Y resolvemos esta indeterminación por L Hôpital, derivando arriba y abajo:

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Y resolvemos esta indeterminación por L Hôpital, derivando arriba y abajo:"

Transcripción

1 1.- Considerad la función: f(x) = ln x x a) Dad el dominio de f y estudiad si tiene una asíntota horizontal. b) Calculad una primitiva de f usando el método de integración por partes. Indicación: Fijaos que f puede escribirse como: f(x) = 1 ln x x c) Calculad el área de la región limitada entre la curva y = f(x) y la recta y = 0 para x 1. a) Para calcular el dominio nos fijamos en ambos elementos del cociente. El numerador es un logaritmo, por lo que lo de dentro debe ser mayor que cero, así que tenemos ya una primera limitación que es: x>0. El denominador es un polinomio, por lo que no da problemas más que cuando se anule. Por lo tanto tenemos x 2 0, es decir x 0, pero esta condición ya estaba incluida en la anterior. Por lo tanto tenemos que: D = (0, ) Para tener una asíntota horizontal estudiamos el límite en el infinito, es decir: ln x lim f(x) = lim x = Y resolvemos esta indeterminación por L Hôpital, derivando arriba y abajo: lim f(x) = 1 = lim x 2x = lim 1 x 2x = lim 1 2x = 1 = 0 Por lo tanto, SI que hay una asíntota horizontal en y=0 en el infinito. b) Calculamos la primitiva por partes: Hacemos: Y tenemos: F(x) = 1 ln x dx x u = ln x du = 1 x dx dv = 1 x dx v = 1 1 dx = x x F(x) = ln x 1 1 x x 1 ln x dx = x x + 1 ln x dx = x x 1 x + C c) Para calcular el área pedida hemos de mirar si la función corta al eje x en algún punto. Por lo tanto, hacemos: 1 1 x ln x = 0 = 0 No pasa nunca x ln x = 0 x = 1 Por lo tanto, lo que nos están pidiendo es que calculemos la integral:

2 S = 1 ln x x Se trata de una integral impropia ya que uno de sus límites de integración es infinito pero, como ya sabemos una primitiva suya, podemos plantear fácilmente el paso al límite: dx S = 1 ln x x dx = lim = lim 1 ln x x ln a a 1 ln 1 a dx = lim [F(a) F(1)] El primero de estos límites es una indeterminación que resolvemos, como antes, por L Hôpital: Por lo que tenemos: 2.- Considerad la función: para x > 0. ln a 1 lim a = lim a 1 = lim 1 a = 1 = 0 ln a S = lim a 1 ln 1 a 1 1 = [ 0 0] [ 0 1] = 1 1 f(x) = 2x ln x a) Calculad la ecuación de la recta tangente a la función en el punto x = 1. b) Calculad los extremos relativos de la función f(x) y clasificadlos. c) Calculad la primitiva de f(x), denotada por F(x), que verifica F(1) = 2. a) La ecuación de la recta tangente tendrá como pendiente el valor de la derivada en x=1 y pasará por el punto (1, f(1)). Así que: f(1) = 2 1 ln 1 = = 0 Por lo tanto, el punto será el (1, 0). Veamos la derivada: f (x) = 2 2x ln x + 2x 1 = 4x ln x + 2x x Si ahora calculamos su valor para x=1 tenemos que: Por lo tanto, la recta pedida será de la forma: f (1) = 4 1 ln = = 2 y = m x + b y = 2 x + b Y debe cumplir que pasa por el punto (1,0), es decir: Por lo tanto, la recta pedida es: 0 = b b = 2 y = 2x 2 b) Al tratarse de una función que es producto de dos funciones continuas y derivables (al menos para x>0, que es donde está definida), sus extremos serán los puntos que anulen la derivada, es decir:

3 f (x) = 0 4x ln x + 2x = 0 2x (2 ln x + 1) = 0 2x = 0 x = 0 (no pertenece al Dominio) 2 ln x + 1 = 0 ln x = 1 e = e x = 1 2 e = 1 2,7183 = 0,61 e Nos falta saber qué tipo de extremo es. Podemos dar valores a f (x) (por ejemplo 0,5 y 0,7 o podemos calcular la segunda derivada y sustituir f (x) = 4 ln x + 4x = 4 ln x + 6 f = 4 ln e + 6 x = = = 4 > 0 mínimo 2 c) Para calcular la primitiva, integramos por partes, haciendo: u = ln x du = 1 x dx Por lo tanto, nuestra primitiva será: F(x) = ln x 2x 3 dv = 2x dx v = 2 x dx = 2x 3 2x 3 1 2x dx = x 3 ln x 2 3 x dx = 2x 3 ln x 2 3 x 3 = 2x 3 ln x 1 + C 3 Como que nos dan una condición a verificar, podemos calcular C, que valdrá: F(1) = 2 Y la primitiva es: 3.- Calculad: ln C = C = 2 C = = 20 9 F(x) = x 3 ln x a) Estudiad el crecimiento de la funcióng(x) = (3 x) e. b) Calculad P (x), el polinomio de Taylor de grado 2 alrededor de a = 0 de la función f(x) = x e. c) Según el residuo de Taylor en valor absoluto, dad cuál es el máximo error que se comete si aproximamos f(x) = x e en el intervalo [0; 0,9] por el polinomio P2(x) calculado en el apartado anterior. a) Como que g(x) es el producto de dos funciones continuas y derivables, también lo será. Por lo tanto, hemos de estudiar el comportamiento de su derivada, en concreto, de los puntos en los que se anula, que es cuando cambiará de creciente a decreciente. Así que: Si igualamos a cero tenemos que: g (x) = ( 1) e + (3 x) e ( 1) = (x 4) e g (x) = 0 (x 4) e = 0 e = 0 No sucede nunca x 4 = 0 x = 4

4 Así que el único punto donde cambia de comportamiento es en x=4. Si miramos los signos en x=0 y en x=6 tenemos que: g (0) = (0 4) e = 4 1 = 4 < 0 Decreciente g (6) = (6 4) e = 2 0, = 0, > 0 Creciente Por lo tanto hay un mínimo en x=4 y la función es decreciente en (-, 4) y creciente en (4, ). b) Para calcular el polinomio de Taylor de grado 2 necesitamos evaluar la función y sus derivadas en el punto pedido. Y eso nos da: f(0) = x e = 0 e = 0 1 = 0 f (x) = 1 e + x e ( 1) = (1 x) e f (0) = (1 0) e = 1 1 = 1 f (x) = 1 e + (1 x) e ( 1) = (x 2) f (0) = (0 2) e = 2 Por lo tanto, el polinomio pedido es: c) El resto de Taylor viene definido por: P, (x) = (x 0) + 1! 2! (x 0) = x x R, (x) = f (c) (x 0) con c (0, x) 3! Por lo tanto, necesitamos la tercera derivada de f(x). Y el resto vale: f (x) = 1 e + (x 2) e ( 1) = (3 x) e (3 c) e R, (x) = (x 0) con c (0, x) 3! Y aquí es donde aplicamos el resultado del primer apartado!!!!! Hemos visto que la función g(x)=f (x) es decreciente en (-, 4), por lo tanto, también lo es en el intervalo (0, 0.9) y posemos acotar g(c) con g(0), es decir con: f (0) = g(0) = (3 0) e = 3 Por lo tanto, podemos acotar el resto de Taylor como: Y el error pedido es: (3 c) e R, (x) = (x 0) 3 3! 6 x = x 2 R, (0,9) (0,9) = 0, Considerad un cono de 18 m 3 de volumen, ver figura, que tiene un radio de la base r, una altura h y una arista (generatriz) a. a) Justificad que la fórmula de la arista del cono es: a = r + h = 54 h + h

5 b) Calculad la altura del cono que tiene la longitud de la arista mínima. Comprobad que se trata efectivamente de un mínimo. a) La arista, la altura y el radio del cono se relacionan mediante el teorema de Pitágoras, por lo que tenemos que: a = h + r Como que nos dan el volumen, podemos establecer una relación entre h y r ya que: 18 = V = 1 3 r h r = 3 18 h = 54 h Y sustituyendo en la expresión anterior, tenemos que: a = a(h) = h + 54 h = h + 54 h b) Como que nos piden que la arista sea mínima, lo que hemos de hacer es derivar esta expresión e igualarla a cero, y tenemos que: Si igualamos a cero tenemos que: 2h 54 h 2 h + 54 h a (h) = 1 2 h + 54 h 2h 54 h = 54 2h h 2 h + 54 h = 0 2h = 0 2h = h h h = 54 2 = 27 h = 27 = 3 2,048 Para saber si es máximo o mínimo, damos valores a la derivada a ambos lados de 2,048, por ejemplo, en h=1 y h=3 y tenemos:

6 a (1) = a (3) = = = Por lo tanto, se trata efectivamente de un mínimo. = 15,188 8,529 = 1,78 < 0 = 4,090 7,676 = 0,533 > 0

Para saber si tiene asíntotas horizontales hacemos los límites en los infinitos.

Para saber si tiene asíntotas horizontales hacemos los límites en los infinitos. 1.- Considerad las funciones: f(x) = x + 2 2x x + 2 g(x) = 2 x + 2 a) Determinar el dominio de la función f(x) y calcular sus asíntotas (horizontales, verticales y oblicuas) en caso de que existan. b)

Más detalles

= lim. Por lo tanto, sí que tenemos una asíntota oblicua. Ahora nos falta encontrar el punto de corte con el eje y, es decir:

= lim. Por lo tanto, sí que tenemos una asíntota oblicua. Ahora nos falta encontrar el punto de corte con el eje y, es decir: 1.- Considerad la función: f(x) x + 3x + 1 x + 3 a) Determinad si la función tiene una asíntota oblicua y, en caso de tenerla, calculad su ecuación. b) Calculad la recta tangente a la función en el punto

Más detalles

+ 1. La función del tercer tramo es un polinomio (una constante) que tampoco da problemas en ningún punto.

+ 1. La función del tercer tramo es un polinomio (una constante) que tampoco da problemas en ningún punto. 1.- Considerad la función: x + 4 x para x 0 + 1 f(x) = 12x 36 x para 0 < x < 3 9 2 para x 3 a) Estudiar, en todos los puntos del dominio, la continuidad de f. b) Estudiar, en todos los puntos donde sea

Más detalles

Para calcular las asíntotas, empezaremos por las verticales, precisamente en ese punto donde no está definida la función.

Para calcular las asíntotas, empezaremos por las verticales, precisamente en ese punto donde no está definida la función. 1.- Dada la función: f(x) = x + 1 a) Calculad el dominio de f(x). Encontrar también sus asíntotas verticales, horizontales y oblicuas. b) Encontrad la recta tangente a f(x) en el punto x= 0. c) Calculad

Más detalles

a) Estudiad, en todos los puntos del dominio, la continuidad y la derivabilidad de la función:

a) Estudiad, en todos los puntos del dominio, la continuidad y la derivabilidad de la función: 1.- Resolved: a) Estudiad, en todos los puntos del dominio, la continuidad y la derivabilidad de la función: 2x 1 para x 2 f(x) x + 15x 16 para x > 2 b) Calculad el área de la región deitada per el eje

Más detalles

+ 1. a) Al tratarse de un cociente, lo que hemos de comprobar es que lo de abajo no se anule., por lo tanto miramos para qué valores se cumple que:

+ 1. a) Al tratarse de un cociente, lo que hemos de comprobar es que lo de abajo no se anule., por lo tanto miramos para qué valores se cumple que: 1.- Considerad la función: f(x) x 1 + 1 a) Calculad su dominio y expresadla como una función definida a trozos. b) Estudiad su continuidad y derivabilidad. c) Calculad las asíntotas de f. d) Calculad la

Más detalles

1. Considera la función definida por f(x) =. a. Descompón la función en fracciones simples. Recuerda que las posibles raíces enteras de un polinomio son los divisores del término independiente. b. Calcula

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 04 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 5 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

2º BACHILLERATO. EJERCICIOS DE REPASO 1ª EVALUACIÓN

2º BACHILLERATO. EJERCICIOS DE REPASO 1ª EVALUACIÓN 2º BACHILLERATO. EJERCICIOS DE REPASO 1ª EVALUACIÓN 1.) Resuelve las siguientes derivadas: a) b) c) d) e) f) g) h) i) j) k) l) m) n) o) p) q) r) f(x) = arcsen 2.) Resuelve la siguiente derivada, simplificando

Más detalles

Nombre y Apellidos: x e 1 x 1 x f(x) = ln(x) x

Nombre y Apellidos: x e 1 x 1 x f(x) = ln(x) x Universidade de Vigo Departamento de Matemática Aplicada II E.T.S.I. Minas Nombre y Apellidos: Cálculo I Convocatoria de Diciembre de Diciembre de 008 DNI: (6.5 p.) ) Se considera la función f : R R definida

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2006 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2006 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 6 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2004 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2004 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 4 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

Prueba º Bach C Análisis. Nombre:... 17/05/10. Elige una de las dos opciones y contesta a todas sus preguntas. Tiempo disponible 1 h. 30 min.

Prueba º Bach C Análisis. Nombre:... 17/05/10. Elige una de las dos opciones y contesta a todas sus preguntas. Tiempo disponible 1 h. 30 min. Nota Prueba 3.04 º Bach C Análisis Nombre:... 7/05/0 Elige una de las dos opciones y contesta a todas sus preguntas. Tiempo disponible h. 30 min. OPCIÓN A. a) Calcula los siguientes límites: ln( + ) sen

Más detalles

3 2x +1. 3) Prueba que la ecuación 5 x =8x-2 tiene alguna raíz real. Encuentra un intervalo de amplitud menor que 0,25 donde esté dicha raíz.

3 2x +1. 3) Prueba que la ecuación 5 x =8x-2 tiene alguna raíz real. Encuentra un intervalo de amplitud menor que 0,25 donde esté dicha raíz. 21 de diciembre de 2000. 1 1) Calcula: 0 ln 2) Halla las asíntotas de la función: 5 3 f() 2-2 3 +7 3) Prueba que la ecuación 5 8-2 tiene alguna raíz real. Encuentra un intervalo de amplitud menor que 0,25

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 004 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva,

Más detalles

Examen de Análisis Matemático. a) (1 punto) Calcula las derivadas de las siguientes funciones: (1 + 3x) 1 2

Examen de Análisis Matemático. a) (1 punto) Calcula las derivadas de las siguientes funciones: (1 + 3x) 1 2 Curso º Bachillerato 16/05/017 Ejercicio 1 a) (1 punto) Calcula las derivadas de las siguientes funciones: f() = 1+3 ; g() = ln(1 5) + e7 b) (1 punto) Estudia la derivabilidad de la función dada por: a)

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2003 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2003 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Junio, Ejercicio, Opción A Reserva, Ejercicio, Opción A Reserva, Ejercicio,

Más detalles

M a t e m á t i c a s I I 1

M a t e m á t i c a s I I 1 Matemáticas II Matemáticas II CASTILLA Y LEÓN CONVOCATORIA SEPTIEMBRE 9 SOLUCIÓN DE LA PRUEBA DE ACCESO AUTOR: José Luis Pérez Sanz Prueba A Problemas a) f(x) x El denominador de f(x) nunca se anula; por

Más detalles

ANÁLISIS DE FUNCIONES

ANÁLISIS DE FUNCIONES ANÁLISIS DE FUNCIONES.- Calcula f() de manera que f () = Ln( + ) y que f(0) = 0. (nota: Ln significa logaritmo neperiano). Universidad de Andalucía Se trata de resolver la integral que hemos de hacerlo

Más detalles

Cálculo Diferencial en una variable

Cálculo Diferencial en una variable Tema 2 Cálculo Diferencial en una variable 2.1. Derivadas La derivada nos proporciona una manera de calcular la tasa de cambio de una función Calculamos la velocidad media como la razón entre la distancia

Más detalles

Unidad 15 Integrales definidas. Aplicaciones

Unidad 15 Integrales definidas. Aplicaciones Unidad 15 Integrales definidas. Aplicaciones 3 SOLUCIONES 1. La suma superior es: La suma inferior es:. La suma superior es: s ( P) = ( 1) 3 + (3 ) 10 = 3 + 10 = 13 La suma inferior es: s ( P) = ( 1) 1+

Más detalles

(3 p.) 3) Se considera la superficie z = z(x, y) definida implícitamente por la ecuación. 3x 2 z x 2 y 2 + 2z 3 3yz = 15.

(3 p.) 3) Se considera la superficie z = z(x, y) definida implícitamente por la ecuación. 3x 2 z x 2 y 2 + 2z 3 3yz = 15. Universidade de Vigo Departamento de Matemática Aplicada II E.T.S.I. Minas Cálculo I Curso 2012/2013 21 de junio de 2013 4 p.) 1) Se considera la función fx) = x 4 e 1 x 2. a) Calcular los intervalos de

Más detalles

FUNCIONES REALES DE VARIABLE REAL

FUNCIONES REALES DE VARIABLE REAL FUNCIONES REALES DE VARIABLE REAL Función: Es toda aplicación definida entre conjuntos numéricos. Cuando el conjunto inicial y final son los números Reales, se llaman funciones reales de variable real.

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2005 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2005 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 5 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

Opción A. teorema se puede aplicar también si sale /, y cuando x. Como. , la recta x = 0 es una A.V. de la función f.

Opción A. teorema se puede aplicar también si sale /, y cuando x. Como. , la recta x = 0 es una A.V. de la función f. Opción A 1 Ejercicio 1. [ 5 puntos] Sea f la función definida, para 0, por f e. Determina las asíntotas de la gráfica de f. La recta = a es una asíntota vertical (A.V.) de la función f si lim f Veamos

Más detalles

M a t e m á t i c a s I I 1

M a t e m á t i c a s I I 1 Matemáticas II Matemáticas II REGIÓN DE MURCIA CONVOCATORIA SEPTIEMBRE 9 SOLUCIÓN DE LA PRUEBA DE ACCESO AUTOR: José Luis Pérez Sanz Bloque A Para saber si la matriz tiene inversa, el determinante de la

Más detalles

Examen de Matemáticas 2 o de Bachillerato Mayo 2003

Examen de Matemáticas 2 o de Bachillerato Mayo 2003 Examen de Matemáticas o de Bachillerato Mayo 1. (a) Dibuja el recinto limitado por las curvas y = e x+, y = e x y x =. (b) Halla el área del recinto considerado en el apartado anterior. (a) El dominio

Más detalles

OPCIÓN A. MATEMÁTICAS 2º BACHILLERATO B Lo que te llevará al final, serán tus pasos, no el camino. Fito y los Fitipaldis

OPCIÓN A. MATEMÁTICAS 2º BACHILLERATO B Lo que te llevará al final, serán tus pasos, no el camino. Fito y los Fitipaldis MATEMÁTICAS º BACHILLERATO B 9--4 Lo que te llevará al final, serán tus pasos, no el camino Análisis Fito y los Fitipaldis OPCIÓN A.- a) Hallar las dimensiones que hacen mínimo el coste de un contenedor

Más detalles

CÁLCULO DIFERENCIAL. b) Al darle a x valores suficientemente grandes, los valores de f(x) crecen cada vez más

CÁLCULO DIFERENCIAL. b) Al darle a x valores suficientemente grandes, los valores de f(x) crecen cada vez más 1. LÍMITE DE UNA FUNCIÓN EN UN PUNTO: CÁLCULO DIFERENCIAL Una función f(x) tiene por límite L en el número real x = c, si para toda sucesión de valores x n c del dominio que tenga por límite c, la sucesión

Más detalles

Ejercicio 1 de la Opción A del modelo 5 de Solución

Ejercicio 1 de la Opción A del modelo 5 de Solución Ejercicio 1 de la Opción A del modelo 5 de 2005 Se sabe que la gráfica de la función f : R R definida por f (x)= x 3 + ax+ bx + c es la que aparece en el dibujo. (a) [1 25 puntos] Determina f. (b) [1 25

Más detalles

M a t e m á t i c a s I I 1

M a t e m á t i c a s I I 1 Matemáticas II 1 Matemáticas II COMUNIDAD DE MADRID MODELO CURSO 009-010 SOLUCIÓN DE LA PRUEBA DE ACCESO AUTOR: José Luis Pérez Sanz Opción A Ejercicio 1 a) Para calcular los extremos y los intervalos

Más detalles

DEPARTAMENTO DE FUNDAMENTOS DE ECONOMÍA E HISTORIA ECONÓMICA APELLIDOS:

DEPARTAMENTO DE FUNDAMENTOS DE ECONOMÍA E HISTORIA ECONÓMICA APELLIDOS: DEPARTAMENTO DE FUNDAMENTOS DE ECONOMÍA E HISTORIA ECONÓMICA Análisis Matemático I EXAMEN FINAL APELLIDOS: NOMBRE: D.N.I. CUESTIONARIO DE RESPUESTA MÚLTIPLE (5%) (Cada respuesta incorrecta resta, puntos)

Más detalles

RESUMEN DE ANÁLISIS MATEMÁTICAS II

RESUMEN DE ANÁLISIS MATEMÁTICAS II RESUMEN DE ANÁLISIS MATEMÁTICAS II 1. DOMINIO DE DEFINICIÓN Y CONTINUIDAD 1.1. FUNCIONES ELEMENTALES (No tienen puntos angulosos) Tipo de función f (x) Dom (f) Continuidad Polinómicas P(x) R Racional P(x)/Q(x)

Más detalles

Opción A Ejercicio 1 opción A, modelo 5 Septiembre Reserva_ tan(x) - sen(x) [2 5 puntos] Calcula lim

Opción A Ejercicio 1 opción A, modelo 5 Septiembre Reserva_ tan(x) - sen(x) [2 5 puntos] Calcula lim IES Fco Ayala de Granada Septiembre de 014 Reserva 1 (Modelo 5) Soluciones Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo 5 Septiembre Reserva_1 014 tan(x) - sen(x) [ 5 puntos] Calcula lim

Más detalles

1.- DOMINIO DE LA FUNCIÓN

1.- DOMINIO DE LA FUNCIÓN En este resumen vamos a tratar los puntos que necesitamos para poder representar gráficamente una función. Empezamos viendo la información que podemos obtener de la expresión matemática de la función.

Más detalles

x 3 si 10 <x 6; x si x>6;

x 3 si 10 <x 6; x si x>6; CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN GLOBAL E000 A Primer parcial + 1 +8 1 a Trace su gráfica b Determine su dominio, rango y raíces Sean si 10 < 6; f

Más detalles

Nombre y Apellidos: e f(x) dx. Estudiar si converge la integral impropia

Nombre y Apellidos: e f(x) dx. Estudiar si converge la integral impropia Universidade de Vigo Departamento de Matemática Aplicada II E.T.S.I. Minas Cálculo I Convocatoria de Febrero 27 de Enero de 26 Nombre y Apellidos: DNI: 6.25 p.) ) Se considera la función f : [, ) R definida

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2008 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2008 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 008 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva,

Más detalles

IES Fco Ayala de Granada Junio de 2016 (Modelo 2) Soluciones Germán-Jesús Rubio Luna. Opción A. a g(x)

IES Fco Ayala de Granada Junio de 2016 (Modelo 2) Soluciones Germán-Jesús Rubio Luna. Opción A. a g(x) IES Fco Ayala de Granada Junio de 06 (Modelo ) Soluciones Germán-Jesús Rubio Luna germanjss@gmailcom Opción A Ejercicio opción A, modelo Junio 06 ln( + ) - a sen() + cos(3) ['5 puntos] Sabiendo que lim

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 03 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

Nombre y Apellidos: si x 0 f(x) = e x 1 1 si x = 0

Nombre y Apellidos: si x 0 f(x) = e x 1 1 si x = 0 Universidade de Vigo Departamento de Matemática Aplicada II E.T.S.I. Minas Cálculo I Convocatoria de Diciembre 2 de Diciembre de 25 Nombre y Apellidos: DNI: (2.5 p.) ) Se considera la función f : R R definida

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2002 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2002 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

Solución. 1/[(1 -x)(1+x)] = A/(1- x) + B/(1+x) = [A(1 +x) + B(1-x)] /[(1-x)(1+x)], de donde igualando los numeradores tenemos

Solución. 1/[(1 -x)(1+x)] = A/(1- x) + B/(1+x) = [A(1 +x) + B(1-x)] /[(1-x)(1+x)], de donde igualando los numeradores tenemos Ejercicio n º 1 de la opción A de junio de 2003 Sea Ln(1 -x 2 ) el logaritmo neperiano de 1 - x 2 y sea f : (-1,1) R la función definida por f(x) = Ln(1 -x 2 ). Calcula la primitiva de f cuya gráfica pasa

Más detalles

PROPUESTA A. b) Para dicho valor de a, da la ecuación implícita de un plano que contenga a r y a s. (1 25 puntos)

PROPUESTA A. b) Para dicho valor de a, da la ecuación implícita de un plano que contenga a r y a s. (1 25 puntos) PROPUESTA A 1A. a) Calcula los valores de los parámetros a, b R para que la función { sea continua y derivable en x = 0. (1 5 puntos) b) Para los valores encontrados, calcula la ecuación de la recta tangente

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 0 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

Y al reducir a común denominador y eliminar los denominadores nos encontramos con:

Y al reducir a común denominador y eliminar los denominadores nos encontramos con: .- Considerad la función definida por f(x) =. a) Descomponed la función en fracciones simples. b) Calculad una primitiva de la función f(x). c) Calculadel área de la región limitada por la gráfica de la

Más detalles

Material de uso exclusivamente didáctico 1

Material de uso exclusivamente didáctico 1 TEMA 1 Ejercicio 1 ( puntos) Sea f(x) = 10 + 4. Hallar a R tal que f(a) = 9. Para el valor encontrado, hallar la ecuación de la recta tangente x 4 al gráfico de f en (a; f(a)) f(a) = 9 10 a 4 + 4 = 9 10

Más detalles

Nombre y Apellidos: x (1 + ln(x)) si x > 0 f(x) = 0 si x = 0.

Nombre y Apellidos: x (1 + ln(x)) si x > 0 f(x) = 0 si x = 0. Universidade de Vigo Departamento de Matemática Aplicada II E.T.S.I. Minas Cálculo I Convocatoria de Septiembre de Septiembre de 008 Nombre y Apellidos: DNI: (6.5 p.) ) Se considera la función f : [0,

Más detalles

Unidad 15 Integrales definidas. Aplicaciones

Unidad 15 Integrales definidas. Aplicaciones Unidad 15 Integrales definidas. Aplicaciones PÁGINA 363 SOLUCIONES 1. La solución: Lo que nos pide el problema es hallar el área del recinto rayado. Este recinto es un trapecio y su area es:. Queda: x

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2007 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2007 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 7 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN GLOBAL E2000 TRIMESTRE I IV 16 H. (A) Primer parcial

CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN GLOBAL E2000 TRIMESTRE I IV 16 H. (A) Primer parcial CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN GLOBAL E000 TRIMESTRE I-000 5-IV 6 H +x x 5x x Considere las funciones fx A Primer parcial x si x [ 0, ] x + six 0, + y g :, 0 [, R dado por gx 5x a Calcular

Más detalles

3) Halla el punto de la curva y=x 3-3x 2 +6x-4 en el que la recta tangente tiene pendiente mínima. Calcula la ecuación de dicha recta tangente.

3) Halla el punto de la curva y=x 3-3x 2 +6x-4 en el que la recta tangente tiene pendiente mínima. Calcula la ecuación de dicha recta tangente. CURSO 4-5. Septiembre de 5. ) De la siguiente función f, se pide: a) Dominio. b) Derivada. c) Continuidad y discontinuidades. + f()= ln ) De la función del problema anterior, se pide. a) Asíntotas verticales.

Más detalles

APLICACIÓN DE LAS DERIVADAS 2º Bachillerato

APLICACIÓN DE LAS DERIVADAS 2º Bachillerato Recta Tangente a una curva en uno de sus Puntos Si f(x) es derivable en x 0, la ecuación de la recta tangente a la gráfica de y=f(x) en x 0 es: Tipos: y y 0 = m (x-x 0 ) y f(x 0 ) = f (x 0 ) (x-x 0 ) 1)

Más detalles

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN GLOBAL. PRIMERA EVALUACIÓN. ANÁLISIS

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN GLOBAL. PRIMERA EVALUACIÓN. ANÁLISIS Eamen Global Análisis Matemáticas II Curso 010-011 I E S ATENEA SAN SEBASTIÁN DE LOS REYES EXAMEN GLOBAL PRIMERA EVALUACIÓN ANÁLISIS Curso 010-011 1-I-011 MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2008 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2008 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 8 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio,

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

REPRESENTACIÓN GRÁFICA DE CURVAS - II

REPRESENTACIÓN GRÁFICA DE CURVAS - II REPRESENTACIÓN GRÁFICA DE CURVAS - II 1.- Representa gráficamente la función a) Dominio: f(x) es el cociente del valor absoluto de una función polinómica de 2º grado entre la variable x. Ambas son continuas

Más detalles

1) (1,6p) Estudia y clasifica las discontinuidades de la función: x+4-3 x-5. f(x)=

1) (1,6p) Estudia y clasifica las discontinuidades de la función: x+4-3 x-5. f(x)= 2 de diciembre de 2008. ) (,6p) Estudia y clasifica las discontinuidades de la función: f()= +4-3 -5 2) (,6p) Halla las ecuaciones de las asíntotas de la siguiente función y estudia la posición relativa:

Más detalles

(b) Monotonía, máximos y mínimos locales y absolutos.

(b) Monotonía, máximos y mínimos locales y absolutos. CÁLCULO DIFERENCIAL E INTEGRAL I TERCERA EVALUACIÓN PARCIAL E1400 1) Sea fx) = x 3 x 3 Encontrar: a) Dominio, raíces y paridad b) Monotonía, máximos y mínimos locales y absolutos, y el rango c) Concavidad

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

1) (1,6p) Estudia la continuidad y clasifica las discontinuidades de la función: f(x)= e x -1. x-1

1) (1,6p) Estudia la continuidad y clasifica las discontinuidades de la función: f(x)= e x -1. x-1 CURSO 2009-200 6 de diciembre de 2009. ) (,6p) Estudia la continuidad y clasifica las discontinuidades de la función: x - x- 2) (,6p) Halla las ecuaciones de las asíntotas de la siguiente función: 3) (2p)

Más detalles

Apellidos: Nombre: Curso: 1º Grupo: C Día: 2- III- 16 CURSO

Apellidos: Nombre: Curso: 1º Grupo: C Día: 2- III- 16 CURSO EXAMEN DE MATEMÁTICAS GRÁFICAS E INTEGRALES Apellidos: Nombre: Curso: º Grupo: C Día: - III- 6 CURSO 05-6. [ punto] Estudia si las siguientes funciones presentan simetría par (respecto del eje de ordenadas)

Más detalles

c) Calcular las asíntotas horizontales y verticales de f y representar de forma aproximada

c) Calcular las asíntotas horizontales y verticales de f y representar de forma aproximada Universidade de Vigo Departamento de Matemática Aplicada II ETSI Minas Cálculo I Curso 2011/2012 2 de julio de 2012 (75 p) 1) Se considera la función f : R R definida por f(x) = ex 2 e x + 1 a) Determinar

Más detalles

DEPARTAMENTO DE FUNDAMENTOS DE ECONOMÍA E HISTORIA ECONÓMICA

DEPARTAMENTO DE FUNDAMENTOS DE ECONOMÍA E HISTORIA ECONÓMICA DEPARTAMENTO DE FUNDAMENTOS DE ECONOMÍA E HISTORIA ECONÓMICA Análisis Matemático I EXAMEN FINAL Septiembre de 00 APELLIDOS: NOMBRE: DNI CUESTIONARIO DE RESPUESTA MÚLTIPLE (50%) (Cada respuesta incorrecta

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 05 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

Ejercicio 1 de la Opción A del modelo 6 de Solución

Ejercicio 1 de la Opción A del modelo 6 de Solución Ejercicio 1 de la Opción A del modelo 6 de 2008 Sea f : R R la función definida por f(x) = (3x 2x 2 )e x. [1 5 puntos] Determina los intervalos de crecimiento y de decrecimiento de f. [1 punto] Calcula

Más detalles

Problemas Tema 1 Solución a problemas de Repaso de Matemáticas I - Hoja 26 - Todos resueltos

Problemas Tema 1 Solución a problemas de Repaso de Matemáticas I - Hoja 26 - Todos resueltos página 1/12 Problemas Tema 1 Solución a problemas de Repaso de Matemáticas I - Hoja 26 - Todos resueltos Hoja 26. Problema 1 1. a) Calcula el número real m que cumple lim 0 ln(1+m ) sen(2 ) =. b) Obtener

Más detalles

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 5 Curso preparatorio de la prueba de acceso a la universidad para mayores de 25 años curso 2010/11 Nuria Torrado Robles Departamento de Estadística Universidad

Más detalles

PROPUESTA A. 3A. a) Despeja X en la ecuación matricial X A B = 2X donde A, B y X son matrices cuadradas

PROPUESTA A. 3A. a) Despeja X en la ecuación matricial X A B = 2X donde A, B y X son matrices cuadradas PROPUESTA A 1A a) Calcula el valor de a R, a > 0, para que la función sea continua en x = 0. b) Calcula el límite 2A. Calcula las siguientes integrales (1 25 puntos por cada integral) Observación: El cambio

Más detalles

M a t e m á t i c a s I I 1

M a t e m á t i c a s I I 1 Matemáticas II Matemáticas II EXTREMADURA CONVOCATORIA JUNIO 9 SOLUCIÓN DE LA PRUEBA DE ACCESO AUTOR: José Luis Pérez Sanz Opción A a) La matriz A tiene tres filas de las que para calcular el determinante

Más detalles

MÉTODOS MATEMÁTICOS DE LA FÍSICA II Segunda Parte. 10 de Febrero de 2005.

MÉTODOS MATEMÁTICOS DE LA FÍSICA II Segunda Parte. 10 de Febrero de 2005. MÉTODOS MATEMÁTICOS DE LA FÍSICA II Segunda Parte. 0 de Febrero de 005. Tenéis 3 horas para hacer estos ejercicios. Podéis usar una versión de los apuntes como están en la red, sin ninguna anotación. No

Más detalles

Opción A Ejercicio 1 opción A, modelo Junio Incidencias 2014

Opción A Ejercicio 1 opción A, modelo Junio Incidencias 2014 Opción A Ejercicio 1 opción A, modelo Junio Incidencias 014 Sea f la función definida por f(x) = 1 + ln(x) para x > 0 (ln denota el logaritmo x neperiano). (a) [1 75 puntos] Determina el punto de la gráfica

Más detalles

IES Fco Ayala de Granada Junio de 2012 (Común Modelo ) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Junio de 2012 (Común Modelo ) Soluciones Germán-Jesús Rubio Luna IES Fco Ayala de Granada Junio de 01 (Común Modelo ) Soluciones Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo Junio 01 común Sea f : R R la función definida como f(x) = e x.(x ). [1 punto]

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2001 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2001 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

SEGUNDO TURNO TEMA 1

SEGUNDO TURNO TEMA 1 TEMA 1 Ejercicio 1 ( puntos) Dada la función polinómica f(x) = x + 2x 2 x 2, hallar los intervalos de positividad y negatividad de f sabiendo que el gráfico de dicha función corta al eje x en el punto

Más detalles

(3) Bosqueje la gráfica de una función que cumpla las siguiente condiciones:

(3) Bosqueje la gráfica de una función que cumpla las siguiente condiciones: CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN GLOBAL E00 A) Primer parcial ) Sean las funciones: f) + & g) +. Obtener: D f, D g,f g)) & D f g. ) Sea la función: + si ; f) si, ) ; si. Obtener el dominio,

Más detalles

1. MONOTONÍA: CRECIMIENTO Y DECRECIMIENTO DE UNA FUNCIÓN. Ejemplo: Estudiar la monotonía (intervalos de crecimiento y decrecimiento) de la función 2

1. MONOTONÍA: CRECIMIENTO Y DECRECIMIENTO DE UNA FUNCIÓN. Ejemplo: Estudiar la monotonía (intervalos de crecimiento y decrecimiento) de la función 2 UNIDAD 11.- APLICACIONES DE LAS DERIVADAS 1. MONOTONÍA: CRECIMIENTO Y DECRECIMIENTO DE UNA FUNCIÓN Estudiando el signo de la derivada primera podemos saber cuándo una función es creciente o decreciente.

Más detalles

Apellidos: Nombre: Curso: 2º Grupo: Día: CURSO

Apellidos: Nombre: Curso: 2º Grupo: Día: CURSO EXAMEN DE MATEMATICAS II ª ENSAYO (ANÁLISIS) Apellidos: Nombre: Curso: º Grupo: Día: CURSO 56 Instrucciones: a) Duración: HORA y MINUTOS. b) Debes elegir entre realizar únicamente los cuatro ejercicios

Más detalles

IES Fernando de Herrera Curso 2014 / 15 Primer trimestre - Primer examen 2º Bach CT NOMBRE:

IES Fernando de Herrera Curso 2014 / 15 Primer trimestre - Primer examen 2º Bach CT NOMBRE: IES Fernando de Herrera Curso / 5 Primer trimestre - Primer eamen º Bach CT NOMBRE: ) Sea la función f : R R definida por f() e ( + ) a) Calcular dominio, cortes con los ejes y asíntotas ( punto) b) Estudiar

Más detalles

Derivadas e integrales

Derivadas e integrales Derivadas e integrales Álvarez S., Caballero M.V. y Sánchez M a M salvarez@um.es, m.victori@um.es, marvega@um.es ÍNDICE Matemáticas Cero Índice. Definiciones 3. Herramientas 4.. Reglas de derivación.......................

Más detalles

1.- Sea la función f definida por f( x)

1.- Sea la función f definida por f( x) Solución Eamen Final de la 3ª Evaluación de º Bcto..- Sea la función f definida por f( ) a) El dominio de la función es Dom( f) estudiando las asíntotas verticales:, por tanto vamos a empezar La función

Más detalles

IES Fco Ayala de Granada Junio de 2012 (Común Modelo 4) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Junio de 2012 (Común Modelo 4) Soluciones Germán-Jesús Rubio Luna IES Fco Ayala de Granada Junio de 01 (Común Modelo 4) Soluciones Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo Junio 01 común Sea f : R R la función definida como f(x) = e x.(x ). [1 punto]

Más detalles

Estudio de funciones mediante límites y derivadas

Estudio de funciones mediante límites y derivadas Estudio de funciones mediante límites y derivadas CVS0. El precio del billete de una línea de autobús se obtiene sumando dos cantidades, una fija y otra proporcional a los kilómetros recorridos. Por un

Más detalles

1. Función de primer grado. La recta.

1. Función de primer grado. La recta. Cálculo 1. Función de primer grado. La recta. Consideremos una función definida mediante una línea recta: Y X(x,y) y y 0 P (x 0,y 0) B(0,b) x x 0 O X Sea P (x 0, y 0 ) un punto de la recta que suponemos

Más detalles

y = x ln x ; con los datos obtenidos representa su gráfica. f x es continua y derivable en 0, por ser producto de funciones continuas y derivables.

y = x ln x ; con los datos obtenidos representa su gráfica. f x es continua y derivable en 0, por ser producto de funciones continuas y derivables. Matemáticas II Curso 0/4 Opción A (ª evaluación) Ejercicio. (Puntuación máima: puntos) Estudia las características de la función = ln = ( 0, + ) ( + ) f Dom f y = ln ; con los datos obtenidos representa

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2005 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2005 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 005 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva,

Más detalles

Unidad 12 Aplicaciones de las derivadas

Unidad 12 Aplicaciones de las derivadas Unidad 1 Aplicaciones de las derivadas 4 SOLUCIONES 1. La tabla queda: Funciones Estrictamente Creciente Estrictamente Decreciente f( ) 4,,+ = ( ) ( ) 3 = + (,0) (, + ) (0,) f( ) 3 5 f( ) = 5 + 3 R 3 f(

Más detalles

8QLGDG $SOLFDFLRQHVGHODV'HULYDGDV

8QLGDG $SOLFDFLRQHVGHODV'HULYDGDV 5HVXHOYHW~3iJppp 'HPXHVWUDTXHODIXQFLyQI[ [ FRV[WLHQHDOJ~QSXQWRFUtWLFRHQHOLQWHUYDOR f() = ( - 4) cos Como es producto de dos funciones continuas y derivables, una polinómica de º grado ( -4) y otra trigonométrica

Más detalles

S-23: Extremos Locales

S-23: Extremos Locales S-3: Extremos Locales P) Halla el máximo y el mínimo de f x = x x x, x > 0. Utilizaremos que: u = e ln (u) y que ln(v) r = rln v. f x = x x x = x x = e ln x x = e xln(x) Recuerda que para calcular los

Más detalles

SOLUCIONES EXAMEN ANÁLISIS: UNIDADES 4, 5 Y 6 2º BACH. C TIPO A

SOLUCIONES EXAMEN ANÁLISIS: UNIDADES 4, 5 Y 6 2º BACH. C TIPO A SOLUCIONES EXAMEN ANÁLISIS: UNIDADES, 5 Y 6 º BACH. C TIPO A Cuestión.- Vamos a calcularla de la siguiente forma: (hay varias formas de hacerlo) º El área del rectángulo que lo hacemos de forma tradicional:

Más detalles

Matemática Aplicada - Licenciatura de Farmacia- Hoja 2 4

Matemática Aplicada - Licenciatura de Farmacia- Hoja 2 4 Matemática Aplicada - Licenciatura de Farmacia- Hoja 2 4 7 a) La función f(x) = x 4 2x 2 tiene por dominio todo R, es continua y derivable en todo su dominio. Se trata de una función con simetría par ya

Más detalles

COL LECCIÓ DE PROBLEMES RESOLTS

COL LECCIÓ DE PROBLEMES RESOLTS DEPARTAMENT DE MATEMÀTICA ECONOMICOEMPRESARIAL DEPARTAMENT D ECONOMIA FINANCERA UNIVERSITAT DE VALÈNCIA LLICENCIATURA EN ECONOMIA LLICENCIATURA EN ADMINISTRACIÓ I DIRECCIÓ D EMPRESES DIPLOMATURA EN CIÈNCIES

Más detalles

Universidad Carlos III de Madrid

Universidad Carlos III de Madrid Universidad Carlos III de Madrid Ejercicio 3 4 5 6 Total Puntos Departamento de Economía Examen Final de Matemáticas I 6 de Junio de 04 Duración del Examen: horas. APELLIDOS: NOMBRE: DNI: Titulación: Grupo:

Más detalles

Departamento de matemáticas

Departamento de matemáticas Análisis con solución (Límites, derivadas y aplicaciones) Problema 1: Determina los valores de a y b para los cuales Problema 2: Calcula Problema 3: Una persona camina a la velocidad constante de 3 m/s

Más detalles