Lic. Manuel de Jesús Campos Boc
|
|
- Óscar Carmona Carrasco
- hace 6 años
- Vistas:
Transcripción
1 UNIVERSIDAD MARIANO GÁLVEZ DE GUATEMALA FACULTAD DE CIENCIAS DE LA ADMINISTRACIÓN DIRECCIÓN GENERAL DE CENTRO UNIVERSITARIOS CENTRO UNIVERSITARIO DE VILLA NUEVA CURSO MATEMÁTICAS APLICADA I 0 Lic. Manuel de Jesús Campos Boc DECIMA UNIDAD GEOMETRIA ANALITICA Se conoce como geometría analítica al estudio de ciertas líneas y figuras geométricas aplicando técnicas básicas del análisis matemático y del álgebra en un determinado sistema de coordenadas. Lo novedoso de la geometría analítica es que permite representar figuras geométricas mediante fórmulas del tipo f(x, y) = 0, donde f representa una función u otro tipo de expresión matemática. La idea que llevó a la geometría analítica fue: a cada punto en un plano le corresponde un par ordenado de números y a cada par ordenado de números le corresponde un punto en un plano. Fue inventada por René Descartes y por Pierre Fermat, a principios del siglo VII, y como vimos, relaciona la matemática y el álgebra con la geometría por medio de las correspondencias anteriores. Además, Descartes y Fermat observaron, y esto es crucial, que las ecuaciones algebraicas corresponden con figuras geométricas. Eso significa que las líneas y ciertas figuras geométricas se pueden expresar como ecuaciones y, a su vez, las ecuaciones pueden graficarse como líneas o figuras geométricas. Por lo expresado anteriormente, podemos aventurar una definición más sencilla para la geometría analítica:
2 Ordenadas Rama de la geometría en que las líneas rectas, las curvas y las figuras geométricas se representan mediante expresiones algebraicas y numéricas usando un conjunto de ejes y coordenadas. -Plano Cartesiano En la práctica, eso significa que cualquier punto del plano se puede localizar con respecto a un par de ejes perpendiculares (Plano cartesiano) anotando las distancias desde dicho punto a cada uno de los ejes..- Cuadrante II (-, +) Cuadrante III (-, -) Cuadrante I (+, +) Abscisas Cuadrante IV (+, -) La línea,- se llama eje de las x o eje de las abscisas y la línea, - se llama eje de las y o eje de las ordenadas. En geometría los ejes dividen al plano en cuatro partes llamadas cuadrantes. ó es el primer cuadrante, ó - el segundo, - ó -' el tercero y ó el cuarto cuadrante. Podemos decir que el origen O, donde se encuentra el cero común de ambas rectas numéricas, divide a cada eje en dos semiejes, uno positivo y el otro negativo. Cualquier distancia o posición medida sobre el eje de las x de O hacia la derecha es positiva y de O hacia la izquierda es negativa. En geometría, si trazamos dos rectas numéricas perpendiculares entre sí haciendo coincidir el punto de corte con el cero común, obtenemos un sistema de ejes coordenados rectangular.
3 -Ubicación de un Punto por sus Coordenadas Conociendo las coordenadas de un punto se puede ubicar el punto en el plano. Por ejemplo, ubicar el punto cuyas coordenadas son - y. Por convención el número que se menciona primero es la abscisa (x) y el segundo la ordenada (y). La notación empleada para indicar que la abscisa es - y la ordenada es (-, ). Los puntos: (, ); (-, -); (, -).- P (-, ) P(, -) - P(-, -) P(, ) -Distancia entre dos puntos Por haberlo estudiado, sabemos que el Plano cartesiano se usa como un sistema de referencia para localizar puntos en un plano. Otra de las utilidades de dominar los conceptos sobre el Plano cartesiano radica en que, a partir de la ubicación de las coordenadas de dos puntos es posible calcular la distancia entre ellos. d = (x x ) + (y y )
4 Por ejemplo: la distancia entre los puntos (, ) y (, ) es:.- P(, ) P(, ) d = ( - ) + ( - ( ) ) d = ( ) + ( ) d = 9 + d = d = unidades
5 Trazo de una ecuación lineal El sistema de coordenadas es usada además de localización de puntos en el plano, para graficar el conjunto de soluciones de ecuaciones de dos variables como: y = x + x + y = Digamos que queremos hacer la gráfica la ecuación lineal y = x +. Hay que asignar valores a la x y resolverlo para encontrar el valor de y. Con los resultados se formaran los puntos de la gráfica de la siguiente manera: Ejemplo: Encontrar los puntos de la ecuación y = x +. Vamos a utilizar la siguiente tabla para organizar el trabajo. Le daremos a la x, los valores de -,, 0, y Resolviendo: y = x + SUSTITUIR VALORES x y y = ( - ) + y = ( ) + y = - + y = - + y = y = y = ( 0 ) + y = ( ) + y = 0 + y = + y = y = 0 y = ( ) + y = + y =
6 GRAFICAR LOS PUNTOS (0, ) (, ) (-, ) (, ) (, 0) Si tenemos la ecuación x + y = x + y = y = - x y = - x y = - x
7 x y SUSTITUIR VALORES y = - ( 0 ) y = - ( ) y = - 0 y = - y = y = y = - ( ) y = - ( ) y = - y = - y = y = 0 y = - ( ) y = - y =
Funciones más usuales 1
Funciones más usuales 1 1. La función constante Funciones más usuales La función constante Consideremos la función más sencilla, por ejemplo. La imagen de cualquier número es siempre 2. Si hacemos una
SISTEMAS DE COORDENADAS SISTEMA COORDENADO UNIDIMENSIONAL
SISTEMAS DE COORDENADAS En la vida diaria, nos encontramos con el problema de ordenar algunos objetos; de tal manera que es necesario agruparlos, identificarlos, seleccionarlos, estereotiparlos, etc.,
Lic. Manuel de Jesús Campos Boc
UNIVERSIDAD MARIANO GÁLVEZ DE GUATEMALA FACULTAD DE CIENCIAS DE LA ADMINISTRACIÓN DIRECCIÓN GENERAL DE CENTRO UNIVERSITARIOS CENTRO UNIVERSITARIO DE VILLA NUEVA CURSO MATEMÁTICAS APLICADA I 01 Lic. Manuel
Funciones definidas a trozos
Concepto de función Dominio de una función Características de las funciones Intersecciones con los ejes Crecimiento y decrecimiento Máximos y mínimos Continuidad y discontinuidad Simetrías Periodicidad
Características de funciones que son inversas de otras
Características de funciones que son inversas de otras Si f es una función inyectiva, llamamos función inversa de f y se representa por f 1 al conjunto. f 1 = a, b b, a f} Es decir, f 1 (x, y) = { x =
a < b y se lee "a es menor que b" (desigualdad estricta) a > b y se lee "a es mayor que b" (desigualdad estricta)
Desigualdades Dadas dos rectas que se cortan, llamadas ejes (rectangulares si son perpendiculares, y oblicuos en caso contrario), un punto puede situarse conociendo las distancias del mismo a los ejes,
Universidad de la Frontera. Geometría Anaĺıtica: Departamento de Matemática y Estadística. Cĺınica de Matemática. J. Labrin - G.
Universidad de la Frontera Departamento de Matemática y Estadística Cĺınica de Matemática 1 Geometría Anaĺıtica: J. Labrin - G.Riquelme 1. Los puntos extremos de un segmento son P 1 (2,4) y P 2 (8, 4).
COORDENADAS CURVILINEAS
CAPITULO V CALCULO II COORDENADAS CURVILINEAS Un sistema de coordenadas es un conjunto de valores que permiten definir unívocamente la posición de cualquier punto de un espacio geométrico respecto de un
Lección 7 - Coordenadas rectangulares y gráficas
Lección 7 - Coordenadas rectangulares gráficas Coordenadas rectangulares gráficas Objetivos: Al terminar esta lección podrás usar un sistema de coordenadas rectangulares para identificar puntos en un plano
1.4.- D E S I G U A L D A D E S
1.4.- D E S I G U A L D A D E S OBJETIVO: Que el alumno conozca y maneje las reglas empleadas en la resolución de desigualdades y las use para determinar el conjunto solución de una desigualdad dada y
INSTITUCIÓN EDUCATIVA SAN PEDRO CLAVER DEPARTAMENTO DE INGLÉS FECHA: 31 DE AGOSTO AL 11 DE SEPTIEMBRE 2015
DOCENTE: Juan de Dios Varelas GRADO: 5º A-B-C-D- E - F TEMA: EL CUBO Y ORTOEDRO FECHA: 31 DE AGOSTO AL 11 DE SEPTIEMBRE 2015 ESTANDAR: construyo y descompongo figuras y sólidos a partir de condiciones
Lección 18: Plano car tesiano. Mapas y planos
GUÍA DE MATEMÁTICAS II 9 Lección 8: Plano car tesiano. Mapas y planos Mapas y planos La siguiente figura es un plano de una porción del Centro Histórico de la Ciudad de México. En él se ha utilizado la
UNIDAD 4: PLANO CARTESIANO, RELACIONES Y FUNCIONES. OBJETIVO DE APRENDIZAJE: Representar gráficamente relaciones y funciones en el plano cartesiano.
UNIDAD 4: PLANO CARTESIANO, RELACIONES Y FUNCIONES OBJETIVO DE APRENDIZAJE: Representar gráficamente relaciones y funciones en el plano cartesiano. EL PLANO CARTESIANO. El plano cartesiano está formado
1. Vectores 1.1. Definición de un vector en R2, R3 (Interpretación geométrica), y su generalización en Rn.
1. VECTORES INDICE 1.1. Definición de un vector en R 2, R 3 (Interpretación geométrica), y su generalización en R n...2 1.2. Operaciones con vectores y sus propiedades...6 1.3. Producto escalar y vectorial
Geometría analítica. Impreso por Juan Carlos Vila Vilariño Centro I.E.S. PASTORIZA
Conoce los vectores, sus componentes y las operaciones que se pueden realizar con ellos. Aprende cómo se representan las rectas y sus posiciones relativas. Impreso por Juan Carlos Vila Vilariño Centro
SOLUCIONES CIRCUNFERENCIA. 1. Ecuación de la circunferencia cuyo centro es el punto (1, 2) y que pasa por el punto (2,3).
SOLUCIONES CIRCUNFERENCIA 1. Ecuación de la circunferencia cuyo centro es el punto (1,) y que pasa por el punto (,). Para determinar la ecuación de la circunferencia es necesario conocer el centro y el
FUNCIONES CUADRÁTICAS Y RACIONALES
www.matesronda.net José A. Jiménez Nieto FUNCIONES CUADRÁTICAS Y RACIONALES 1. FUNCIONES CUADRÁTICAS. Representemos, en función de la longitud de la base (), el área (y) de todos los rectángulos de perímetro
MÉTODOS DE ELIMINACIÓN Son tres los métodos de eliminación más utilizados: Método de igualación, de sustitución y de suma o resta.
ECUACIONES SIMULTÁNEAS DE PRIMER GRADO CON DOS INCÓGNITAS. Dos o más ecuaciones con dos incógnitas son simultáneas cuando satisfacen iguales valores de las incógnitas. Para resolver ecuaciones de esta
Transformación de gráfica de funciones
Transformación de gráfica de funciones La graficación de las funciones es como un retrato de la función. Nos auda a tener una idea de cómo transforma la función los valores que le vamos dando. A partir
Profr. Efraín Soto Apolinar. La función lineal. y = a 0 + a 1 x. y = m x + b
La función lineal Una función polinomial de grado uno tiene la forma: y = a 0 + a 1 x El semestre pasado estudiamos la ecuación de la recta. y = m x + b En la notación de funciones polinomiales, el coeficiente
DOMINIO Y RANGO DE UNA FUNCIÓN I N D I C E. martilloatomico@gmail.com. Página. Titulo:
Titulo: DOMINIO Y RANGO I N D I C E Página DE UNA FUNCIÓN Año escolar: 4to. Año de Bachillerato Autor: José Luis Albornoz Salazar Ocupación: Ing Civil. Docente Universitario País de residencia: Venezuela
n es la ordenada en el origen, el punto de corte de la recta con el eje de ordenadas (el vertical, y)
Una función es una relación entre 2 magnitudes, de manera que a cada valor de x de la primera le corresponde un único valor de y, de la segunda. Este valor también se designa por f(x) y se conoce como
Cajón de Ciencias. Ejercicios resueltos de Movimiento rectilíneo uniforme
Ejercicios resueltos de Movimiento rectilíneo uniforme 1) Pasar de unidades las siguientes velocidades: a) de 36 km/h a m/s b) de 10 m/s a km/h c) de 30 km/min a cm/s d) de 50 m/min a km/h 2) Un móvil
3.1 DEFINICIÓN. Figura Nº 1. Vector
3.1 DEFINICIÓN Un vector (A) una magnitud física caracterizable mediante un módulo y una dirección (u orientación) en el espacio. Todo vector debe tener un origen marcado (M) con un punto y un final marcado
En la siguiente gráfica se muestra una función lineal y lo que representa m y b.
FUNCIÓN LINEAL. La función lineal o de primer grado es aquella que se representa gráficamente por medio de una línea recta. Dicha función tiene una ecuación lineal de la forma f()= =m+b, en donde m b son
DESIGUALDADES E INECUACIONES
DESIGUALDAD DESIGUALDADES E INECUACIONES Para hablar de la NO IGUALDAD podemos utilizar varios términos o palabras. Como son: distinto y desigual. El término "DISTINTO" (signo ), no tiene apenas importancia
DIBUJO TÉCNICO. UNIDAD DIDÁCTICA 9: Geometría 2D (V)
UNIDAD DIDÁCTICA 9: Geometría 2D (V) ÍNDICE Página: 1 CURVAS CÓNICAS. ELEMENTOS CARACTERÍSTICOS.. 2 2 TRAZADO MEDIANTE RADIOS VECTORES 4 3 RECTAS TANGENTES A CÓNICAS 5 3.1 CIRCUNFERENCIAS FOCALES 6 3.2
2 año secundario. Función Lineal MINISTERIO DE EDUCACIÓN. Se llama función lineal porque la potencia de la x es 1. Su gráfico es una recta.
año secundario Función Lineal Se llama función lineal porque la potencia de la x es. Su gráfico es una recta. Y en general decimos que es de la forma : f(x)= a. x + b donde a y b son constantes, a recibe
Funciones. 1. Funciones - Dominio - Imagen - Gráficas
Nivelación de Matemática MTHA UNLP 1 Funciones 1 Funciones - Dominio - Imagen - Gráficas 11 Función Una función es una asociación, que a cada elemento de un conjunto A le asocia eactamente un elemento
ESTÁTICA 2. VECTORES. Figura tomada de http://www.juntadeandalucia.es/averroes/~04001205/fisiqui/imagenes/vectores/473396841_e1de1dd225_o.
ESTÁTICA Sesión 2 2 VECTORES 2.1. Escalares y vectores 2.2. Cómo operar con vectores 2.2.1. Suma vectorial 2.2.2. Producto de un escalar y un vector 2.2.3. Resta vectorial 2.2.4. Vectores unitarios 2.2.5.
Definición de vectores
Definición de vectores Un vector es todo segmento de recta dirigido en el espacio. Cada vector posee unas características que son: Origen: O también denominado Punto de aplicación. Es el punto exacto sobre
Esta es la forma vectorial de la recta. Si desarrollamos las dos posibles ecuaciones, tendremos las ecuaciones paramétricas de la recta:
Todo el mundo sabe que dos puntos definen una recta, pero los matemáticos son un poco diferentes y, aún aceptando la máxima universal, ellos prefieren decir que un punto y un vector nos definen una recta.
1. Definición 2. Operaciones con funciones
1. Definición 2. Operaciones con funciones 3. Estudio de una función: Suma y diferencia Producto Cociente Composición de funciones Función reciproca (inversa) Dominio Recorrido Puntos de corte Signo de
Muchas veces hemos visto un juego de billar y no nos percatamos de los movimientos de las bolas (ver gráfico 8). Gráfico 8
Esta semana estudiaremos la definición de vectores y su aplicabilidad a muchas situaciones, particularmente a las relacionadas con el movimiento. Por otro lado, se podrán establecer las características
I. RELACIONES Y FUNCIONES 1.1. PRODUCTO CARTESIANO { }
I. RELACIONES Y FUNCIONES PAREJAS ORDENADAS Una pareja ordenada se compone de dos elementos x y y, escribiéndose ( x, y ) donde x es el primer elemento y y el segundo elemento. Teniéndose que dos parejas
TEMA 10 FUNCIONES ELEMENTALES MATEMÁTICAS I 1º Bach. 1
TEMA 10 FUNCIONES ELEMENTALES MATEMÁTICAS I 1º Bach. 1 TEMA 10 - FUNCIONES ELEMENTALES 10.1 CONCEPTO DE FUNCIÓN DEFINICIÓN : f es una función de R en R si a cada número real, x Dom, le hace corresponder
Profr. Efraín Soto Apolinar. Función Inversa
Función Inversa Una función es una relación entre dos variables, de manera que para cada valor de la variable independiente eiste a lo más un único valor asignado a la variable independiente por la función.
Funciones, x, y, gráficos
Funciones, x, y, gráficos Vamos a ver los siguientes temas: funciones, definición, dominio, codominio, imágenes, gráficos, y algo más. Recordemos el concepto de función: Una función es una relación entre
Juan Antonio González Mota Profesor de Matemáticas del Colegio Juan XIII Zaidín de Granada
FUNCIONES CONOCIDAS. FUNCIONES LINEALES. Se llaman funciones lineales a aquellas que se representan mediante rectas. Su epresión en forma eplícita es y f ( ) a b. En sentido más estricto, se llaman funciones
Se llama dominio de una función f(x) a todos los valores de x para los que f(x) existe. El dominio se denota como Dom(f)
MATEMÁTICAS EJERCICIOS RESUELTOS DE FUNCIONES FUNCIONES A. Introducción teórica A.1. Definición de función A.. Dominio y recorrido de una función, f() A.. Crecimiento y decrecimiento de una función en
El espacio tridimensional. Tema 01: Álgebra lineal y geometría en R 3. Vectores. El producto punto o producto escalar. Teorema
El espacio tridimensional Tema 01: Álgebra lineal y geometría en R 3 Juan Ignacio Del Valle Gamboa Sede de Guanacaste Universidad de Costa Rica Ciclo I - 2014 Partimos de los conceptos de punto y vector.
VECTORES. Se representa gráficamente por medio de una flecha, por ejemplo: Todos los vectores poseen las siguientes características:
Un vector v es un segmento orientado. VECTORES Se representa gráficamente por medio de una flecha, por ejemplo: Todos los vectores poseen las siguientes características: Punto de aplicación: es el lugar
Plan de clase (1/4) Intenciones didácticas: Que los alumnos reflexionen sobre la manera de ubicar puntos en el plano cartesiano.
Plan de clase (1/4) Intenciones didácticas: Que los alumnos reflexionen sobre la manera de ubicar puntos en el plano cartesiano. Consigna: En equipos, resuelvan la siguiente actividad. A partir de la siguiente
Concepto de función. El subconjunto en el que se define la función se llama dominio o campo existencia de la función. Se designa por D.
Concepto de función Dados dos conjuntos A y B, llamamos función a la correspondencia de A en B en la cual todos los elementos de A tienen a lo sumo una imagen en B, es decir una imagen o ninguna. Función
NOCIONES BÁSICAS DE LA GEOMETRÍA ANALÍTICA
. NOCIONES BÁSICAS DE LA GEOETRÍA ANALÍTICA NOCIONES BÁSICAS DE LA GEOETRÍA ANALÍTICA CONTENIDO Sistema de coordenadas rectangulares o cartesianas Coordenadas cartesianas de un punto Distancia entre dos
Cap. 24 La Ley de Gauss
Cap. 24 La Ley de Gauss Una misma ley física enunciada desde diferentes puntos de vista Coulomb Gauss Son equivalentes Pero ambas tienen situaciones para las cuales son superiores que la otra Aquí hay
Universidad de Costa Rica Escuela de Matemática CONARE-PROYECTO RAMA. Funciones
Universidad de Costa Rica Escuela de Matemática CONARE-PROYECTO RAMA Funciones José R. Jiménez F. Temas de pre-cálculo I ciclo 007 Funciones 1 Índice 1. Funciones 3 1.1. Introducción...................................
Lección 24: Lenguaje algebraico y sustituciones
LECCIÓN Lección : Lenguaje algebraico y sustituciones En lecciones anteriores usted ya trabajó con ecuaciones. Las ecuaciones expresan una igualdad entre ciertas relaciones numéricas en las que se desconoce
VECTORES. Por ejemplo: la velocidad de un automóvil, o la fuerza ejercida por una persona sobre un objeto.
Un vector v es un segmento orientado. VECTORES Se representa gráficamente por medio de una flecha, por ejemplo: Todos los vectores poseen las siguientes características: Punto de aplicación: es el lugar
Estudio de ceros de ecuaciones funcionales
Capítulo 1 Estudio de ceros de ecuaciones funcionales Problema 1.1 Calcular el número de ceros de la ecuación arctang(x) = 4 x, dando un intervalo 5 donde se localicen. Solución: Denimos f(x) = arctan(x)
La forma algebraica de la ecuación producto cruz es más complicada que la del producto escalar. Para dos vectores 3D y,
Materia: Matemática de 5to Tema: Producto Cruz Marco Teórico Mientras que un producto escalar de dos vectores produce un valor escalar; el producto cruz de los mismos dos vectores produce una cantidad
FUNCIONES. Funciones. Qué es una función? Indicadores. Contenido
Indicadores FUNCIONES Calcula el valor de incógnitas usando la definición de función. Determina valores de la variable dependiente a partir de valores dados a la variable independiente. Determina los puntos
TEMA 8: FUNCIONES. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco.
009 TEMA 8: FUNCIONES. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco. Manuel González de León. mgdl 01/01/009 TEMA 08: FUNCIONES. 1. Correspondencia.. Funciones. 3. Representación
Funciones de Varias Variables
Funciones de Varias Variables 1. Funciones de dos Variables Sea Ω un subconjunto del plano x, y, esto es Ω R 2. Una función real f de dosvariablesesunareglaqueasociaacadaparordenado (x,y) Ω unúniconúmeroreal
1. Funciones y sus gráficas
FUNCIONES 1. Funciones sus gráficas Función es una relación entre dos variables a las que, en general se les llama e. es la variable independiente. es la variable dependiente. La función asocia a cada
Aproximación local. Plano tangente. Derivadas parciales.
Univ. de Alcalá de Henares Ingeniería de Telecomunicación Cálculo. Segundo parcial. Curso 004-005 Aproximación local. Plano tangente. Derivadas parciales. 1. Plano tangente 1.1. El problema de la aproximación
Coordenadas cartesianas
Matemáticas del día a día 1 Coordenadas cartesianas Un punto se representa en los planos o mapas con dos valores ordenados. Estos valores, normalmente, son dos números pero también pueden ser dos letras
Límites infinitos y trigonométricos.
Universidad Tecnológica del Sureste de Veracruz Química Industrial CÁLCULO DIFERENCIAL E INTEGRAL Límites infinitos y trigonométricos. NOMBRE DEL ALUMNO Morales Aguilar Itzel Garrido Navarro Arantxa Itchel
EJERCICIOS SOBRE : NÚMEROS ENTEROS
1.- Magnitudes Absolutas y Relativas: Se denomina magnitud a todo lo que se puede medir cuantitativamente. Ejemplo: peso de un cuerpo, longitud de una cuerda, capacidad de un recipiente, el tiempo que
Vectores: Producto escalar y vectorial
Nivelación de Matemática MTHA UNLP 1 Vectores: Producto escalar y vectorial Versores fundamentales Dado un sistema de coordenadas ortogonales, se considera sobre cada uno de los ejes y coincidiendo con
GEOMETRÍA ANALÍTICA 2º Curso de Bachillerato 22 de mayo de 2008
1. Sean los puntos A (1, 0,-1) y B (,-1, 3). Calcular la distancia del origen de coordenadas a la recta que pasa por A y B. Calculemos la recta que pasa por A y B. El vector AB es (1,-1,4) y por tanto
Inecuaciones y Sistemas de Inecuaciones Lineales con una Incóg
PreUnAB Inecuaciones y Sistemas de Inecuaciones Lineales con una Incógnita Clase # 11 Agosto 2014 Intervalos Reales Orden en R Dados dos números reales a y b, se dice que a es menor que b, a < b, si b
Matemáticas 1204, 2013 Semestre II Tarea 5 Soluciones
Matemáticas 104, 01 Semestre II Tarea 5 Soluciones Problema 1: Una definición errónea de línea tangente a una curva es: La línea L es tangente a la curva C en el punto P si y sólamente si L pasa por C
Actividades recreativas para recordar a los vectores. 1) Representa en un eje de coordenadas las siguientes sugerencias:
Actividades recreativas para recordar a los vectores 1) Representa en un eje de coordenadas las siguientes sugerencias: a) Dibuja un segmento y oriéntalo en sentido positivo. b) Dibuja un segmento y oriéntalo
Capítulo VI DESIGUALDADES E INECUACIONES
Capítulo VI DESIGUALDADES E INECUACIONES 6.1 DEFINICIONES: a. Desigualdad: Se denomina desigualdad a toda expresión que describe la relación entre al menos elementos escritos en términos matemáticos, y
La derivada de y respecto a x es lo que varía y por cada unidad que varía x. Ese valor se designa por dy dx.
Conceptos de derivada y de diferencial Roberto C. Redondo Melchor, Norberto Redondo Melchor, Félix Redondo Quintela 1 Universidad de Salamanca 18 de agosto de 2012 v1.3: 17 de septiembre de 2012 Aunque
Seminario Universitario Material para estudiantes. Física. Unidad 2. Vectores en el plano. Lic. Fabiana Prodanoff
Seminario Universitario Material para estudiantes Física Unidad 2. Vectores en el plano Lic. Fabiana Prodanoff CONTENIDOS Vectores en el plano. Operaciones con vectores. Suma y producto por un número escalar.
Movimientos en el plano
7 Movimientos en el plano Objetivos En esta quincena aprenderás a: Manejar el concepto de vector como elemento direccional del plano. Reconocer los movimientos principales en el plano: traslaciones, giros
M a t e m á t i c a s I I 1
Matemáticas II Matemáticas II ANDALUCÍA CNVCATRIA JUNI 009 SLUCIÓN DE LA PRUEBA DE ACCES AUTR: José Luis Pérez Sanz pción A Ejercicio En este límite nos encontramos ante la indeterminación. Agrupemos la
Nombre del polinomio. uno monomio 17 x 5 dos binomio 2x 3 6x tres trinomio x 4 x 2 + 2
SISTEMA DE ACCESO COMÚN A LAS CARRERAS DE INGENIERÍA DE LA UNaM III. UNIDAD : FUNCIONES POLINÓMICAS III..1 POLINOMIOS La expresión 5x + 7 x + 4x 1 recibe el nombre de polinomio en la variable x. Es de
VECTORES. Abel Moreno Lorente. February 3, 2015
VECTORES Abel Moreno Lorente February 3, 015 1 Aspectos grácos. 1.1 Deniciones. Un vector entre dos puntos A y B es el segmento de recta orientado que tiene su origen en A y su extremo en B. A este vector
ECUACION DE DEMANDA. El siguiente ejemplo ilustra como se puede estimar la ecuación de demanda cuando se supone que es lineal.
ECUACION DE DEMANDA La ecuación de demanda es una ecuación que expresa la relación que existe entre q y p, donde q es la cantidad de artículos que los consumidores están dispuestos a comprar a un precio
Las funciones trigonométricas
Las funciones trigonométricas Las funciones trigonométricas Las funciones trigonométricas son las funciones derivadas de las razones trigonométricas de un ángulo. En general, el ángulo sobre el cual se
Por qué es importante utilizar vectores para representar fenómenos físicos?
Grado 10 Ciencias naturales Unidad 1 Dónde estamos ubicados en el tiempo y en el espacio? Tema Por qué es importante utilizar vectores para representar fenómenos físicos? Nombre: Curso: En una receta de
1. Dominio, simetría, puntos de corte y periodicidad
Estudio y representación de funciones 1. Dominio, simetría, puntos de corte y periodicidad 1.1. Dominio Al conjunto de valores de x para los cuales está definida la función se le denomina dominio. Se suele
MEDIDAS DE TENDENCIA CENTRAL
CAPÍTULO 14 MEDIDAS DE TENDENCIA CENTRAL A veces, de los datos recolectados ya organizados en alguna de las formas vistas en capítulos anteriores, se desea encontrar una especie de punto central en función
Selectividad Septiembre 2008 SEPTIEMBRE 2008
Bloque A SEPTIEMBRE 008.- Una ONG organiza un convoy de ayuda humanitaria con un máimo de 7 camiones, para llevar agua potable y medicinas a una zona devastada por unas inundaciones. Para agua potable
MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas
Universidad de ádiz Departamento de Matemáticas MATEMÁTIAS para estudiantes de primer curso de facultades y escuelas técnicas Tema 5 La circunferencia Elaborado por la Profesora Doctora María Teresa González
5 Ecuaciones lineales y conceptos elementales de funciones
Programa Inmersión, Verano 206 Notas escritas por Dr. M Notas del cursos. Basadas en los prontuarios de MATE 300 y MATE 3023 Clase #6: martes, 7 de junio de 206. 5 Ecuaciones lineales y conceptos elementales
MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas
Universidad de Cádiz Departamento de Matemáticas MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Tema Representación gráfica de funciones reales de una variable real Elaborado
Tipos de funciones. Clasificación de funciones
Tipos de funciones Clasificación de funciones Funciones algebraicas En las funciones algebraicas las operaciones que hay que efectuar con la variable independiente son: la adición, sustracción, multiplicación,
Estudio Gráfico de Funciones. Departamento de Matemáticas. IES Rosario de Acuña. Gijón 2009
Estudio Gráfico de Funciones Departamento de Matemáticas. IES Rosario de Acuña. Gijón 2009 Índice 1. Función 2 1.1. Definición............................. 2 1.2. Clasificación............................
DOMINIO Y RANGO página 89. Cuando se grafica una función existen las siguientes posibilidades:
DOMINIO Y RANGO página 89 3. CONCEPTOS Y DEFINICIONES Cuando se grafica una función eisten las siguientes posibilidades: a) Que la gráfica ocupe todo el plano horizontalmente (sobre el eje de las ). b)
Líneas Equipotenciales
Líneas Equipotenciales A.M. Velasco (133384) J.P. Soler (133380) O.A. Botina (133268) Departamento de física, facultad de ciencias, Universidad Nacional de Colombia Resumen. En esta experiencia se estudia
Unidad 5 Estudio gráfico de funciones
Unidad 5 Estudio gráfico de funciones PÁGINA 84 SOLUCIONES Representar puntos en un eje de coordenadas. 43 Evaluar un polinomio. a) P(-1) = 1 + + 1 1 = 3 b) P(0) = -1 c) P(-) = 8 + 8 + 1 = 17 d) P(1) =
Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales.
Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales. Introducción Por qué La Geometría? La Geometría tiene como objetivo fundamental
Apoyo para la preparación de los estudios de Ingeniería y Arquitectura Física (Preparación a la Universidad) Unidad 4: Vectores
Apoyo para la preparación de los estudios de Ingeniería y Arquitectura Física (Preparación a la Universidad) Unidad 4: Vectores Universidad Politécnica de Madrid 5 de marzo de 2010 2 4.1. Planificación
ESTATICA. Componentes ortogonales de una fuerza. Seminario Universitario Física
ESTATICA Es la parte de la física que estudia las fuerzas en equilibrio. Si sobre un cuerpo no actúan fuerzas o actúan varias fuerzas cuya resultante es cero, decimos que el cuerpo está en equilibrio.
LÍMITES Y CONTINUIDAD DE FUNCIONES
Capítulo 9 LÍMITES Y CONTINUIDAD DE FUNCIONES 9.. Introducción El concepto de ite en Matemáticas tiene el sentido de lugar hacia el que se dirige una función en un determinado punto o en el infinito. Veamos
3. Operaciones con funciones.
GRADO DE INGENIERÍA AEROESPACIAL. CURSO 00. Lección. Funciones derivada. 3. Operaciones con funciones. En esta sección veremos cómo podemos combinar funciones para construir otras nuevas. Especialmente
Tema 4 Funciones elementales Matemáticas CCSSI 1º Bachillerato 1
Tema 4 Funciones elementales Matemáticas CCSSI 1º Bachillerato 1 TEMA 4 - FUNCIONES ELEMENTALES 4.1 CONCEPTO DE FUNCIÓN DEFINICIÓN : Una función real de variable real es una aplicación de un subconjunto
FUNCIÓN CUADRÁTICA. Tres formas para identificar una parábola según los datos:
FUNCIÓN CUADRÁTICA Una función cuadrática es una función polinómica de segundo grado de la forma y=ax +bx+c, cuya gráfica es una parábola de eje vertical, donde a representa la abertura de la parábola.
Unidad V: Integración
Unidad V: Integración 5.1 Introducción La integración es un concepto fundamental de las matemáticas avanzadas, especialmente en los campos del cálculo y del análisis matemático. Básicamente, una integral
Alternativamente, los vectores también se pueden poner en función de los vectores unitarios:
1. Nociones fundamentales de cálculo vectorial Un vector es un segmento orientado que está caracterizado por tres parámetros: Módulo: indica la longitud del vector Dirección: indica la recta de soporte
Matemáticas I: Hoja 3 Espacios vectoriales y subespacios vectoriales
Matemáticas I: Hoa 3 Espacios vectoriales y subespacios vectoriales Eercicio 1. Demostrar que los vectores v 1, v 2, v 3, v 4 expresados en la base canónica forman una base. Dar las coordenadas del vector
4 APLICACIONES LINEALES. DIAGONALIZACIÓN
4 APLICACIONES LINEALES DIAGONALIZACIÓN DE MATRICES En ocasiones, y con objeto de simplificar ciertos cálculos, es conveniente poder transformar una matriz en otra matriz lo más sencilla posible Esto nos
TEMA II ÁLGEBRA VECTORIAL; FUNDAMENTOS. 2.1.- Definicion, notacion y clasificacion de los vectores.
J.A DÁVILA BAZ - J. PAJÓN PERMUY CÁLCULO VECTORIAL 29 UNIDAD DIDÁCTICA I: CÁLCULO VECTORIAL. TEMA II ÁLGEBRA VECTORIAL; FUNDAMENTOS 2.1.- Definicion, notacion y clasificacion de los vectores. Un vector
Una desigualdad se obtiene al escribir dos expresiones numéricas o algebraicas relacionadas con alguno de los símbolos
MATEMÁTICAS BÁSICAS DESIGUALDADES DESIGUALDADES DE PRIMER GRADO EN UNA VARIABLE La epresión a b significa que "a" no es igual a "b ". Según los valores particulares de a de b, puede tenerse a > b, que
Ecuaciones de primer grado con dos incógnitas
Ecuaciones de primer grado con dos incógnitas Si decimos: "las edades de mis padres suman 120 años", podemos expresar esta frase algebraicamente de la siguiente forma: Entonces, Denominamos x a la edad
EJERCICIOS RESUELTOS DE CÓNICAS
EJERCICIOS RESUELTOS DE CÓNICAS 1. Hallar la ecuación de la circunferencia que tiene: a) el centro en el punto (, 5) y el radio es igual a 7. b) un diámetro con extremos los puntos (8, -) y (, 6). a) La