Recursión y Relaciones de Recurrencia. UCR ECCI CI-0111 Estructuras Discretas Prof. Kryscia Daviana Ramírez Benavides

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Recursión y Relaciones de Recurrencia. UCR ECCI CI-0111 Estructuras Discretas Prof. Kryscia Daviana Ramírez Benavides"

Transcripción

1 Reursión y Relaiones de Reurrenia UCR ECCI CI-0 Estruturas Disretas Prof. Krysia Daviana Ramírez Benavides

2 Algoritmos Reursivos Un algoritmo es reursivo si se soluiona un problema reduiéndolo a una instania del mismo problema on la entrada más pequeña.

3 3

4 4

5 Reursión e Iteraión 5

6 Reursión e Iteraión 6

7 Progresión Geométria Es una suesión infinita de números donde el oiente de ualquier término (distinto del primero) entre su predeesor es una onstante llamada razón omún. Ejemplos: 5, 5, 45, 35, 5/5 = 3, 45/5 = 3, 35/45 = 3, 5 = 3*5, 45 = 3*5, 35 = 3*45, 7,, 63, 89, /7 = 3, 63/ = 3, 89/63 = 3, = 3*7, 63 = 3*, 89 = 3*63, 7

8 8 Relaión de Reurrenia Es una euaión en donde para obtener el valor atual se depende de uno o más valores predeesores inmediatos a él. Donde: k Z +, determina el orden de la relaión y debe ser n k. e i Z +, i = 0,,,..., k, determina si la relaión es lineal o no. f(n) es una funión dada, n N y de orden k. Cada n i R, i = 0,,,..., k y n 0. Son los oefiientes de la relaión. Cada a j R, j = 0,,,..., k-. Son las ondiiones frontera o iniiales. 0 0,...,,,... 0 k k e k n k n e n n e n n e n n A a A a A a k n n f a a a a k

9 Relaión de Reurrenia (ont.) Una relaión de reurrenia para una suesión {a 0, a, a, a 3, } es una fórmula que expresa ada término a n, a partir de ierto n N, en funión de uno o más de los términos que le preeden. Los valores de los términos neesarios para empezar a alular se llaman ondiiones iniiales. Se die que una suesión es una soluión de la relaión de reurrenia si su término general verifia diha relaión. 9

10 Relaión de Reurrenia (ont.) Las relaiones de reurrenia pueden onsiderarse omo ténias avanzadas de onteo. Resuelve problemas uya soluión no puede obtenerse usando variaiones, permutaiones, ombinaiones o on las ténias derivadas del prinipio de inlusión-exlusión. 0

11 Relaión de Reurrenia (ont.) Ejemplos: 5, 5, 45, 35, a n+ = 3a n, a 0 = 5, n 0 7,, 63, 89, a n+ = 3a n, a 0 = 7, n 0

12 Relaión de Reurrenia (ont.) Toda relaión de reurrenia tiene: Coefiientes, pueden ser onstantes o variables, que son valores que están multipliando ada término on subíndie de la relaión de reurrenia. Condiiones frontera o iniiales, que son los valores iniiales que se neesitan para resolver la relaión de reurrenia, y se denotan omo a 0, a,, a k-.

13 Relaión de Reurrenia (ont.) Torres de Hanoi. Se tienen n disos y 3 estaas. Los disos están apilados en la estaa, ordenados de mayor a menor. El objetivo es pasar los disos uno por uno a otra estaa, oloados en el orden original. En el proeso no se permite que un diso mayor se oloque sobre otro menor. Si a n es el número de movimientos que se requieren para haer esto, enuentra una relaión de reurrenia para alular a n. 3

14 Relaión de Reurrenia (ont.) Torres de Hanoi. ( Para mover n disos basta mover n disos a una estaa libre, mover el diso mayor a la otra estaa libre y mover de nuevo los n disos sobre el diso mayor: a n = a n + Condiión iniial: a = 4

15 Relaión de Reurrenia (ont.) Sea M = {A,B,C} y sea S n el onjunto de suesiones de longitud n, formadas on las letras de M, en las que todas las adenas de As son de longitud par. Enuentra una relaión de reurrenia para alular S n. 5

16 Relaión de Reurrenia (ont.) Las suesiones de longitud n formadas on las letras {A,B,C} en las que todas las adenas de As son de longitud par, se dividen en tres grupos: las que empiezan por A, las que empiezan por B y las que empiezan por C. Las que empiezan por A, a ontinuaión de la A han de tener otra A y a ontinuaión una suesión de longitud n en las que todas las adenas de As son de longitud par. Las que empiezan por B o C, a ontinuaión han de llevar una suesión de longitud n en las que todas las adenas de As son de longitud par. 6

17 Relaión de Reurrenia (ont.) Reíproamente, si a una palabra de longitud n en las que todas las adenas de As son de longitud par se agrega AA delante obtenemos una suesión de longitud n en las que todas las adenas de As son de longitud par, y si a una palabra de longitud n en las que todas las adenas de As son de longitud par, se agrega delante B o C obtenemos una suesión de longitud n en las que todas las adenas de As son de longitud par 7

18 Relaión de Reurrenia (ont.) La relaión de reurrenia es: a n = a n + a n Condiiones iniiales: a0 = (existe una únia suesión de longitud 0, la palabra vaía, en las que todas las adenas de As son de longitud par) a = (existen suesiones de longitud, las suesiones B y C, en las que todas las adenas de As son de longitud par), a = 5 (existen 5 suesiones de longitud en las que todas las adenas de As son de longitud par, las suesiones AA;BB;BC;CB;CC) No es neesario alular a pero dado que a 0 es disutible, sirve para omprobar que a = a + a 0 y por tanto a 0 es oherente on la relaión de reurrenia 8

19 Relaión de Reurrenia (ont.) Una relaión de reurrenia puede ser: Primer Orden: Cuando la relaión de reurrenia sólo depende de su predeesor inmediato. Ejemplo: a n+ = 3a n, a 0 = 5, n 0. Segundo Orden: Cuando la relaión de reurrenia depende de sus dos predeesores inmediatos. Ejemplo: a n = a n- + 5a n-, a 0 = 0, a =, n. Lineal: Cuando ada término on subíndie de la relaión de reurrenia aparee elevado a la primera potenia. Ejemplo: a n+ = 3a n, a 0 = 5, n 0. No Lineal: Cuando algún término on subíndie de la relaión de reurrenia aparee elevado a una potenia diferente a la primera potenia. Ejemplo: a n+ = 3a n, a 0 = 5, n 0. 9

20 Relaión de Reurrenia (ont.) Una relaión de reurrenia puede ser: Homogénea: Cuando f(n) = 0 para todo n N. Ejemplo: a n+ = 3a n a n+ 3a n = 0, a 0 = 5, n 0. No Homogénea: Cuando f(n) 0 para todo n N. Ejemplo: a n+ = 3a n + n a n+ 3a n = n, a 0 = 5, n 0. Coefiientes Constantes: Cuando ada término on subíndie de la relaión de reurrenia está multipliado por una onstante. Ejemplo: a n+ = 3a n, a 0 = 5, n 0. Coefiientes Variables: Cuando algún término on subíndie de la relaión de reurrenia está multipliado por una valor variable. Ejemplo: a n = na n-, a 0 =, n. 0

21 Relaiones de Reurrenia (ont.) La soluión general de una relaión de reurrenia es el valor de a n es una funión de n que no depende de los términos anteriores de la suesión, una vez definido las ondiiones frontera o iniiales, que se obtiene a partir de la relaión de reurrenia.

22 Soluión General: Relaiones de Reurrenia de Primer Orden, Lineales, Homogéneas y on Coefiientes Constantes La relaión de reurrenia Donde: a n+ = a n, a 0 = A 0, n 0 es una onstante diferente de ero. a 0 = A 0 es únia. La soluión general de diha relaión está dada por a n = A 0 n, n 0. Está última euaión es una funión disreta uyo dominio es el onjunto N de los enteros no negativos.

23 Soluión General: Relaiones de Reurrenia de Segundo Orden, Lineales, Homogéneas y on Coefiientes Constantes La relaión de reurrenia n+ a n+ + n+ a n+ + n a n = 0, a 0 = A 0, a = A, n 0 Donde: n+, n+ y n son onstantes diferentes de ero. a 0 = A 0 y a = A son únias. Para obtener la soluión general de diha relaión: Se sustituye a n = dr n, donde d 0 y r 0, se obtiene: n+ dr n+ + n+ dr n+ + n dr n = 0. Se saa omo fator omún dr n, se obtiene una euaión uadrátia llamada euaión araterístia: n+ r + n+ r + n r = 0. 3

24 Soluión General: Relaiones de Reurrenia de Segundo Orden, Lineales, Homogéneas y on Coefiientes Constantes (ont.) Para obtener la soluión general de diha relaión: Se resuelve la euaión uadrátia y se obtiene las raíes de esa euaión r y r, estas son llamadas raíes araterístias. Estas raíes pueden ser: números reales distintos, números reales iguales y números omplejos onjugados. Sólo se analizará los dos primeros asos. Si las raíes obtenidas son números reales distintos se va formando la soluión general de la siguiente manera: a n = r n + r n. Si las raíes obtenidas son números reales iguales se va formando la soluión general de la siguiente manera: a n = r n + nr n. 4

25 5 Soluión General: Relaiones de Reurrenia de Segundo Orden, Lineales, Homogéneas y on Coefiientes Constantes (ont.) Para obtener la soluión general de diha relaión: Una vez que se tiene este avane de la soluión general on las ondiiones frontera o iniiales se forma un sistema de euaiones y se halla y. Con los valores que se obtengan de las raíes r y r, y las onstantes y se obtiene la soluión general de la relaión de reurrenia: a n = r n + r n, n 0 Raíes diferentes. a n = r n + nr n, n 0 Raíes iguales. Raíes reales iguales 0 Raíes reales diferentes r r A r r a A r r a r r A r r a A r r a

26 Soluión General: Relaiones de Reurrenia de Primer o Segundo Orden, Lineales, No Homogéneas y on Coefiientes Constantes La relaión de reurrenia n+ a n+ + n+ a n+ + n a n = f(n), a 0 = A 0, a = A, n 0 Donde: f(n) 0. n+, n+ y n son onstantes diferentes de ero. a 0 = A 0 y a = A son únias. Para obtener la soluión general de diha relaión se suma la soluión homogénea asoiada a nh y la soluión partiular a np. 6

27 Soluión General: Relaiones de Reurrenia de Primer o Segundo Orden, Lineales, No Homogéneas y on Coefiientes Constantes (ont.) Para obtener la soluión general de diha relaión se realiza lo siguiente: Se resuelve la relaión homogénea asoiada omo se onoe sin saar las onstantes, on los pasos anteriormente dados, y así se obtendrá la soluión homogénea asoiada a nh. Luego, se obtiene la soluión partiular a np observando la funión dada f(n) y busando en la tabla. Si a np ontiene raíes distintas a las obtenidas en a nh, entones se pasa al siguiente paso. Si ontiene una raíz igual a las obtenidas en a nh, entones a np = na np y se pasa al siguiente paso. Si ontiene dos raíes iguales a las obtenidas en a nh, entones a np = n a np y se pasa al siguiente paso. 7

28 Soluión General: Relaiones de Reurrenia de Primer o Segundo Orden, Lineales, No Homogéneas y on Coefiientes Constantes (ont.) f(n), onstante n n n t, t Z+ r n, r R n t r n a n p A, onstante A n + A 0 A n + A n + A 0 A t n t + A t- n t- + + A n + A 0 Ar n r n (A t n t + A t- n t- + + A n + A 0 ) Tabla 8

29 Soluión General: Relaiones de Reurrenia de Primer o Segundo Orden, Lineales, No Homogéneas y on Coefiientes Constantes (ont.) Para obtener la soluión general de diha relaión se realiza lo siguiente: Se obtiene el valor de ada onstante de la a np, o sea, las onstantes A t, A t-,..., A, A 0 ; lo ual se logra sustituyendo ada término a n de la relaión de reurrenia dada por la a np y resolviendo la euaión. Por ejemplo: f(n) = r n, por lo tanto a np = Ar n, entones se obtiene algo así: n+ Ar n+ + n+ Ar n+ + n Ar n = r n Con la soluión homogénea asoiada a nh y la soluión partiular a p n obtenidas se tiene la soluión general de la relaión de reurrenia a n = a nh + a np. Por último, se alula los valores y de la soluión homogénea asoiada, mediante un sistema de euaiones, sustituyendo on las ondiiones iniiales dadas. Con esto se obtiene la soluión general de la relaión de reurrenia. 9

30 Transformaión de una Relaión de Reurrenia No Lineal a Lineal Se puede transforma una relaión de reurrenia no lineal a lineal para poder resolverla mediante una sustituión algebraia b n = a n. Ejemplo: a n+ = 3a n, a 0 = 3, n 0 b n+ = 3b n, b 0 = 9, n 0 Una vez heho esto se puede resolver omo una relaión de reurrenia lineal, para este ejemplo orresponde a una relaión de primer orden, homogénea y on oefiientes onstantes. 30

31 Transformaión de una Relaión de Reurrenia No Lineal a Lineal Después de resolverla se saa la raíz a ada número obtenido en la soluión general para tener la soluión general de la relaión de reurrenia no lineal. Ejemplo: b n = 9*3 n, n 0 a n = 3* 3 n, n 0 3

32 Referenias Bibliográfias Jonnsonbaugh, Rihard. Matemátias Disretas. Prentie Hall, Méxio. Sexta Ediión, 005. Grimaldi, Ralph P. Matemátia Disreta y Combinatoria. Addison Wesley Longman de Méxio, S.A. Terera Ediión,

Recursión y Relaciones de Recurrencia. UCR ECCI CI-1204 Matemáticas Discretas M.Sc. Kryscia Daviana Ramírez Benavides

Recursión y Relaciones de Recurrencia. UCR ECCI CI-1204 Matemáticas Discretas M.Sc. Kryscia Daviana Ramírez Benavides Reursión y Relaiones de Reurrenia UCR ECCI CI-04 Matemátias Disretas M.S. Krysia Daviana Ramírez Benavides Algoritmos Reursivos Un algoritmo es reursivo si se soluiona un problema reduiéndolo a una instania

Más detalles

Recursión y Relaciones de Recurrencia. UCR ECCI CI-1204 Matemáticas Discretas Prof. M.Sc. Kryscia Daviana Ramírez Benavides

Recursión y Relaciones de Recurrencia. UCR ECCI CI-1204 Matemáticas Discretas Prof. M.Sc. Kryscia Daviana Ramírez Benavides Reusión y Relaiones de Reuenia UCR ECCI CI-04 Matemátias Disetas Pof. M.S. Kysia Daviana Ramíez Benavides Pogesión Geométia Es una suesión infinita de númeos donde el oiente de ualquie témino (distinto

Más detalles

Lección 4. Ecuaciones diferenciales. 4. Propiedades algebraicas de las soluciones. Fórmulas de Abel y Liouville.

Lección 4. Ecuaciones diferenciales. 4. Propiedades algebraicas de las soluciones. Fórmulas de Abel y Liouville. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 0. 4. Proiedades algebraias de las soluiones. Fórmulas de Abel y Liouville. A lo largo de esta seión suondremos que P, Q y R son funiones ontinuas en un intervalo

Más detalles

Seminario de problemas. Curso Hoja 18

Seminario de problemas. Curso Hoja 18 Seminario de problemas. Curso 016-17. Hoja 18 111. Demuestra que una ondiión neesaria y sufiiente para que un triángulo sea isóseles es que tenga dos medianas iguales. Soluión: Vamos a utilizar un resultado

Más detalles

RESOLUCIÓN DE ACTIVIDADES

RESOLUCIÓN DE ACTIVIDADES RESOLUCIÓN DE ACTIVIDADES Atividades iniiales. Expresa en notaión matriial y resuelve por el método de Gauss los sistemas de euaiones siguientes: Las resoluión de los sistemas puede expresarse de la forma

Más detalles

Supercies Regladas. Ejemplo El cilíndro y el cono circular son ejemplos de supercies regladas

Supercies Regladas. Ejemplo El cilíndro y el cono circular son ejemplos de supercies regladas Unidad 1. Superies Cuádrias 1.6 Superies Regladas Superies Regladas Deniión 1. Una superie on la propiedad de que para ada punto en ella hay toda una reta que está ontenida en la superie y que pasa por

Más detalles

1 2 +! $ = # 1$ $ Pensamiento Algebraico GUÍA DE PARA LOS ASPIRANTES A LA MME Temas que debe dominar:

1 2 +! $ = # 1$ $ Pensamiento Algebraico GUÍA DE PARA LOS ASPIRANTES A LA MME Temas que debe dominar: Pensamiento lgebraio Temas que debe dominar: GUÍ DE PR LOS SPIRNTES L MME-06 Definiión, operaiones y propiedades de: Números Naturales Números Enteros Números raionales Números irraionales Números omplejos

Más detalles

2 2 2 x. Solución: Ya que la integración es una curva cerrada y la integral esta representada por funciones reales, empleamos el teorema de Green

2 2 2 x. Solución: Ya que la integración es una curva cerrada y la integral esta representada por funciones reales, empleamos el teorema de Green Elaborado por: Jhonny hoquehuana Lizarraga Variable ompleja Exámenes esueltos Segundo Parial. alular x y { xln( y ) x ( y) } dx y ( x ) dy y, donde es el uadrado de vérties ± i ± i. Soluión: Ya que la

Más detalles

Ecuaciones de primer grado

Ecuaciones de primer grado Euaiones de primer grado. Resuelve las siguientes euaiones de primer grado on paréntesis. 3( + ) + ( 3 ) = 7 3( ) ( 3 ) ( + ) = 3( ) ( + ) ( + 3) = 3 + = 5 ( 7 ). Resuelve las siguientes euaiones de primer

Más detalles

Examen final de Cálculo Integral

Examen final de Cálculo Integral xamen final de Cálulo Integral 6 de septiembre de 1 (Soluiones) Cuestiones C 1 Apliando el teorema 1.15 y definiión 1. de los apuntes se onluye inmediatamente que el valor de la integral oinide on la longitud

Más detalles

SESIÓN DE APRENDIZAJE

SESIÓN DE APRENDIZAJE INSTITUCIÓN EDUCATIVA INMACULADA DE LA MERCED SESIÓN DE APRENDIZAJE APRENDIZAJE ESPERADO Determina la regla de orrespondenia de una funión Representa e Identifia funiones Resuelve operaiones on funiones

Más detalles

Introducción a la Química Computacional

Introducción a la Química Computacional Introduión a la Químia Computaional MÉTODO D LA VARIACION PARA ROLVR APROXIMADAMNT LA CUACIÓN D CRÖDINGR Reservados todos los derehos de reproduión. Luis A. Montero Cabrera y Rahel Crespo Otero, Universidad

Más detalles

Pruebas de Acceso a Ensen anzas Universitarias Oficiales de Grado (PAEG)

Pruebas de Acceso a Ensen anzas Universitarias Oficiales de Grado (PAEG) PAEG junio 016 Propuesta B Matemátias II º Bahillerato Pruebas de Aeso a Ensen anzas Universitarias Oiiales de Grado (PAEG) Matemátias II (Universidad de Castilla-La Manha) junio 016 Propuesta B EJERCICIO

Más detalles

Ecuación Solución o raíces de una ecuación.

Ecuación Solución o raíces de una ecuación. Euaión Igualdad que ontiene una o más inógnitas Soluión o raíes de una euaión. Valores de las inógnitas que umplen la igualdad. 15 = 3x + 6 15 6 = 3x 9 = 3x 3 = x on Existen diversos métodos de hallar

Más detalles

LÍMITES DE FUNCIONES. CONTINUIDAD Y RAMAS INFINITAS Tipos de Discontinuidades en un Punto 1 - Tiene ramas infinitas en un punto

LÍMITES DE FUNCIONES. CONTINUIDAD Y RAMAS INFINITAS Tipos de Discontinuidades en un Punto 1 - Tiene ramas infinitas en un punto LÍMITES DE FUNCIONES. CONTINUIDAD Y RAMAS INFINITAS Tipos de Disontinuidades en un Punto - Tiene ramas infinitas en un punto y 5 La reta 5 es una asíntota vertial - Presenta un salto en un punto, si y

Más detalles

Ecuaciones de Máxwell y ondas electromagnéticas

Ecuaciones de Máxwell y ondas electromagnéticas Zero Order of Magnitude ZOoM)-PID 13-28 Euaiones de Máxwell y ondas eletromagnétias 1. Estímese la intensidad y la potenia total de un láser neesario para elevar una pequeña esfera de plástio de 15 µm

Más detalles

Cónicas. = 0 son rectas que pasan por su centro y tienen de pendiente m tal que: a) m = a

Cónicas. = 0 son rectas que pasan por su centro y tienen de pendiente m tal que: a) m = a .- Las asíntotas de la hipérbola a x + a y + axy + a 0x + a 0y + a 00 = 0 son retas que pasan por su entro y tienen de pendiente m tal que: a a) m = a b) m es raíz de m + a m + a 0 a = a + am + a m = )

Más detalles

CAMPO Y POTENCIAL ELECTROSTÁTICOS

CAMPO Y POTENCIAL ELECTROSTÁTICOS 1 Un eletrón de arga e y masa m se lanza orizontalmente en el punto O on una veloidad v a lo largo de la direión equidistante de las plaas de un ondensador plano entre las que existe el vaío. La longitud

Más detalles

UNIVERSIDAD NACIONAL EXPERIMENTAL POLITECNICA ANTONIO JOSÉ DE SUCRE VICERRECTORADO BARQUISIMETO DEPARTAMENTO DE INGENIERÍA QUÍMICA. Ingeniería Química

UNIVERSIDAD NACIONAL EXPERIMENTAL POLITECNICA ANTONIO JOSÉ DE SUCRE VICERRECTORADO BARQUISIMETO DEPARTAMENTO DE INGENIERÍA QUÍMICA. Ingeniería Química UNIVERSIDAD NACIONAL EXERIMENTAL OLITECNICA ANTONIO JOSÉ DE SUCRE VICERRECTORADO BARQUISIMETO DEARTAMENTO DE INGENIERÍA QUÍMICA Ingeniería Químia Unidad III. Balane de materia Sistemas Monofásios Clase

Más detalles

Sistemas homogéneos multicomponentes 24 de marzo de 2009 Cuestiones y problemas: C: 7.3, 5

Sistemas homogéneos multicomponentes 24 de marzo de 2009 Cuestiones y problemas: C: 7.3, 5 Índie 5 CELINA GONZÁLEZ ÁNGEL JIMÉNEZ IGNACIO LÓPEZ RAFAEL NIETO Sistemas homogéneos multiomponentes 24 de marzo de 2009 Cuestiones y problemas: C: 7.3, 5 subrayados y en negrita para voluntarios punto

Más detalles

Método de Separación de Variables

Método de Separación de Variables Método de Separaión de Variables Este método se emplea para resolver euaiones de la forma: f g d 0. Para hallar la soluión de este tipo de euaiones se proede a separar las variables agrupando de un lado

Más detalles

CAPÍTULO VII CABLES. Figura 7.1. Cable con cargas concentradas.

CAPÍTULO VII CABLES. Figura 7.1. Cable con cargas concentradas. PÍULO VII LES 7.1 ables on argas onentradas Sea un able fleible de peso despreiable. ualquier tramo del able entre dos puntos de apliaión de fuerzas onentradas puede onsiderarse omo un elemento sometido

Más detalles

Teoria y Cuestiones. [a n cos (nx)+b n sin (nx)]

Teoria y Cuestiones. [a n cos (nx)+b n sin (nx)] Ingeniero Industrial Asignatura: Transformadas Integrales y Euaiones en Derivadas Pariales Convoatoria de Febrero del 2004 Teoria y Cuestiones 1. Consideremos la funión ½ 0 si

Más detalles

TRIGONOMETRÍA 1 (Resumen) cotg. Definiciones generales (válidas para cualquier ángulo de cualquier cuadrante) y r. cosec. sec.

TRIGONOMETRÍA 1 (Resumen) cotg. Definiciones generales (válidas para cualquier ángulo de cualquier cuadrante) y r. cosec. sec. Trignometría Resumen TRIGONOMETRÍA (Resumen) Definiiones en triángulos retángulos ateto opuesto sen hipotenusa ateto ontiguo os hipotenusa ateto opuesto tg ateto ontiguo hipotenusa ose ateto opuesto hipotenusa

Más detalles

SOLUCIÓN EJERCICIOS DE SISTEMAS

SOLUCIÓN EJERCICIOS DE SISTEMAS EJERCICIOS DE SISTEMAS PARA ELCUADERNO. CURSO 00-0 EJERCICIOS DE SISTEMAS EJERCICIOS DE DISCUSIÓN DE SISTEMAS. Disutir según valores de m el sistema de euaiones lineales y z z 3 3 y mz A' 0 3 0 3 4 0 3

Más detalles

Una inecuación lineal con 2 incógnitas puede tener uno de los siguientes aspectos:

Una inecuación lineal con 2 incógnitas puede tener uno de los siguientes aspectos: TEMA 3: PROGRAMACIÓN LINEAL ÍNDICE 3.1.- Ineuaiones lineales on 2 inógnitas. 3.2.- Sistemas de ineuaiones lineales on 2 inógnitas. 3.3.- La programaión lineal. 3.4.- Soluión gráfia de un problema de programaión

Más detalles

11.1. Ecuaciones de la dinámica de sólidos

11.1. Ecuaciones de la dinámica de sólidos Capítulo 11 Dinámia de sólidos Todos los modelos estudiados hasta ahora suponían que los sólidos deformables se enuentran, en todo instante, en equilibrio uasi-estátio. Esto quiere deir que, aunque éstos

Más detalles

INTRODUCCIÓN A LAS MATEMÁTICAS SUPERIORES. Tema 1

INTRODUCCIÓN A LAS MATEMÁTICAS SUPERIORES. Tema 1 INTRODUCCIÓN A LAS MATEMÁTICAS SUPERIORES Tema 1 1.1 BREE INTRODUCCIÓN A LA LÓGICA MATEMÁTICA Bibliografía: Smith, Karl J.- Introduión a la Lógia simbólia.- Grupo Editorial Iberoaméria.- Méio, 1991. Espinosa

Más detalles

Fórmula integral de Cauchy

Fórmula integral de Cauchy Fórmula integral de Cauhy Fórmula integral de Cauhy. Si una funión f es analítia en una región que ontiene a urva simple errada y a su interior, entones para ada punto z 0 enerrado por, dz = 2πi f(z 0

Más detalles

4. RELACIONES CONSTITUTIVAS. LEY DE HOOKE GENERALIZADA

4. RELACIONES CONSTITUTIVAS. LEY DE HOOKE GENERALIZADA 4. RLACIONS CONSTITUTIVAS. LY D HOOK GNRALIZADA 4. Ley de Hooke. Robert Hooke planteó en 678 que existe proporionalidad entre las fuerzas apliadas a un uerpo elástio y las deformaiones produidas por dihas

Más detalles

R. Alzate Universidad Industrial de Santander Bucaramanga, marzo de 2012

R. Alzate Universidad Industrial de Santander Bucaramanga, marzo de 2012 Resumen de las Reglas de Diseño de Compensadores R. Alzate Universidad Industrial de Santander Buaramanga, marzo de 202 Sistemas de Control - 23358 Esuela de Ingenierías Elétria, Eletrónia y Teleomuniaiones

Más detalles

PROBLEMAS DEL TEMA 1: CIRCUITOS ELÉCTRICOS EN AC. Problemas de reactancias

PROBLEMAS DEL TEMA 1: CIRCUITOS ELÉCTRICOS EN AC. Problemas de reactancias ey Juan Carlos POBEMAS DE TEMA : CICUITOS EÉCTICOS EN AC Problemas de reatanias Problema 4. Una bobina on = 5 mh se oneta a un generador de tensión alterna sinusoidal de V ef = 80 V. Calula la reatania

Más detalles

Núcleo e Imagen de una Transformación Lineal

Núcleo e Imagen de una Transformación Lineal Núleo e Imagen de una Transformaión Lineal Departamento de Matemátias CCIR/ITESM 8 de junio de Índie 7.. Núleo de una transformaión lineal................................. 7.. El núleo de una matri la

Más detalles

PRODUCTOS Y COCIENTES NOTABLES

PRODUCTOS Y COCIENTES NOTABLES INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMATICAS ASIGNATURA: MATEMATICAS DOCENTE: HUGO HERNAN BEDOYA TIPO DE GUIA: CONCEPTUAL - EJERCITACION PERIODO GRADO FECHA DURACION 0 DE Julio

Más detalles

EJERCICIOS DE ALGORITMIA. FUNDAMENTOS DE PROGRAMACIÓN (GRADO EN BIOTECNOLOGÍA)

EJERCICIOS DE ALGORITMIA. FUNDAMENTOS DE PROGRAMACIÓN (GRADO EN BIOTECNOLOGÍA) EJERCICIOS DE ALGORITMIA. UNDAMENTOS DE PROGRAMACIÓN (GRADO EN BIOTECNOLOGÍA) 1. Realizar un organigrama para dividir un segmento [a,b] en N subintervalos iguales. Como datos de entrada se emplearán a,

Más detalles

LEY DE SENOS. Ya hemos visto como resolver triángulos rectángulos ahora veremos todas las técnicas para resolver triángulos generales.

LEY DE SENOS. Ya hemos visto como resolver triángulos rectángulos ahora veremos todas las técnicas para resolver triángulos generales. LEY DE SENOS Ya hemos visto omo resolver triángulos retángulos ahora veremos todas las ténias para resolver triángulos generales a γ α Este es un triángulo el ángulo α se esrie en el vértie de, el ángulo

Más detalles

La ecuación lineal de primer grado con tres incógnitas. El plano en el espacio afín

La ecuación lineal de primer grado con tres incógnitas. El plano en el espacio afín La euaión lineal de primer grado on tres inógnitas. El plano en el espaio afín En un artíulo anterior habíamos hablado sobre la euaión lineal de primer grado on dos inógnitas y sobre la reta en el plano

Más detalles

Integración IV. Relaciones PVT de gases y líquidos puros (Repaso) 2017

Integración IV. Relaciones PVT de gases y líquidos puros (Repaso) 2017 Integraión IV Relaiones PVT de gases y líquidos puros (Repaso) 017 Profesor: Dr. Niolás J. Senna JTP: Dr. Néstor H. Rodríguez Aux. 1ra: Dr. Juan I. Manassaldi Introduión Introduión Si se onoe la relaión

Más detalles

Elementos de Estadística Primer Examen Parcial (25%)

Elementos de Estadística Primer Examen Parcial (25%) UNIVERSIDAD CENTRAL DE VENEZUELA Cilo Básio Departamento de Matemátia Apliada Elementos de Estadístia (0260) Martes 10 de Mayo de 2011 Profesor: José Luis Quintero FACULTAD DE INGENIERÍA Elementos de Estadístia

Más detalles

Examen Final Tema A Cálculo Vectorial Mayo 23 de 2017

Examen Final Tema A Cálculo Vectorial Mayo 23 de 2017 Examen Final Tema A Cálulo Vetorial Mayo 3 de 17 Este es un examen individual, no se permite el uso de libros, apuntes, aluladoras o ualquier otro medio eletrónio. Reuerde apagar y guardar su teléfono

Más detalles

Lección 3.1. Antiderivadas y La Integral Indefinida. 02/03/2016 Prof. José G. Rodríguez Ahumada 1 de 20

Lección 3.1. Antiderivadas y La Integral Indefinida. 02/03/2016 Prof. José G. Rodríguez Ahumada 1 de 20 Leión. Antiderivadas y La Integral Indefinida 0/0/06 de 0 Atividades. Referenia del Teto: Seión. Antiderivadas y la Integral Indefinida, Ver ejemplos al 9 Ejeriios de Prátia: Impares Asignaión.: Seión.

Más detalles

Singularidades. Una serie de Laurent es una serie de potencias que pueden ser positivas y/o negativas: a n (z z 0 ) n =

Singularidades. Una serie de Laurent es una serie de potencias que pueden ser positivas y/o negativas: a n (z z 0 ) n = Singularidades Hay muhas funiones que son analítias en una región on exepión de algunos puntos aislados donde no están definidas. Por ejemplo, /z es analítia en C {0} y os(z) es analítia en C {0, ±π, ±π,

Más detalles

Equilibrio Químico (I) Kc. Cociente de reacción

Equilibrio Químico (I) Kc. Cociente de reacción K. Coiente de reaión IES La Magdalena. Avilés. Asturias Cuando se lleva a abo una reaión químia podemos enontrarnos on las siguientes situaiones: Las onentraiones iniiales de los reativos van disminuyendo

Más detalles

(g) XeF 4. Se mezclan 0,4 moles de xenón con 0,8 moles de flúor en un recipiente de 2,0 L. En el equilibrio, el 60 % del Xe se ha convertido en XeF 4

(g) XeF 4. Se mezclan 0,4 moles de xenón con 0,8 moles de flúor en un recipiente de 2,0 L. En el equilibrio, el 60 % del Xe se ha convertido en XeF 4 A 00º C de temeratura, se rodue la reaión: Xe g + F g XeF 4 g Se mezlan 0,4 moles de xenón on 0,8 moles de flúor en un reiiente de,0 L. En el equilibrio, el 60 % del Xe se ha onvertido en XeF 4. Determina:

Más detalles

Extracción de parámetros de señales acústicas

Extracción de parámetros de señales acústicas VI Congreso Iberoameriano de Aústia - FIA 8 Buenos Aires, 5, 6 y 7 de noviembre de 8 Extraión de parámetros de señales aústias Aguilar, Juan (a), Salinas, Renato (b) FIA8-A16 (a) Instituto de Aústia, Universidad

Más detalles

Las poligonales en forma general pueden ser clasificadas según sus formas en:

Las poligonales en forma general pueden ser clasificadas según sus formas en: Agrimensura Faena - Unne átedra: Topografía Poligonometría Una poligonal esta formada por una suesión de líneas enlazadas entre si por medio del ángulo que forman entre si las líneas. Las poligonales en

Más detalles

Segundo Examen Parcial Cálculo Vectorial Abril 23 de x = r cos θ, y = r sen θ, z = r,

Segundo Examen Parcial Cálculo Vectorial Abril 23 de x = r cos θ, y = r sen θ, z = r, egundo Examen Parial Cálulo etorial Abril de 16 Este es un examen individual, no se permite el uso de libros, apuntes, aluladoras o ualquier otro medio eletrónio. Reuerde apagar y guardar su teléfono elular.

Más detalles

DETERMINACIÓN DE LAS CORRIENTES DE INSERCIÓN EN SISTEMAS DE DISTRIBUCIÓN DE n TRANSFORMADORES.

DETERMINACIÓN DE LAS CORRIENTES DE INSERCIÓN EN SISTEMAS DE DISTRIBUCIÓN DE n TRANSFORMADORES. ng. Horaio Salvañá HS ngeniería - www.hsingenieria.om.ar DETERMNACÓN DE LAS CORRENTES DE NSERCÓN EN SSTEMAS DE DSTRBUCÓN DE n TRANSFORMADORES. Autor: ng. Horaio Salvañá Objetivo: El objeto de este trabajo

Más detalles

2. CARGA Y DESCARGA DE UN CONDENSADOR

2. CARGA Y DESCARGA DE UN CONDENSADOR 2. ARGA Y DESARGA DE UN ONDENSADOR a. PROESO DE ARGA La manera más senilla de argar un ondensador de apaidad es apliar una diferenia de potenial V entre sus terminales mediante una fuente de.. on ello,

Más detalles

ANÁLISIS PARAMÉTRICO DE COLECTORES SOLARES PLANOS OPERANDO EN SERIE

ANÁLISIS PARAMÉTRICO DE COLECTORES SOLARES PLANOS OPERANDO EN SERIE 195 TCSD 03-05 ANÁLISIS PARAMÉTRICO DE COLECTORES SOLARES PLANOS OPERANDO EN SERIE Ignaio R. Martín Domínguez y Ma. Teresa Alarón Herrera Centro de Investigaión en Materiales Avanzados, S.C. Miguel de

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2003 QUÍMICA TEMA 5: EQUILIBRIO QUÍMICO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2003 QUÍMICA TEMA 5: EQUILIBRIO QUÍMICO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 00 QUÍMICA TEMA 5: EQUILIBRIO QUÍMICO Junio, Ejeriio 6, Oión A Reserva 1, Ejeriio, Oión A Reserva 1, Ejeriio 5, Oión B Reserva, Ejeriio 6, Oión A Reserva, Ejeriio,

Más detalles

Construcción de conjuntos B h módulo m y particiones

Construcción de conjuntos B h módulo m y particiones Vol. XIV No 2 Diiembre (2006) Matemátias: 65 70 Matemátias: Enseñanza Universitaria Esuela Regional de Matemátias Universidad del Valle - Colombia Construión de onjuntos B h módulo m y partiiones Gilberto

Más detalles

Matemáticas 4 opción B - ANAYA

Matemáticas 4 opción B - ANAYA Tema 8 Geometría analítia!! Distanias irunferenia 8 alula la distania entre P Q: a)) P( ) Q( -7) b)) P(-8 ) Q(-6 ) )) P(0 -) Q(- ) d)) P(- 0) Q( 0) a)) d(p Q) PQ ( ) ( ) ( ) ( 7 ) 0 Q P Q P b)) d(p Q)

Más detalles

de distribución mediante redes neuronales Felier Fernández

de distribución mediante redes neuronales Felier Fernández Pronóstio de las pérdidas en redes de distribuión mediante redes neuronales Felier Fernández Sergio de la Fé Dante Miraglia Reibido: Otubre del 2004 Aprobado: Diiembre del 2004 Resumen / Abstrat energétia

Más detalles

2.4 Transformaciones de funciones

2.4 Transformaciones de funciones 8 CAPÍTULO Funiones.4 Transformaiones de funiones En esta seión se estudia ómo iertas transformaiones de una funión afetan su gráfia. Esto proporiona una mejor omprensión de ómo grafiar Las transformaiones

Más detalles

ECUACIONES DIFERENCIALES ORDINARIAS DE SEGUNDO

ECUACIONES DIFERENCIALES ORDINARIAS DE SEGUNDO ECUACIONES DIFERENCIALES ORDINARIAS DE SEGUNDO ORDEN. RESOLUCIÓN REDUCIÉNDOLA A UNA ECUACIÓN DIFERENCIAL ORDINARIA DE PRIMER ORDEN Miguel Angel Nastri, Osar Sardella miguelangelnastri@ahoo.om.ar, osarsardella@ahoo.om.ar

Más detalles

Hexágono. Los polígonos de cuatro lados, como rectángulos y cuadrados, se llaman cuadriláteros. Los cuadriláteros tienen propiedades especiales.

Hexágono. Los polígonos de cuatro lados, como rectángulos y cuadrados, se llaman cuadriláteros. Los cuadriláteros tienen propiedades especiales. CUADRILÁTEROS " Wow!" Exlamó Juanita mirando una estrutura de ristal a las afueras del museo de arte. "Vamos a ver eso," le dijo a su amiga Samantha. Samantha se aeró a ver lo que Juanita estaba observando

Más detalles

4.- ENSAYO Y PRUEBAS DE LOS MODELOS ALGORITMOS DE RESOLUCIÓN EMPLEADOS

4.- ENSAYO Y PRUEBAS DE LOS MODELOS ALGORITMOS DE RESOLUCIÓN EMPLEADOS 4.- ENSAYO Y PRUEBAS DE LOS MODELOS 4.1.- ALGORITMOS DE RESOLUCIÓN EMPLEADOS Para resolver el problema se van a utilizar 3 algoritmos diferentes de resoluión apliados a los 2 modelos de programaión lineal

Más detalles

CAP. 5 DISEÑO DE MIEMBROS EN TORSIÓN OBJETIVOS:

CAP. 5 DISEÑO DE MIEMBROS EN TORSIÓN OBJETIVOS: CAP. 5 DISEÑO DE MIEMBROS EN TORSIÓN OBJETIVOS: TEMAS: - Demostrar la euaión de la tensión de torsión, su apliaión y diseño de miembros sometidos a tensiones de torsión 5.1. Teoría de torsión simple 5..

Más detalles

ANÁLISIS DE LA EXTENSIÓN DE LA GRÁFICA DE UNA FUNCIÓN

ANÁLISIS DE LA EXTENSIÓN DE LA GRÁFICA DE UNA FUNCIÓN ANÁLISIS DE LA EXTENSIÓN DE LA GRÁFICA DE UNA FUNCIÓN Sugerenias al Profesor: Trabajar úniamente on funiones polinomiales y raionales, alarando que generalmente al bosquejar sus gráfias solo se muestra

Más detalles

Modulo de Desigualdades e Inecuaciones. 3º Medio

Modulo de Desigualdades e Inecuaciones. 3º Medio Modulo de Desigualdades e Ineuaiones. º Medio TEMA : Orden, Valor Absoluto y sus propiedades Definiión : La desigualdad a < b es una relaión de orden en el universo de los números reales. Por lo tanto

Más detalles

Fernando Martínez García 1 y Sonia Navarro Gómez 2

Fernando Martínez García 1 y Sonia Navarro Gómez 2 Análisis de la Operaión Estable de los Generadores de Relutania Autoexitados, bajo Condiiones Variables en la Carga, la Capaidad de Exitaión y la Veloidad Fernando Martínez Garía y Sonia Navarro Gómez

Más detalles

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN PREPARATORIA No. 3

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN PREPARATORIA No. 3 UNIVERSIDD UTÓNOM DE NUEVO LEÓN PREPRTORI No. 3 MTEMÁTIS II LORTORIO PR EXMEN EXTRORDINRIOS ETP 1: EUIONES UDRÁTIS O DE SEGUNDO GRDO EN UN VRILE Elemento de ompetenia: Modelar matemátiamente situaiones

Más detalles

Límite de una función 4º Año Cód P r o f. S i l v i a A m i c o z zi Matemática P r o f. S i l v i a B e l l e t t i Dpto.

Límite de una función 4º Año Cód P r o f. S i l v i a A m i c o z zi Matemática P r o f. S i l v i a B e l l e t t i Dpto. Límite de una funión Matemátia 4º Año Cód. 477 P r o f. S i l v i a A m i o z z i P r o f. S i l v i a B e l l e t t i Dpto. de Matemátia LIMITE FINITO IDEA INTUITIVA DE LÍMITE: Presentamos algunas funiones

Más detalles

Límite de una función. Matemática

Límite de una función. Matemática Límite de una funión Matemátia 4º Año Cód. 465 P r o f. S i l v i a A m i o z z i P r o f. S i l v i a B e l l e t t i Dpto. de Matemátia LIMITE FINITO IDEA INTUITIVA DE LÍMITE: Presentamos algunas funiones

Más detalles

Límite de una función 4º Año Cód P r o f. Si l via A m ic o z z i Matemática P r o f. Si l via B e l le t t i Dpto.

Límite de una función 4º Año Cód P r o f. Si l via A m ic o z z i Matemática P r o f. Si l via B e l le t t i Dpto. Límite de una funión Matemátia 4º Año Cód. 47 6 P r o f. S i l v i a A m i o z z i P r o f. S i l v i a B e l l e t t i Dpto. de M at emátia LIMITE FINITO IDEA INTUITIVA DE LÍMITE: Presentamos algunas

Más detalles

UNIDAD 1.- PROBABILIDAD

UNIDAD 1.- PROBABILIDAD UNIDAD 1.- PROBABILIDAD 1. EXPERIMENTOS ALEATORIOS. ESPACIO MUESTRAL. Definiión: Un fenómeno o experienia se die aleatorio uando al repetirlo en ondiiones análogas no se puede predeir el resultado. Si

Más detalles

2 E E mv v v 1,21 10 m s v 9,54 10 m s C 1 2 EXT EXT EXT EXT. 1,31W 5,44 10 W 6, W 3, J 2,387 ev 19 EXT W 6,624 10

2 E E mv v v 1,21 10 m s v 9,54 10 m s C 1 2 EXT EXT EXT EXT. 1,31W 5,44 10 W 6, W 3, J 2,387 ev 19 EXT W 6,624 10 Físia atual PAU 0. La fusión nulear en el Sol produe Helio a partir de Hidrógeno según la reaión: 4 protones + eletrones núleo He + neutrinos + Energía uánta energía se libera en la reaión (en MeV)? Datos:

Más detalles

TEMA 10: EQUILIBRIO QUÍMICO

TEMA 10: EQUILIBRIO QUÍMICO TEMA : EQUILIBRIO QUÍMICO. Conepto de equilibrio químio: reaiones reversibles. Existen reaiones, denominadas irreversibles, que se araterizan por transurrir disminuyendo progresivamente la antidad de sustanias

Más detalles

Amplificadores de Instrumentación

Amplificadores de Instrumentación NOTS DE CLSE mplifiadores de Instrumentaión Ediión 00 Índie. mplifiador de Instrumentaión Ideal.... El mplifiador Diferenial.... mplifiador de instrumentaión Configuraión Básia... 7 4. mplifiador de instrumentaión

Más detalles

Facultad de Ciencias Exactas Y Naturales FRECUENCIAS DE VIBRACIÓN DE UNA BARRA CON ÁREA SECCIONAL COSENO

Facultad de Ciencias Exactas Y Naturales FRECUENCIAS DE VIBRACIÓN DE UNA BARRA CON ÁREA SECCIONAL COSENO Revista NOOS Volumen (3) Pág 4 8 Derehos Reservados Faultad de Cienias Exatas Y Naturales FRECUENCIAS DE VIBRACIÓN DE UNA BARRA CON ÁREA SECCIONAL COSENO Carlos Daniel Aosta Medina Ingrid Milena Cholo

Más detalles

TEMA 3.- DISTRIBUCIONES DE PROBABILIDAD

TEMA 3.- DISTRIBUCIONES DE PROBABILIDAD TEMA 3.- DISTRIBUIONES DE PROBABILIDAD 3.1 EXPERIMENTOS Y SUESOS ALEATORIOS Existen dos tipos de experimentos: deterministas y aleatorios. El primero es aquel del que se puede predeir el resultado siempre

Más detalles

NOTAS SOBRE LOS MÉTODOS DE INTEGRACIÓN

NOTAS SOBRE LOS MÉTODOS DE INTEGRACIÓN NOTAS SOBRE LOS MÉTODOS DE INTEGRACIÓN Alberto Gómez-Lozano Universidad Cooperativa de Colombia Sede Ibagué Doumentos de doenia Course Work oursework.u.e.o No. 5. Nov, 05 http://d.doi.org/0.695/greylit.6

Más detalles

ANÁLISIS DE LOS INTERCAMBIADORES DE CALOR. Mg. Amancio R. Rojas Flores

ANÁLISIS DE LOS INTERCAMBIADORES DE CALOR. Mg. Amancio R. Rojas Flores ANÁLISIS DE LOS INERAMBIADORES DE ALOR Mg. Amanio R. Rojas Flores En la prátia los interambiadores de alor son de uso omún y un ingeniero se enuentra a menudo en la posiión de: seleionar un interambiador

Más detalles

U.T.N. F.R.Ro DEPTO. DE INGENIERÍA QUIMICA CATEDRA DE INTEGRACIÓN III PAG. 1

U.T.N. F.R.Ro DEPTO. DE INGENIERÍA QUIMICA CATEDRA DE INTEGRACIÓN III PAG. 1 U.T.N. F.R.Ro DEPTO. DE INGENIERÍA QUIMICA CATEDRA DE INTEGRACIÓN III PAG. 1 GASES Y VAPORES: los términos gas y vapor se utilizan muha vees indistintamente, pudiendo llegar a generar alguna onfusión.

Más detalles

ALGUNAS INCONGRUENCIAS CONCEPTUALES SOBRE LA NOCIÓN DE LINEALIDAD

ALGUNAS INCONGRUENCIAS CONCEPTUALES SOBRE LA NOCIÓN DE LINEALIDAD Categoría1.Análisisdeldisursomatemátioesolar ALGUNASINCONGRUENCIASCONCEPTUALESSOBRELANOCIÓNDELINEALIDAD CarlosRondero,AnnaTaraseno,JuanAlbertoAosta UniversidadAutónomadeEstadodeHidalgo.(Méxio) Méxio aostah@uaeh.reduaeh.mx,rondero@uaeh.reduaeh.mx,anataras@uaeh.edu.mx

Más detalles

Incertidumbres. Tipos de instrumentos. Algunas formas de expresar las incertidumbres

Incertidumbres. Tipos de instrumentos. Algunas formas de expresar las incertidumbres Inertidumres Es posile otener el valor real (exato) de una magnitud a través de mediiones? Aunque pareza sorprende, la respuesta a esta pregunta es NO. El proeso de mediión involura neesariamente el uso

Más detalles

OPCIÓN A. Problema A.1. Obtener razonadamente: a) dx. (3 puntos).

OPCIÓN A. Problema A.1. Obtener razonadamente: a) dx. (3 puntos). OPCIÓN A Problema A.. Obtener razonadamente: a) d ( puntos). b) d 5 8 (4 puntos). El numerador es de grado superior al denominador. Hay que realizar la división: 5 8 d d d, 5 8 ) d ( puntos). Integral

Más detalles

DISEÑO Y ANÁLISIS DE DATOS EN PSICOLOGÍA II

DISEÑO Y ANÁLISIS DE DATOS EN PSICOLOGÍA II DISEÑO Y ANÁLISIS DE DATOS EN PSICOLOGÍA II PRÁCTICA 9 Problema.- En una determinada investigaión se estudia en diferentes estados amerianos la relaión entre varias variables soiodemográfias y el índie

Más detalles

AN ALISIS MATEM ATICO B ASICO. C ALCULO DE PRIMITIVAS. FUNCIONES RACIONALES.

AN ALISIS MATEM ATICO B ASICO. C ALCULO DE PRIMITIVAS. FUNCIONES RACIONALES. AN ALISIS MATEM ATICO B ASICO. C ALCULO DE PRIMITIVAS. FUNCIONES RACIONALES. Cuando tenemos el problema de alular la primitiva de una funion raional P (x) an x n + a n x n + + a x + a 0 b m x m + b m x

Más detalles

NOTAS DE CLASE. Amplificadores de Instrumentación

NOTAS DE CLASE. Amplificadores de Instrumentación Universidad Naional de osario Faultad de Cienias Exatas, Ingeniería y grimensura Esuela de Ingeniería Eletrónia ELECTÓNIC II NOTS DE CLSE mplifiadores de Instrumentaión Ediión 009 Índie. mplifiador de

Más detalles

Para aprender Termodinámica resolviendo problemas

Para aprender Termodinámica resolviendo problemas GASES REAES. Fator de ompresibilidad. El fator de ompresibilidad se define omo ( ) ( ) ( ) z = real = real y es funión de la presión, la temperatura y la naturaleza de ada gas. Euaión de van der Waals.

Más detalles

CONJUNTOS. Según se ha visto en el ejercicio anterior, para que la intersección de dos conjuntos A y B sea A, se tiene que verificar que A B.

CONJUNTOS. Según se ha visto en el ejercicio anterior, para que la intersección de dos conjuntos A y B sea A, se tiene que verificar que A B. CONJUNTOS 1. Si se umple: a) = b) = ) = (Convoatoria junio 2001. Examen tipo E ) Es laro que la opión orreta es la a). Cuando un onjunto está dentro de otro, la interseión es el onjunto pequeño y la unión

Más detalles

Resolución de las ecuaciones cuadráticas según Al Jwarizmi:

Resolución de las ecuaciones cuadráticas según Al Jwarizmi: María Moreno Warleta ESTALMAT Madrid Au Jafar Mohammet in Mose Al - Jwarizmi fue uno de los mejores matemátios áraes de la Edad Media y es onsiderado el padre del álgera. Conoemos su ora matemátia graias

Más detalles

Calor específico Calorimetría

Calor específico Calorimetría Calor espeíio Calorimetría Físia II Lieniatura en Físia 2003 Autores: Andrea Fourty María de los Angeles Bertinetti Adriana Foussats Calor espeíio y alorimetría Cátedra Físia II (Lieniatura en Físia) 1.-

Más detalles

Ejercicios de Matrices, determinantes y sistemas de ecuaciones lineales. Álgebra 2008

Ejercicios de Matrices, determinantes y sistemas de ecuaciones lineales. Álgebra 2008 Ejeriios de Matries, deterinantes sisteas de euaiones lineales. Álgebra 8 - Dado el sistea de euaiones lineales 5 (a) ['5 puntos] Clasifíalo según los valores del paráetro λ. (b) [ punto] Resuélvelo para

Más detalles

PAU Movimiento Vibratorio Ejercicios resueltos

PAU Movimiento Vibratorio Ejercicios resueltos PU Moviiento Vibratorio jeriios resueltos 99-009 PU CyL S995 ley Hooke alitud y freuenia Colgado de un soorte hay un resorte de onste = 0 N/ del que uelga una asa de kg. n estas irunsias y en equilibrio,

Más detalles

El Teorema de Cauchy

El Teorema de Cauchy El Teorema de Cauhy Deimos que una urva es errada si termina en el mismo punto donde empieza. Deimos que una urva es simple si no tiene autointerseiones. Uno de los primeros teoremas de topología del plano,

Más detalles

INCERTIDUMBRE EN LA CALIBRACIÓN DE VISCOSÍMETROS BROOKFIELD

INCERTIDUMBRE EN LA CALIBRACIÓN DE VISCOSÍMETROS BROOKFIELD INCETIDUMBE EN A CAIBACIÓN DE VISCOSÍMETOS BOOKFIED Trujillo S., Shmid W., azos., Galván M. del C. Centro Naional de Metrología, aboratorio de Visosidad Apdo. Postal -00 entro, C.P. 76000. Querétaro, Qro.

Más detalles

Cálculo Integral: Guía I

Cálculo Integral: Guía I 00 Cálulo Integral: Guía I Profr. Luis Alfonso Rondero Garía Instituto Politénio Naional Ceyt Wilfrido Massieu Unidades de Aprendizaje del Área Básia 0/09/00 Introduión Esta guía tiene omo objetivo darte

Más detalles

Clase 2. Las ecuaciones de Maxwell en presencia de dieléctricos.

Clase 2. Las ecuaciones de Maxwell en presencia de dieléctricos. Clase Las euaiones de Maxwell en presenia de dielétrios. A diferenia de los metales (ondutores elétrios) existen otro tipo de materiales (dielétrios) en los que las argas elétrias no son desplazadas por

Más detalles

Serie 11. Sistemas de control más elaborados

Serie 11. Sistemas de control más elaborados Serie Sistemas de ontrol más elaborados Sistemas de ontrol más elaborados Se utilizan uando los lazos de ontrol onvenionales no son sufiientemente apropiados, debido a difiultades omo proesos on grandes

Más detalles

2.1. CONSTANTE DE EQUILIBRIO. LEY DE ACCIÓN DE MASAS. Si tenemos un proceso químico expresado de forma general como: c C (g) + d D (g)

2.1. CONSTANTE DE EQUILIBRIO. LEY DE ACCIÓN DE MASAS. Si tenemos un proceso químico expresado de forma general como: c C (g) + d D (g) Las reaiones químias se pueden dividir en reversibles e irreversibles, según puedan transurrir en los dos sentidos o en uno sólo. En las reaiones reversibles tanto las sustanias reaionantes omo los produtos

Más detalles

Si P es el punto de coordenadas (x,y) de los datos del enunciado obtenemos: La pendiente de la recta que une P con A es:

Si P es el punto de coordenadas (x,y) de los datos del enunciado obtenemos: La pendiente de la recta que une P con A es: Halla el lugar geométrio de los puntos P(, ) tales que el produto de las pendientes de las retas trazadas desde P a los puntos: A (, 1) B (, 1) sea igual a 1. Qué figura obtienes? Represéntala. Si P es

Más detalles

CÁLCULO DE CALDERÍN. Autores: Pedro Gea José M. Navalón

CÁLCULO DE CALDERÍN. Autores: Pedro Gea José M. Navalón CÁLCULO DE CALDERÍN Autores: Pedro Gea José M. Navalón 1. INTRODUCCIÓN Para determinar el golpe de ariete produido en una instalaión protegida on alderín, en realidad, el problema en su ontexto real se

Más detalles

Momentos de Inercia de cuerpos sólidos: EJE. Varilla delgada. Disco. Disco. Cilíndro. Esfera. Anillo I = MR

Momentos de Inercia de cuerpos sólidos: EJE. Varilla delgada. Disco. Disco. Cilíndro. Esfera. Anillo I = MR 91 Momentos de Ineria de uerpos sólidos: EJE Varilla delgada 1 I = ML 1 Diso 1 I = M Diso 1 I = M 4 ilíndro 1 I = M Esfera I = M 5 Anillo I = M 9 Observaión: Los momentos de ineria on respeto a ejes paralelos

Más detalles

Ecuaciones de 2º grado

Ecuaciones de 2º grado Euaiones de º grado La fórula para alular las raíes de la euaión opleta de segundo grado a es: Núero de soluiones a a La antidad a que aparee ajo el radial se llaa disriinante de la euaión, a que perite

Más detalles