecho la estimación? Página 7 de 8
8 Página 8 de 8
R E S O L U C I Ó N. σ σ a) El intervalo de confianza de la media poblacional viene dado por: IC.. μ zα
Se sabe que la estatura de los individuos de una población es una variable aleatoria que sigue una distribución normal con desviación típica 6 cm. Se toma una muestra aleatoria de 5 individuos que da una
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2002 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 00 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS Junio, Ejercicio 3, Parte II, Opción A Junio, Ejercicio 3, Parte II, Opción B Reserva
Inferencia estadística en la EBAU de Murcia INFERENCIA ESTADÍSTICA EN LA EBAU DE MURCIA
INFERENCIA ESTADÍSTICA EN LA EBAU DE MURCIA 1. (Septiembre 2017) El consumo de carne por persona en un año para una población es una variable aleatoria con distribución normal con desviación típica igual
R E S O L U C I Ó N. σ σ a) El intervalo de confianza de la media poblacional viene dado por: IC.. µ zα, µ+ zα
En una población una variable aleatoria sigue una ley Normal de media desconocida y desviación típica. a) Observada una muestra de tamaño 400, tomada al azar, se ha obtenido una media muestral igual a
MUESTREO E INFERENCIA ESTADÍSTICA
TEMA 8 MUESTREO E INFERENCIA ESTADÍSTICA Ejercicios para Selectividad de Muestreo e Inferencia Detalladamente resueltos Curso 1998 / 1999 José Álvarez Fajardo bajo una licencia Reconocimiento NoComercial
Matemáticas Aplicadas a las Ciencias Sociales II Hoja 6: Inferencia Estadística. Estimación de la Media
Matemáticas Aplicadas a las Ciencias Sociales II Hoja 6: Inferencia Estadística. Estimación de la Media Ejercicio 1: El peso en gramos del contenido de las cajas de cereales de una cierta marca se puede
Apuntes de Estadística Curso 2017/2018 Esther Madera Lastra
1 1. MEDIA Y DESVIACIÓN TÍPICA DE DISTRIBUCIONES La media de un conjunto de datos se calcula sumando todos los datos y dividiendo entre el número de datos. La varianza de un conjunto de datos se calcula
R E S O L U C I Ó N. a) El intervalo de confianza de la media poblacional viene dado por: I. C. z
Un estudio realizado sobre 100 usuarios revela que un automóvil recorre anualmente un promedio de 15.00 Km con una desviación típica de.50 Km. a) Determine un intervalo de confianza, al 99%, para la cantidad
INFERENCIA ESTADÍSTICA: INTERVALOS DE CONFIANZA
INFERENCIA ESTADÍSTICA: INTERVALOS DE CONFIANZA 1) Se desea estimar la proporción de individuos zurdos en una determinada ciudad. Para ello se toma una muestra aleatoria de 300 individuos resultando que
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2016 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 016 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva 1, Ejercicio 4,
ESTADÍSTICA (PEBAU 2017)
ESTADÍSTICA (PEBAU 2017) 1 En una muestra aleatoria de 100 individuos se ha obtenido, para la edad, una media de 17.5 años. Se sabe que la edad en la población de la que procede esa muestra sigue una distribución
INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA
1 INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA Páginas 74-75 Lanzamiento de varios dados Comprobación de que: Desviación típica de n dados = (Desv. típica para un dado) / 1,71 n = 1,1 1,71 n = 3 0,98
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2005 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 005 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS Junio, Ejercicio 3, Parte II, Opción A Junio, Ejercicio 3, Parte II, Opción B Reserva
Universidad Técnica de Babahoyo INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA
Universidad Técnica de Babahoyo INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA Ateneo Ruperto P. Bonet Chaple UTB-Julio 2016 OBJETIVO Aplicar las técnicas de Muestreo e Inferencia Estadística Determinar el tamaño
TEMA 12 INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA
Ejercicios Selectividad Tema 12 Inferencia estadística. Matemáticas CCSSII 2º Bachillerato 1 TEMA 12 INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA LAS MUESTRAS ESTADÍSTICAS EJERCICIO 1 : Septiembre 00-01.
ESTADÍSTICA Y PROBABILIDAD
(distribución normal) 1 1.- Calcular las probabilidades de los siguientes intervalos, empleando para ello las tablas de la distribución de probabilidad normal estándar N(0, 1): (1) P(z 2 14) (2) P(z 0
ESTIMACIÓN DE PARÁMETROS. INTERVALOS DE CONFIANZA PARA LA MEDIA POBLACIONAL.
ESTIMACIÓN DE PARÁMETROS. INTERVALOS DE CONFIANZA PARA LA MEDIA POBLACIONAL. Un intervalo de confianza, para un parámetro poblacional θ, a un nivel de confianza 1 α 100 %, no es más que un intervalo L
8. [ASTU] [SEP-A] Se ha entrevistado a 400 mujeres elegidas de forma aleatoria y se ha obtenido que el tiempo medio semanal que
1. [ANDA] [SEP-B] El peso de las calabazas de una cierta plantación sigue una le Normal con desviación típica 1200 g. a) Halle el tamaño mínimo de la muestra que se ha de elgir para, con un nivel de confianza
Teoría de muestras. Distribución de variables aleatorias en el muestreo. 1. Distribución de medias muestrales
Teoría de muestras Distribución de variables aleatorias en el muestreo 1. Distribución de medias muestrales Dada una variable estadística observada en una población, se puede calcular se media y su desviación
R E S O L U C I Ó N. a) La distribución de las medias muestrales es: N µ, = N 17 '4, = Como el nivel de confianza es del 95%, podemos calcular.
En una muestra aleatoria de 56 individuos se ha obtenido una edad media de 17 4 años. Se sabe que la desviación típica de la población normal de la que procede esa muestra es de años. a) Obtenga un intervalo
Problemas de Estadística(Selectividad) Ciencias Sociales
Problemas de Estadística(Selectividad) Ciencias Sociales Problema 1 La altura de los jovenes andaluces se distribuye según una normal de media desconocida y varianza 25cm 2. Se ha seleccionado una muestra
Tema 3: Inferencia estadística. Estimación de la media y la proporción
Tema 3: Inferencia estadística. Estimación de la media y la proporción Intervalo característico Valor crítico. Intervalo característico para una N(0, 1). Intervalo característico para una N(μ, ). Distribución
INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA
1 INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA Página 75 REFLEXIONA Y RESUELVE Lanzamiento de varios dados Comprueba en la tabla anterior ue: DESV. TÍPICA PARA n DADOS n = 8 1,71 1,1 n = 3 8 1,71 3 0,98
ESTADÍSTICA. Pruebas de Acceso a la Universidad. Bachillerato de Ciencias Sociales. Departamento de Matemáticas del IES Andalán.
ESTADÍSTICA Junio 1996. Se sabe que la desviación típica del peso de los individuos de una cierta población es de 6 Kg. Calcula el tamaño de la muestra que se ha de considerar para, con un nivel de confianza
(1 punto) (1.5 puntos)
Ejercicios de inferencia estadística. 1. Sea la población {1,2,3,4}. a) Construya todas las muestras posibles de tamaño 2, mediante muestreo aleatorio simple. b) Calcule la varianza de las medias muestrales.
Tema 3: Inferencia estadística. Estimación de la media y la proporción
Tema 3: Inferencia estadística. Estimación de la media y la proporción Intervalo característico Valor crítico. Intervalo característico para una N(0, 1). Intervalo característico para una N(μ, ). Distribución
Nombre: Solución: a) N(
1998 JUNIO OPCIÓN A Un fabricante de electrodomésticos sabe que la vida media de éstos sigue una distribución normal con media µ = 100 meses y desviación típica σ = 12 meses. Determínese el mínimo tamaño
R E S O L U C I Ó N. σ σ a) El intervalo de confianza de la media poblacional viene dado por: IC.. μ zα
Un estudio realizado sobre 100 usuarios revela que un automóvil recorre anualmente un promedio de 15.00 Km con una desviación típica de.50 Km. a) Determine un intervalo de confianza, al 99%, para la cantidad
a) p(z < 1,89) b) p(z > 1) c) p(z > 0,04) d) p(1,78 < Z < 3) e) p( 2,25 < Z < 1,49)
2.- VARIABLES ALEATORIAS. DISTRIBUCIÓN NORMAL 1 Usando la tabla de la distribución N(0, 1), calcule las siguientes probabilidades: a) p(z < 1,89) b) p(z > 1) c) p(z > 0,04) d) p(1,78 < Z < 3) e) p( 2,25
INFERENCIA ESTADÍSTICA
INFERENCIA ESTADÍSTICA 1. DEFINICIÓN DE INFERENCIA ESTADÍSTICA Llamamos Inferencia Estadística al proceso de sacar conclusiones generales para toda una población a partir del estudio de una muestra, así
Selectividad Andalucía. Matemáticas Aplicadas a las Ciencias Sociales. Bloque Inferencia Estadística.
EJERCICIOS DE EXÁMENES DE SELECTIVIDAD ANDALUCÍA.BLOQUE INFERENCIA ESTADÍSTICA. 1. JUNIO 2014. OPCIÓN A. Se quiere hacer un estudio de mercado para conocer el precio medio de los libros de narrativa que
12. (SEPTIEMBRE 2004) Una muestra aleatoria de 9 tarrinas de helado proporciona los siguientes pesos en gramos
DEPARTAMENTO DE MATEMÁTICAS UNIDAD 5. Estadística IES Galileo Galilei EJERCICIOS DE SELECTIVIDAD 1. (JUNIO 2000) Una variable aleatoria X tiene distribución normal siendo su desviación típica igual a 3.
1._ (Modelo 2018) Un determinado partido político desea estimar la proporción de votantes, p, que actualmente se decantaría por él.
1._ (Modelo 2018) Un determinado partido político desea estimar la proporción de votantes, p, que actualmente se decantaría por él. a) Asumiendo que p = 0,5, determínese el tamaño mínimo necesario de una
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 011 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS Junio, Ejercicio 4, Opción B Reserva 1, Ejercicio 4, Opción B Reserva, Ejercicio
Curso: 2º Grupo: B Día: 18 - IV CURSO
3ª EVALUACIÓN Curso: º Grupo: B Día: 18 - IV - 008 CURSO 007-08 EJERCICIO 1 (1.75 puntos) Sea la población {1, 5, 7}. Escriba todas las muestras de tamaño, mediante muestreo aleatorio simple, y calcule
10 0,1 12 0,3 14 0, , ,15
1. Una variable aleatoria X puede tomar los valores 30, 40, 50 y 60 con probabilidades 0.4, 0., 0.1 y 0.3. Represente en una tabla la función de probabilidad P(X=x), y la función de distribución de probabilidad,
MATEMÁTICAS - 1º BACHILLERATO CCSS - DISTRIBUCIÓN NORMAL ˆ EJERCICIO 42. (a) P (X > 215) = P ( )
MATEMÁTICAS - 1º BACHILLERATO CCSS - DISTRIBUCIÓN NORMAL ˆ EJERCICIO 0 Supón que en cierta población pediátrica, la presión sistólica de la sangre en reposo se distribuye normalmente con media de 11 mm
EJERCICIOS DE SELECTIVIDAD
EJERCICIOS DE SELECTIVIDAD INFERENCIA 1998 JUNIO OPCIÓN A Un fabricante de electrodomésticos sabe que la vida media de éstos sigue una distribución normal con media μ = 100 meses y desviación típica σ
Nota: La probabilidad (a posteriori) de que un recién nacido sea niña es p = )
MUESTREO 1. Supongamos que en un centro escolar los alumnos y docentes se distribuyen de acuerdo con la tabla siguiente: 3 ESO 4 ESO 1º Bach 2º Bach Prof Hombres 85 80 100 83 24 Mujeres 95 96 110 91 31
PROBLEMAS DE DISTRIBUCIÓN NORMAL Y INTERVALOS DE CONFIANZA MATEMÁTICAS APLICADAS A LAS CC.SOCIALES II
PROBLEMAS DE DISTRIBUCIÓN NORMAL Y INTERVALOS DE CONFIANZA MATEMÁTICAS APLICADAS A LAS CC.SOCIALES II 1.- Las tallas de una muestra de 1000 personas siguen una distribucióormal de media 1,76 metros y desviación
05 Ejercicios de Selectividad Inferencia estadística
Ejercicios propuestos en 2009 1. [2009-1-A-4] En una muestra aleatoria de 100 individuos se ha obtenido, para la edad, una media de 17.5 años. Se sabe que la edad en la población, de la que procede esa
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2008 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 008 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS Junio, Ejercicio 3, Parte II, Opción A Junio, Ejercicio 3, Parte II, Opción B Reserva
BLOQUE III III ESTADÍSTICA Y PROBABILIDAD
III BLOQUE III ESTADÍSTICA Y PROBABILIDAD Página 330 1 Calcula P[A «B] y P[A» B] sabiendo que: P[A] = 0,6 P[B] = 0,8 P[A «B] P[A» B] = 0,4 P[A «B] = P[A] +P[B] P[A» B] = 0,6 + 0,8 P[A» B] Como P[A «B]
Inferencia 1. Solución: 60
Inferencia 2008 EJERCICIO 1A Se desea estimar la proporción de individuos zurdos en una determinada ciudad. Para ello se toma una muestra aleatoria de 300 individuos resultando que 45 de ellos son zurdos.
TEMA 7. Estimación. Alicia Nieto Reyes BIOESTADÍSTICA. Alicia Nieto Reyes (BIOESTADÍSTICA) TEMA 7. Estimación 1 / 13
TEMA 7. Estimación Alicia Nieto Reyes BIOESTADÍSTICA Alicia Nieto Reyes (BIOESTADÍSTICA) TEMA 7. Estimación 1 / 13 1 Estimación Puntual 1 Estimación por intervalos Estimación por intervalos de la Media
Unidad 14 Estadística inferencial. Muestreo. Estimación puntual
Unidad 14 Estadística inferencial. Muestreo. Estimación puntual PÁGINA 327 SOLUCIONES 1. Mediante muestreo aleatorio simple asignando un numero desde el 0000; 0001; 0002,, 1 499 para cada uno de los 1
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2006 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 006 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS Junio, Ejercicio 3, Parte II, Opción A Junio, Ejercicio 3, Parte II, Opción B Reserva
Edad (en años) Más de 57 Nº de personas
1. Una productora de cine quiere pasar una encuesta por el método de muestreo estratificado entre las 918 personas asistentes a la proyección de una de sus películas. La muestra de tamaño 54 ha de ser
Inferencia estadística Selectividad CCSS Andalucía. MasMates.com Colecciones de ejercicios
1. [2014] [EXT-A] La concejalía de Educación de una determinada localidad afirma que el tiempo medio dedicado a la lectura por los jóvenes de entre 15 y 20 años de edad es, a lo sumo, de 8 horas semanales.
EJERCICIOS UNIDAD 10: MUESTREO E INFERENCIA ESTADÍSTICA
EJERCICIOS UNIDAD 10: MUESTREO E INFERENCIA ESTADÍSTICA 1. (2012-M3;Sept-B-4) El peso de las calabazas de una determinada plantación sigue una ley Normal con desviación típica 1200 g. a) (2 puntos) Halle
ESTIMACION INFERENCIA ESTADISTICA
P M INFERENCIA ESTADISTICA Desde nuestro punto de vista, el objetivo es expresar, en términos probabilísticos, la incertidumbre de una información relativa a la población obtenida mediante la información
EJERCICIOS PROBABILIDAD (1) 2. Sean A y S dos sucesos de un espacio muestral tales que P(A)=0 4; P(A S)=0 5 y P(S/A)= 0 5 Calcular P(S) y P(A/ S )
EJERCICIOS PROBABILIDAD (1) 1 2 3 1. Sean A y B dos sucesos tales que P(A)=, P( B )= y P( A B )=. 2 5 4 Calcular a) P(B/A) b) P( A /B) 2. Sean A y S dos sucesos de un espacio muestral tales que P(A)=0
INFERENCIA ESTADÍSTICA SELECTIVIDAD CyL
INFERENCIA ESTADÍSTICA SELECTIVIDAD CyL 1. Se quiere estimar la media de la nómina mensual que reciben los directivos de las compañías multinacionales que operan en Europa. a. Si la varianza de la nómina
MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II. TEORÍA DE MUESTRAS E INFERENCIA. Ejercicios propuestos en Selectividad. AÑO
MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II 6. TEORÍA DE MUESTRAS E INFERENCIA. Ejercicios propuestos en Selectividad. AÑO 2009 1. 7. 8. 2. 3. 9. 4. 10. 11. 5. 12. AÑO 2010 18. 13. 14. 19. 15. AÑO
Grado en Ingeniería Informática Estadística Tema 5: Teoría Elemental del Muestreo e Inferencia Paramétrica Ángel Serrano Sánchez de León
Grado en Ingeniería Informática Estadística Tema 5: Teoría Elemental del Muestreo e Inferencia Paramétrica Ángel Serrano Sánchez de León Distribuciones Muestrales 1. Sea una población de 5 números: 2,
c. Calcule la varianza de las medias muestrales
MUESTRAS. DISTRIBUCIÓN DE MEDIAS MUESTRALES. 1. Una ciudad de 2000 habitantes está poblada por personas de pelo negro, rubio o castaño. Se ha seleccionado, mediante muestreo aleatorio estratificado con
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2007 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 007 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS Junio, Ejercicio 3, Parte II, Opción A Junio, Ejercicio 3, Parte II, Opción B Reserva
Control Estadístico de Procesos. Medidas de Tendencia Central
Control Estadístico de Procesos Medidas de Tendencia Central Una característica importante de cualquier población es su posición, es decir, donde está situada con respecto al eje de abscisas (Eje horizontal).
el blog de mate de aida CSII: Probabilidad y Estadística: PAU Cantabria
pág.1 Hoja 1 JUNIO 1995 3.A.- Se ha realizado una encuesta sobre la intención de voto a dos partidos políticos: A y B. Se ha elegido una muestra aleatoria de 400 personas en edad de votar y 160 han declarado
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2001 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 001 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS Junio, Ejercicio 3, Parte II, Opción A Junio, Ejercicio 3, Parte II, Opción B Reserva
UNIVERSIDAD DE MANAGUA Al más alto nivel
UNIVERSIDAD DE MANAGUA Al más alto nivel Estadística Inferencial Encuentro #9 Tema: Estimación puntual y por Intervalo de confianza Prof.: MSc. Julio Rito Vargas A. Grupos: CCEE y ADMVA /2016 Objetivos:
INTRODUCCIÓN AL ANÁLISIS DE DATOS ORIENTACIONES (TEMA Nº 8) TEMA Nº 8 ESTIMACIÓN
OBJETIVOS DE APRENDIZAJE: TEMA Nº 8 ESTIMACIÓN Conocer las relaciones entre muestra, análisis estadístico descriptivo y análisis estadístico inferencial. Conocer los conceptos de muestra aleatoria y muestra
INTERVALOS DE CONFIANZA. La estadística en cómic (L. Gonick y W. Smith)
INTERVALOS DE CONFIANZA La estadística en cómic (L. Gonick y W. Smith) EJEMPLO: Será elegido el senador Astuto? 2 tamaño muestral Estimador de p variable aleatoria poblacional? proporción de personas que
PROBLEMAS DE ESTIMACIÓN PROPUESTOS EN SELECTIVIDAD
PROBLEMAS DE ESTIMACIÓN PROPUESTOS EN SELECTIVIDAD SELECTIVIDAD 2001 1.- El periodo de funcionamiento de las bombillas de una determinada marca sigue una distribución normal de media 360 días y desviación
Inferencia estadística Selectividad CCSS Castilla-La Mancha. MasMates.com Colecciones de ejercicios
1. [2014] [EXT-A] Para el estudio de la polución del aire, se mide la concentración de dióxido de nitrógeno por metro cúbico. Se sabe que en los meses de invierno en una ciudad española, la concentración
Intervalo para la media si se conoce la varianza
178 Bioestadística: Métodos y Aplicaciones nza para la media (caso general): Este se trata del caso con verdadero interés práctico. Por ejemplo sirve para estimar intervalos que contenga la media del colesterol
Ejercicios Estadística-Probabilidad-Distribución Binomial-Distribución Normal-Test de hipótesis
Ejercicios Estadística-Probabilidad-Distribución Binomial-Distribución Normal-Test de hipótesis 1) Con los datos de la siguiente tabla de frecuencias deduce, rango, media, moda y mediana. Realiza gráfico
1. Ejercicios. 2 a parte
1. Ejercicios. 2 a parte Ejercicio 1 Calcule 1. P (χ 2 9 3 33) 2. P (χ 2 15 7 26). 3. P (15 51 χ 2 8 22). 4. P (χ 2 70 82). Ejercicio 2 Si X χ 2 26, obtenga un intervalo [a, b] que contenga un 95 % de
EJERCICIOS UNIDAD 10: MUESTREO E INFERENCIA ESTADÍSTICA
EJERCICIOS UNIDAD 10: MUESTREO E INFERENCIA ESTADÍSTICA 1. (2001-M1;Sept-A-3II) (2 puntos) Según un estudio sociológico, el gasto mensual de los jóvenes españoles durante los fines de semana se distribuye
EJERCICIOS UNIDAD 10: MUESTREO E INFERENCIA ESTADÍSTICA
EJERCICIOS UNIDAD 10: MUESTREO E INFERENCIA ESTADÍSTICA 1. (2001-M1;Sept-A-3II) (2 puntos) Según un estudio sociológico, el gasto mensual de los jóvenes españoles durante los fines de semana se distribuye
EJERCICIOS UNIDAD 10: MUESTREO E INFERENCIA ESTADÍSTICA
EJERCICIOS UNIDAD 10: MUESTREO E INFERENCIA ESTADÍSTICA 1. (2001-M1;Sept-A-3II) (2 puntos) Según un estudio sociológico, el gasto mensual de los jóvenes españoles durante los fines de semana se distribuye
EJERCICIOS UNIDAD 10: MUESTREO E INFERENCIA ESTADÍSTICA
EJERCICIOS UNIDAD 10: MUESTREO E INFERENCIA ESTADÍSTICA 1. (2001-M1;Sept-A-3II) (2 puntos) Según un estudio sociológico, el gasto mensual de los jóvenes españoles durante los fines de semana se distribuye
IES Gerardo Diego Curso Matemáticas Aplicadas a las Ciencias Sociales II
1. (JUN 04) En un servicio de atención al cliente, el tiempo de espera hasta recibir atención es una variable aleatoria normal de media 10 minutos y desviación típica 2 minutos. Se toman muestras aleatorias
Estadística. Contrastes para los parámetros de la Normal
Contrastes para los parámetros de la Normal Prof, Dr. Jose Jacobo Zubcoff Departamento de Ciencias del Mar y Biología Aplicada Contrastes para los parámetros de la Normal Contrastes para los parámetros
6. Inferencia con muestras grandes. Informática. Universidad Carlos III de Madrid
6. Inferencia con muestras grandes 1 Tema 6: Inferencia con muestras grandes 1. Intervalos de confianza para μ con muestras grandes 2. Determinación del tamaño muestral 3. Introducción al contraste de
UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A
DE 00 OPCIÓN A (3 puntos) Una fábrica produce dos tipos de relojes: de pulsera, que vende a 90 euros la unidad, y de bolsillo, que vende a 10 euros cada uno. La capacidad máxima diaria de fabricación es
1 El número de faltas de ortografía que cometieron un grupo de estudiantes en un dictado fue:
Pág. 1 Tablas de frecuencias 1 El número de faltas de ortografía que cometieron un grupo de estudiantes en un dictado fue: 0 3 1 2 0 2 1 3 0 4 0 1 1 4 3 5 3 2 4 1 5 0 2 1 0 0 0 0 2 1 2 1 0 0 3 0 5 3 2
Tema 4: Estimación por intervalo (Intervalos de Confianza)
Tema 4: Estimación por intervalo (Intervalos de Confianza (a partir del material de A. Jach (http://www.est.uc3m.es/ajach/ y A. Alonso (http://www.est.uc3m.es/amalonso/ 1 Planteamiento del problema: IC
UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A
OPCIÓN A a) (2 puntos) Dibuje el recinto del plano definido por las inecuaciones: 5x + y 5; 9y 2x 0; x + 2y 2; x 0 y determine sus vértices. b) (1 punto) Determine, en ese recinto, los puntos donde la
a. N(19 5, 1 2) P(19 X 21) = P( Z ) = = P = P P = = P P = P = = = El 55 72% no son adecuados.
El diámetro de los tubos de cartón para un envase ha de estar entre 19 y 21mm. La maquina prepara tubos cuyos diámetros están distribuidos como una manual de media 19 5mm y desviación típica 1 2mm. Qué
Tema 8. Muestreo. Indice
Tema 8. Muestreo Indice 1. Población y muestra.... 2 2. Tipos de muestreos.... 3 3. Distribución muestral de las medias.... 4 4. Distribución muestral de las proporciones.... 6 Apuntes realizados por José
Teoría de muestras 2º curso de Bachillerato Ciencias Sociales
TEORÍA DE MUESTRAS Índice: 1. Introducción----------------------------------------------------------------------------------------- 2 2. Muestras y población-------------------------------------------------------------------------------
El estudio de la inferencia estadística será el hilo conductor de la unidad, los alumnos aprenderán a trabajar con ella y
0 INFERENCIA ESTADÍSTICA El estudio de la inferencia estadística será el hilo conductor de la unidad, los alumnos aprenderán a trabajar con ella y comprobarán su aplicación en la resolución de problemas.
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2004 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 004 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS Junio, Ejercicio 3, Parte II, Opción A Junio, Ejercicio 3, Parte II, Opción B Reserva
Estadística aplicada al Periodismo
Estadística aplicada al Periodismo Alumno: Grupo: Fecha: 20 de mayo de 2011 Ejercicio 1. En el siguiente recuadro, contesta a las siguientes preguntas de elección múltiple: 1.A 1.B 1.C 1.D 1.E (a) (b)
a. Elija una muestra aleatoria simple de tamaño n=6 de esta población. Use una tabla de números aleatorios o Excel para la
Ejercicios Unidad I 1. Suponga que estamos investigando sobre el porcentaje de alumnos que trabajan de una población de 20 alumnos de la Universidad de Talca. Base de datos de la población: Nombre Alumno
ESTADÍSTICA APLICADA A LA EDUCACIÓN (Tema 11) Asignatura de Formación Básica (FB) de 1º curso, común a los Grado en Educación Social y en Pedagogía
ESTADÍSTICA APLICADA A LA EDUCACIÓN (Tema 11) Asignatura de Formación Básica (FB) de 1º curso, común a los Grado en Educación Social y en Pedagogía Novedades en el Plan de Trabajo Desviación típica sesgada
MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II JUNIO 2000
MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II JUNIO 2000 Dos compañeros de estudios comparten piso. El primero prepara la comida el 40% de los días y el resto lo hace el segundo. El porcentaje de veces
Curso de Estadística Aplicada a las Ciencias Sociales
Curso de Estadística Aplicada a las Ciencias Sociales Tema 10. Estimación de una proporción Cap. 0 del manual Tema 10. Estimación de una proporción Introducción 1. Distribución en el muestreo de una proporción.
Bioestadística: Inferencia Estadística. Análisis de Una Muestra
Bioestadística: Inferencia Estadística. Análisis de Una Muestra M. González Departamento de Matemáticas. Universidad de Extremadura Estimación Puntual e Intervalos de Confianza Planteamiento del Problema
Inferencia Estadística
Inferencia Estadística 2do C. 2018 Mg. Stella Figueroa Clase Nº10 Población y Muestra- Parámetro y Estimación puntual Población: Es el conjunto de todos los elementos o unidades elementales con características
Tema 6: Ejercicios de Inferencia con muestras grandes
Tema 6: s de Inferencia con muestras grandes Bernardo D Auria Departamento de Estadística Universidad Carlos III de Madrid GRUPO 12 - I.T.I.G. 12 de Mayo 2008 Tema 6: s de Inferencia con muestras grandes
TEMA 2: ESTADÍSTICA - SOLUCIONES
TEMA 2: ESTADÍSTICA - SOLUCIONES 2.1. DISTRIBUCIÓN NORMAL 1. El peso de los individuos de cierta especie se distribuye como una variable aleatoria Normal de media 50 y desviación típica 4. a) Calcular
Resp x = 72.73, S 2 = 225,8574 => S = 15,0286. Lcdo Eliezer Montoya Estadística III UNEFA -Barinas 1
REPÚBLICA BOLIVARIANA DE VENEZUELA MINISTERIO DE LA DEFENSA UNIVERSIDAD NACIONAL EXPERIMENTAL POLITÉCNICA DE LA FUERZA ARMADA NACIONAL NÚCLEO BARINAS UNEFA Estadística III Licenciatura en Economía Social.
ESTADÍSTICA APLICADA A LA EDUCACIÓN (Tema 11) Asignatura de Formación Básica (FB) de 1º curso, común a los Grado en Educación Social y en Pedagogía
ESTADÍSTICA APLICADA A LA EDUCACIÓN (Tema 11) Asignatura de Formación Básica (FB) de 1º curso, común a los Grado en Educación Social y en Pedagogía VIDEOCLASE: Introducción a la estimación de parámetros
INTRODUCCIÓN AL ANÁLISIS DE DATOS FEBRERO Código asignatura: EXAMEN MODELO B DURACION: 2 HORAS
Febrero 2011 EXAMEN MODELO B Pág. 1 INTRODUCCIÓN AL ANÁLISIS DE DATOS FEBRERO Código asignatura: 62011037 EXAMEN MODELO B DURACION: 2 HORAS X Ciudad A Ciudad B 17-20 10 17 13-16 20 27 9-12 25 15 5-8 15
Bloque 5. Probabilidad y Estadística Tema 3. Distribuciones de Probabilidad Ejercicios resueltos
Bloque 5. Probabilidad y Estadística Tema 3. Distribuciones de Probabilidad Ejercicios resueltos 5.3-1 El % de los DVDs de una determinada marca son defectuosos. Si se venden en lotes de 5 unidades, calcular
Inferencia estadística Selectividad CCSS MasMates.com Colecciones de ejercicios
1. [ANDA] [EXT-A] En una bodega utilizan una máquina que debe envasar el vino en botellas con un contenido de 750 ml. Para comprobar si esa máquina funciona correctamente, se toma una muestra de 36 botellas