HIPÉRBOLA. En una hipérbola siempre se cumple c a b. excentricidad: e a. 2b a. Lado Recto: LR =

Tamaño: px
Comenzar la demostración a partir de la página:

Download "HIPÉRBOLA. En una hipérbola siempre se cumple c a b. excentricidad: e a. 2b a. Lado Recto: LR ="

Transcripción

1 XI. HIPÉRBOLA Lugr geométrico de todos los puntos tles que el vlor soluto de l diferenci de sus distncis dos puntos fijos (focos), es un cntidd constnte y menor que l distnci entre los focos. En un hipérol siempre se cumple c CV CV ' CB CB' c CF CF ' c excentricidd: e Ldo Recto: LR = C centro V y V vértices F y F focos L eje de l hipérol VV ' Eje trnsverso = BB ' Eje conjugdo = Mtemátics V - Geometrí Anlític 9 Prof. Jesús Clixto Suárez.

2 A. HIPÉRBOLA Un vez que y estudiste práol y elipse estrás de cuerdo que no es difícil entender cómo otener l ecución de ests curvs ddos lgunos elementos de ells y vicevers. Ahor es turno de l hipérol, l cul tiene lgunos conceptos (elementos) más que l elipse, que es con l que más se prece, sin emrgo, l form de proceder en su estudio es muy similr como se hizo en el estudio de l elipse.. ECUACIÓN DE UNA HIPERBOLA DADOS ALGUNOS DE SUS ELEMENTOS Prepr tu formulrio e identific l prte que te señl l hipérol. Relicemos primero un ejemplo donde se nos proporcionen focos y vértices de l hipérol y tengmos que encontrr l ecución. Ejemplo. Encontrr l ecución de l hipérol si sus focos y vértices son F 0,, F ' 0,, V 0, y V ' 0,. respectivmente Bueno, como podrás recordr lo primero que deemos hcer es representr nuestros dtos en el plno crtesino. x y x ; y De l situción nterior vemos que se trt de un hipérol verticl con centro en el origen, recurre tu formulrio y verás que su ecución deerá tener l y x form Oservción: en l elipse, l ecución siempre tení en el numerdor primero x: x h y k x h y k ; ; Lo que cmi es l posición de y, dependiendo si es horizontl o verticl (horizontles: l está dejo de ls x, demás siempre >). Ahor en l hipérol l situción se invierte, es decir, los denomindores siempre empiezn con : x y ; y x h y k y k x h ; ; x Y lo que cmi de posición (demás del signo entre los términos) son x e y, cundo x está encim de son horizontles, demás hor no necesrimente >. Regresndo nuestro ejemplo, de nuestros dtos otenemos que y c y el C 0,0, l igul que en elipse, hy que encontrr el vlor de, solo que hor, centro l condición que cumple l hipérol (l puedes consultr en tu formulrio) es c Sustituyendo los vlores: Mtemátics V - Geometrí Anlític 9 Prof. Jesús Clixto Suárez.

3 Un vez encontrd se puede encontrr l ecución sustituyendo en 5 y x y x y x form ordinri. 4 5 Como siempre, en un ecución no dee de her frcciones, convertimos veintevos, primero poniendo un dejo del uno de l derech: 5 y 4 x 0 5y 4x es decir 5y 4x 0 0 form generl. Sin emrgo, como estmos prendiendo, unque inicilmente no se nos pide grficr l hipérol, l grficremos pr futurs situciones. Como tenemos que 5, encontremos el ldo recto: 5 LR 5 c Excentricidd: e Pr grficrl, como y semos que es verticl, primero trcemos un rectángulo de ncho (eje conjugdo) y de lto (eje trnsverso) = En los cutro vértices del rectángulo nterior psrán ls síntots. Representremos hor los focos y el ldo recto: prox. =4 Ojo: si fuer horizontl, el lrgo serí y lo lrgo del rectángulo serí Mtemátics V - Geometrí Anlític 94 Prof. Jesús Clixto Suárez.

4 Finlmente si trzmos nuestr hipérol que pse por ls cruces mrcds nos qued: Pr corroorr nuestros cálculos (no es necesrio hcerlo si confís en tus cuents) tomemos lgunos puntos mrcdos con crucecits y evluemos sus coordends en nuestr ecución encontrd 5, : , : 5, 5 : Ldo Recto LR = Mtemátics V - Geometrí Anlític 95 Prof. Jesús Clixto Suárez.

5 Ejemplo. Encontrr l ecución de l hipérol cuyos focos son los puntos F 5, y F, y su ldo recto es igul 4. Primero como siempre representmos nuestros dtos Sin prolem lguno podemos drnos cuent que se trt de un hipérol C h, k C, es decir: h, k. Vemos nuestro horizontl con centro formulrio y l ecución es de l form: x h y k De l cul, como y conocemos h y k, nos flt ser y. De nuestros dtos grficdos tenemos que c 4 y el dto del ldo recto no lo grficmos. Si no tenemos: 4 LR.. 4 despejndo de 6 4 C, 4 F ', F 5, y como c 4, con c Resuelve el sistem de ecuciones 6 hor lo sustituimos en plicndo un propiedd de ls frcciones (querdos) 8 El centro está l mitd 4 LR.., Mtemátics V - Geometrí Anlític 96 Prof. Jesús Clixto Suárez.

6 si c c Esto es un ecución cudrátic, l cul d d d c siempre dee tener un cero de un ldo de l iguldd mitd todos los términos fctorizndo 0 6 entonces: ó como es un distnci (del centro l vértice), NO puede ser negtiv, entonces. Sustituimos = en 6 y nos qued: finlmente, sustituyendo en nuestr ecución: x y (form cnónic) 7 desrrollndo los cudrdos x x y 4 y convirtiendo 6-vos 6 7 x x 9 y 4 y Recuerd: l psmos l derech pr que se positiv. 6 9=7 Recuerd: Mtemátics V - Geometrí Anlític 97 Prof. Jesús Clixto Suárez.

7 x x y y x 4x 7 9 y 6 y 6 6 7x 9 y 4x 6 y 9 0 Sólo pr compror, un vértice que tiene coordends V 4, derech hy ( ) uniddes C,, V4, nuestr ecución veremos que efectivmente l stisfce:, del centro l. Si lo sustituimos en Ejercicios.- Encontrr l ecución de l hipérol con ls siguientes crcterístics V 0,, V ' 0,, F 0,4, F ' 0, 4 ) ) V 4,0, V ' 4,0, F 5,0, F ' 5,0 V 6,, V ' 6,, e c) 5 F, 4, F ', 4, LR d) 5. DADA LA ECUACIÓN DE UNA HIPÉRBOLA, ENCONTRAR TODOS SUS ELEMENTOS Y GRAFICARLA Bueno, esto y lo hemos hecho con l elipse, y hor con l hipérol es exctmente lo mismo, comencemos con un ejemplo: Ejemplo.- Encontrr todos los elementos y grficr l hipérol cuy ecución es: 4 y 9x 8 y 54x 0 Como y semos, hy que completr trinomios cudrdos perfectos (lo hicimos en circunferenci y en elipse), pero no hy que olvidr que pr poder completr un T.C.P. s el coeficiente del término cudrático dee ser uno. 4 y 9x 8 y 54x 0 seprmos los términos con x s y con y s 4 y 8 y 9x 54 x estos espcios son pr completrlos T.C.P. s que todví no podemos fctorizndo por seprdo y y x x (form generl) Tiene vrios términos, lo que nos indic que es un hipérol con centro en C(h, k) y no un con centro en C(0,0) Mtemátics V - Geometrí Anlític 98 Prof. Jesús Clixto Suárez.

8 hor completndo trinomios cudrdos perfectos y y x x oserv que unque se metió un uno y un nueve, están dentro del préntesis fectdos por el 4 y -9 respectivmente. y x oserv ls ecuciones de hipérols en tu formulrio y estrás de cuerdo que del ldo derecho siempre hy un uno, por tnto, dividiendo nuestr ecución por 6 L ecución empiez con y y x y x 9 4 L ecución corresponde (ve tu formulrio) un hipérol verticl con centro C(, ), demás siempre l ecución empiez en los denomindores con, es decir: 9 4 Si encontrmos c tenemos: k = h = c c c c 94 c.6 Ahor loclicemos el centro C(, ) y trcemos un rectángulo centrdo en dicho punto. De lto 6 y lrgo 4 Mtemátics V - Geometrí Anlític 99 Prof. Jesús Clixto Suárez.

9 si clculmos el ldo recto: LR 8, entonces en los focos, y, se trz el ldo recto con 4 l izquierd y 4 l derech pr que en totl mid 8 V, pr jo otro foco x = y Oservción: si l hipérol es horizontl lrgo C(, ) 4 lto 6 pr rri un foco x = y V ', 4 verticl lrgo lto Mtemátics V - Geometrí Anlític 00 Prof. Jesús Clixto Suárez.

10 Ls ecuciones de ls síntots son:, y 5, 5 m y x y x y x 9 x y 0, y, m y x y x y x 9 0 x y 7 Ejercicios.- Encontrr todos los elementos de l hipérol y grficrl si su ecución es: ) ) c) d) F ', Asíntot que ps por, y, 4x 5y 0 0 4x 9y ,, 9x 6 y 6x y 4 0 6x 5y x 0 y 9 0, F C, 4 c e Asíntot que ps por, y 5, Mtemátics V - Geometrí Anlític 0 Prof. Jesús Clixto Suárez.

Ejercicios de las Cónicas

Ejercicios de las Cónicas Ejercicios de ls Cónics Ejemplo 1 Ejemplo Otener l ecución crtesin generl de l circunferenci que coincide con el punto (, 3) cuo centro coincide con el origen. Prtiendo de l ecución ordinri ( - h) + (

Más detalles

XI. LA HIPÉRBOLA LA HIPÉRBOLA COMO LUGAR GEOMÉTRICO

XI. LA HIPÉRBOLA LA HIPÉRBOLA COMO LUGAR GEOMÉTRICO XI. LA HIPÉRBOLA 11.1. LA HIPÉRBOLA COMO LUGAR GEOMÉTRICO Definición L hipérol es el lugr geométrico descrito por un punto P que se mueve en el plno de tl modo que el vlor soluto de l diferenci de sus

Más detalles

ELIPSE E HIPERBOLA DEFINICIONES Y EJERCICIOS

ELIPSE E HIPERBOLA DEFINICIONES Y EJERCICIOS ELIPSE E HIPERBOLA DEFINICIONES Y EJERCICIOS Chí, Octubre de 015 Señores Estudintes grdos Décimos Adjunto encontrrán ls definiciones y los ejercicios que deben relizr de los dos tems pendientes pr l evlución

Más detalles

INSTRUCTIVO PARA TUTORÍAS

INSTRUCTIVO PARA TUTORÍAS INSTRUCTIVO PARA TUTORÍAS Ls tutorís corresponden los espcios cdémicos en los que el estudinte del Politécnico Los Alpes puede profundizr y reforzr sus conocimientos en diferentes tems de cr l exmen de

Más detalles

La Elipse. B( 0, b ) P( x, y ) a b. B'( 0, -b ) PF' PF VV ' (x + c) + y = 2a (x c) + y elevando al cuadrado (x + c) + y = 2a (x c) + y

La Elipse. B( 0, b ) P( x, y ) a b. B'( 0, -b ) PF' PF VV ' (x + c) + y = 2a (x c) + y elevando al cuadrado (x + c) + y = 2a (x c) + y L Elipse Regresr Wikispces L elipse es el conjunto de todos los puntos P de un plno, tles que l sum de ls distncis de culquier punto dos puntos fijos del plno es constnte y su ecución se llm ecución ordinri.

Más detalles

NIVEL : 1er. AÑO PROF. L. ALTIMIRAS R. CARRERA : DISEÑO AYUD. C. RAMIREZ N. AÑO : 2007 LA HIPERBOLA

NIVEL : 1er. AÑO PROF. L. ALTIMIRAS R. CARRERA : DISEÑO AYUD. C. RAMIREZ N. AÑO : 2007 LA HIPERBOLA ASIGNATURA : MATEMATICAS MATERIAL DE APOYO NIVEL : er. AÑO PROF. L. ALTIMIRAS R. CARRERA : DISEÑO AYUD. C. RAMIREZ N. AÑO : 007 LA HIPERBOLA Definición : Un Hipérol es el lugr geométrico de un punto en

Más detalles

Circunferencia y elipse

Circunferencia y elipse GAE-05_M1AAL5_circunferenci_elipse Circunferenci y elipse Por: Sndr Elvi Pérez Circunferenci Comienz por revisr l definición de circunferenci. Un circunferenci es un curv formd por puntos que equidistn

Más detalles

La hipérbola es el lugar geométrico de todos los puntos cuya diferencia de distancias a dos puntos fijos, llamados focos, es constante e igual a 2a.

La hipérbola es el lugar geométrico de todos los puntos cuya diferencia de distancias a dos puntos fijos, llamados focos, es constante e igual a 2a. INSTITUTO VALLADOLID PREPARATORIA Págin 11 7 LA HIPÉRBOLA 7.1 DEFINICIONES L hipérol es el lugr geométrico de todos los puntos cuy diferenci de distncis dos puntos fijos, llmdos focos, es constnte e igul.

Más detalles

HIPÉRBOLA. Ecuación de la hipérbola

HIPÉRBOLA. Ecuación de la hipérbola Mtemátic 014 HIPÉRBOLA Definición: Se llm hipérol l conjunto de puntos del plno que cumplen con l condición de que l diferenci de ls distncis dos puntos fijos, llmdos focos, es constnte. pf p f ' = constnte

Más detalles

LA ELIPSE DEFINICIÓN ELEMENTOS DE LA ELIPSE

LA ELIPSE DEFINICIÓN ELEMENTOS DE LA ELIPSE 1 LA ELIPSE DEFINICIÓN L elipse es el lugr geométrico de todos los puntos P del plno cuy sum de distncis dos puntos fijos, F 1 y F, llmdos focos es un constnte positiv. Es decir: L elipse es l curv cerrd

Más detalles

ECUACIÓN ORDINARIA DE LA ELIPSE CON CENTRO EN EL ORI- GEN

ECUACIÓN ORDINARIA DE LA ELIPSE CON CENTRO EN EL ORI- GEN ECUACIÓN ORDINARIA DE LA ELIPSE CON CENTRO EN EL ORI- GEN Si hor colocmos l elipse horizontl con centro en el origen, oservremos que no cmin l form ni lgun de sus crcterístics. Si tenímos como ecución

Más detalles

LA ELIPSE EJERCICIOS RESUELTOS. Colegio Sor Juana Inés de la Cruz Sección Preparatoria Matemáticas III Bloque VII Ing. Jonathan Quiroga Tinoco

LA ELIPSE EJERCICIOS RESUELTOS. Colegio Sor Juana Inés de la Cruz Sección Preparatoria Matemáticas III Bloque VII Ing. Jonathan Quiroga Tinoco LA ELIPSE EJERCICIOS RESUELTOS Colegio Sor Jun Inés de l Cruz Sección Preprtori Mtemátics III Bloque VII Ing. Jonthn Quirog Tinoco 1. Pr encontrr l ecución de l elipse con centro en el origen, un foco

Más detalles

La Hipérbola. César Román Martínez García Conalep Aztahuacan. 20 de noviembre de 2005

La Hipérbola. César Román Martínez García  Conalep Aztahuacan. 20 de noviembre de 2005 L Hipérbol Césr Román Mrtínez Grcí cesrom@esfm.ipn.mx, mcrosss666@hotmil.com Conlep Azthucn 20 de noviembre de 2005 Resumen Estudiremos l ecución de l hipérbol 1. Hipérbol Definición 0.1 Un hipébol es

Más detalles

6.2 DISTANCIA ENTRE DOS PUNTOS Consideremos la siguiente figura: Según el teorema de Pitágoras se tiene que: d x. y 2

6.2 DISTANCIA ENTRE DOS PUNTOS Consideremos la siguiente figura: Según el teorema de Pitágoras se tiene que: d x. y 2 UNIDAD 6: GEOMETRIA ANALÍTICA 6. SISTEMA DE COORDENADAS RECTANGULARES Un sistem de coordends rectngulres divide l plno en cutro cudrntes por medio de dos rects perpendiculres que se cortn en el punto O.

Más detalles

Hl = {P = (x, y) 1 d(p, Fl) - d(p, 4) = -2a} 4.2 NOTACION Y PROPIEDADES

Hl = {P = (x, y) 1 d(p, Fl) - d(p, 4) = -2a} 4.2 NOTACION Y PROPIEDADES 4.1 DEFINICION. Un hipérol es el conjunto de todos los puntos del plno euclideno R~ tles que que l diferenci de sus distncis dos puntos fijos es en vlor soluto un constnte. Así, si F, y F, son dos puntos

Más detalles

HIPÉRBOLA. Las componentes principales de la hipérbola se pueden obtener de la figura anterior, las cuales son: Focos: Vértices: Pág.

HIPÉRBOLA. Las componentes principales de la hipérbola se pueden obtener de la figura anterior, las cuales son: Focos: Vértices: Pág. HIPÉRBOLA. Es el conjunto de todos los puntos con l propiedd de que l diferenci de ls distncis de los puntos del conjunto dos puntos fijos ddos es un constnte, positiv y menor que l distnci entre los focos.

Más detalles

Ecuación de la circunferencia de centro el origen C(0, 0) y de

Ecuación de la circunferencia de centro el origen C(0, 0) y de CÓNICAS EN EL PLANO. CIRCUNFERENCIA, ELIPSE, HIPÉRBOLA Y PARÁBOLA centrds en el origen CIRCUNFERENCIA Aunque segurmente se sep, recordmos que l circunferenci es el conjunto de puntos que distn un cntidd

Más detalles

La Elipse. Distancia Focal : F 1 F 2 = 2 c Eje mayor o focal : AB = 2 a Focos : F 1 y F 2 Eje menor : CD = 2 b. Además se cumple que a

La Elipse. Distancia Focal : F 1 F 2 = 2 c Eje mayor o focal : AB = 2 a Focos : F 1 y F 2 Eje menor : CD = 2 b. Además se cumple que a L Elipse L elipse es el lugr geométrico de los puntos del plno cuy sum de distncis dos puntos fijos es constnte. Estos dos puntos fijos se llmn focos de l elipse. Elementos de l Elipse Vértices : A, B,

Más detalles

La elipse es el lugar geométrico de todos los puntos cuya suma de distancias a dos puntos fijos, llamados focos, es constante.

La elipse es el lugar geométrico de todos los puntos cuya suma de distancias a dos puntos fijos, llamados focos, es constante. LA ELIPSE DEFINICIONES L elipse es el lugr geométrico de todos los puntos cuy sum de distncis dos puntos fijos, llmdos focos, es constnte. En l figur 6., los focos están representdos por los puntos y f.

Más detalles

CIRCUNFERENCIA: Definición: Es el lugar geométrico de los puntos que equidistan de un punto llamado Centro y esa distancia es el radio.

CIRCUNFERENCIA: Definición: Es el lugar geométrico de los puntos que equidistan de un punto llamado Centro y esa distancia es el radio. Ls cónics responden l ecución generl del tipo F, ) 0 L ecución generl de un cónic es: A B C D E F 0 I) tér min oc cudráti cos tér min os lineles tér min o independiente B término rectngulr, cundo prece

Más detalles

Inecuaciones con valor absoluto

Inecuaciones con valor absoluto Inecuciones con vlor soluto El vlor soluto de un número rel se denot por y está definido por:, si 0 si 0 Propieddes Si y son números reles y n es un número entero, entonces: 1.. 3. n 4. n L noción de vlor

Más detalles

el blog de mate de aida: MATE I. Cónicas pág. 1

el blog de mate de aida: MATE I. Cónicas pág. 1 el blog de mte de id: MATE I. Cónics pág. 1 SECCIONES CÓNICAS Un superficie cónic se obtiene l girr un rect g (llmd genertriz), lrededor de otr rect e, llmd eje de giro, l que cort en un punto V (vértice).

Más detalles

UTalca - Versión Preliminar

UTalca - Versión Preliminar 1. Definición L hipérbol es el lugr geométrico de todos los puntos del plno cuyo vlor bsoluto de l diferenci de ls distncis dos puntos fijos es constnte. Más clrmente: Ddos (elementos bses de l hipérbol)

Más detalles

INSTITUTO VALLADOLID PREPARATORIA Página 105 ELIPSE

INSTITUTO VALLADOLID PREPARATORIA Página 105 ELIPSE INSTITUTO VALLADOLID PREPARATORIA Págin 05 6 LA ELIPSE 6. DEFINICIONES L elipse es el lugr geométrico de todos los puntos cuy sum de distncis dos puntos fijos, llmdos focos, es constnte. En l figur 6.,

Más detalles

Cálculo de áreas de figuras planas. Cálculo de volúmenes de sólidos de revolución. Cálculo de áreas de superficies de revolución.

Cálculo de áreas de figuras planas. Cálculo de volúmenes de sólidos de revolución. Cálculo de áreas de superficies de revolución. APLICACIONES DE LA INTEGRAL DEFINIDA Cálculo de áres de figurs plns. Cálculo de volúmenes de sólidos de revolución. Cálculo de longitud de rco de curv. Cálculo de áres de superficies de revolución. Cálculo

Más detalles

CÓNICAS ESTUDIO ANALÍTICO DE LAS CÓNICAS

CÓNICAS ESTUDIO ANALÍTICO DE LAS CÓNICAS ESTUDIO ANALÍTICO DE LAS CÓNICAS Definición: Cónic es el lugr geométrico de los puntos de un plno cu rzón de distncis un punto fijo (que llmremos foco) un rect fij (que llmremos directriz) es constnte.

Más detalles

SEPTIEMBRE " ( él representa el producto vectorial)? En caso afirmativo, justifíquese. En caso contrario, póngase un ejemplo que lo confirme.

SEPTIEMBRE  ( él representa el producto vectorial)? En caso afirmativo, justifíquese. En caso contrario, póngase un ejemplo que lo confirme. SEPTIEMBRE 99 OPCIÓN A EJERCICIO. Otener ls mtrices A y B tles que cumplen ls siguientes condiciones: B A B A Se trt de un sistem de ecuciones mtriciles, que se puede resolver por culquier método. Pr este

Más detalles

LAS CÓNICAS COMO LUGARES GEOMÉTRICOS

LAS CÓNICAS COMO LUGARES GEOMÉTRICOS LAS CÓNICAS COMO LUGARES GEOMÉTRICOS Elipse: lugr geométrico de los puntos del plno cuy sum de distncis dos puntos fijos llmdos focos es constnte. d(x,f) + d(x,f ) = k LAS CÓNICAS COMO LUGARES GEOMÉTRICOS

Más detalles

GEOMETRÍA ANALÍTICA LA HIPÉRBOLA. 1. Ecuación de la hipérbola horizontal con centro en el origen

GEOMETRÍA ANALÍTICA LA HIPÉRBOLA. 1. Ecuación de la hipérbola horizontal con centro en el origen LA HIPÉRBOLA CONTENIDO. Ecución de l hipérol horizontl con centro en el origen. Análisis de l ecución. Asíntots de l hipérol Ejemplo 3. Ecución de l hipérol verticl con centro en el origen Ejemplo 4. Hipérols

Más detalles

Secciones cónicas CONO. Un cono es la superficie que se obtiene girando una recta alrededor de un eje que la cruza.

Secciones cónicas CONO. Un cono es la superficie que se obtiene girando una recta alrededor de un eje que la cruza. Secciones cónics Un cono es l superficie que se obtiene girndo un rect lrededor de un eje que l cruz. Un sección cónic es l curv que se obtiene intersectndo un cono con un plno. CONO Los griegos comenzron

Más detalles

ELIPSE. Las componentes principales de la elipse se pueden obtener de la figura anterior, las cuales son: Focos: Vértices: Pág. 1

ELIPSE. Las componentes principales de la elipse se pueden obtener de la figura anterior, las cuales son: Focos: Vértices: Pág. 1 ELIPSE. Es el conjunto de todos los puntos con l propiedd de que l sum de ls distncis de los puntos del conjunto dos puntos fijos ddos es un constnte, myor que l distnci entre los dos puntos. L elipse

Más detalles

TRIGONOMETRÍA Sistemas de Medición de Ángulos Equivalencia entre los tres Sistemas

TRIGONOMETRÍA Sistemas de Medición de Ángulos Equivalencia entre los tres Sistemas TRIGONOMETRÍA Sistems de Medición de Ángulos Equivlenci entre los tres Sistems Áre del Circulo =. r 360º = Rd = 400 G º = R = G 360º 400 G Longitud de l Circunferenci C =. rdio Áre de Anillo o Coron Circulr

Más detalles

Circunferencia Parábola Elipse Hipérbola

Circunferencia Parábola Elipse Hipérbola INTRODUCCIÓN: UNIVERSIDAD NACIONAL EXPERIMENTAL POLITÉCNICA ANTONIO JOSÉ DE SUCRE VICE-RECTORADO PUERTO ORDAZ DEPARTAMENTO DE ESTUDIOS GENERALES SECCIÓN DE MATEMÁTICA Prof. Esther Morles (009) 1 Ls figurs

Más detalles

INDICADORES DE DESEMPEÑO

INDICADORES DE DESEMPEÑO INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMÁTICAS ASIGNATURA: GEOMETRÍA DOCENTE: JOSÉ IGNACIO DE JESÚS FRANCO RESTREPO TIPO DE GUIA: CONCEPTUAL - EJERCITACION PERIODO GRADO N 0 FECHA

Más detalles

* La letra a representa la distancia que hay desde el centro hasta el extremo de la elipse por su parte más alargada. Ver la figura 7.3.

* La letra a representa la distancia que hay desde el centro hasta el extremo de la elipse por su parte más alargada. Ver la figura 7.3. págin 110 7.1 DEFINICIONES L elipse es el lugr geométrico de todos los puntos cuy sum de distncis dos puntos fijos, llmdos focos, es constnte. En l figur 7.1, los focos están representdos por los puntos

Más detalles

FUNDAMENTOS MATEMÁTICOS TEMA 1: CURVAS

FUNDAMENTOS MATEMÁTICOS TEMA 1: CURVAS FUNDAMENTOS MATEMÁTICOS TEMA 1: CURVAS TEMA 1: CURVAS 1. CÓNICAS * Prábols * Elipses * Hipérbols * Ecución Generl de un cónic. ECUACIONES PARAMÉTRICAS DE UNA CURVA 3. COORDENADAS POLARES EN EL PLANO *

Más detalles

EJERCICI0S PARA ENTRENARSE. Hacemos una tabla de valores y después representamos la función

EJERCICI0S PARA ENTRENARSE. Hacemos una tabla de valores y después representamos la función Unidd 3 Funciones Cudrátics EJERCICI0S PARA ENTRENARSE 4 Represent en los mismos ejes ls siguientes funciones: )) y y -. )) y 0,5 y - 0,5. c)) y 6 y - 6. Hcemos un tl de vlores y después representmos l

Más detalles

INDICADORES DE DESEMPEÑO

INDICADORES DE DESEMPEÑO INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMÁTICAS ASIGNATURA: GEOMETRÍA DOCENTE: JOSÉ IGNACIO DE JESÚS FRANCO RESTREPO TIPO DE GUIA: CONCEPTUAL - EJERCITACION PERIODO GRADO FECHA

Más detalles

= α G. TRIGONOMETRÍA Sistemas de Medición de Ángulos Equivalencia entre los tres Sistemas. Funciones Trigonométricas

= α G. TRIGONOMETRÍA Sistemas de Medición de Ángulos Equivalencia entre los tres Sistemas. Funciones Trigonométricas TRIGONOMETRÍA Sistems de Medición de Ángulos Equivlenci entre los tres Sistems Áre del Circulo = π. r 360º = πrd = 400 G α º = α R = α G 360º π 400 G C = π. rdio Longitud de l Circunferenci Áre de Anillo

Más detalles

TEMA 8 GEOMETRÍA ANALÍTICA

TEMA 8 GEOMETRÍA ANALÍTICA Tem 8 Geometrí Anlític Mtemátics º ESO TEMA 8 GEOMETRÍA ANALÍTICA RELACIÓN ENTRE PUNTOS DEL PLANO EJERCICIO : Hll el punto medio del segmento de extremos P, y Q,. Ls coordends del punto medio, M, son l

Más detalles

3 E.M. ALGEBRA. Curso: ECUACION DE LA ElIPSE. Colegio SSCC Concepción - Depto. de Matemáticas. Nombre: CURSO: Eje Temático: SECCIONES CONICAS

3 E.M. ALGEBRA. Curso: ECUACION DE LA ElIPSE. Colegio SSCC Concepción - Depto. de Matemáticas. Nombre: CURSO: Eje Temático: SECCIONES CONICAS Colegio SSCC Concepción - Depto. de Mtemátics Eje Temático: SECCIONES CONICAS Unidd de Aprendizje: Ecución de l Elipse Cpciddes/Destrez/Hbiliddes: Resolver/Construir/ Decidir/Anlizr/ Identificr/ Verificr

Más detalles

Álgebra. Ingeniería Industrial. Curso 2008/2009 Primer Parcial. Primera parte de la convocatoria de Febrero

Álgebra. Ingeniería Industrial. Curso 2008/2009 Primer Parcial. Primera parte de la convocatoria de Febrero Álger. Ingenierí Industril. Curso 8/9 Primer Prcil. Primer prte de l convoctori de Ferero Ejercicio (I) (.) [ puntos] Hllr l prte rel e imginri de z siendo z = ³ + 7 ³ i + i 7. (.) [ puntos] Expresr en

Más detalles

APUNTES DE MATEMÁTICAS

APUNTES DE MATEMÁTICAS APUNTES DE MATEMÁTICAS TEMA 6:CÓNICAS 1º BACHILLERATO ÍNDICE 1. INTRODUCCIÓN... 1.1. SUPERFICIE CÓNICA... 1.. CURVAS CÓNICAS... 5. CIRCUNFERENCIA... 6.1. ECUACIÓN COMPLETA DE UNA CIRCUNFERENCIA... 6.1.1.

Más detalles

OLCOMA II Eliminatoria 2012 Nivel C XXIV OLIMPIADA COSTARRICENSE DE MATEMÁTICA UNA- UNED- UCR- ITCR- MEP-MICIT SEGUNDA ELIMINATORIA NACIONAL

OLCOMA II Eliminatoria 2012 Nivel C XXIV OLIMPIADA COSTARRICENSE DE MATEMÁTICA UNA- UNED- UCR- ITCR- MEP-MICIT SEGUNDA ELIMINATORIA NACIONAL OLCOMA II Elimintori 0 Nivel C XXIV OLIMPIADA COSTARRICENSE DE MATEMÁTICA UNA- UNED- UCR- ITCR- MEP-MICIT SEGUNDA ELIMINATORIA NACIONAL FECHA: 7 de gosto, 0 SOLUCIONARIO NIVEL C ( - ) OLCOMA II Elimintori

Más detalles

Portal Fuenterrebollo XXXVI OLIMPIADA MATEMÁTICA ESPAÑOLA, PALMA DE MALLORCA (2000)

Portal Fuenterrebollo XXXVI OLIMPIADA MATEMÁTICA ESPAÑOLA, PALMA DE MALLORCA (2000) Portl Fuenterrebollo XXXVI OLIMPIADA MATEMÁTIA ESPAÑOLA, PALMA DE MALLORA (000) Problem. Sen los polinomios: P(x) = x 4 + x + bx + cx + ; Q(x) = x 4 + cx + bx + x +. Hll ls condiciones que deben cumplir

Más detalles

LÍMITES DE FUNCIONES

LÍMITES DE FUNCIONES LÍMITES DE FUNCIONES IDEA INTUITIVA DE LÍMITE DE UNA FUNCIÓN EN UN PUNTO. Ejemplo : Consideremos l gráic de l unción: si < si > Si tom vlores próimos, distintos de y menores que ej.: 9, 99, 999,, se not

Más detalles

Signo 2. Signo 1. 9x 6x 8 = 0, se arregla la ecuación así: 3x 1=±

Signo 2. Signo 1. 9x 6x 8 = 0, se arregla la ecuación así: 3x 1=± CAPÍTULO X ECUACIÓN DE º GRADO Y FUNCIÓN CUADRÁTICA 9.. ECUACIÓN DE º GRADO Un ecución de segundo grdo con un incógnit es tod quell que puede ser puest en l form x + bx + c = 0 siendo, b y c coeficientes

Más detalles

y ) = 0; que resulta ser la

y ) = 0; que resulta ser la º BT Mt I CNS CÓNICAS Lugr geométrico.- Es el conjunto de los puntos que verificn un determind propiedd p. Considermos un determindo sistem de referenci crtesino del plno. Diremos que l ecución f(x,)=0

Más detalles

BLOQUE II Análisis. Resoluciones de la autoevaluación del libro de texto. sea continua en x = 1.

BLOQUE II Análisis. Resoluciones de la autoevaluación del libro de texto. sea continua en x = 1. Pág. de 7 x si x Ì Hll el vlor de k pr que l función fx = x + k si x > se continu en x =. b Represent l función pr ese vlor de k. c Es derivble en x =? Pr que f se continu en x =, h de ser fx = f. x 8

Más detalles

CÁLCULO INTEGRAL SESIÓN 5: INTEGRAL DEFINIDA Y APLICACIONES DE LA INTEGRAL. INTEGRAL DEFINIDA

CÁLCULO INTEGRAL SESIÓN 5: INTEGRAL DEFINIDA Y APLICACIONES DE LA INTEGRAL. INTEGRAL DEFINIDA CÁLCULO INTEGRAL SESIÓN 5: INTEGRAL DEFINIDA Y APLICACIONES DE LA INTEGRAL. COMPETENCIA: resolver y plnter integrles que le yuden clculr el áre de un región cotd por dos o más funciones plicndo el teorem

Más detalles

UNIDAD 6.- Integrales Definidas. Aplicaciones (tema 15 del libro)

UNIDAD 6.- Integrales Definidas. Aplicaciones (tema 15 del libro) UNIDAD 6.- Integrles Definids. Aplicciones (tem 5 del liro). ÁREAS DE RECINTOS PLANOS. INTEGRAL DEFINIDA Nos plntemos el cálculo de áres de recintos limitdos por curvs que vienen dds por funciones reles,como

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD 8 Pág. Págin 88 PRACTICA Vectores y puntos Ddos los puntos A 0 B0 C y D hll ls coordends de los vectores AB BC CD DA AC y BD. AB = 0 0 = DA = 0 = BC = 0 = AC = 0 = 7 CD = = 6 BD = 0 = 8 Ls coordends del

Más detalles

BLOQUE II ANÁLISIS. Página 234. a) Halla el valor de k para que la función f(x) = continua en x = 1. x 2 + k si x > 1

BLOQUE II ANÁLISIS. Página 234. a) Halla el valor de k para que la función f(x) = continua en x = 1. x 2 + k si x > 1 II BLOQUE II ANÁLISIS Págin 3 3x si x Ì Hll el vlor de k pr que l función fx = continu en x =. x + k si x > se b Represent l función pr ese vlor de k. c Es derivble en x =? Pr que f se continu en x =,

Más detalles

Teoría Tema 7 Integral definida. Área encerrada por una curva

Teoría Tema 7 Integral definida. Área encerrada por una curva Colegio Mrist L Inmculd de Grnd Profesor Dniel Prtl Grcí www.dniprtl.net Asigntur: Mtemátics II 2ºBchillerto Teorí Tem 7: Integrl definid. Áre encerrd por un curv págin /0 Teorí Tem 7 Integrl definid.

Más detalles

Aplicaciones de la integral definida

Aplicaciones de la integral definida MB5_MAAL_Aplicciones Versión: Septiemre Aplicciones de l integrl definid Por: Sndr Elvi Pérez L integrl tiene vris plicciones en diferentes áres del conocimiento. En este curso se nlizrán sus funciones

Más detalles

a x0 x x... x x b, con lo que los (n+1) números reales dividen al intervalo, 1. ÁREAS DE RECINTOS PLANOS. INTEGRAL DEFINIDA

a x0 x x... x x b, con lo que los (n+1) números reales dividen al intervalo, 1. ÁREAS DE RECINTOS PLANOS. INTEGRAL DEFINIDA UNIDAD 6: Integrles Definids. Aplicciones. ÁREAS DE RECINTOS PLANOS. INTEGRAL DEFINIDA Nos plntemos el cálculo de áres de recintos limitdos por curvs que vienen dds por funciones reles,como por ejemplo

Más detalles

LÍMITES DE FUNCIONES

LÍMITES DE FUNCIONES LÍMITES DE FUNCIONES Se dice que un función y f() tiene límite "L" cundo l tiende "" y lo representmos por: f() L cundo pr tod sucesión de números reles que se proime "" tnto como quermos, los vlores correspondientes

Más detalles

Concepto clave. La derivada de una función se define principalmente de dos maneras: 1. Como el límite del cociente de Fermat ( )( )

Concepto clave. La derivada de una función se define principalmente de dos maneras: 1. Como el límite del cociente de Fermat ( )( ) Concepto clve L derivd de un función se define principlmente de dos mners: 1. Como el límite del cociente de Fermt f ( ) lím x f ( x) f ( ) x. Como el límite del cociente de incrementos f ( x) lím x 0

Más detalles

Tema 10: Integral definida. Aplicaciones al cálculo de áreas

Tema 10: Integral definida. Aplicaciones al cálculo de áreas Tem : Integrl definid. Aplicciones l cálculo de áres. Introducción Ls integrles nos vn permitir clculr áres de figurs no geométrics. En nuestro cso, nos limitremos clculr el áre jo un curv y el áre encerrd

Más detalles

Tema 11: Integral definida. Aplicaciones al cálculo de áreas

Tema 11: Integral definida. Aplicaciones al cálculo de áreas Tem : Integrl definid. Aplicciones l cálculo de áres. Introducción Ls integrles no vn permitir clculr áres de figurs no geométrics. En nuestro cso, nos limitremos clculr el áre jo un curv y el áre encerrd

Más detalles

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN APLICACIONES DE LA TRIGONOMETRÍA, LEY DE SENOS Y COSENOS

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN APLICACIONES DE LA TRIGONOMETRÍA, LEY DE SENOS Y COSENOS MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN APLICACIONES DE LA TRIGONOMETRÍA, LEY DE SENOS Y COSENOS Aplicciones de Trigonometrí de Triángulos Rectángulos Un triángulo tiene seis

Más detalles

SOLUCIONARIO Poliedros

SOLUCIONARIO Poliedros SOLUCIONARIO Poliedros SGUICES06MT-A16V1 1 TABLA DE CORRECCIÓN GUÍA PRÁCTICA Poliedros Ítem Alterntiv 1 D A Comprensión E B 5 D 6 C 7 D 8 B 9 D 10 C 11 E 1 D 1 A 1 C 15 E Comprensión 16 B Comprensión 17

Más detalles

PROBLEMAS DE GEOMETRÍA ANALÍTICA PLANA. Capítulo SISTEMA DE COORDENADAS. Demostrar que los puntos A = ( 0,1) son los vértices de un cuadrado.

PROBLEMAS DE GEOMETRÍA ANALÍTICA PLANA. Capítulo SISTEMA DE COORDENADAS. Demostrar que los puntos A = ( 0,1) son los vértices de un cuadrado. PROBLEMAS DE GEOMETRÍA ANALÍTICA PLANA Cpítulo SISTEMA DE COORDENADAS Demostrr que los puntos A ( 0,) B (,5) ; C ( 7,) D (, ) son los vértices de un cudrdo. Solución AB 9 6 5 5 BC 6 9 5 5 AD 9 6 5 5 CD

Más detalles

Junio 2010 (Prueba General) JUNIO 2010 OPCIÓN A

Junio 2010 (Prueba General) JUNIO 2010 OPCIÓN A Junio 00 (Prueb Generl) JUNIO 00 OPCIÓN A.- ) Dds ls funciones f () = ln () y g() =, hllr el áre del recinto plno limitdo por ls rects =, = y ls gráfics de f () y g (). b) Dr un ejemplo de función continu

Más detalles

Z ξ. g(t)dt y proceda como sigue:

Z ξ. g(t)dt y proceda como sigue: Prolems Prolem.9. Sen f(x) y g(x) funciones continus en [,] y f (x) continu y de signo constnte en [,]. demuestre que (,) tl que f(x)g(x)dx = f() g(x)dx+ f() g(x)dx. R Pr esto considere l función G(x)

Más detalles

Semana 1: Tema 1: Vectores. 1.1 Vectores y adición de vectores 1.2 Componentes de vectores 1.3 Vectores unitarios 1.4 Multiplicación de vectores

Semana 1: Tema 1: Vectores. 1.1 Vectores y adición de vectores 1.2 Componentes de vectores 1.3 Vectores unitarios 1.4 Multiplicación de vectores Semn 1: Tem 1: Vectores 1.1 Vectores dición de vectores 1.2 Componentes de vectores 1.3 Vectores unitrios 1.4 Multiplicción de vectores Vectores Los vectores son cntiddes que tienen tnto mgnitud como dirección

Más detalles

Máximo común divisor. 2. Descomposición en primos Ejemplo. Encontrar mcd 504,300 Se descomponen ambos números en primos 504 2 252 2 126 2 63 3 21 3

Máximo común divisor. 2. Descomposición en primos Ejemplo. Encontrar mcd 504,300 Se descomponen ambos números en primos 504 2 252 2 126 2 63 3 21 3 Máximo común divisor El máximo común divisor de dos números nturles y es el número más grnde que divide tnto como. se denot mcd,. Lists: (tl vez, el más intuitivo, pero el menos eficiente) Encontrr mcd

Más detalles

TEMA 3: Polinomios y fracciones algebraicas. Tema 3: Polinomios y fracciones algebraicas 1

TEMA 3: Polinomios y fracciones algebraicas. Tema 3: Polinomios y fracciones algebraicas 1 TEMA Polinomios y frcciones lgerics Tem Polinomios y frcciones lgerics ESQUEMA DE LA UNIDAD.- Operciones con polinomios...- Sum y rest de polinomios...- Producto de polinomios...- División de polinomios..-

Más detalles

AREA DE CIENCIAS BÁSICAS - CÁLCULO INTEGRAL INTEGRAL DEFINIDA

AREA DE CIENCIAS BÁSICAS - CÁLCULO INTEGRAL INTEGRAL DEFINIDA GUIA DE INTEGRALES DEFINIDAS INTEGRAL DEFINIDA. APLICACIONES DE LA INTEGRAL DEFINIDA Teorem Fundmentl del Cálculo Áre jo l curv de un región Áre entre dos regiones COMPETENCIA: Resolver integrles plicndo

Más detalles

Electricidad y Magnetismo - FIS1533 Interrogación 1 Martes 10 de Abril de 2012 Profesores: María Cristina Depassier, Max Bañados y Sebastián A.

Electricidad y Magnetismo - FIS1533 Interrogación 1 Martes 10 de Abril de 2012 Profesores: María Cristina Depassier, Max Bañados y Sebastián A. Electricidd y Mgnetismo - FIS1533 Interrogción 1 Mrtes 10 de Abril de 2012 Profesores: Mrí Cristin Depssier, Mx Bñdos y Sebstián A Reyes - Instrucciones -Tiene dos hors pr resolver los siguientes problems

Más detalles

Teóricas de Análisis Matemático (28) - Práctica 10 - Área entre curvas. y = f (x) f (x)dx A =

Teóricas de Análisis Matemático (28) - Práctica 10 - Área entre curvas. y = f (x) f (x)dx A = Teórics de nálisis Mtemático 28) - Práctic 0 - Áre entre curvs Práctic 0 - Prte Áre entre curvs Un de ls plicciones del cálculo de integrles definids es el cálculo de áres de regiones cotds del plno delimitds

Más detalles

REGLAS DE LOS PRODUCTOS NOTABLES

REGLAS DE LOS PRODUCTOS NOTABLES UNIDAD V.- PRODUCTOS NOTABLES Y FACTORIZACIO N Productos Notbles ( (b ( (d (e ( REGLAS DE LOS PRODUCTOS NOTABLES Un producto notble (multiplicción es quel que se puede obtener su resultdo sin necesidd

Más detalles

CÓNICAS. Es el lugar geométrico de los puntos del plano que equidistan de un punto fijo llamado centro. centro de la circunferencia.

CÓNICAS. Es el lugar geométrico de los puntos del plano que equidistan de un punto fijo llamado centro. centro de la circunferencia. CÓNICAS CPR. JORGE JUAN Xuvi-Nrón L circunferenci, l elipse, l hipérol y l práol se conocen como cónics deido que se pueden otener l cortr un superficie cónic de revolución por un plno que no pse por su

Más detalles

Integral definida. Áreas MATEMÁTICAS II 1

Integral definida. Áreas MATEMÁTICAS II 1 Integrl definid. Áres MATEMÁTICAS II APROXIMACIÓN AL VALOR DEL ÁREA BAJO UNA CURVA L integrl definid está históricmente relciond con el prolem de definir y clculr el áre de figurs plns. En geometrí se

Más detalles

TEMA 0: CONCEPTOS BÁSICOS.

TEMA 0: CONCEPTOS BÁSICOS. TEMA : CONCEPTOS BÁSICOS.. Intervlos:. Intervlos. 2. Propieddes de ls potencis.. Propieddes de los rdicles. Operciones con rdicles. Rcionlizción. 4. Conceptos de un polinomio. Fctorizción de polinomios..

Más detalles

Teorema de pitágoras Rectas antiparalelas

Teorema de pitágoras Rectas antiparalelas pítulo 16 Teorem de pitágors emos visto que l rzón de segmentos es igul l de sus medids tomds con un mism unidd. Tod proporción entre segmentos puede interpretrse como proporción entre sus medids. iendo

Más detalles

CAPÍTULO. La integral. 1.3 Cálculo aproximado del área de una región plana bajo una curva

CAPÍTULO. La integral. 1.3 Cálculo aproximado del área de una región plana bajo una curva CAPÍTULO 1 L integrl 1.3 Cálculo proimdo del áre de un región pln jo un curv etommos en est sección el prolem del cálculo de áres, introduciendo lguns simplificciones notciones que nos permitirán resolverlo.

Más detalles

MATEMÁTICA. Unidad 4. Geometría analítica. Objetivos de la unidad:

MATEMÁTICA. Unidad 4. Geometría analítica. Objetivos de la unidad: MATEMÁTICA Unidd Geometrí nlític Objetivos de l unidd: Aplicrás correctmente l geometrí nlític: prábol, elipse e hipérbol l encontrr soluciones diverss problemátics del entorno. 55 Figurs cónics ests son

Más detalles

56 CAPÍTULO 2. CÁLCULO ALGEBRAICO. SECCIÓN 2.4 Resolución de Ecuaciones de Segundo Grado

56 CAPÍTULO 2. CÁLCULO ALGEBRAICO. SECCIÓN 2.4 Resolución de Ecuaciones de Segundo Grado 56 CAPÍTULO. CÁLCULO ALGEBRAICO SECCIÓN.4 Resolución de Ecuciones de Segundo Grdo Introducción Hemos estudido cómo resolver ecuciones lineles, que son quells que podemos escribir de l form x + b = 0. Si

Más detalles

Aplicaciones de la derivada (II)

Aplicaciones de la derivada (II) UNIVERSIDAD DEL CAUCA Fcultd de Ciencis Nturles, Ects de l Educción Deprtmento de Mtemátics CÁLCULO I Ejercicios Rects tngentes Aplicciones de l derivd (II) 1. Se l curv gráfic de l ecución ( ) =. Encuentre

Más detalles

Para 0 z a La densidad de carga y el campo eléctrico están relacionados por medio de la ecuación diferencial del teorema E 1. = ρ ε 0 a z.

Para 0 z a La densidad de carga y el campo eléctrico están relacionados por medio de la ecuación diferencial del teorema E 1. = ρ ε 0 a z. letos Físic pr Ciencis e Ingenierí Contcto: letos@telefonicnet ρ(z) V En el espcio vcío entre dos plcs conductors plns, y, de grn extensión, seprds un distnci, hy un estrto de crg de espesor, con un densidd

Más detalles

UNIVERSIDAD DE CANTABRIA DEPARTAMENTO DE INGENIERÍA ELÉCTRICA Y ENERGÉTICA NÚMEROS COMPLEJOS. Miguel Angel Rodríguez Pozueta

UNIVERSIDAD DE CANTABRIA DEPARTAMENTO DE INGENIERÍA ELÉCTRICA Y ENERGÉTICA NÚMEROS COMPLEJOS. Miguel Angel Rodríguez Pozueta DEPARTAMENTO DE INGENIERÍA ELÉCTRICA ENERGÉTICA NÚMEROS COMPLEJOS Miguel Angel Rodríguez Pozuet Doctor Ingeniero Industril OBSERVACIONES SOBRE LA NOMENCLATURA En este teto, siguiendo l nomencltur hitul

Más detalles

GUÍA DE MATEMÁTICAS V. Ciclo escolar B determina:

GUÍA DE MATEMÁTICAS V. Ciclo escolar B determina: Elbor: Preprtori Págin 1 de 14 Ciclo escolr 014-015 Docente: Fernndo Vivr Mrtínez I) Producto Crtesino, Relciones y Funciones B determin: 1) Ddos los conjuntos A 0,1,,3 y 4,5,6,7 ) El Producto Crtesino

Más detalles

Enunciados y Soluciones

Enunciados y Soluciones L limpid mtemátic Espñol (oncurso Finl) Enuncidos y Soluciones 1. Es posible disponer sobre un circunferenci los números 0, 1, 2,..., 9 de tl mner que l sum de tres números sucesivos culesquier se, como

Más detalles

Álgebra. Ingeniería Industrial. Curso 2005/2006 Examen de Septiembre

Álgebra. Ingeniería Industrial. Curso 2005/2006 Examen de Septiembre Álger. Ingenierí Industril. Curso /6 Emen de Septiemre Ejercicio (I) (.) [ puntos Siendo que un de ls ríces cúics de w es z = i. Determinr el número complejo w epresr ls otrs dos ríces cúics de w en form

Más detalles

TEMA 3: Expresiones algebraicas. Polinomios. Tema 3: Expresiones algebraicas. Polinomios 1

TEMA 3: Expresiones algebraicas. Polinomios. Tema 3: Expresiones algebraicas. Polinomios 1 TEMA Epresiones lgerics. Polinomios Tem Epresiones lgerics. Polinomios ESQUEMA DE LA UNIDAD.- Operciones con polinomios...- Sum rest de polinomios...- Producto de polinomios...- Potenci de polinomios..-

Más detalles

INSTITUTO POLITECNICO NACIONAL CECYT MIGUEL BERNARD PERALES GUIA DE GEOMETRIA ANALITICA

INSTITUTO POLITECNICO NACIONAL CECYT MIGUEL BERNARD PERALES GUIA DE GEOMETRIA ANALITICA INSTITUTO POLITECNICO NACIONAL CECYT MIGUEL BERNARD PERALES GUIA DE GEOMETRIA ANALITICA I. LA RECTA. Ejercicios pr resolver. 1. Demuestr que los puntos A(-,8); B(-6,1) C(0,4) son los vértices de un tringulo

Más detalles

Universidad de Antioquia

Universidad de Antioquia Fcultd de Ciencis Ects Nturles Instituto de Mtemátics Grupo de Semilleros de Mtemátics (Semátic) Funciones inverss gráfics Mtemátics Opertivs Tller 7 0 El concepto mtemático de función epres l ide intuitiv

Más detalles

Funciones Algebraicas

Funciones Algebraicas 1 1r Unidd s 1. Dominio de Polinomiles y Rcionles Cundo los pensmientos brumn nuestr mente es momento de tomr un pus, respirr, y reformulr ides. Unos minutos pr desconectrse resultn de provecho pr volver

Más detalles

Unidad 2. Fracciones y decimales

Unidad 2. Fracciones y decimales Mtemátics Múltiplo.º ESO / Resumen Unidd Unidd. Frcciones y decimles FRACCIONES NÚMEROS DECIMALES EXPRESIÓN, 8, 9 SIGNIFICADO FRACCIONES EQUIVALENTES 0 30 0 0 Prte de un unidd Prte de un cntidd ORDENACIÓN

Más detalles

el blog de mate de aida.: ECUACIONES 4º ESO pág. 1 ECUACIONES

el blog de mate de aida.: ECUACIONES 4º ESO pág. 1 ECUACIONES el blog de mte de id.: ECUACIONES º ESO pág. ECUACIONES ECUACIONES DE SEGUNDO GRADO Un ecución de segundo grdo tiene l form generl: +b+c=0. (El primer sumndo del primer miembro no puede ser nunc nulo,

Más detalles

accés a la universitat dels majors de 25 anys MATEMÀTIQUES UNIDAD DIDÁCTICA 4: LOGARITMOS

accés a la universitat dels majors de 25 anys MATEMÀTIQUES UNIDAD DIDÁCTICA 4: LOGARITMOS Unitt d ccés ccés l universitt dels mjors de 25 ns Unidd de cceso cceso l universidd de los mores de 25 ños UNIDAD DIDÁCTICA 4: LOGARITMOS ÍNDICE 1. Introducción 2. Potencis funciones eponenciles 3. Función

Más detalles

IES Fernando de Herrera 23 de octubre de 2013 Primer trimestre - Primer examen 4º ESO NOMBRE:

IES Fernando de Herrera 23 de octubre de 2013 Primer trimestre - Primer examen 4º ESO NOMBRE: IES Fernndo de Herrer de octure de 0 Primer trimestre - Primer exmen 4º ESO NOMBRE: ) Nomrr los principles conjuntos numéricos, explicitndo cuáles son sus elementos y ls relciones de inclusión entre ellos

Más detalles

Aplicaciones de la integral

Aplicaciones de la integral CAPÍTULO Aplicciones de l integrl. Momentos centro de un ms.. Centro de ms de un sistem unidimensionl Considerr el sistem unidimensionl, tl como se muestr en l siguiente figur, formdo por un vrill (de

Más detalles

INTEGRAL DEFINIDA APLICACIÓN al CÁLCULO de ÁREAS

INTEGRAL DEFINIDA APLICACIÓN al CÁLCULO de ÁREAS INTEGRL DEFINID PLICCIÓN l CÁLCULO de ÁRES MTEMÁTICS II º Bchillerto lfonso González IES Fernndo de Men Dpto. de Mtemátics I) CONCEPTO DE INTEGRL DEFINID (ver págs. 7 y 7 del liro de ed. ny) DEF: dx =

Más detalles

INSTITUTO VALLADOLID PREPARATORIA página 147

INSTITUTO VALLADOLID PREPARATORIA página 147 INSTITUTO VALLADOLID PREPARATORIA págin 17 págin 18 EXPONENTES NEGATIVOS Y FRACCIONARIOS EXPONENTES L ide de los eponentes nce con l necesidd de revir cierts multiplicciones. Como es sido, cundo se multiplic

Más detalles

es la mediatriz del segmento de recta que une a estos dos puntos.

es la mediatriz del segmento de recta que une a estos dos puntos. Álgebr Geometrí nlític Secciones ónics Ing. Vivin PPELLO Pr los ntiguos geómetrs griegos como Euclides 300.. rquímides 87-.., un sección cónic prábol, elipse e hipérbol er un curv en el espcio, l cul resultb

Más detalles