Tema 10 Métodos de control de emisiones II

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Tema 10 Métodos de control de emisiones II"

Transcripción

1 Tema 10 Métodos de control de emisiones II 10.1 Control de emisión de partículas primarias: Colectores de pared Colectores por división 04/05/2004 Contaminación Atmosférica. Tema 10 1

2 10.1 Control de emisión de partículas primarias De dos tipos: Arrastrar las partículas hacia una pared, donde son recogidas Colectores de pared: 1- Sedimentadores por gravedad 2- Separadores centrífugos 3- Precipitadores electrostáticos Dividir el flujo total en flujos más pequeños Divisores: 1- Filtros de superficie 2- Filtros de profundidad 3- Lavadores de partículas (scrubbers) 04/05/2004 Contaminación Atmosférica. Tema 10 2

3 Sedimentadores por gravedad Colectores de pared Se basan en hacer pasar el aire a través de una cámara de gran capacidad en donde la velocidad de flujo disminuye. Las partículas caen por la fuerza de gravedad a la pared inferior Flujo entrada v x Flujo salida v t Dos posibilidades de flujo en bloque de flujo con mezcla total 04/05/2004 Contaminación Atmosférica. Tema 10 3

4 Flujo en bloque: la velocidad horizontal V x de las partículas es la misma en todas las posiciones de la cámara z v x y x H W L v t v x v x Caso límite h 0 partícula controlada partícula escapada Fracción de partículas controladas : R b = h 0 /H = V t L / (V x H) Si se cumple la ley de Stokes: R b = L g d 2? p / (H V x 18?) 04/05/2004 Contaminación Atmosférica. Tema 10 4

5 Flujo con mezcla total: Hay un gradiente de concentración en la dirección horizontal (con mezcla total en la dirección vertical) V x = dx/dt V x V x... dx dc = -c? f Hay que hacer una integración: Fracción de moléculas captadas en dx f = h 0 /H = V t dx /( V x H) y por tanto R m = 1 exp(-v t L/(V x H)) = 1 exp(-r b ) 04/05/2004 Contaminación Atmosférica. Tema 10 5

6 Comparación de flujo en bloque y con mezcla vertical Eficiencia * en la colección de partículas: d /? R b R m Más eficiente para flujo en bloque * Eficiencia = fracción de partículas que logran atravesar el colector para un diámetro dado 04/05/2004 Contaminación Atmosférica. Tema 10 6

7 Separadores centrífugos Aprovechan la existencia de una fuerza centrífuga para arrastrar las partículas hacia una pared. Por ello son más eficientes que los separadores por simple gravedad Fuerza centrífuga: r v c v tc F c = m v c2 /r =?/6 d 3? p v c2 /r v tg La eficiencia del separador vendrá dada por la velocidad terminal de la partícula en dirección hacia la pared 04/05/2004 Contaminación Atmosférica. Tema 10 7

8 Para determinar la velocidad terminal igualamos fuerza de arrastre (Stokes) a fuerza centrífuga, procedimiento análogo al llevado en la determinación de la velocidad de sedimentación de partículas en aire (Tema 6): v c Ley de Stokes: F s = 3?? d v r F s F c = m v c2 /r Velocidad terminal: v t = d? p v c2 /(18? r) Ejemplo 10.1: Calcular la velocidad terminal de una partícula de diámetro 1? en un separador centrífugo con v c = 18 m/s. (Datos: viscosidad del aire a 20 o C, 1.8?10-2 CP; densidad de las partículas, 2 g cm -3 ) 04/05/2004 Contaminación Atmosférica. Tema 10 8

9 D 0 D e El ciclón es el tipo de separador centrífugo más usado W i H El cálculo de la eficiencia de un ciclón es análogo al de un separador por gravedad con sólo tener en cuenta las siguientes equivalencias: Gravedad H L Centrífugo W i N? D 0 V x V c X Número de vueltas alrededor del eje. Normalmente N=5 04/05/2004 Contaminación Atmosférica. Tema 10 9

10 Eficiencia de un ciclón: Flujo en bloque: R b = V t n? D 0 / W i V c Flujo con mezcla: R m = 1 exp(-r b ) R b =? NV c d 2? p / 9 W i? Ejemplo 10.2: Calcular la eficiencia de un ciclón con W i = 15 cm, V c = 18 m/s y N = 5, para partículas de d = 1? 04/05/2004 Contaminación Atmosférica. Tema 10 10

11 Comparativa entre las eficiencias de ambos tipos de separador: Sedimentador por gravedad Ciclón d /? R b R m d /? R b R m /05/2004 Contaminación Atmosférica. Tema 10 11

12 L 2 H Separadores electrostáticos Aire limpio La fuerza que arrastra las partículas hacia la pared es electrostática h Aire con partículas Diferencia de potencial aplicada:? V 04/05/2004 Contaminación Atmosférica. Tema 10 12

13 Vista desde arriba V x 2 H Eficiencia: Flujo en bloque R b = V t L / V x H; Flujo con mezcla: R m = 1 exp(-r b ) L Cálculo de la velocidad terminal: Campo eléctrico V x F R (V) q E F R (V t ) = 0 V t q E Carga de la partícula 04/05/2004 Contaminación Atmosférica. Tema 10 13

14 Cálculo de la carga Campo eléctrico local cerca del hilo q = 3?? / (?+2)? 0 d 2 E 0 ; para d > 0.15?m e - e - e - e - E 0 e - e - e - e - Constante dieléctrica de la partícula (4-8 para partículas sólidas) 8.85? C V -1 m -1 Ejemplo 10.4: calcular la carga, en unidades de carga del electrón, que adquiere una partícula de 1?m de diámetro al entrar en un separador electrostático para el que el campo eléctrico es 300 KV/m y?=6 Fuerza sobre la partícula: q E = q 3?? / (?+2)? 0 d 2 E 0 E? q 3?? / (?+2)? 0 d 2 E 2 Ley de Stokes: 3?? d V t = q 3?? / (?+2)? 0 d 2 E 2? V t = w= d? 0 E 2? / (?+2) /? Ejemplo 10.5: calcular la velocidad terminal para la partícula del ejemplo /05/2004 Contaminación Atmosférica. Tema 10 14

15 2 H R b = w L / V x H = w A / Q L Caudal volumétrico Q = V x H L R m = 1 e-w A /Q Ciclón Colector electrostático A = L h h d /? R b R m d /?m R m /05/2004 Contaminación Atmosférica. Tema 10 15

16 Resumen colectores de pared Eficiencia radio de corte /?m coste De gravedad 50 Centrífugos 5 Electrostáticos /05/2004 Contaminación Atmosférica. Tema 10 16

17 Colectores por división Filtros de superficie (tamices) Filtros de profundidad Lavadores de partículas (scrubbers) 04/05/2004 Contaminación Atmosférica. Tema 10 17

18 Aire con partículas torta Aire limpio Filtro de superficie Relación entre velocidad de flujo, V f, y caída de presión,?p V f = Q/A = -? P/?/?(? x/k) torta +(? x/k) filtro?? P? x Permeabilidad, normalmente (? x/k) filtro es constante =? 04/05/2004 Contaminación Atmosférica. Tema 10 18

19 Cuarto de sacos de sacudida y desinflado Aire limpio Tamices de paño Aire con partículas (dejan pasar el aire, retienen las partículas) Colector donde se recogen las partículas sólidas en la limpieza de los tamices 04/05/2004 Contaminación Atmosférica. Tema 10 19

20 Cuarto de sacos de chorros pulsantes 04/05/2004 Contaminación Atmosférica. Tema 10 20

21 Filtros de profundidad d 0 N s = (d 2? v) / (18? d 0 ) = x s /d 0 04/05/2004 Contaminación Atmosférica. Tema 10 21

22 0.75 tira Eficiencia, R 0.5 esfera 0.25 cilindro Número de separación, N s 04/05/2004 Contaminación Atmosférica. Tema 10 22

23 Ejemplo 10.7: Una fibra cilíndrica de 10?m de diámetro se coloca perpendicular a una corriente gaseosa que se mueve a v = 1 m/s. El gas contiene partículas de d = 1?m y con concentración 1 mg/m 3. Calcular la velocidad de captura de partículas en la fibra. Ejemplo 10.8: Un filtro consiste en una fila de fibras paralelas como las del ejemplo anterior, colocadas perpendicularmente al flujo. El espacio entre fibras es igual a cinco veces el diámetro de la fibra. Calcular la eficiencia del filtro (suponer que el espacio entre fibras es suficiente como para que el flujo por cada una de ellas no se vea afectado por los otras) Ejemplo 10.9: Un filtro consiste en 100 filas de fibras como las del ejemplo anterior, colocadas en serie. Estas filas están lo suficientemente alejadas entre ellas como para que el flujo sea uniforme entre ellas. Calcular la eficiencia del filtro. 04/05/2004 Contaminación Atmosférica. Tema 10 23

24 Lavadores de partículas (scrubbers) 50? 0.5? a un ciclón gas + Separador partículas Gas + líquido Lavador gas-líquido gas limpio (ciclón) Líquido limpio Separador sólido-liquido Líquido + partículas 04/05/2004 Contaminación Atmosférica. Tema 10 24

25 Captura de partículas en una lluvia d g Concentración de partículas: c, (M L -3 )? y Número de gotas por unidad de tiempo: N g Volumen de líquido por unidad de tiempo y de área, Q L /A = (N g d g3?)/ (6? x? y)? z ln c/c 0 = - ( 1.5 R Q L? t) / (d g A)? x Eficiencia de captura de partículas de una esfera que se mueve contra un flujo de gas. Depende de N s 04/05/2004 Contaminación Atmosférica. Tema 10 25

26 Lavador de flujo cruzado Q L ln c/c 0 = - ( 1.5 R Q L? z) / (d g Q g )? y Q g Q g? z Q L? x 04/05/2004 Contaminación Atmosférica. Tema 10 26

27 Lavador de flujo coordinado Q g Punto de inyección del líquido Q g V g Q L Q L V rel o R dc/c = -(1.5 R Q L ) / (d g Q G ) V rel /(V g -V rel ) dx x 04/05/2004 Contaminación Atmosférica. Tema 10 27

Tema 10 Métodos de control de emisiones II

Tema 10 Métodos de control de emisiones II Tema 10 Métodos de control de emisiones II 10.1 Control de emisión de partículas primarias: 10.1.1 Colectores de pared 10.1.2 Colectores por división CA: Tema 10 1 10.1 Control de emisión de partículas

Más detalles

Tema 10 Métodos de control de emisiones II

Tema 10 Métodos de control de emisiones II Tema 10 Métodos de control de emisiones II 10.1 Control de emisión de primarias De dos tipos: 10.1 Control de emisión de primarias: 10.1.1 Colectores de pared 10.1.2 Colectores por división Arrastrar las

Más detalles

EJERCICIOS PARA ENTREGAR UNIDAD 3, 4 Y 5

EJERCICIOS PARA ENTREGAR UNIDAD 3, 4 Y 5 EJERCICIOS PARA ENTREGAR UNIDAD 3, 4 Y 5 UNIDAD 3 Se cuenta con los siguientes datos de filtración para una suspensión de CaCO3 en agua a 298.2 K, a presión constante (- p) de 46.2 kn/m2. El área de la

Más detalles

Flujo de Fluídos Ingeniería en Industrias Alimentarias Lucía Edith Mendoza Medina

Flujo de Fluídos Ingeniería en Industrias Alimentarias Lucía Edith Mendoza Medina Flujo de Fluídos Ingeniería en Industrias Alimentarias Lucía Edith Mendoza Medina Método mecánico de separación de: Sólidos no miscibles Sólidos y líquidos Por aplicación de una fuerza centrífuga Industria

Más detalles

CENTRIFUGACIÓN. Fundamentos. Teoría de la centrifugación

CENTRIFUGACIÓN. Fundamentos. Teoría de la centrifugación CENTRIFUGACIÓN Fundamentos. Teoría de la centrifugación Fuerzas intervinientes Tipos de centrífugas Tubular De discos Filtración centrífuga 1 SEDIMENTACIÓN Se basa en la diferencia de densidades entre

Más detalles

Física General II. Guía N 2: Hidrodinámica y Viscosidad

Física General II. Guía N 2: Hidrodinámica y Viscosidad Física General II Guía N 2: Hidrodinámica y Viscosidad Problema 1: Ley de Torricelli. La figura muestra un líquido que está siendo descargado de un tanque a través de un orificio que se encuentra a una

Más detalles

Gestión de Efluentes Gaseosos

Gestión de Efluentes Gaseosos Gestión de Efluentes Gaseosos Disertante: Justina Garro Índice 1. Problemática de la contaminación atmosférica 2. Caracterización de efluentes gaseosos 3. Métodos de depuración de gases CONCEPTO DE CONTAMINACIÓN

Más detalles

Relación 2 idénticas conductor 6a. 6b. 7.

Relación 2 idénticas conductor 6a. 6b. 7. Relación 2 1. Tenemos tres esferas idénticas, hechas de un material conductor. La esfera 1 tiene una carga 1.0 C, la 2 tiene una carga 2.0 C y la 3 es neutra. Se encuentran muy alejadas entre sí. La esfera

Más detalles

Anexo 5. Separador Ciclónico ANEXO 5. DISEÑO DEL SEPARADOR CICLÓNICO

Anexo 5. Separador Ciclónico ANEXO 5. DISEÑO DEL SEPARADOR CICLÓNICO ANEXO 5. DISEÑO DEL SEPARADOR CICLÓNICO La corriente de gases de salida del desorbedor es conducida a un separador ciclónico, comúnmente denominado ciclón. Se dispone justamente después del horno rotativo

Más detalles

ASPECTOS AVANZADOS EN MECÁNICA DE FLUIDOS SOLUCIONES EXACTAS

ASPECTOS AVANZADOS EN MECÁNICA DE FLUIDOS SOLUCIONES EXACTAS Problema 1 Un fluido de propiedades constantes (densidad ρ, viscosidad µ, conductividad térmica k y calor específico c) se encuentra confinado entre dos paredes horizontales infinitas separadas una distancia

Más detalles

Capitulo 4: Dinámica de los fluidos I (Análisis global del comportamiento dinámico de los fluidos).

Capitulo 4: Dinámica de los fluidos I (Análisis global del comportamiento dinámico de los fluidos). Capitulo 4: Dinámica de los fluidos I (Análisis global del comportamiento dinámico de los fluidos). 1) Explique los siguientes conceptos y/o ecuaciones: a) Circulación. B) Volumen de control. B) Teorema

Más detalles

Ayudantía 7 - Solucionario Física General III (FIS130) Hidrodinámica

Ayudantía 7 - Solucionario Física General III (FIS130) Hidrodinámica Ayudantía 7 - Solucionario Física General III (FIS130) Hidrodinámica Pregunta 1 Considere el agua que fluye con rapidez de 3 [m/s] sometida a una presión de 00 [KPa], por una cañería horizontal que más

Más detalles

LISBOA 14 DE OCTUBRE DE A Engenharia dos Aproveitamentos Hidroagrícolas: atualidade e desafios futuros Estações de filtragem em redes de rega

LISBOA 14 DE OCTUBRE DE A Engenharia dos Aproveitamentos Hidroagrícolas: atualidade e desafios futuros Estações de filtragem em redes de rega LISBOA 14 DE OCTUBRE DE 2011 A Engenharia dos Aproveitamentos Hidroagrícolas: atualidade e desafios futuros Estações de filtragem em redes de rega Conceptos básicos Proceso de separación de fases de un

Más detalles

Contaminación Atmosferica

Contaminación Atmosferica Efluentes Gaseosos Contaminación Atmosferica Se entiende por contaminación atmosferica la presencia en la atmósfera de cualquier agente fisico químico o biológico, o de combinaciones de los mismo en lugares,

Más detalles

UDB BASICAS- Física Física II GUÍA DE PROBLEMAS 1: Electrostática TEMAS: Ley de Coulomb Campo eléctrico Ley de Gauss

UDB BASICAS- Física Física II GUÍA DE PROBLEMAS 1: Electrostática TEMAS: Ley de Coulomb Campo eléctrico Ley de Gauss FACULTAD REGIONAL ROSARIO UDB BASICAS- Física Física II GUÍA DE PROBLEMAS 1: Electrostática TEMAS: Ley de Coulomb Campo eléctrico Ley de Gauss Recopilación, revisión y edición: Ing. J. Santa Cruz, Ing.

Más detalles

Lechos empacados, Fluidización

Lechos empacados, Fluidización Lechos empacados, Fluidización El fluido ejerce una fuerza sobre el sólido en la dirección de flujo, conocida como arrastre o rozamiento. Existen una gran cantidad de factores que afectan a los rozamientos

Más detalles

Convección Problemas de convección 1.1. PROBLEMAS DE CONVECCIÓN 1

Convección Problemas de convección 1.1. PROBLEMAS DE CONVECCIÓN 1 1.1. PROBLEMAS DE CONVECCIÓN 1 Convección 1.1. Problemas de convección Problema 1 Una placa cuadrada de 0,1 m de lado se sumerge en un flujo uniforme de aire a presión de 1 bar y 20 C con una velocidad

Más detalles

Problemas de Mecánica y Ondas II. Boletín nº 2. (Fluidos) Es incompresible? Existe la función de corriente? Determínela en caso afirmativo.

Problemas de Mecánica y Ondas II. Boletín nº 2. (Fluidos) Es incompresible? Existe la función de corriente? Determínela en caso afirmativo. Problemas de Mecánica y Ondas II. oletín nº 2. (Fluidos) 15. Considere un flujo cuyas componentes de la velocidad son 3 2 u = 0 v = y 4 z w=3y z Es incompresible? Existe la función de corriente? Determínela

Más detalles

4.3 - Determine el punto (distinto del infinito) en el cual el campo eléctrico es igual a cero.

4.3 - Determine el punto (distinto del infinito) en el cual el campo eléctrico es igual a cero. Unidad Nº 4 Electrostática Ley de Coulomb Campo eléctrico 4.1 - En las esquinas de un triángulo equilátero existen tres cargas puntuales, fijas, como se ve en la figura, cuyos valores son: q1=2µc, q2=-4µc

Más detalles

Campos Electromagnéticos Profesor: Pedro Labraña Ayudantes Guía: José Fonseca y Pablo Novoa Guía # 2

Campos Electromagnéticos Profesor: Pedro Labraña Ayudantes Guía: José Fonseca y Pablo Novoa Guía # 2 Campos Electromagnéticos Profesor: Pedro Labraña Ayudantes Guía: José Fonseca y Pablo Novoa Guía # 2 1-Una varilla de longitud L tiene una carga positiva uniforme por unidad de longitud λ y una carga total

Más detalles

RELACIÓN DE PROBLEMAS CAMPO ELÉCTRICO 1. Se tienen dos cargas puntuales; q1= 0,2 μc está situada a la derecha del origen de coordenadas y dista de él 3 m y q2= +0,4 μc está a la izquierda del origen y

Más detalles

Teoría: 50 puntos (respuesta correcta= 2 puntos, respuesta incorrecta=-0.5 puntos, no contesta=0 puntos)

Teoría: 50 puntos (respuesta correcta= 2 puntos, respuesta incorrecta=-0.5 puntos, no contesta=0 puntos) Apellidos: Examen de Contaminación Atmosférica. 15 de Diciembre de 2003. Universidad Pablo de Olavide Nombre: Teoría: 50 puntos (respuesta correcta= 2 puntos, respuesta incorrecta=-0.5 puntos, no contesta=0

Más detalles

Prólogo Definición del problema... 19

Prólogo Definición del problema... 19 ÍNDICE Prólogo... 7 1. Definición del problema... 19 Qué es la contaminación del aire... 19 Fuentes de contaminación del aire... 19 Cómo afecta la contaminación del aire a nuestro ambiente... 24 Efectos

Más detalles

MEDIOS DE CONTROL DE EMISIÓN DE CONTAMINANTES

MEDIOS DE CONTROL DE EMISIÓN DE CONTAMINANTES CAPÍTULO 11 MEDIOS DE CONTROL DE EMISIÓN DE CONTAMINANTES Fuente: National Geographic - Noviembre 2000 INTRODUCCIÓN Por lo general los contaminantes del aire aún en su fuente de emisión, por ejemplo en

Más detalles

Trabajo Práctico n 2. Estática de los Fluidos

Trabajo Práctico n 2. Estática de los Fluidos Trabajo Práctico n 2 Estática de los Fluidos Objetivo del Práctico: Este práctico está destinado a: - Determinar la variación de la presión en un fluido en reposo - Calcular las fuerzas que ejerce un fluido

Más detalles

EXAMEN DE FÍSICA. 5 DE FEBRERO DE TEORÍA ( R 1. y R 2 = 2 R 2

EXAMEN DE FÍSICA. 5 DE FEBRERO DE TEORÍA ( R 1. y R 2 = 2 R 2 Página 1 de 11 Índice de exámenes EXAMEN DE FÍSICA. 5 DE FEBRERO DE 1998. TEORÍA T1. Dos esferas conductoras de radios R 1 y R 2 ( R 1 = 2 R 2 ) están suficientemente alejadas una de otra como para suponer

Más detalles

INGENIERÍA QUÍMICA Problemas propuestos Pág. 1 CONCEPTOS FUNDAMENTALES

INGENIERÍA QUÍMICA Problemas propuestos Pág. 1 CONCEPTOS FUNDAMENTALES Problemas propuestos Pág. 1 CONCEPTOS FUNDAMENTALES Problema nº 1) [01-07] Por una tubería fluyen 100 lb de agua a razón de 10 ft/s. Cuánta energía cinética (E = ½ mav 2 ) tiene el agua, expresada en unidades

Más detalles

Problemas de Estática y Dinámica DINÁMICA DE FLUIDOS

Problemas de Estática y Dinámica DINÁMICA DE FLUIDOS Problemas de Estática y Dinámica DINÁMICA DE FLUIDOS (1 er Q.:prob pares, 2 ndo Q.:prob impares) 1. En el esquema adjunto las secciones de la tubería son 40 y 12 cm 2, y la velocidad del agua en la primera

Más detalles

Soluciones Analíticas de Navier Stokes.

Soluciones Analíticas de Navier Stokes. 1 Soluciones Analíticas de Navier Stokes. Problema 1 Un fluido newtoniano fluye en el huelgo formado por dos placas horizontales. La placa superior se mueve con velocidad u w, la inferior está en reposo.

Más detalles

Guía de Ejercicios Electroestática, ley de Coulomb y Campo Eléctrico

Guía de Ejercicios Electroestática, ley de Coulomb y Campo Eléctrico NOMBRE: LEY DE COULOMB k= 9 x 10 9 N/mc² m e = 9,31 x 10-31 Kg q e = 1,6 x 10-19 C g= 10 m/s² F = 1 q 1 q 2 r 4 π ε o r 2 E= F q o 1. Dos cargas puntuales Q 1 = 4 x 10-6 [C] y Q 2 = -8 x10-6 [C], están

Más detalles

Potencial Eléctrico Preguntas de Multiopción

Potencial Eléctrico Preguntas de Multiopción Slide 1 / 72 Potencial Eléctrico Preguntas de Multiopción Slide 2 / 72 1 Una carga negativa se coloca en una esfera de conducción. Cual de las afirmaciones es verdadera acerca a la distribución de carga?

Más detalles

CAMPO ELÉCTRICO. Un campo eléctrico es una región en la cual se manifiestan fuerzas de atracción o repulsión entre cargas.

CAMPO ELÉCTRICO. Un campo eléctrico es una región en la cual se manifiestan fuerzas de atracción o repulsión entre cargas. CAMPO LÉCTRICO 1. INTRODUCCIÓN Un campo eléctrico es una región en la cual se manifiestan fuerzas de atracción o repulsión entre cargas. Una carga de prueba es una carga considerada siempre positiva, ue

Más detalles

Nombre de la asignatura: Control de la Contaminación Atmosférica. Clave de la asignatura: QUM 004

Nombre de la asignatura: Control de la Contaminación Atmosférica. Clave de la asignatura: QUM 004 1.- DATOS DE LA ASIGNATURA. Nombre de la asignatura: Control de la Contaminación Atmosférica Carrera: Ingeniería Química Clave de la asignatura: QUM 004 Horas teoría-horas práctica-créditos: 3 2 8 2.-

Más detalles

GUIA DE PROBLEMAS N 5

GUIA DE PROBLEMAS N 5 GUIA DE PROBLEMAS N 5 PROBLEMA N 1 Se produce un vacío parcial en una caja estanca, que tiene una tapa cuya área es 7,5 10-3 m 2. Si se requiere una fuerza de 480N para desprender la tapa de la caja y

Más detalles

Anexo 7. Enfriador Evaporativo ANEXO 7. DISEÑO DEL ENFRIADOR EVAPORATIVO

Anexo 7. Enfriador Evaporativo ANEXO 7. DISEÑO DEL ENFRIADOR EVAPORATIVO ANEXO 7. DISEÑO DEL ENFRIADOR EVAPORATIVO La corriente de gases a la salida del post-quemador, exenta de hidrocarburos y con aún partículas en suspensión, es conducida hacia un enfriador evaporativo para

Más detalles

Índice. Agradecimientos... 5 Dedicatoria... 7 Prólogo... 9 Índice... 11

Índice. Agradecimientos... 5 Dedicatoria... 7 Prólogo... 9 Índice... 11 Índice Agradecimientos... 5 Dedicatoria... 7 Prólogo... 9 Índice... 11 CAPÍTULO 1. INTRODUCCIÓN 1.1- Introducción... 19 1.2- Historia y evolución de la clasificación y el cribado... 20 CAPÍTULO 2. CRIBADO

Más detalles

PROBLEMAS INTERACCIÓN ELECTROMAGNÉTICA

PROBLEMAS INTERACCIÓN ELECTROMAGNÉTICA PROBLEMAS INTERACCIÓN ELECTROMAGNÉTICA 1) Dadas dos cargas eléctricas positivas, iguales, situadas a una distancia r, calcula el valor que ha de tener una carga negativa situada en el punto medio del segmento

Más detalles

Electrohidrodinámica con carga eléctrica en volumen: conceptos y aplicaciones

Electrohidrodinámica con carga eléctrica en volumen: conceptos y aplicaciones Electrohidrodinámica con carga eléctrica en volumen: conceptos y aplicaciones Avances en Física Aplicada a la Ingeniería Pedro A. Vázquez González Dpto. Física Aplicada III Universidad de Sevilla Índice

Más detalles

FISICA II - ELECTROSTATICA

FISICA II - ELECTROSTATICA FISICA II - ELECTROSTATICA Constantes: K = 9 x 10 9 N m 2 / C 2 G = 6,67 x 10-11 N m 2 / Kg 2 m e = 9,11 x 10-31 Kg. m p = 1,67 x 10-27 Kg q e = 1,6 x 10-19 C N A = 6,02 x 10 22 átomos/mol 1) El electrón

Más detalles

Campo eléctrico. Fig. 1. Problema número 1.

Campo eléctrico. Fig. 1. Problema número 1. Campo eléctrico 1. Cuatro cargas del mismo valor están dispuestas en los vértices de un cuadrado de lado L, tal como se indica en la figura 1. a) Hallar el módulo, dirección y sentido de la fuerza eléctrica

Más detalles

Examen de Contaminación Atmosférica. 4 de Julio de Universidad Pablo de Olavide

Examen de Contaminación Atmosférica. 4 de Julio de Universidad Pablo de Olavide pellidos: Nombre: Teoría: 50 puntos (respuesta correcta= 2 puntos, respuesta incorrecta=-0.5 puntos, no contesta=0 puntos) 1. Una caldera de gas butano emitirá a la atmósfera los siguientes contaminantes:

Más detalles

LABORATORIO DE FENÓMENOS COLECTIVOS

LABORATORIO DE FENÓMENOS COLECTIVOS LABORATORIO DE FENÓMENOS COLECTIVOS LA VISCOSIDAD DE LOS LÍQUIDOS CRUZ DE SAN PEDRO JULIO CÉSAR RESUMEN La finalidad de esta práctica es la determinación de la viscosidad de diferentes sustancias (agua,

Más detalles

VENTURI REGULABLE SISTEMA REITHER

VENTURI REGULABLE SISTEMA REITHER VENTURI REGULABLE SISTEMA REITHER 1 Introducción Los lavadores Venturi son los lavadores de alto rendimiento más usados. De estos lavadores existen muchas variantes distintas. Las características de este

Más detalles

CASIBA CH-85. Separadores ciclónicos

CASIBA CH-85. Separadores ciclónicos CASIBA CH-85 Separadores ciclónicos Ideal como separador de polvo en sistemas de transporte neumático. Pérdida de carga estable para un dado flujo de gas Manejo de altas. concentraciones de polvo Puede

Más detalles

Física 2º Bach. Se calcula la intensidad de campo eléctrico en el punto G debido a cada una de las cargas:

Física 2º Bach. Se calcula la intensidad de campo eléctrico en el punto G debido a cada una de las cargas: Física 2º ach. Campos electrostático y magnético 16/03/05 DEPARTAMENTO DE FÍSCA E QUÍMCA Problemas Nombre: [2 PUNTOS /UNO] 1. Calcula: a) la intensidad del campo eléctrico en el centro del lado derecho

Más detalles

Examen: FÍSICA. 5. A que temperatura tienen el mismo valor la escala Centígrada y la escala Fahrenheit? A) -57 C B) 17.7 C C) 32 C D) -40 C

Examen: FÍSICA. 5. A que temperatura tienen el mismo valor la escala Centígrada y la escala Fahrenheit? A) -57 C B) 17.7 C C) 32 C D) -40 C Examen: FÍSICA 1. En un recipiente de paredes adiabáticas se mezclan 4.5 kg de agua a 37 ºC, 62 kg de agua a 2 ºC y 17 kg de agua a 47 ºC. Si se desprecian cualquier tipo de vaporización, la temperatura

Más detalles

Física 2º Bacharelato

Física 2º Bacharelato Física 2º Bacharelato DPARTAMNTO D FÍSICA QUÍMICA lectrostática 11/02/08 Nombre: Problemas 1. n la región comprendida entre dos placas cargadas, x véase la figura, existe un campo eléctrico uniforme de

Más detalles

Flujo de Fluidos: Interacción Sólido-Fluido

Flujo de Fluidos: Interacción Sólido-Fluido Flujo de Fluidos: Interacción Sólido-Fluido Existen operaciones básicas de separación sólido-fluido que tienen gran aplicación y se presentan en muchos de los procesos industriales: filtración, sedimentación,

Más detalles

Problemas de Practica: Fluidos AP Física B de PSI. Preguntas de Multiopción

Problemas de Practica: Fluidos AP Física B de PSI. Preguntas de Multiopción Problemas de Practica: Fluidos AP Física B de PSI Nombre Preguntas de Multiopción 1. Dos sustancias; mercurio con una densidad de 13600 kg/m 3 y alcohol con una densidad de 0,8kg/m 3 son seleccionados

Más detalles

Física 3 - Turno : Mañana. Guía N 4 - Segundo cuatrimestre de 2011 Magnetostática, Momento magnético y ley de Ampère, Medios Magnéticos

Física 3 - Turno : Mañana. Guía N 4 - Segundo cuatrimestre de 2011 Magnetostática, Momento magnético y ley de Ampère, Medios Magnéticos Física 3 - Turno : Mañana Guía N 4 - Segundo cuatrimestre de 2011 Magnetostática, Momento magnético y ley de Ampère, Medios Magnéticos 1. Estudie la trayectoria de una partícula de carga q y masa m que

Más detalles

2.1 Antecedentes teóricos

2.1 Antecedentes teóricos 2.1 Antecedentes teóricos Algunos depósitos de arena contienen cantidades importantes de una mezcla de partículas tamaño limo y arcilla, llamados comúnmente finos. Si el material fino de una muestra de

Más detalles

Boletín Temas 1 y 2 P 1

Boletín Temas 1 y 2 P 1 Boletín Temas 1 y 2 Cargas puntuales: fuerza, campo, energía potencial y potencial electrostático 1. La expresión F = 1 πε 0 q 1 q 2 r 1 r 2 2 r 1 r 2 r 1 r 2 representa: a) La fuerza electrostática que

Más detalles

a) La distancia que ha recorrido el electrón cuando su velocidad se ha reducido a 0' m/s

a) La distancia que ha recorrido el electrón cuando su velocidad se ha reducido a 0' m/s 1- Un electrón es lanzado con una velocidad de 2.10 6 m/s paralelamente a las líneas de un campo eléctrico uniforme de 5000 V/m. Determinar: a) La distancia que ha recorrido el electrón cuando su velocidad

Más detalles

años TORBEL FILTRADO INDUSTRIAL TORBEL 2011 v1.00

años TORBEL FILTRADO INDUSTRIAL TORBEL 2011 v1.00 años FILTRADO INDUSTRIAL 2011 v1.00 1 Tipos de Filtros Funcionamiento Ventajas y Desventajas Custo Pág. Filtro de Mangas Entrada del aire contaminado en la batería de filtros a través de una antecámara,

Más detalles

Universidad Autónoma del Estado de México Licenciatura de Ingeniero Químico Programa de Estudios: Separaciones Mecánicas

Universidad Autónoma del Estado de México Licenciatura de Ingeniero Químico Programa de Estudios: Separaciones Mecánicas Universidad Autónoma del Estado de México Licenciatura de Ingeniero Químico 2003 Programa de Estudios: Separaciones Mecánicas I. Datos de identificación Licenciatura Ingeniero Químico 2003 Unidad de aprendizaje

Más detalles

1. Fuerza. Leyes de Newton (Gianc )

1. Fuerza. Leyes de Newton (Gianc ) Tema 1: Mecánica 1. Fuerza. Leyes de Newton. 2. Movimiento sobreamortiguado. 3. Trabajo y energía. 4. Diagramas de energía. 5. Hidrostática: presión. 6. Principio de Arquímedes. 7. Hidrodinámica: ecuación

Más detalles

PROYECTO FIN DE MÁSTER 2013/2014

PROYECTO FIN DE MÁSTER 2013/2014 1. INTRODUCCIÓN 1.1. Antecedentes El uso del carbón en la última década ha aumentado con respecto al uso de otras fuentes de energía a nivel mundial. Como se puede apreciar en la figura (Fig. 1-1), mientras

Más detalles

CONVECCION NATURAL. En la convección forzada el fluido se mueve por la acción de una fuerza externa.

CONVECCION NATURAL. En la convección forzada el fluido se mueve por la acción de una fuerza externa. CONVECCION NATURAL En la convección forzada el fluido se mueve por la acción de una fuerza externa. En convección natural el fluido se mueve debido a cambios de densidad que resultan del calentamiento

Más detalles

SEPARACIONES MECÁNICAS. M. en C. Q. Eduardo Martín del Campo López

SEPARACIONES MECÁNICAS. M. en C. Q. Eduardo Martín del Campo López SEPARACIONES MECÁNICAS M. en C. Q. Eduardo Martín del Campo López Contenido Objetivo de la Unidad de Aprendizaje (UA) se Separaciones Mecánicas. Programa de la UA de Separaciones Mecánicas. Propiedades

Más detalles

Centro de desarrollo tecnológico Sustentable SISTEMA DE POST-COMBUSTIÓN Y REDUCCIÓN DE EMISIONES PARA HORNOS DE COMBUSTIÓN OBJETIVOS

Centro de desarrollo tecnológico Sustentable SISTEMA DE POST-COMBUSTIÓN Y REDUCCIÓN DE EMISIONES PARA HORNOS DE COMBUSTIÓN OBJETIVOS Centro de desarrollo tecnológico Sustentable CORPORACION PARA EL MEJORAMIENTO DEL AIRE DE QUITO SISTEMA DE POST-COMBUSTIÓN Y REDUCCIÓN DE EMISIONES PARA HORNOS DE COMBUSTIÓN EXPOSITOR. Ing. Emérita Delgado

Más detalles

TRANSFERENCIA DE CALOR POR CONVECCIÓN

TRANSFERENCIA DE CALOR POR CONVECCIÓN MARZO, 2016 REPÚBLICA BOLIVARIANA DE VENEZUELA MINISTERIO DEL PODER POPULAR PARA LA DEFENSA UNIVERSIDAD NACIONAL EXPERIMENTAL POLITÉCNICA DE LA FUERZA ARMADA NACIONAL BOLIVARIANA CÁTEDRA: TRANSFERENCIA

Más detalles

INSTITUTO POLITÉCNICO NACIONAL SECRETARÍA ACADÉMICA DIRECCIÓN DE EDUCACIÓN MEDIA SUPERIOR

INSTITUTO POLITÉCNICO NACIONAL SECRETARÍA ACADÉMICA DIRECCIÓN DE EDUCACIÓN MEDIA SUPERIOR 1. REPASO NO. 1 FÍSICA IV LEY DE COULOMB Y CAMPO ELÉCTRICO 1. Una partícula alfa consiste en dos protones (qe = 1.6 x10-19 C) y dos neutrones (sin carga). Cuál es la fuerza de repulsión entre dos partículas

Más detalles

POTENCIAL ELECTRICO. a) Cuál es la rapidez de q 2 cuando las esferas están a 0,4 m una de la otra? b) Qué tan cerca de q 1 llega la q 2?

POTENCIAL ELECTRICO. a) Cuál es la rapidez de q 2 cuando las esferas están a 0,4 m una de la otra? b) Qué tan cerca de q 1 llega la q 2? POTENCIAL ELECTRICO 1) Una carga puntual q 1 = +2,4 µc se mantiene fija en el origen de coordenadas. Una segunda carga puntual q 2 = -4,3 µc se mueve del punto (x = 0,15 m, y = 0) al punto (x = 0,25 m,

Más detalles

2do cuatrimestre 2005 Turno FLUIDOS * Hidrostática. , con ρ 1

2do cuatrimestre 2005 Turno FLUIDOS * Hidrostática. , con ρ 1 Teorema Fundamental FLUIDOS * Hidrostática 1. En un tubo en U, hay dos líquidos inmiscibles (no se mezclan) de densidades ρ 1 y ρ 2, con ρ 1 > ρ 2. Si el nivel del punto B, respecto a la superficie que

Más detalles

MECÁNICA DE SUELOS GRANULOMETRÍA DE SUELOS

MECÁNICA DE SUELOS GRANULOMETRÍA DE SUELOS UNIVERSIDAD NACIONAL DE INGENIERÍA Facultad de Ingeniería Civil MECÁNICA DE SUELOS GRANULOMETRÍA DE SUELOS Ing. Daniel Basurto R. CENTRO PERUANO JAPONÉS DE INVESTIGACIONES SÍSMICAS Y MITIGACIÓN DE ANÁLISIS

Más detalles

de 2/(3) 1/2 de lado y en el tercero hay una la Tierra?.

de 2/(3) 1/2 de lado y en el tercero hay una la Tierra?. 1. Calcula la altura necesaria que hay que subir por encima de la superficie terrestre para que la intensidad del campo Determinar la velocidad de una masa m' cuando partiendo del reposo del primero de

Más detalles

SEDIMENTACIÓN ELIMINACIÓN DE PARTÍCULAS POR SEDIMENTACIÓN.

SEDIMENTACIÓN ELIMINACIÓN DE PARTÍCULAS POR SEDIMENTACIÓN. SEDIMENTACIÓN SEDIMENTACIÓN 1 1. OBJETIVO El objeto de esta práctica es la determinación de los parámetros de diseño de un sedimentador continuo a partir de los datos experimentales obtenidos en el laboratorio

Más detalles

PROBLEMAS TEMA I: ESTÁTICA DE FLUIDOS Y FENÓMENOS DE SUPERFICIE

PROBLEMAS TEMA I: ESTÁTICA DE FLUIDOS Y FENÓMENOS DE SUPERFICIE PROBLEMAS TEMA I: ESTÁTICA DE FLUIDOS Y FENÓMENOS DE SUPERFICIE Curso 2016-2017 1. Desde una bolsa de goteo colocada 1.6 m por encima del brazo de un paciente fluye plasma de 1.06 g/cm 3 de densidad por

Más detalles

N = γ net (N / V) (u av / 4) (2πrl)

N = γ net (N / V) (u av / 4) (2πrl) Anexo III III- Teoría de los reactores tubulares de flujo Según la teoría cinética molecular, el número de colisiones por segundo, J s, de moléculas en fase gaseosa sobre una superficie de área A s se

Más detalles

Colegio Antonino TALLER PRUEBA DE ORO NUMERO DOS

Colegio Antonino TALLER PRUEBA DE ORO NUMERO DOS Colegio Antonino TALLER PRUEBA DE ORO NUMERO DOS Tercer Periodo Académico 2018 Profesor: Alberto Antonio Quintero Castaño. Área: Física. Grado: Undécimo. 1. Realiza la prueba de oro número 1. 2. Convertir

Más detalles

Julián Moreno Mestre tlf

Julián Moreno Mestre  tlf www.juliweb.es tlf. 69381836 Ejercicios de dinámica, fuerzas (º de ESO/ 1º Bachillerato): 1º Calcular la masa de un cuerpo que al recibir una fuerza de 0 N adquiere una aceleración de 5 m/s. Sol: kg º

Más detalles

67.18 Mecánica de Fluidos

67.18 Mecánica de Fluidos Ejercicio 2.1. Un tanque cerrado está parcialmente lleno con glicerina. Si la presión del aire dentro del tanque es de 6 psi (41,37 kpa) y el nivel de glicerina es de 10 ft (3,05 m), cual será la presión

Más detalles

AUTOMOCIÓN MOTORES TÉRMICOS Y SUS SISTEMAS AUXILIARES RELACIÓN DE COMPRESIÓN CILINDRADA

AUTOMOCIÓN MOTORES TÉRMICOS Y SUS SISTEMAS AUXILIARES RELACIÓN DE COMPRESIÓN CILINDRADA RELACIÓN DE COMPRESIÓN PARÁMETROS CARACTERÍSTICOS...01...02 RELACIÓN DE COMPRESIÓN...05 RELACIÓN CARRERA / DIÁMETRO...06 MOTORES CUADRADOS...06 MOTORES SUPERCUADRADOS O DE CARRERA CORTA...07 VENTAJAS DE

Más detalles

XXII OLIMPIADA DE FíSICA

XXII OLIMPIADA DE FíSICA XXII OLIMPIADA DE FíSICA Preselección para la Fase local del Distrito Universitario de Valencia 28 octubre de 2010 (MECÁNICA 1ª PARTE) Para la resolución de los ejercicios tome g=10 ms 2 Ejercicio 1 Dos

Más detalles

PREPARACIÓN DE AIRE COMPRIMIDO.

PREPARACIÓN DE AIRE COMPRIMIDO. PROFESOR: JUAN PLAZA L. PREPARACIÓN DE AIRE COMPRIMIDO. 1 AIRE COMPRIMIDO. El aire comprimido se refiere a una tecnología o aplicación técnica que hace uso de aire que ha sido sometido a presión por medio

Más detalles

El Campo Eléctrico. Distribuciones discretas de carga

El Campo Eléctrico. Distribuciones discretas de carga El Campo Eléctrico. Distribuciones discretas de carga 1. A qué distancia deben encontrarse dos cargas de 1 nc para que la fuerza de repulsión entre ellas sea de 0 1 N? DATO: K = 9 10 9 N m 2 /C 2 2. Dos

Más detalles

MEMORIA DE CÁLCULO DISEÑO DEL PROCESO

MEMORIA DE CÁLCULO DISEÑO DEL PROCESO MEMORIA DE CÁLCULO DISEÑO DEL PROCESO BASES DE DISEÑO CAUDAL DE DISEÑO: Q Q = 12 m³ / día Población: 80 personas Dotación: 150 Litros/hab.dia Factor de contribución al desagüe: 80% CARGA ORGÁNICA: DBO

Más detalles

Napoleón. A. F. II (16.58) 4. Un cable coaxial se forma rodeando un conductor. conductor coaxial de radio interno

Napoleón. A. F. II (16.58) 4. Un cable coaxial se forma rodeando un conductor. conductor coaxial de radio interno todas las partículas llegan perpendicularmente a la rendija. Si es el radio de la trayectoria, demostrar 1. Una tira delgada de cobre de de ancho y de espesor se coloca perpendicularmente a un campo magnético

Más detalles

Unidad II: Separación Primaria

Unidad II: Separación Primaria Unidad II: Separación Primaria 1. Separación de fases y tipos de separadores 1.1. Características de un separador 2.2. Extractores de niebla 2. Principios de operación de separadores 3. Sistema de control

Más detalles

R n (x) = f (n+1) (ξ) (n + 1)! (x x 0) n+1. En este ejercicio se desea hallar valores aproximados de e x para valores pequeños de x.

R n (x) = f (n+1) (ξ) (n + 1)! (x x 0) n+1. En este ejercicio se desea hallar valores aproximados de e x para valores pequeños de x. Problema 1 Se tiene un prisma cuya base ABCD se muestra en la figura, construido con un material transparente cuyo índice de refracción es n = 1,56. El prisma está inmerso en el aire (n 0 = 1). Un rayo

Más detalles

Gua Potencial Electrostatico

Gua Potencial Electrostatico Ponticia Universidad Catolica de Chile Facultad de Fsica FIS1532 Electricidad y Magnetismo Prof. Maria Cristina Depassier Gua Potencial Electrostatico Joaqun Arancibia Fabian Cadiz 1. Problema 1 Considere

Más detalles

PROBLEMAS COMPLEMENTARIOS

PROBLEMAS COMPLEMENTARIOS Problema nº1 Indica si dos protones separados por 10-18 m tenderán a acercarse por efecto de la gravedad o a repelerse por efecto electrostático. Datos: G = 6,6 10-11 N m 2 / 2, m p = 1,6 10-27, q p =

Más detalles

Hidráulica básica y dinámica de fluidos aplicados a la formación y transporte de gotas

Hidráulica básica y dinámica de fluidos aplicados a la formación y transporte de gotas Hidráulica básica y dinámica de fluidos aplicados a la formación y transporte de gotas Jornadas de actualización en tecnologías de aplicación en cultivos extensivos Contenido 1. Formación de gotas 2. Transporte

Más detalles

Nombre: Cédula: Sección: SEGUNDO PARCIAL TEORÍA 1. Mencione los supuestos necesarios para que sea válida la ecuación de Bernoulli.

Nombre: Cédula: Sección: SEGUNDO PARCIAL TEORÍA 1. Mencione los supuestos necesarios para que sea válida la ecuación de Bernoulli. U.L.A. FACULTAD DE INGENIERÍA ESCUELA DE INGENIERÍA MECÁNICA MECÁNICA DE FLUIDOS Mérida, 05/02/2009 Nombre: Cédula: Sección: SEGUNDO PARCIAL TEORÍA 1. Mencione los supuestos necesarios para que sea válida

Más detalles

FÍSICA 2º Bachillerato Ejercicios: Campo magnético y corriente eléctrica

FÍSICA 2º Bachillerato Ejercicios: Campo magnético y corriente eléctrica 1(9) Ejercicio nº 1 Una partícula alfa se introduce en un campo cuya inducción magnética es 1200 T con una velocidad de 200 Km/s en dirección perpendicular al campo. Calcular la fuerza qué actúa sobre

Más detalles

MATERIALES TEXTILES, S.A. DE C.V. MATERIALES TEXTILES, S.A. DE C.V.

MATERIALES TEXTILES, S.A. DE C.V. MATERIALES TEXTILES, S.A. DE C.V. MATERIALES TEXTILES, S.A. DE C.V. MATERIALES TEXTILES, S.A. DE C.V. Calz. Azcapotzalco La Villa No. 707 Tels. 5368-4941 Col. Industrial Vallejo 5368-9661 02300 México, D.F. 5587-6599 Fax 5567-5756 E-mail:

Más detalles

PROBLEMAS CAMPO ELÉCTRICO

PROBLEMAS CAMPO ELÉCTRICO PROBLEMAS CAMPO ELÉCTRICO 1. Explica las semejanzas y las diferencias entre los campos gravitatorio y eléctrico 2. En una región del espacio, la intensidad del campo eléctrico es nula. Debe ser nulo también

Más detalles

Guía de Problemas. Hidrostática.

Guía de Problemas. Hidrostática. Guía de Problemas. Hidrostática. 1. Un tanque cerrado está parcialmente lleno con glicerina. Si la presión del aire dentro del tanque es de 6 psi (41,37 kpa) y el nivel de glicerina es de 10 ft (3,05 m),

Más detalles

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA AERONÁUTICA Y DEL ESPACIO FÍSICA II

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA AERONÁUTICA Y DEL ESPACIO FÍSICA II ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA AERONÁUTICA Y DEL ESPACIO FÍSICA II PROBLEMAS PROPUESTOS José Carlos JIMÉNEZ SÁEZ Santiago RAMÍREZ DE LA PISCINA MILLÁN 5.- ELECTROSTÁTICA DE DIELÉCTRICOS 5 Electrostática

Más detalles

Teoría Cinética de los Gases

Teoría Cinética de los Gases NOMBRE: CURSO: EJEMPLO: Un envase con un volumen de 0,3 m³ contiene 2 moles de helio a 20º C. Suponiendo que el helio se comporta como un gas ideal, calcular: a) la energía cinética total del sistema,

Más detalles

PROCESOS DE FILTRACIÓN POR MEMBANAS. M.C. Ma. Luisa Colina Irezabal

PROCESOS DE FILTRACIÓN POR MEMBANAS. M.C. Ma. Luisa Colina Irezabal PROCESOS DE FILTRACIÓN POR MEMBANAS M.C. Ma. Luisa Colina Irezabal La membrana funciona no sólo en función del tamaño de la partícula, sino como una pared de separación selectiva algunas sustancias pueden

Más detalles

XXVII Olimpiada Española de Física

XXVII Olimpiada Española de Física XXVII Olimpiada Española de Física FASE LOCAL-UNIVERSIDADES DE GALICIA- 26 de febrero de 2016 APELLIDOS...NOMBRE... CENTRO... Nota: En el caso de que la respuesta a alguna de las cuestiones planteadas

Más detalles

Selección Instituto Balseiro Problema 1

Selección Instituto Balseiro Problema 1 Problema 1 Un cubo de hielo de 200 g de masa, cuya temperatura es de 150 C, se coloca en un recipiente que contiene 500 g de agua a 20 C. Encontrar la cantidad de hielo y la temperatura cuando se llega

Más detalles

PROBLEMAS ELECTROMAGNETISMO

PROBLEMAS ELECTROMAGNETISMO PROBLEMAS ELECTROMAGNETISMO 1. Se libera un protón desde el reposo en un campo eléctrico uniforme. Aumenta o disminuye su potencial eléctrico? Qué podemos decir de su energía potencial? 2. Calcula la fuerza

Más detalles

Física (ENCB 2005 etapa nacional escrito)

Física (ENCB 2005 etapa nacional escrito) 1 ( 25) Física (ENCB 2005 etapa nacional escrito) Aplicando análisis dimensional, determine la Puntos: 1 ecuación correcta del momento respecto al origen en la siguiente figura. W = Fuerza Total de la

Más detalles

ELECTROMAGNETISMO PRÁCTICO 6 MAGNETOSTÁTICA

ELECTROMAGNETISMO PRÁCTICO 6 MAGNETOSTÁTICA ELECTROMAGNETISMO PRÁCTICO 6 MAGNETOSTÁTICA Problema Nº 1 Demostrar que el movimiento más general de una partícula cargada de masa m y carga q que se mueve en un campo magnético uniforme de inducción magnética

Más detalles

CAMPO ELÉCTRICO Nm 2

CAMPO ELÉCTRICO Nm 2 CAMPO ELÉCTRICO 1. Dos cargas eléctricas positivas e iguales de valor 3x10-6 C están situadas en los puntos A(0,2) y B(0,-2) del plano XY. Otras dos cargas iguales Q están localizadas en los puntos C(4,2)

Más detalles

Fundamentos Físicos de las Comunicaciones TEMA 6 ELECTROSTÁTICA. Francisco Fernández

Fundamentos Físicos de las Comunicaciones TEMA 6 ELECTROSTÁTICA. Francisco Fernández Fundamentos Físicos de las Comunicaciones TEMA 6 ELECTROSTÁTICA Francisco Fernández La duda es la escuela de la inteligencia. Curso 2012-2013 F. Bacon 1 Ley de Coulomb Ley de Coulomb: La magnitud de la

Más detalles

Tema 5.-Propiedades de transporte

Tema 5.-Propiedades de transporte Tema 5.- Propiedades de transporte Tema 5.-Propiedades de transporte 5.1-Teoría cinética de los gases 5.2.-Difusión 5.3.-Sedimentación 5.4.-Viscosidad 5.5.-Electroforesis 5.1-Teoría cinética de los gases

Más detalles