Instituto Politécnico Superior General San Martín A U S. Análisis Matemático II. Integrales. Mgter. Viviana Paula D Agostini
|
|
- Valentín Medina Chávez
- hace 3 años
- Vistas:
Transcripción
1 Instituto Politécnico Superior Generl Sn Mrtín A U S Análisis Mtemático II Interles Mter. Vivin Pul D Aostini
2 TEMARIO Interl indeinid. Deinición. Interl Deinid. Sums de Riemnn. Propieddes de l interl deinid. Teorem Fundmentl del Cálculo. Rel de Brrow. Cálculo de áre Método de sustitución. Interción por prtes. Ejercicios. Biliorí.
3 Análisis Mtemático II Mter. Vivin Pul D Aostini Interl indeinid Hemos estudido l unción derivd de un unción. Será posile determinr un unción conociendo su unción derivd?. Deinición. Un unción F es un primitiv o un ntiderivd de en un intervlo I, Ejemplo: L unción si F ' I. F es un primitiv de y que F '. F 8 tmién es un primitiv de porque F '. Por lo tnto tmién lo es culquier unción de l orm vlor constnte. F C siendo C un Deinición. Al conjunto de tods ls primitivs de un unción, se le llm interl indeinid de. Se simoliz d F C C constnte. El símolo interción. se lee interl, l unción es el interndo y es l vrile de Tl de interles C constnte k d k C k constnte n n d C n e d e C cos d sen C sen d cos C d ln C n d d d d d d
4 Análisis Mtemático II Mter. Vivin Pul D Aostini Ejemplos: d C 5 5 d C 5 d d d C C 8 5 d 8 d 8 C 6 C Propuest. Resolver el ejercicio. Interl Deinid Sums de Riemnn 5 d C El prolem plntedo es hllr el áre de l reión encerrd entre l curv y, el eje y ls sciss y. Un ide sencill consiste en dividir l reión en rectánulos de iul se, lueo sumr sus áres lorndo un proimción del áre. Se un unción deinid en un intervlo,. Sudividimos dicho intervlo en suintervlos del mismo ncho eliiendo n- puntos,,,..., n que stisn.. n. El conjunto P,...,,,, n, n se llm prtición de,. P divide l intervlo en n suintervlos cerrdos,,,,, n, n. Llmmos i i i l ncho de cd intervlo. En cd suintervlo eleimos un punto c i. Y considermos rectánulos de ltur c i y se i i i diámetro de l prtición. Un proimción del áre será S c n c... cn n ci i i
5 Análisis Mtemático II Mter. Vivin Pul D Aostini Sum inerior: sum por deecto Si S c i m es el vlor mínimo en, i i i n in c c... cn n ci i, S Áre i in Sum superior: sum por eceso Si c i M es el vlor máimo en, i i i S n sup c c... cn n ci i, S Áre i sup Se tiene sí que S in Áre S sup A medid que umentmos el número de rectánulos n, n con tnto el áre por deecto como por eceso se proimn l áre uscd.
6 Análisis Mtemático II Mter. Vivin Pul D Aostini Si es un unción continu en,. El áre entre l ráic de el eje y ls sciss y l representmos con el símolo d. Se lee interl entre y de, es el límite inerior de interción, es el límite superior de interción. Si cd prtición P de, le socimos un áre por deecto s y un áre por eceso S: s n i m n i i i, S i M i i i result s S. Si tenemos un sucesión de prticiones P, P,..., P... le corresponden s, s,..., s... áres por deecto, k k S, S,..., S... áres por eceso. Si los diámetros tienden, ls dierencis S k s, S s,..., S k s... tienden y ms sucesiones tienden l áre uscd, k s k S k, S k s k entonces s k y S k. El símolo de sumtori se convirtió en un s estilizd quedndo d. Teorem: Si es un unción continu en, entonces su interl deinid eiste en,. Propieddes de l interl deinid. Sen y dos unciones continus en un intervlo I, y,, c vlores reles: d d d k d k d con k cte d d d 5 d d d 6 Si c y es continu en c y continu en 7 Si, entonces d d d, entonces d c c
7 Análisis Mtemático II Mter. Vivin Pul D Aostini y continu en Si en 8 Si 9 Si es continu en lim, entonces d, entonces d d lim, y eisten los límites lterles y entonces tommos un unción continu en, si si, y deinimos d d si Deinición Si y es positiv e interle en un intervlo [,] entonces el áre dejo de l curv y en [,] es A d. Teorem Fundmentl del Cálculo Se un unción continu en el intervlo [, ] y derivle en, entonces l unción F d es derivle y F ',. El teorem demuestr que l unción interl que d ls áres entre y pr cd vlor de F d es un unción cuy derivd es l unción. d represent un número y d represent un unción de. 5
8 Análisis Mtemático II Mter. Vivin Pul D Aostini Rel de Brrow Se un unción continu en el intervlo [, ] y G un primitiv de entonces d G G. Pr hllr l interl deinid seuiremos el siuiente proceso: Se hll un primitiv culquier de l unción, Se sustituyen en est primitiv los límites de interción superior e inerior y se restn los resultdos. Ejemplos: cos d sen sen d Propuest. Resolver el ejercicio. Cálculo de áre Pr determinr el áre jo l curv de distinuimos el sino de. Si > [, ] entonces l interl deinid es positiv y Áre= d Si < [, ] entonces l interl deinid es netiv y Áre= d d 6
9 Análisis Mtemático II Mter. Vivin Pul D Aostini Ejemplo: Hllr el áre limitd por y y el eje. L unción y cort l eje en = ±. Áre= d Áre del recinto pr un unción Áre= d d d d Pr dos unciones positivs sin corte Áre= d 7
10 Análisis Mtemático II Mter. Vivin Pul D Aostini 8 Pr dos unciones culesquier sin corte Áre= d C C = d Pr dos unciones que se cortn A= d d d d Ejemplo : Hllr el áre de l reión encerrd entre y. Representr ráicmente., V, V 6
11 Análisis Mtemático II Mter. Vivin Pul D Aostini d d Ejemplo : Hllr el áre de l reión encerrd entre y. Representr ráicmente. 9 d d Ejemplo : Hllr el áre de l reión encerrd entre, y. Representr ráicmente., V
12 Análisis Mtemático II Mter. Vivin Pul D Aostini d d Propuest. Resolver los ejercicios,, 5, 6 y 7. Método de sustitución Desemos clculr h d reconociendo que ' t. dt F t nos result ácil de otener. Entonces: Si h d ' d h y suponemos que y relizmos el cmio de vrile t dt ' d result t dt F t F Ejemplos: t d t dt C C t y dt d ' Veriicción: C t d t dt t dt C C t dt d dt d Veriicción: ' C t d t dt t dt C t C C t y dt d Veriicción: C' ' t dt 6 d dt d sen d sent dt sent dt cost C cos C
13 Análisis Mtemático II Mter. Vivin Pul D Aostini Veriicción: C' ' t d t dt C C t 7 y dt d Veriicción: ' 7 7 C 7 ' 7 Propuest. Resolver el ejercicio 8. Interción por prtes D u. v u '. v u. v ' en notción dierencil: du. v du. v u. dv despejndo el último sumndo: u. dv du. v v du interndo miemro miemro: u. dv u. v v du Ahor podemos clculr l interl de u dv prtir de v du Ejemplo: e d e u du d dv e v e e d e d e d e e C Veriicción: e ' e C e e e e Propuest 5. Resolver el ejercicio 9.
14 Análisis Mtemático II Mter. Vivin Pul D Aostini EJERCICIOS Clculr: 6 d 6 8 d c d d d 5 e 5 d e d h sen e d j sen cos d Clculr: d i d e d sen d c 8 d d d e d sen cos d Hllr el áre de l reión encerrd entre 9 y el eje. Hllr el áre de l reión encerrd entre y. 5 Hllr el áre de l reión encerrd entre y. 6 Hllr el áre de l reión encerrd entre y. 7 Hllr el áre de l reión encerrd entre, el eje y ls rects y. 8 Clculr: 5 d e d c 5 6 cos d d d e sen 5 d sencos d 5 d h cos d
15 Análisis Mtemático II Mter. Vivin Pul D Aostini i d j sen d 9 Clculr: e d ln d c ln d d sen d e cos d ln d cos d h e d i ln d j ln d k e d PRÁCTICA COMPLEMENTARIA Hllr el áre comprendid entre y, el eje y ls rects y Clculr el áre comprendid jo l rect de ecución y, entre y. Clculr el áre comprendid jo l curv y, entre y. Clculr el áre comprendid entre 5 Clculr d y e y. e d c 5 d d d 6 Resolver d c 6 d d sen d d
16 Análisis Mtemático II e d e cos d i d k 7 Resolver d d c ln d sen h Mter. Vivin Pul D Aostini d d j cos sen sen d l e d 5 ln d d cos d e cos d d e d i 5 d j e k 7d h 6sen d d l e d m d ñ e d n d BIBLIOGRAFÍA - Stewrd J. Cálculo. 8. Set Edición. Cene Lernin. - Thoms. Cálculo Un vrile. 5. Undécim edición. Person Addison Wesley - Ruetti Hee T. 995 Introducción l Análisis Mtemático. - Miuel de Guzmán. Análisis Mtemático I. Editoril Any. - Spivck Michel Cálculo Ininitesiml. Editoril Reverté.
CÁLCULO INTEGRAL. Definición: Sean a y b dos números reales a < b. Una partición del intervalo [a,b] es un conjunto finito de puntos de,
Deprtmento de Mtemátics I.E.S. Vlle del Jerte (Plsenci) CÁLCULO INTEGRAL 2.- INTEGRAL DEFINIDA. Definición: Sen y dos números reles
Tema 11: Integral definida. Aplicaciones al cálculo de áreas
Tem : Integrl definid. Aplicciones l cálculo de áres. Introducción Ls integrles no vn permitir clculr áres de figurs no geométrics. En nuestro cso, nos limitremos clculr el áre jo un curv y el áre encerrd
Tema 10: Integral definida. Aplicaciones al cálculo de áreas
Tem : Integrl definid. Aplicciones l cálculo de áres. Introducción Ls integrles nos vn permitir clculr áres de figurs no geométrics. En nuestro cso, nos limitremos clculr el áre jo un curv y el áre encerrd
TEMA 9: INTEGRALES. CÁLCULO DE ÁREAS
TEMA 9: INTEGRALES. CÁLCULO DE ÁREAS. ÁREA BAJO UNA CURVA. El prolem que pretendemos resolver es el cálculo del áre limitd por l gráfic de un función f() continu y positiv, el eje X y ls sciss = y =. Si
Integral definida. Áreas MATEMÁTICAS II 1
Integrl definid. Áres MATEMÁTICAS II APROXIMACIÓN AL VALOR DEL ÁREA BAJO UNA CURVA L integrl definid está históricmente relciond con el prolem de definir y clculr el áre de figurs plns. En geometrí se
1. Función primitiva. Integral de una función.
. Función primitiv. Integrl de un función. Considermos l función f() =. Nos preguntmos si eiste otr función F() tl que l derivrl nos de l función f(). F() = verific que F () = f(). Pero tmién nos vldrí
a x0 x x... x x b, con lo que los (n+1) números reales dividen al intervalo, 1. ÁREAS DE RECINTOS PLANOS. INTEGRAL DEFINIDA
UNIDAD 6: Integrles Definids. Aplicciones. ÁREAS DE RECINTOS PLANOS. INTEGRAL DEFINIDA Nos plntemos el cálculo de áres de recintos limitdos por curvs que vienen dds por funciones reles,como por ejemplo
UNIDAD 6.- Integrales Definidas. Aplicaciones (tema 15 del libro)
UNIDAD 6.- Integrles Definids. Aplicciones (tem 5 del liro). ÁREAS DE RECINTOS PLANOS. INTEGRAL DEFINIDA Nos plntemos el cálculo de áres de recintos limitdos por curvs que vienen dds por funciones reles,como
INTEGRAL DEFINIDA. El hallar el área aproximada bajo la curva por suma de n áreas rectangulares de igual ancho x
en INTEGRAL DEFINIDA El concepto de integrl definid está relciondo con el vlor que determin el áre jo l curv dd por un función f (x) el [, ]. (ve l intervlo gráfic) Uno de los primeros psos pr llegr este
LA INTEGRAL DEFINIDA: ÁREAS Y VOLÚMENES
LA INTEGRAL DEFINIDA: ÁREAS Y VOLÚMENES L integrl definid Se y f un función definid en el intervlo,, se llm integrl definid de f en n el intervlo, y se denot por fd lim fc i i i. n i y se llmn límites
Y f. Para ello procederemos por aproximaciones sucesivas, de modo que cada una de ellas constituya un término de una sucesión G n cuyo límite
INTEGRALES LECCIÓN Índice: El prolem del áre. Ejemplos. Prolems..- El prolem del áre Se f un función continu y no negtiv en [,]. Queremos clculr el áre S de l región del plno limitd por l gráfic de f,
una función acotada. a) Cuántas particiones puede tener el intervalo [ ab, ]?. c) Cuántos puntos como máximo puede tener una partición de [ ab, ]?.
Ejercicios del Tem de Integrles Cálculo Diferencil e Integrl II ) Sen A y B dos conjuntos no vcíos de números reles, tles que B A y A está cotdo superiormente Demostrr que B está cotdo superiormente y
Tema 11: Integrales denidas
Tem : Integrles denids My 9, 7 Denición y propieddes Denición. Si f ) es un función continu en un intervlo [, b] y denid positiv, f ), l integrl denid en ese intervlo l denimos como: f ). Si f ) > l integrl
La integral de Riemann
L integrl de Riemnn 1 Vmos dr un definición precis de l integrl de un función definid en un intervlo. Este tiene que ser un intervlo cerrdo y cotdo, es decir [,] con < R, y l definición que dremos de integrl
El problema del área. Tema 5: Integración. Integral de Riemann. Particiones de un intervalo. Sumas superior e inferior
Construcción Funciones integrbles TFCI Construcción Funciones integrbles TFCI Prticiones de un intervlo El problem del áre Tem 5: Integrción. Integrl de Riemnn El objetivo finl del tem es hllr el áre de
INTEGRAL DEFINIDA. 6.1 Aproximación intuitiva al concepto de integral definida. Propiedades con respecto al integrando y al intervalo de integración.
INTEGRAL DEFINIDA Apuntes de A. Cñó Mtemátics II 6. Aproimción intuitiv l concepto de integrl definid. Propieddes con respecto l integrndo y l intervlo de integrción. 6. El teorem fundmentl del cálculo
D I F E R E N C I A L
D I F E R E N C I A L µ dy y = d Si un función y = f() dmite derivd finit en un punto su incremento puede epresrse como y = f () + ε, siendo ε un infinitésimo pr 0. Al primer término se lo llm diferencil
b) Calcule el área del recinto limitado por la gráfica de la función f(x) y el eje de abscisas entre x = 1 e y x = e.
MsMtescom Integrles Selectividd CCNN Murci [] [EXT-A] ) Clcule l integrl indefinid rctgd, donde rctg denot l función rco-tngente de ) De tods ls primitivs de l función f() = rctg, encuentre l que ps por
CÁLCULO INTEGRAL SESIÓN 5: INTEGRAL DEFINIDA Y APLICACIONES DE LA INTEGRAL. INTEGRAL DEFINIDA
CÁLCULO INTEGRAL SESIÓN 5: INTEGRAL DEFINIDA Y APLICACIONES DE LA INTEGRAL. COMPETENCIA: resolver y plnter integrles que le yuden clculr el áre de un región cotd por dos o más funciones plicndo el teorem
La Integral Definida
Nivelción de Mtemátic MTHA UNLP ID Introducción Prtición L Integrl Definid Un prtición del intervlo [, b] es un sucesión de números = x x x x n = b, entre y b, tl que x i x i+ (i =,,, n ) Ejemplo: se llm
Sean dos funciones f y g de variable real definidas en un dominio DŒÑ Definición g es una primitiva de f si f(x)=g (x) "x D
INTEGRAL DE RIEMANN 1- Primitivs e integrl indefinid - Integrl de Riemnn 3- Interpretción geométric de ls integrles de Riemnn 4- Propieddes de ls integrles de Riemnn 5- Cmio de vrile en ls integrles de
TEMA 8. DERIVADAS. Derivadas laterales: Derivada por la derecha: Derivada por la izquierda:
I.E.S. Tierr de Ciudd Rodrio TEMA 8. DERIVADAS Deinición de derivd de un unción en un punto. Consideremos un unción, se un punto de su dominio. Se llm derivd de l unción en el punto se desin por l siuiente
Teoría Tema 7 Integral definida. Área encerrada por una curva
Colegio Mrist L Inmculd de Grnd Profesor Dniel Prtl Grcí www.dniprtl.net Asigntur: Mtemátics II 2ºBchillerto Teorí Tem 7: Integrl definid. Áre encerrd por un curv págin /0 Teorí Tem 7 Integrl definid.
AREA DE CIENCIAS BÁSICAS - CÁLCULO INTEGRAL INTEGRAL DEFINIDA
GUIA DE INTEGRALES DEFINIDAS INTEGRAL DEFINIDA. APLICACIONES DE LA INTEGRAL DEFINIDA Teorem Fundmentl del Cálculo Áre jo l curv de un región Áre entre dos regiones COMPETENCIA: Resolver integrles plicndo
DERIVADAS PARCIALES DE UNA FUNCIÓN N DE VARIAS VARIABLES
DERIVADAS PARCIALES DE UNA FUNCIÓN N DE VARIAS VARIABLES Deinición de derivd prcil en un punto lim + Se : A R con A R se un punto interior de A. Se denominn derivds prciles de respecto ls vriles e en el
La integral. En esta sección presentamos algunas propiedades básicas de la integral que facilitan su cálculo. c f.x/ dx C f.
CAPÍTULO L integrl.6 Propieddes fundmentles de l integrl En est sección presentmos lguns propieddes ásics de l integrl que fcilitn su cálculo. Aditividd respecto del intervlo. Si < < c, entonces: f./ d
Tema 9: Cálculo de primitivas. Integrales definidas e impropias.
Integrl definid y sus plicciones. Integrles impropis. Tem 9: Cálculo de primitivs. Integrles definids e impropis. José M. Slzr Noviembre de 206 Integrl definid y sus plicciones. Integrles impropis. Tem
CÁLCULO DIFERENCIAL. Lím h. Definición: Se dice que f(x) es derivable en A cuando es derivable en todo punto de A.
CÁLCULO DIFERENCIAL MATEMÁTICAS II Deprtmento de Mtemátics I.E.S. Vlle del Jerte Plsenci 1.- CONCEPTO DE DERIVADA. Se un unción rel deinid en un entorno del punto. Deinición: Se dice que es derivle en
5. ANÁLISIS MATEMÁTICO // 5.2. INTEGRACIÓN.
5. ANÁLISIS MATEMÁTICO // 5.2. INTEGRACIÓN. COMPLEMENTOS PARA LA FORMACIÓN DISCIPLINAR EN MATEMÁTICAS Curso 2017-2018 5.2.1. L integrl como medid de áres. L definición de integrl se hce con un procedimiento
Teorema fundamental del Cálculo.
Sesión Teorem fundmentl del Cálculo (TFC) Tems Teorem fundmentl del Cálculo. Cpciddes Conocer y comprender el TFC. Aplicr el TFC en el cálculo de derivds e integrles definids.. Introducción I. Brrow Inglés.
En general, si una función f(x) tiene una función primitiva F(x), entonces tiene infinitas primitivas cuyas expresiones serán F k
º BACHILLERATO MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II INTEGRACIÓN.-INTEGRAL INDEFINIDA. PROPIEDADES El Cálculo Integrl o integrción consiste en hllr l función f() cundo se conoce su derivd f
Cálculo de áreas de figuras planas. Cálculo de volúmenes de sólidos de revolución. Cálculo de áreas de superficies de revolución.
APLICACIONES DE LA INTEGRAL DEFINIDA Cálculo de áres de figurs plns. Cálculo de volúmenes de sólidos de revolución. Cálculo de longitud de rco de curv. Cálculo de áres de superficies de revolución. Cálculo
Integrales. Jesús García de Jalón de la Fuente. IES Ramiro de Maeztu Madrid
Jesús Grcí de Jlón de l Fuente IES Rmiro de Meztu Mdrid Diferencil de un función Diferencil de un función Definición L diferencil de un función f es igul su derivd por un incremento rbitrrio de l vrible.
PRIMITIVA E INTEGRACIÓN INDEFINIDA
TEMA CÁLCULO DE PRIMITIVAS. - PRIMITIVA E INTEGRACIÓN INDEFINIDA PRIMITIVA DE UNA FUNCIÓN f(): F() es un primitiv de f() si F () = f() Ejemplos: función: f() Primitiv: F() sen - cos Not: Un función tiene
Héctor Palma Valenzuela. Dpto. de Matemática UdeC Definición e interpretación geométrica
Héctor Plm Vlenzuel. Dpto. de Mtemátic UdeC. L Integrl.-. Definición e interpretción geométric Dd un función continu f :[, b] R ynonegtiv (f (), [, b]), vmos considerr l región del plno bjo l gráfic de
Fórmulas de cuadratura.
PROYECTO DE ANALISIS MATEMATICO I : Integrción numéric. Ojetivos: Aprender los métodos más sencillos de integrción númeric y plicrlos en diversos prolems. Fórmuls de cudrtur. Se (x un unción continu deinid
f (x esta por encima de la grafica de (x)
1 RE ENTRE DOS CURVS dos unciones continus en un intervlo b pr todo elemento, b Sen dominio, se est por encim de l ric de de, de su en todo el intervlo., es decir l ric El áre bjo l curv corresponde l
La integral de Riemann
L integrl de Riemnn Mrí Muñoz Guillermo mri.mg@upct.es U.P.C.T. Mtemátics I (1 o Ingenierí Electrónic Industril y Automátic) M. Muñoz (U.P.C.T.) L integrl de Riemnn Mtemátics I 1 / 33 Sums superior e inferior
C alculo Octubre 2010
Cálculo Octubre 2010 c Dpto. de Mtemátics UDC c Dpto. de Mtemátics UDC L integrl indefinid Sen I R un intervlo bierto y f : I IR Definición Diremos que F es primitiv de f en I si F (x) = f (x), x I Teorem
Tema 8 Integral definida
Tem 8 Integrl definid ) Integrl definid Se y = f() un función ositiv y continu en el intervlo (, ). Consideremos el trecio mitilíneo, S, determindo or f(), f(), f() y el eje OX y dividmos el intervlo (,
0.1 Sustituciones trigonométricas.-
Héctor Plm Vlenzuel. Dpto. de Mtemátic UdeC.. Sustituciones trigonométrics.- Cso.- El integrndo contiene un epresión de l form +. Se sugiere l sustitución = tn u d = sec udu de donde Z + = sec u d ( +)
f : [a, b] R, acotada
6. Integrción 6.1 Integrl definid Problem del áre. Ejemplos: 1 3 f(x 0, x [, b] f : [, b] R, cotd Figur 1 P n = { = x 0 < x 1
Integrales de funciones de una variable.
Tem Integrles de funciones de un vrible... L integrl definid como áre. L integrl definid de un función cotd y positiv corresponde l áre encerrd entre l curv y f (x) y el eje OX desde un punto y fx fx hst
INTEGRAL DEFINIDA 1.INTRODUCCIÓN E DEFINICIÓN
INTEGRAL DEFINIDA.INTRODUCCIÓN E DEFINICIÓN A ide de prtid pr introducción do concepto de integrl definid é o intento de resolver o seguinte prolem: Dd unh función f continu f> en [, ], Cl é áre d reión
TALLER VERTICAL 3 DE MATEMÁTICA MASSUCCO ARRARAS - MARAÑON DI LEO CALCULO DIFERENCIAL. Integral Indefinida
Integrl Indefinid Estmos costumrdos decir que el producto el cociente son operciones inverss. Lo mismo sucede con l potencición l rdicción. Vmos estudir hor l operción invers de l diferencición. Dd l función
INTRODUCCIÓN: PRIMITIVA DE UNA FUNCIÓN.
Mt. Apl. ls C. Soiles II: Fniones V: Interles. Cállo de primitivs y de áres. pá. INTRODUCCIÓN: PRIMITIVA DE UNA FUNCIÓN. Nos plntemos si dd n nión, eiste otr F tl qe F =. Se llm primitiv de n nión otr
Integrales de funciones de una variable.
Tem Integrles de funciones de un vrible... L integrl definid como áre. L integrl definid de un función cotd y positiv corresponde l áre encerrd entre l curv y fx) y el eje OX desde y f x f x un punto hst
MATEMÁTICAS APLICADAS A LAS CC. SS. II
INTEGRLES MTEMÁTIS PLIDS LS. SS. II lfonso González IES Fernndo de Men Dpto. de Mtemátics IES FERNNDO DE MEN. DPTO. DE MTEMÁTIS I) ONEPTO DE INTEGRL INDEFINID (pág. 0 del liro de texto) Dd f(x)=x nos preguntmos
TEMA 5: INTEGRACIÓN. f(x) dx.
TEMA 5: INTEGRACIÓN. L integrl indefinid En muchos spectos, l operción llmd integrción que vmos estudir quí es l operción invers l derivción. Definición.. L función F es un ntiderivd (o primitiv) de l
Unidad Temática Integral definida
Integrl definid Unidd Temátic 5 5.2 Integrl definid Análisis Mtemático (Ingenierí Informátic) Deprtmento de Mtemátic Aplicd Fcultd de Informátic Universidd Politécnic de Vlenci S. Cmp, J.A. Conejero y
Integración. 1. El cálculo de áreas, longitudes de arco y volúmenes.
Integrción El cálculo integrl es de grn importnci en muchs áres de estudio, como l economí, l biologí, l químic, l físic y l mtemátic en generl. Ls plicciones más conocids del cálculo integrl son en: 1.
Aplicaciones del cálculo integral
Aplicciones del cálculo integrl Aplicciones del cálculo integrl Cálculo del áre de un función Pr clculr el áre encerrd por un función en un intervlo [,] con el eje X, dee utilizrse l integrl definid. Csos:
INTEGRALES Curso , 2 tal que f(c) = k? ), para algún punto [a, b].
INTEGRALES Curso 9-.- ) Enuncir el Teorem del vlor medio integrl y dr un interpretción del mismo. Cundo f(), cómo puede interpretrse geométricmente? cos si [-, ] ) Se f () = 4 + sen si (, ] ) Hllr I =
5. ANÁLISIS MATEMÁTICO // 5.4. INTEGRACIÓN.
5. ANÁLISIS MATEMÁTICO // 5.4. INTEGRACIÓN. COMPLEMENTOS PARA LA FORMACIÓN DISCIPLINAR EN MATEMÁTICAS Curso 2010-2011 5.4.1. El áre de un círculo medinte proximción por polígonos regulres. 5.4.1. El áre
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2016 MATEMÁTICAS II TEMA 5: INTEGRALES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 06 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserv, Ejercicio, Opción A Reserv, Ejercicio, Opción B Reserv, Ejercicio,
LA INTEGRAL DEFINIDA Si f(x) es una función continua y no negativa definida en el intervalo x [a, b], entonces la integral definida b.
Tem 4 Integrción 4.. Primitivs LA INTEGRAL DEFINIDA Si f(x) es un función continu y no negtiv definid en el intervlo x [, b], entonces l integrl definid f(x) represent el áre bjo l gráfic de l función
2. [ANDA] [JUN-B] Considera la función f: definida por f(x) = e
Selectividd CCNN 5. [ANDA] [JUN-A] Se sbe que ls dos gráfics del dibujo corresponden l función f: definid por f() = e y su función derivd f'. ) Indic, rzonndo l respuest, cuál es l gráfic de f y cuál l
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2016 MATEMÁTICAS II TEMA 5: INTEGRALES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 6 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserv, Ejercicio, Opción A Reserv, Ejercicio, Opción B Reserv, Ejercicio,
SELECTIVIDAD CASTILLA Y LEÓN/ MATEMÁTICAS / ANÁLISIS DE FUNCIONES
Junio 009 SELECTIVIDAD CASTILLA Y LEÓN/ MATEMÁTICAS / ANÁLISIS DE FUNCIONES PR-.- Un cmpo de tletismo de 00 metros de perímetro consiste en un rectángulo y dos semicírculos en dos ldos opuestos, según
MATEMÁTICAS 2º BACH CIENCIAS INTEGRAL DEFINIDA
Profesor: Fernndo Ureñ Portero 1. APROXIMACIÓN DE ÁREAS BAJO UNA CURVA Hy infinidd de funciones extríds del mundo rel (científico, económico, físic )pr ls cules tiene especil relevnci clculr el áre jo
Tema 9. La Integral de Riemann Construcción de la integral de Riemann.
Tem 9 L Integrl de Riemnn. 9.1. Construcción de l integrl de Riemnn. Definición 9.1.1. Se I = [, b] R un intervlo cerrdo y cotdo (compcto). Se llm prtición de I todo conjunto de puntos P = {x 0, x 1,,
4.6. Teorema Fundamental del Cálculo
Ingenierí Mtemátic FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Dierencil e Integrl 07-2 SEMANA 8: INTEGRAL DE RIEMANN 4.6. Teorem Fundmentl del Cálculo Proposición 4.5. Se un
SEMANA 8: INTEGRAL DE RIEMANN
Ingenierí Mtemátic FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Dierencil e Integrl 08-2 Ingenierí Mtemátic Universidd de Chile SEMANA 8: INTEGRAL DE RIEMANN 4.6. Teorem Fundmentl
Grado en Química Bloque 1 Funciones de una variable
Grdo en Químic Bloque Funciones de un vrible Sección.6: Integrción y plicciones. L integrl sirve pr clculr áres de figurs plns limitds por curvs. Pr definir l integrl de un función f : [, b] R se utilizn
Integración de funciones de una variable real
Cpítulo 5 Integrción de funciones de un vrible rel 5.1. Introducción Los inicios del Cálculo Integrl se remontn Arquímedes, mtemático, físico e ingeniero griego del S.III A.C., quién clculó el áre de numeross
Teóricas de Análisis Matemático (28) - Práctica 10 - Área entre curvas. y = f (x) f (x)dx A =
Teórics de nálisis Mtemático 28) - Práctic 0 - Áre entre curvs Práctic 0 - Prte Áre entre curvs Un de ls plicciones del cálculo de integrles definids es el cálculo de áres de regiones cotds del plno delimitds
Recordemos antes una consecuencia, ya vista, del teorema de Lagrange: si
CÁLCULO IINTEGRAL IINTEGRAL IINDEFIIN IIDA Hemos visto que, por el cálculo diferencil o proceso de derivción es posile definir con precisión, rect tngente un curv en un punto. Por el cálculo integrl o
LÍMITE DE UNA FUNCIÓN
LÍITE DE UNA FUNCIÓN. Limite de un unción en un punto.. Límites lterles.. Limites ininitos.. Límites en el ininito.. Propieddes de los límites. 6. Operciones con ininito. 7. Cálculo de límites. 8. Cálculo
x b EXPONENTES Y LOGARITMOS Formulario Matemático para Economía III x = x x = Claudia Aburto 1 = x a A. Propiedades exponenciales: 1.
Formulrio Mtemático pr Economí III EXPONENTES Y LOGARITMOS Cludi Aurto A. Propieddes eponenciles:. Multiplicción 4. División 6 4 6 +. Distriución con Multiplicción: () () 5 5 5 4. Distriución con división
el blog de mate de aida. MATE I. Derivadas. Pág. 1
el blo de mte de id. MATE I. erivds. Pá. TASAS E VARIACIÓN L siuiente tbl orece el número de ncimientos en cd mes lo lro de un ño en un determind poblción: Meses 7 8 9 Ncimientos 7 8 98 9 8 7 Pr sber,
Integral Definida. Tema 6. 6.1 Introducción. 6.2 Definición de Integral Definida
Tem 6 Integrl Definid 6.1 Introducción En este tem estudiremos l Integrl Definid o Integrl de Riemnn, un concepto mtemático que esencilmente puede describirse como el límite de un sum cundo el número de
2. FUNCIONES REALES DE UNA VARIABLE REAL 2.2. LÍMITES
Águed Mt Miguel Rees, Dpto. de Mtemátic Aplicd, FI-UPM. 2. FUNCINES REALES DE UNA VARIABLE REAL 2.2.. Límite de un unción en un punto 2.2. LÍMITES Se = () un unción deinid en un entorno del punto R (unque
LA INTEGRAL DE RIEMANN
LA INTEGRAL DE RIEMANN En este tem se introduce el Cálculo Integrl que demás de permitir clculr longitudes, áres y volúmenes, tiene multiples plicciones en l Ciencis, Ingenierí, etc... En primer lugr,
Aplicaciones de la derivada
1 CAPÍTULO 8 Aplicciones de l derivd 8.1 Derivilidd monotoní 1 Como se se, si f es un función derivle en 0, entonces l derivd de f en 0 es un número rel fijo f 0. 0 /, el cul puede ser f 0. 0 / > 0 o ien
UNIDAD 6: DERIVADAS. 1. TASA DE VARIACIÓN MEDIA. Se define la tasa de variación media de una función f ( x) y = en un intervalo [ b] a, como: = siendo
IES Pdre Poved (Gudi UNIDAD 6: DERIVADAS.. TASA DE VARIACIÓN MEDIA. Se deine l ts de vrición medi de un unción y en un intervlo [ b] T. M. [, b] ( b (, como: b (,, B,, Si considero l rect que une A ( b
(Chpter hed:)integrles MULTIPLES El concepto de integrl de un función de un sol vrible sobre un intervlo estudido en el Cálculo I, se extiende de mner nturl primero funciones de dos vribles sobre un región
ANALISIS MATEMATICO II INTEGRAL DEFINIDA
ANALISIS MATEMATICO II INTEGRAL DEFINIDA Mrí Susn Montelr Fcultd de Ciencis Excts, Ingenierí y Agrimensur - UNR El problem del áre Dd f : [, b] R, tl que f(x) 0 pr todo x [, b] b x Se f un función no negtiv
Sumas Superiores e inferiores (ó Sumas de Riemann)
Unidd 1 Integrl denid 1.2 Sums superiores e ineriores (o sums de Riemnn). Sums Superiores e ineriores (ó Sums de Riemnn) Denición 1. Se : [, b] R. Se dice que est cotd superiormente sobre [, b], cundo
5.2 Integral Definida
80 CÁLCULO / CIENCIAS AMBIENTALES / TEMA 5 5.2 Integrl Definid Definición de Integrl Definid El concepto de integrl definid se construye prtir de l ide de psr l límite un sum cundo el número de sumndos
Z ξ. g(t)dt y proceda como sigue:
Prolems Prolem.9. Sen f(x) y g(x) funciones continus en [,] y f (x) continu y de signo constnte en [,]. demuestre que (,) tl que f(x)g(x)dx = f() g(x)dx+ f() g(x)dx. R Pr esto considere l función G(x)
2. [ANDA] [JUN-B] Determinar b sabiendo que b > 0 y que el área de la región limitada por la curva y = x 2 y la recta y = bx es igual
MsMtes.com Integrles Selectividd CCNN. [ANDA] [JUN-A] De l función f:(-,+ ) se se que f (x ) = y que f() =. (x+) () Determinr f. () Hllr l primitiv de f cuy gráfic ps por el punto (,).. [ANDA] [JUN-B]
Objetivos. Cálculo de primitivas. La integral definida. Funciones integrables. Aplicaciones geométricas de la integral.
TEMA Ojetivos. álulo de rimitivs. L integrl deinid. Funiones integrles. Integrles imrois. Aliiones geométris de l integrl. Plnter y lulr integrles de uniones de un vrile y lirls l resoluión de rolems reltivos
Fundamentos matemáticos. Tema 7 Integración. Aplicaciones
Fundmentos mtemáticos Grdo en Ingenierí grícol y del medio rurl Tem 7 Integrción. Aplicciones José Brrios Grcí Deprtmento de Análisis Mtemático Universidd de L Lgun jrrios@ull.es 16 Licenci Cretive Commons
Integración indefinida y definida. Aplicaciones de la integral: valor medio de una función continua.
Integrción indefinid y definid. Aplicciones de l integrl: vlor medio de un función continu. Jun Ruiz 1 Mrcos Mrvá 1 1 Deprtmento de Mtemátics. Universidd de Alclá de Henres. Contenidos Introducción 1 Introducción
TEMA 1.2.4: APLICACIONES DEL CÁLCULO INTEGRAL
Asigntur: Mtemátics I Profesor: Roque Molin Legz TEMA..4: APLICACIONES DEL CÁLCULO INTEGRAL Progrm detlldo: - Áres de recintos plnos. - Volúmenes de revolución. - Volumen de un sólido por secciones plns.
6.1 Sumas de Riemann e integral definida
Tem 6 Integrción Definid 6.1 Sums de Riemnn e integrl definid Supongmos que estmos interesdos en clculr el áre que se encuentr bjo un curv y = f(x) en un intervlo [, b] (pr simplificr, consideremos el
Calculo diferencial e Integral
Clculo diferencil e Integrl Mtemátic º Año Cód. 0-8 J u n C r l o s B u e B e t i n C t t n e o Dpto. de Mtemátic Cálculo Diferencil e Integrl INTEGRAL INDEFINIDA. FUNCIÓN PRIMITIVA DE UNA FUNCIÓN. Definición:
La integral indefinida Métodos de integración Integración de funciones de una variable real Integración impropia Aplicaciones de la integral
Febrero, 2005 Índice generl Se f : I IR. Definición Diremos que F es primitiv de f en I si F (x) = f (x), x I. Teorem Si F y G son dos primitivs de un mism función f en un intervlo I, entonces, / k IR
Primitiva de una función.
Primitiv de un función. 1 / 29 Definición. Un función derivble F es primitiv de l función f en el intervlo I si F (x) = f(x), pr todo x I. Ejemplos 2 / 29 Ejemplo. Se f : R R tl que f(x) = 4x 3. i) F(x)
dx x 2 dx 22. x2 +x-2 dx cos 2 x+cosx senx
Integrles Clculr l integrl: +e + -+ + sen(+) 6-7 - 8 9 - + ln - 9- + (-)cos 6 ln 7 e 8 sen 9 e - + + + +- +- -6 - ++ () Describir el método de integrción por cmbio de vrible () Usndo el cmbio de vrible
El Teorema Fundamental del Cálculo
del Cálculo Deprtmento de Análise Mtemátic Fcultde de Mtemátics Universidde de Sntigo de Compostel Sntigo, 2011 L Regl de Brrow: un resultdo sorprendente Recordemos que f es integrble en I = [, b] y su
Unidad 12: LA INTEGRAL DEFINIDA. II. Consumo de energía eléctrica (gráfica potencia-tiempo)
Unidd : LA INTEGRAL DEFINIDA..- ÁREA BAJO UNA CURVA Significdo de lguns áres Hy infinidd de funciones etríds del mundo rel (científico, económico, ) pr ls cules tiene especil relevnci el áre jo su gráfic.
Cálculo integral de funciones de una variable
Lino Alvrez - Aure Mrtínez CÁLCULO II Cálculo integrl de funciones de un vrible 1 L integrl de Riemnn Se f : [, b] R R un función cotd en [, b]. Definición 1.- Un prtición P = {t 0, t 1,..., t n } del
( ) ( ) Teniendo en cuenta que para que exista límite en un punto, deben existir los laterales y ser iguales, la definición anterior se extender a:
Modelo 0. Prolem B.- (Cliicción máim: puntos) L igur represent l gráic de un unción : [ 6; 5] R. Contéstese rzondmente ls pregunts plnteds. d) En qué vlores de ( 6; 5) no es derivle? d. Gráicmente, ls
CONCEPTOS CLAVE DE LA UNIDAD 2., entonces se dice que F es antiderivada de f. Siempre que f(x) esté definida.
CONCEPTOS CLAVE DE LA UNIDAD. Si f y F son funciones de, tles que F '( ) f ( ), entonces se dice que F es ntiderivd de f. Siempre que f() esté definid. Alguns veces l ntiderivd, se le llm función primitiv..
Tema 6: LA DERIVADA. Índice: 1. Derivada de una función.
LA DERIVADA Tem 6: LA DERIVADA Índice:. Derivd de un unción... Derivd de un unción en un punto... Interpretción geométric.3. Derivds lterles..4. Función derivd. Derivds sucesivs.. Derivbilidd y continuidd.
TEMA 13: INTEGRAL DEFINIDA
TEMA : INTEGRAL DEFINIDA..- El problem de clculr el áre bjo un curv El problem de clculr el áre limitd por lguns curvs fue borddo, por los mtemáticos griegos, desde bstntes siglos trás. El método empledo
Junio 2010 (Prueba General) JUNIO 2010 OPCIÓN A
Junio 00 (Prueb Generl) JUNIO 00 OPCIÓN A.- ) Dds ls funciones f () = ln () y g() =, hllr el áre del recinto plno limitdo por ls rects =, = y ls gráfics de f () y g (). b) Dr un ejemplo de función continu