IDENTIFICACIÓN DE LOS TIPOS DE FUERZAS EJERCIDAS ENTRE LOS CUERPOS, DIAGRAMAS DE CUERPO LIBRE

Tamaño: px
Comenzar la demostración a partir de la página:

Download "IDENTIFICACIÓN DE LOS TIPOS DE FUERZAS EJERCIDAS ENTRE LOS CUERPOS, DIAGRAMAS DE CUERPO LIBRE"

Transcripción

1 1. ANÁLISIS DE LA PARTÍCULA 1.1. Descomposición de fuerzas en un plano Una fuerza representa la acción de un cuerpo sobre otro. Está caracterizada por su punto de aplicación, su magnitud y su dirección. Ahora estudiaremos los efectos de las fuerzas sobre las partículas. El uso de partículas no implica que nuestro estudio se limite a al de corpúsculos pequeños. Como se sabe la magnitud de la fuerza se mide en newton (N) S.I.. La dirección de una fuerza se define por su línea de acción y su sentido. A Fuerza sobre una partícula IDENTIFICACIÓN DE LOS TIPOS DE FUERZAS EJERCIDAS ENTRE LOS CUERPOS, DIAGRAMAS DE CUERPO LIBRE Para analizar los efectos que ejercen los cuerpos sobre otro trabajamos sobre un modelo que llamamos diagrama de cuerpo libre (D.C.L). El diagrama de cuerpo libre consiste en aislar el cuerpo estudiado, dibujarlo solo, reemplazando cada cuerpo que esté en contacto con él por la fuerza correspondiente. Para hacer un buen D.C.L. identificaremos los principales tipos de fuerzas que se ejercen entre los cuerpos. Fuerzas externas en un cuerpo: Son aquellas fuerzas ejercidas por otros cuerpos. Fuerzas internas: fuerzas ejercidas por las mismas partes del cuerpo y que hacen que el funcione como una unidad. Como estas fuerzas hacen parte del mismo cuerpo nunca se dibujan en un D.C.L Fuerzas puntuales: se ejercen sobre un solo punto del cuerpo. Fuerzas de cables o puntales. Fuerzas distribuidas o de superficie: Son ejercidas sobre un superficie de contacto o sobre un área. Caso de nuestros pies sobre el suelo. Estas fuerzas se expresan por unidad de longitud o de área. Fuerzas gravitatorias: Fuerzas de atracción entre cuerpos. Caso del peso de un cuerpo, W = m.g, para los cuerpos analizados en este curso esta fuerza siempre estará en el D.C.L.

2 Tipos de fuerzas de acuerdo con su origen: Fuerzas de contacto: Cuando dos cuerpos están en contacto se pueden dar fuerzas puntuales y fuerzas distribuidas. En ambos casos la fuerza de contacto se puede expresar en función de sus componentes, una normal a la superficie de contacto, que la llamamos normal, y otra paralela que corresponde a la fuerza de fricción. La normal y la de fricción son fuerzas que tienen características diferentes. La normal siempre estará presente, mientras que la fuerza de fricción depende de las características de los materiales en contacto. Ffr N F Fuerza puntual Ffr N F Fuerza distribuida Fuerzas de cables y cuerdas; Un cable siempre ejerce un fuerza en la misma dirección del cable y siempre hacia afuera del cuerpo afectado. Piense en empujar un carrito con una cuerda o tira. Imposible!. por eso se llama tira o tirante, siempre su efecto es de halar y no de empujar. D.C.L del poste Fuerza sobre el anclaje T, tensión del cable W Ffr Poste con contraviento N Fuerzas de cables sobre poleas: para realizar el diagrama de cuerpo libre de la polea o del cable habría que separar ambos cuerpos y dibujar las fuerzas que se están ejerciendo sobre ellos, en este caso como no es un punto único de contacto entonces se ejercen fuerzas distribuidas, normales a la superficie (radiales) y perpendiculares a ella (de fricción tangenciales).

3 Del cable T T Esquema general De la pared T T T T Fuerzas de contacto en el perno Del cable mas la polea, note que desaparecen las fuerzas distribuidas (son internas entre cable y polea) W Del objeto De la polea DIAGRAMAS DE CUERPO LIBRE Fuerzas ejercidas por resortes: Un resorte puede tanto empujar como tirar. La fuerza de un resorte siempre es proporcional a la deformación y se conoce como fuerza elástica. Dependiendo de si se analiza el resorte o el cuerpo o cuerpos que están en contacto con él, el diagrama de cuerpo libre, DCL, será: Resorte comprimido Fuerzas de la pared sobre el resorte Fuerza del resorte sobre la pared Resorte estirado Fr= k. L. donde: k es la constante de rigidez del resorte. L es el cambio de longitud del resorte. L = Lfinal + Linicial Las fuerzas ejercidas por cuerpos deformables se pueden modelar por medio de resortes, por ejemplo, la fuerza ejercida por un suelo blando sobre mi pie constituye una fuerza elástica ( o sea de resorte) sobre mí.

4 EQUILIBRIO DE UNA PARTICULA Estudiaremos primero el efecto de las fuerzas sobre cuerpos que se pueden modelar como una partícula, o sea aquellos donde todas las fuerzas son concurrentes en un punto o aquellos cuerpos donde no se producen efectos de rotación y el movimiento solo puede darse en una dirección (cuerpos sometidos a fuerzas paralelas sin efecto de rotación). La condición para que una partícula esté en equilibrio o reposo es que la fuerza neta aplicada sobre ella sea igual a cero (primera ley de Newton). Esta condición implica que la resultante R sea cero y por lo tanto no se producirán efectos de traslación sobre el cuerpo en ninguna dirección. Notemos que cuando se habla de un vector igual a cero se está condicionando a que cada una de sus componentes sea cero. En ningún caso una componente anula a otra componente, por lo tanto es condición necesaria que cada componente sea cero. F r = 0 esta ecuación es una ecuación vectorial. Al descomponer las fuerzas y hacer la sumatoria por componentes nos resultan tres ecuaciones escalares independientes: Fx= 0 Fy= 0 Fz= 0 r r r r r F = 0 = Fx. i + Fy. j+ Fz. k Tanto la resultante de las fuerzas en X como la de Y y la de Z deben ser iguales a cero. En el caso de estudiar cuerpos modelados en un plano XY, la componente en Z de las fuerzas, de hecho es igual a cero, por lo tanto las condiciones o ecuaciones de equilibrio independientes son dos, en vez de tres. Ejemplos Ejercicio de Bedford A B C Una barra de 200 lb es suspendida de tres resortes de igual longitud, con constantes de rigidez kc=k A =400 lp/pie, y k B =300 lb/pie. Determine las tensiones en los resortes si la barra permanece horizontal. Siempre que resolvemos un problema debemos plantear desde el principio la ecuación o ecuaciones que necesitamos para resolver las incógnitas. Aquí la ecuación principal es la ecuación de equilibrio de la barra. Por que se puede aplicar esta ecuación si las fuerzas no son concurrentes?.

5 Suma y resta de vectores La suma de dos vectores libres es otro vector libre que se determina de la siguiente forma: Se sitúa el punto de aplicación de uno de ellos sobre el extremo del otro; el vector suma es el vector que tiene su origen en el origen del primero y su extremo en el extremo del segundo. Por tanto, el vector suma de dos vectores coincide con una de las diagonales, la "saliente", del paralelogramo que puede formarse con los vectores que se suman; la otra diagonal representa la resta de dichos vectores. Para efectuar sumas o restas de tres o más vectores, el proceso es idéntico. Basta con aplicar la propiedad asociativa. Al vector que se obtiene al sumar o restar varios vectores se le denomina resultante Resultante de varias fuerzas concurrentes Consideremos un partícula A donde actúan varias fuerzas coplanarias, es decir, varias fuerzas contenidas en un solo plano S A Q P A P R Q S Como todas las fuerzas pasan por el punto A pueden sumarse por la regla del polígono. Como la regla del polígono es equivalente es equivalente a la aplicación consecutiva de la ley del paralelogramo, el vector R así obtenido representa el resultado de las fuerza concurrentes, es

6 decir la fuerza única que produce sobre la partícula. Como se sabe no importa el orden en que se sumen los vectores P,Q, y S que representan las fuerzas dadas Descomposición de una fuerza en sus componentes Hemos visto que dos ó mas fuerzas que actúan sobre una partícula pueden reemplazarse por una fuerza única que produce el mismo efecto sobre la partícula; estas fuerzas se llaman componentes de la fuerza original F y el proceso de remplazar a F por ellas se llama descomposición de la fuerza F en sus componentes. Q Q Q A P F A P F A F P Es evidente que para cada fuerza F existe un Número infinito de conjuntos posibles Los conjuntos más importantes, en lo que se refiere a las aplicaciones prácticas, son los de dos una fuerza F puede descomponerse en dos componentes es ilimitado como se aprecia en las graficas anteriores. Hay dos casos de particular interés: 1.- Se conoce P una de las dos componentes. La segunda componente Q se obtiene aplicando la regla del triángulo al unir el extremo de P con el extremo de F; A P F Q La magnitud y dirección de Q se determinan gráficamente ó por trigonometría. Cuando ya se ha determinado Q, ambas componentes P y Q deben aplicarse en A 2.- Se conoce la línea de A acción de cada componente. La magnitud y dirección de las componentes se obtiene aplicando la ley del paralelogramo y trazando por el extremo de F líneas paralelas a las líneas de acción. A P F Q

7 Este proceso conduce a dos componentes P y Q muy bien definidas que pueden determinarse gráficamente ó mediante la ley de los senos. Ejemplo Las dos fuerzas P y Q actúan sobre el perno A. Determinar su resultante Q=60N A P=40 N Solución grafica Se traza a escala un paralelogramo con lados iguales a P y Q. Se mide la magnitud y dirección de la resultante; se encuentra que sus valores son: R= 98 N α=35 También puede emplearse la regla del triángulo. Se dibujan las fuerzas P y Q uniendo el extremo de una con el origen de la otra. Nuevamente se mide la magnitud y la dirección resultante R= 98 N α=35

8 60 97, Este dibujo resulta de hacerlo exacto usando autocad podemos observar que mediante este método la exactitud dependerá de las herramientas a usarse Solución trigonométrica. Se emplea de nuevo la regla del triángulo; se conocen dos lados y el angulo. Aplicamos la ley de los cosenos R 2 =P 2 +Q 2-2PQ cos B R 2 =(40N) 2 +(60N) 2-2(40N)(60N)cos 155 R=97.7 N Ahora aplicando la ley de los senos SenA senb SenA sen155 = = Q R Usando la calculadora obtenemos A= 15 α=20 +A=35

9 Es decir Componentes rectangulares de una fuerza Componentes rectangulares de una fuerza. Todo vector se puede expresar como la suma de otros dos vectores a los cuales se les denomina componentes.. Cuando las componentes forman un ángulo recto, se les llama componentes rectangulares. En la figura 2 se ilustran las componentes rectangulares del vector rojo. Las componentes rectangulares cumplen las siguientes relaciones

10 Las 2 primeras ecuaciones son para hallar las componentes rectangulares del vector a. y Las 2 últimas son para hallar el vector a (Teorema de Pitágoras a partir de sus componentes rectangulares. La última ecuación es para hallar la dirección del vector a (ángulo) con la función trigonométrica tangente. Ejemplo: Una fuerza tiene magnitud igual a 10.0 N y dirección igual a 240º. Encuentre las componentes rectangulares y represéntelas en un plano cartesiano. El resultado nos lleva a concluir que la componente de la fuerza en X tiene módulo igual a 5.00 N y apunta en dirección negativa del eje X. La componente en Y tiene módulo igual a 8.66 y apunta en el sentido negativo del eje Y. Esto se ilustra en la figura 3.

11 SUMA DE VECTORES RECTANGULARES. EMPLEANDO EL METODO DE LAS COMPONENTES Cuando vamos a sumar vectores, podemos optar por descomponerlos en sus componentes rectangulares y luego realizar la suma vectorial de estas. El vector resultante se logrará componiéndolo a partir de las resultantes en las direcciones x e y. Ejemplo: Sumar los vectores de la figura 1 mediante el método de las componentes rectangulares.

12 Lo primero que debemos hacer es llevarlos a un plano cartesiano para de esta forma orientarnos mejor. Esto se ilustra en la figura 2 A continuación realizamos las sumas de las componentes en X y de las componentes en Y: Adición de fuerzas sumando las componentes X e Y

13 Suma de Vectores La suma de los vectores podemos realizarla de dos maneras diferentes, analítica y gráficamente. Procedimiento Gráfico Para sumar dos vectores de manera gráfica utilizaremos la denominada Regla del paralelogramo, consistente en trasladar paralelamente los vectores hasta unirlos por el origen, y luego trazar un paralelogramo, del que obtendremos el resultado de la suma, como consecuencia de dibujar la diagonal de ese paralelogramo, como podemos ver en el siguiente dibujo: Otra manera de expresar la suma de manera gráfica es trasladar el segundo vector a sumar de tal manera que el origen de éste, coincida con el extremo del primer vector, y la suma la obtendremos dibujando un vector que vaya desde el origen del primer vector hasta el extremo del segundo, de la siguiente manera: Hay que tener muy presente lo siguiente: vectores en la misma dirección se suman (tal y como ya hemos visto en la sección de la suma de vectores), pero vectores con sentidos opuestos se restan

14 (tal y como se puede ver en el apartado correspondiente a la resta de vectores). A continuación tenemos un ejemplo de suma y resta de vectores. Método Algebraico para la Suma de vectores Dados tres vectores La expresión correspondiente al vector suma es: o bien siendo, por tanto, La suma de vectores goza de las siguientes propiedades:

15 Conmutativa a + b = b + a Asociativa (a + b) + c = a + (b + c) Elemento neutro o vector 0 a + 0 = 0 + a = a Elemento simétrico u opuesto a' a + a' = a' + a = 0 a' = -a ejemplo: Cuatro fuerzas actúan sobre un perno A como se muestra en la figura. Determinar la resultante de las fuerzas sobre los pernos. F2=80N y 20 F1=150N A x F4=100N F3=110N F 2 cos20 j Solución 20 F = sen30 j 1 30 F sen20 i 2 F = cos30 i 1 F 4 cos15 i F 3 j F sen30 j 4 15

16 Una vez que hemos descompuesto sus correspondientes proyecciones en los ejes X y Y. Resumimos Fuerza Magnitud N Componente x,n Componente Y,N F F F F R x =199.1 R y =14.3 Por lo tanto la resultante R de las cuatro fuerzas es R=R x i + R y j R=(199.1N)i+(14.3N)j La magnitud y la dirección de la resultante pueden ahora determinarse. En el triangulo mostrado. 199,6 14, ,1

17 Ry 14.3 tanα = = = 4. 1 R x 14.3 R= = senα R = < Equilibrio de una partícula En las secciones anteriores se expusieron los métodos para determinar la resultante de varias fuerzas que actúan sobre una partícula. Aunque no ha ocurrido no ha ocurrido en ninguno de los problemas examinados hasta ahora, es posible que la resultante sea cero. En estos casos, el efecto neto de las fuerzas dadas es cero y se dice que la partícula esta en equilibrio. Entonces se tiene la siguiente definición: Si la resultante de todas las fuerzas que actúan sobre una partícula es cero, la partícula se encuentra en equilibrio. Una partícula sujeta a la acción de dos fuerzas estará en equilibrio si ambas tienen la misma magnitud, la misma línea de acción y sentidos opuestos. Entonces la resultante de las fuerzas es cero. Otro caso de una partícula en equilibrio se muestra en la figura 2.27, donde aparecen cuatro fuerzas que actúan sobre A. En la figura 2.28, la resultante de las fuerzas dadas se determina por la regla del polígono. Empezando en el punto O con F 1 y acomodando las fuerzas punta a cola, se encuentra que la punta de F 4 coincide con el punto de partida O, así que la resultante R del sistema de fuerzas dado es cero y la partícula está en equilibrio.

18 El polígono cerrado de la figura 2.28 proporciona una expresión gráfica del equilibrio de A. Para expresar en forma algebraica las condiciones del equilibrio de una partícula se escribe R = F = 0 (2.14) Descomponiendo cada fuerza F en sus componentes rectangulares, se tiene: Fyj F xi ( Fx ) i+ ( Fy) j = 0 ( + ) = 0 Se concluye que las condiciones necesarias y suficientes para el equilibrio de una partícula son: x y F = 0 F = 0 Regresando a la partícula mostrada en la figura 2.27, se comprueba que las condiciones de equilibrio se satisfacen. Se escribe:

19 Fx = 300 (200 ) Sen30 (400 ) Sen30 = = 0 Fy = (200 ) Cos30 + (400 ) Cos30 = = Primera Ley de Newton del movimiento A finales del siglo XVII Sir Isaac Newton formuló tres leyes fundamentales en las que se basa la ciencia de la mecánica. La primera de estas leyes puede enunciarse como sigue: Si la fuerza resultante que actúa sobre una partícula es cero, la partícula permanecerá en reposo (si originalmente estaba en reposo) o se moverá con velocidad constante en línea recta (si originalmente estaba en movimiento). De esta ley y de la definición de equilibrio expuesta en la sección anterior, se deduce que una partícula en equilibrio puede estar en reposo o moviéndose en línea recta con velocidad constante. En la siguiente sección se considerarán varios problemas concernientes al equilibrio de una partícula. PROBLEMAS RELACIONADOS CON EL EQUILIBRIO DE UNA PARTÍCULA. DIAGRAMAS DE CUERPO LIBRE En la práctica, un problema de ingeniería mecánica se deriva de una situación física real. Un esquema que muestra las condiciones físicas del problema se conoce como diagrama espacial. Los métodos de análisis estudiados en las secciones anteriores se aplican a un sistema de fuerzas que actúan sobre una partícula. Un gran número de problemas que tratan de estructuras pueden reducirse a problemas concernientes al equilibrio de una partícula. Esto se hace escogiendo una partícula significativa y dibujando un diagrama separado que muestra a ésta y a todas las fuerzas que actúan sobre ella. Dicho diagrama se conoce como diagrama de cuerpo libre.

20 Por ejemplo, considérese el embalaje de madera de 75 kg mostrado en el diagrama espacial de la figura Este descansaba entre dos edificios y ahora es levantado hacia la plataforma de un camión que lo quitará de ahí. El embalaje está soportado por un cable vertical unido en A a dos cuerdas que pasan sobre poleas fijas a los edificios en B y C. Se desea determinar la tensión en cada una de las cuerdas AB y AC. Para resolver el problema debe trazarse un diagrama de cuerpo libre que muestre a la partícula en equilibrio. Puesto que se analizan las tensiones en las cuerdas, el diagrama de cuerpo libre debe incluir al menos una de estas tensiones y si es posible a ambas. El punto A parece ser un buen cuerpo libre para este problema. El diagrama de cuerpo libre del punto A se muestra en la figura 2.29b. Ésta muestra al punto A y las fuerzas ejercidas sobre A por el cable vertical y las dos cuerdas. La fuerza ejercida por el cable está dirigida hacia abajo y es igual al peso W del contenedor. De acuerdo con la ecuación (1.4), se escribe W = mg = (75 kg)(9.81 m/s 2 ) = 736 N

21 y se indica este valor en el diagrama de cuerpo libre. Las fuerzas ejercidas por las dos cuerdas no se conocen, pero como son iguales en magnitud a la tensión en la cuerda AB y en la cuerda AC, se representan con T AB y T AC y se dibujan hacia fuera de A en las direcciones mostradas por el diagrama espacial. No se incluyen otros detalles en el diagrama de cuerpo libre. Puesto que el punto A está en equilibrio, las tres fuerzas que actúan sobre él deben formar un triángulo cerrado cuando se dibujan de punta a cola. Este triángulo de fuerzas ha sido dibujado en la figura 2.29c. Los vectores T AB y T Ac de las tensiones en las cuerdas pueden encontrarse gráficamente si el triángulo se dibuja a escala, o pueden encontrarse mediante la trigonometría. Si se escoge el último método de solución, con la ley de los senos se escribe TAB TAC 736 = = Sen60 Sen40 Sen80

22 Cuando una partícula está en equilibrio bajo tres fuerzas, el problema siempre puede resolverse dibujando un triángulo de fuerzas. Cuando una partícula está en equilibrio bajo más de tres fuerzas, el problema puede resolverse gráficamente dibujando un polígono de fuerzas. Si se desea una solución analítica, se deben resolver las ecuaciones de equilibrio dadas en la sección 2.9: x y F = 0 F = 0 Estas ecuaciones pueden resolverse para no más de dos incógnitas; en forma semejante, el triángulo de fuerzas usado en el caso de equilibrio bajo tres fuerzas puede resolverse para dos incógnitas. Los tipos más comunes de problemas son aquellos donde las dos incógnitas representan 1) las dos componentes (o la magnitud y dirección) de una sola fuerza, 2) las magnitudes de las dos fuerzas, cada una de dirección conocida. También se encuentran problemas que requieren la determinación del valor máximo o mínimo de la magnitud de una fuerza Problemas relacionados con el equilibrio de una partícula Cuando una partícula está en equilibrio, la resultante de todas las fuerzas que actúan sobre la partícula debe ser igual a cero. En el caso de una partícula sobre la que actúan fuerzas coplanares, expresar este hecho proporcionará dos relaciones entre las fuerzas involucradas. Como se vio en los problemas resueltos que se acaban de presentar, estas relaciones se pueden utilizar para determinar dos incógnitas (como la magnitud y la dirección de una fuerza o las magnitudes de dos fuerzas). En la solución de un problema que involucre elequilibrio de una partícula, el primer paso consiste en dibujar un diagrama de cuerpo libre. Este diagrama muestra la partícula y todas las fuerzas que actúan sobre la misma. Se debe indicar en el diagrama de cuerpo libre la magnitud de las fuerzas conocidas así como cualquier ángulo o dimensión que defina la dirección de una fuerza. Cualquier magnitud o ángulo desconocido debe ser designado por un símbolo apropiado. No se debe incluir ninguna otra información adicional en el diagrama de cuerpo libre. Es indispensable dibujar un diagramo de cuerpo libre claro y preciso para poder resolver cualquier

23 problema de equilibrio. La omisión de este paso puede ahorrar lápiz y papel, pero es muy probable que esa omisión lo lleve a una solución incorrecta. Caso 1. Sí sólo están involucradas tres fuerzas en el diagrama de cuerpo libre, el resto de la solución se lleva a cabo más fácilmente uniendo en un dibujo la parte terminal de una fuerza con la parte inicial de otra, con el fin de formar un triangulo de fuerzas. Este triángulo se puede resolver mediante gráficas o por trigonometría para un máximo de dos incógnitas. Caso 2. Si están involucradas más de tres fuerzas, lo más conveniente es emplear una solución analítica. Los ejes X y Y, se seleccionan y cada una de las fuerzas mostradas en el diagrama de cuerpo libre se descompone en sus componentes X y Y. Al expresar que tanto la suma de las componentes en X como la suma de las componentes en Y de las fuerzas son iguales a cero, se obtienen dos ecuaciones que se pueden resolver para no más de dos incógnitas. Se recomienda que cuando se emplee una solución analítica se escriban las ecuaciones de equilibrio en la misma forma que las ecuaciones (2) y (3) del problema resuelto. La práctica adoptada por algunos estudiantes de colocar al inicio las incógnitas del lado izquierdo de la ecuación y las cantidades conocidas del lado derecho de la misma puede llevar a una confusión al momento de asignarle el signo correcto a cada uno de los términos. Se ha señalado que, independientemente del método empleado para resolver un problema de equilibrio bidimensional, sólo puede determinarse un máximo de dos incógnitas. Si un problema bidimensional involucra más de dos incógnitas, se deben obtener una o más relaciones adicionales a partir de la información contenida en el enunciado del problema. Algunos de los siguientes problemas contienen pequeñas poleas. Se supondrá que las mismas están libres de fricción, por tanto, la tensión en la cuerda o cable que pasa por una polea es la misma en cada uno de sus lados. En el capítulo 4 se expondrá la razón por la que la tensión es la misma.

24 ACTIVIDADES COMPLEMENTARIAS: 1.- descomponer la fuerza de 800 lb de magnitud en dos componentes a lo largo de la línea a-a y b-b. Determinar por trigonometría el ángulo α si la componente de F en la dirección b-b es de 120 N. F a 50 α b b a 2.-Determinar la magnitud y dirección de la menor fuerza F que mantendrá en equilibrio ala caja mostrada en la figura. Observar que la fuerza ejercida por los rodillos sobre la caja es perpendicular al plano indicado. 30 Kg 15 α

Definición de vectores

Definición de vectores Definición de vectores Un vector es todo segmento de recta dirigido en el espacio. Cada vector posee unas características que son: Origen: O también denominado Punto de aplicación. Es el punto exacto sobre

Más detalles

3.1 DEFINICIÓN. Figura Nº 1. Vector

3.1 DEFINICIÓN. Figura Nº 1. Vector 3.1 DEFINICIÓN Un vector (A) una magnitud física caracterizable mediante un módulo y una dirección (u orientación) en el espacio. Todo vector debe tener un origen marcado (M) con un punto y un final marcado

Más detalles

Muchas veces hemos visto un juego de billar y no nos percatamos de los movimientos de las bolas (ver gráfico 8). Gráfico 8

Muchas veces hemos visto un juego de billar y no nos percatamos de los movimientos de las bolas (ver gráfico 8). Gráfico 8 Esta semana estudiaremos la definición de vectores y su aplicabilidad a muchas situaciones, particularmente a las relacionadas con el movimiento. Por otro lado, se podrán establecer las características

Más detalles

ESTATICA: TIPOS DE MAGNITUDES: CARACTERÍSTICAS DE UN VECTOR. Rama de la física que estudia el equilibrio de los cuerpos.

ESTATICA: TIPOS DE MAGNITUDES: CARACTERÍSTICAS DE UN VECTOR. Rama de la física que estudia el equilibrio de los cuerpos. ESTATICA: Rama de la física que estudia el equilibrio de los cuerpos. TIPOS DE MAGNITUDES: MAGNITUD ESCALAR: Es una cantidad física que se especifica por un número y una unidad. Ejemplos: La temperatura

Más detalles

1 Estática Básica Prohibida su reproducción sin autorización. CONCEPTOS DE FISICA MECANICA. Conceptos de Física Mecánica

1 Estática Básica Prohibida su reproducción sin autorización. CONCEPTOS DE FISICA MECANICA. Conceptos de Física Mecánica 1 CONCEPTOS DE FISICA MECANICA Introducción La parte de la física mecánica se puede dividir en tres grandes ramas de acuerdo a lo que estudia cada una de ellas. Así, podemos clasificarlas según lo siguiente:

Más detalles

_ Antología de Física I. Unidad II Vectores. Elaboró: Ing. Víctor H. Alcalá-Octaviano

_ Antología de Física I. Unidad II Vectores. Elaboró: Ing. Víctor H. Alcalá-Octaviano 24 Unidad II Vectores 2.1 Magnitudes escalares y vectoriales Unidad II. VECTORES Para muchas magnitudes físicas basta con indicar su valor para que estén perfectamente definidas y estas son las denominadas

Más detalles

Seminario Universitario Material para estudiantes. Física. Unidad 2. Vectores en el plano. Lic. Fabiana Prodanoff

Seminario Universitario Material para estudiantes. Física. Unidad 2. Vectores en el plano. Lic. Fabiana Prodanoff Seminario Universitario Material para estudiantes Física Unidad 2. Vectores en el plano Lic. Fabiana Prodanoff CONTENIDOS Vectores en el plano. Operaciones con vectores. Suma y producto por un número escalar.

Más detalles

a < b y se lee "a es menor que b" (desigualdad estricta) a > b y se lee "a es mayor que b" (desigualdad estricta)

a < b y se lee a es menor que b (desigualdad estricta) a > b y se lee a es mayor que b (desigualdad estricta) Desigualdades Dadas dos rectas que se cortan, llamadas ejes (rectangulares si son perpendiculares, y oblicuos en caso contrario), un punto puede situarse conociendo las distancias del mismo a los ejes,

Más detalles

IES Menéndez Tolosa. La Línea de la Concepción. 1 Es posible que un cuerpo se mueva sin que exista fuerza alguna sobre él?

IES Menéndez Tolosa. La Línea de la Concepción. 1 Es posible que un cuerpo se mueva sin que exista fuerza alguna sobre él? IES Menéndez Tolosa. La Línea de la Concepción 1 Es posible que un cuerpo se mueva sin que exista fuerza alguna sobre él? Si. Una consecuencia del principio de la inercia es que puede haber movimiento

Más detalles

Vectores. Las cantidades físicas que estudiaremos en los cursos de física son escalares o vectoriales.

Vectores. Las cantidades físicas que estudiaremos en los cursos de física son escalares o vectoriales. Cantidades vectoriales escalares Vectores Las cantidades físicas que estudiaremos en los cursos de física son escalares o vectoriales. Una cantidad escalar es la que está especificada completamente por

Más detalles

Vectores: Producto escalar y vectorial

Vectores: Producto escalar y vectorial Nivelación de Matemática MTHA UNLP 1 Vectores: Producto escalar y vectorial Versores fundamentales Dado un sistema de coordenadas ortogonales, se considera sobre cada uno de los ejes y coincidiendo con

Más detalles

GUIAS ÚNICAS DE LABORATORIO DE FÍSICA I ASPECTOS PRELIMINARES SUMA DE VECTORES

GUIAS ÚNICAS DE LABORATORIO DE FÍSICA I ASPECTOS PRELIMINARES SUMA DE VECTORES GUIAS ÚNICAS DE LABORATORIO DE FÍSICA I ASPECTOS PRELIMINARES SUMA DE VECTORES SANTIAGO DE CALI UNIVERSIDAD SANTIAGO DE CALI DEPARTAMENTO DE LABORATORIOS SUMA DE VECTORES OBJETIVOS Usar la mesa de fuerzas

Más detalles

ESTATICA. Componentes ortogonales de una fuerza. Seminario Universitario Física

ESTATICA. Componentes ortogonales de una fuerza. Seminario Universitario Física ESTATICA Es la parte de la física que estudia las fuerzas en equilibrio. Si sobre un cuerpo no actúan fuerzas o actúan varias fuerzas cuya resultante es cero, decimos que el cuerpo está en equilibrio.

Más detalles

Ejercicios resueltos

Ejercicios resueltos Ejercicios resueltos Boletín 5 Campo eléctrico Ejercicio 1 La masa de un protón es 1,67 10 7 kg y su carga eléctrica 1,6 10 19 C. Compara la fuerza de repulsión eléctrica entre dos protones situados en

Más detalles

GUIAS DE ACTIVIDADES Y TRABAJO PRACTICO Nº 21

GUIAS DE ACTIVIDADES Y TRABAJO PRACTICO Nº 21 SIGNTU: MTEMTI EN IOLOGI DOENTE: LI.GUSTO DOLFO JUEZ GUI DE TJO PTIO Nº ES: POFESODO Y LIENITU EN IOLOGI _PGIN Nº 4_ GUIS DE TIIDDES Y TJO PTIO Nº OJETIOS: Lograr que el lumno: Interprete la información

Más detalles

La magnitud vectorial mas simple es el desplazamiento (cambio de posición de un punto a otro de una partícula o de un cuerpo)

La magnitud vectorial mas simple es el desplazamiento (cambio de posición de un punto a otro de una partícula o de un cuerpo) Existen ciertas magnitudes que quedan perfectamente determinadas cuando se conoce el nombre de una unidad y el numero de veces que se ha tomado.estas unidades se llaman escalares (tiempo, volumen, longitud,

Más detalles

6. VECTORES Y COORDENADAS

6. VECTORES Y COORDENADAS 6. VECTORES Y COORDENADAS Página 1 Traslaciones. Vectores Sistema de referencia. Coordenadas. Punto medio de un segmento Ecuaciones de rectas. Paralelismo. Distancias Página 2 1. TRASLACIONES. VECTORES

Más detalles

Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales.

Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales. Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales. Introducción Por qué La Geometría? La Geometría tiene como objetivo fundamental

Más detalles

Geometría analítica. Impreso por Juan Carlos Vila Vilariño Centro I.E.S. PASTORIZA

Geometría analítica. Impreso por Juan Carlos Vila Vilariño Centro I.E.S. PASTORIZA Conoce los vectores, sus componentes y las operaciones que se pueden realizar con ellos. Aprende cómo se representan las rectas y sus posiciones relativas. Impreso por Juan Carlos Vila Vilariño Centro

Más detalles

UNIDAD 4: PLANO CARTESIANO, RELACIONES Y FUNCIONES. OBJETIVO DE APRENDIZAJE: Representar gráficamente relaciones y funciones en el plano cartesiano.

UNIDAD 4: PLANO CARTESIANO, RELACIONES Y FUNCIONES. OBJETIVO DE APRENDIZAJE: Representar gráficamente relaciones y funciones en el plano cartesiano. UNIDAD 4: PLANO CARTESIANO, RELACIONES Y FUNCIONES OBJETIVO DE APRENDIZAJE: Representar gráficamente relaciones y funciones en el plano cartesiano. EL PLANO CARTESIANO. El plano cartesiano está formado

Más detalles

VECTORES EN EL PLANO

VECTORES EN EL PLANO VECTORES EN EL PLANO VECTOR: vectores libres Segmento orientado, con un origen y extremo. Módulo: es la longitud del segmento orientado, es un número positivo y su símbolo es a Dirección: es la recta que

Más detalles

SUMA Y RESTA DE VECTORES

SUMA Y RESTA DE VECTORES SUMA Y RESTA DE VECTORES Definición de vectores Un vector es la expresión que proporciona la medida de cualquier magnitud vectorial. Un vector es todo segmento de recta dirigido en el espacio. Cada vector

Más detalles

La primera condición de equilibrio requiere que Σ F = 0, o bien, en forma de componentes, que:

La primera condición de equilibrio requiere que Σ F = 0, o bien, en forma de componentes, que: Las fuerzas concurrentes son todas las fuerzas que actúan cuyas líneas de acción pasan a través de un punto común. Las fuerzas que actúan sobre un objeto puntual son concurrentes porque toas ellas pasan

Más detalles

De acuerdo con sus características podemos considerar tres tipos de vectores:

De acuerdo con sus características podemos considerar tres tipos de vectores: CÁLCULO VECTORIAL 1. ESCALARES Y VECTORES 1.1.-MAGNITUDES ESCALARES Y VECTORIALES Existen magnitudes físicas cuyas cantidades pueden ser expresadas mediante un número y una unidad. Otras, en cambio, requieren

Más detalles

FÍSICA Y QUÍMICA - 4º ESO LAS FUERZAS PRINCIPIOS FUNDAMENTALES DE LA DINÁMICA (LEYES DE NEWTON) INERCIA

FÍSICA Y QUÍMICA - 4º ESO LAS FUERZAS PRINCIPIOS FUNDAMENTALES DE LA DINÁMICA (LEYES DE NEWTON) INERCIA PRINCIPIOS FUNDAMENTALES DE LA DINÁMICA (LEYES DE NEWTON) INERCIA 1. Todo cuerpo tiene tendencia a permanecer en su estado de movimiento. Esta tendencia recibe el nombre de inercia. 2. La masa es una medida

Más detalles

ESTÁTICA 2. VECTORES. Figura tomada de http://www.juntadeandalucia.es/averroes/~04001205/fisiqui/imagenes/vectores/473396841_e1de1dd225_o.

ESTÁTICA 2. VECTORES. Figura tomada de http://www.juntadeandalucia.es/averroes/~04001205/fisiqui/imagenes/vectores/473396841_e1de1dd225_o. ESTÁTICA Sesión 2 2 VECTORES 2.1. Escalares y vectores 2.2. Cómo operar con vectores 2.2.1. Suma vectorial 2.2.2. Producto de un escalar y un vector 2.2.3. Resta vectorial 2.2.4. Vectores unitarios 2.2.5.

Más detalles

Nivelación de Matemática MTHA UNLP 1. Vectores

Nivelación de Matemática MTHA UNLP 1. Vectores Nivelación de Matemática MTHA UNLP 1 1. Definiciones básicas Vectores 1.1. Magnitudes escalares y vectoriales. Hay magnitudes que quedan determinadas dando un solo número real: su medida. Por ejemplo:

Más detalles

VECTORES. Por ejemplo: la velocidad de un automóvil, o la fuerza ejercida por una persona sobre un objeto.

VECTORES. Por ejemplo: la velocidad de un automóvil, o la fuerza ejercida por una persona sobre un objeto. Un vector v es un segmento orientado. VECTORES Se representa gráficamente por medio de una flecha, por ejemplo: Todos los vectores poseen las siguientes características: Punto de aplicación: es el lugar

Más detalles

Tema 1. VECTORES (EN EL PLANO Y EN EL ESPACIO)

Tema 1. VECTORES (EN EL PLANO Y EN EL ESPACIO) Vectores Tema. VECTORES (EN EL PLANO Y EN EL ESPACIO Definición de espacio vectorial Un conjunto E es un espacio vectorial si en él se definen dos operaciones, una interna (suma y otra externa (producto

Más detalles

A continuación voy a colocar las fuerzas que intervienen en nuestro problema.

A continuación voy a colocar las fuerzas que intervienen en nuestro problema. ísica EL PLANO INCLINADO Supongamos que tenemos un plano inclinado. Sobre él colocamos un cubo, de manera que se deslice sobre la superficie hasta llegar al plano horizontal. Vamos a suponer que tenemos

Más detalles

COORDENADAS CURVILINEAS

COORDENADAS CURVILINEAS CAPITULO V CALCULO II COORDENADAS CURVILINEAS Un sistema de coordenadas es un conjunto de valores que permiten definir unívocamente la posición de cualquier punto de un espacio geométrico respecto de un

Más detalles

1. Vectores 1.1. Definición de un vector en R2, R3 (Interpretación geométrica), y su generalización en Rn.

1. Vectores 1.1. Definición de un vector en R2, R3 (Interpretación geométrica), y su generalización en Rn. 1. VECTORES INDICE 1.1. Definición de un vector en R 2, R 3 (Interpretación geométrica), y su generalización en R n...2 1.2. Operaciones con vectores y sus propiedades...6 1.3. Producto escalar y vectorial

Más detalles

Estática. Vectores de Fuerzas

Estática. Vectores de Fuerzas Estática 2 Vectores de Fuerzas Objetivos Regla del paralelogramo. Vectores en forma cartesiana. Producto escalar y ángulo entre 2 vectores. Índice 1. Escalares y vectores. 2. Operaciones con vectores.

Más detalles

Funciones más usuales 1

Funciones más usuales 1 Funciones más usuales 1 1. La función constante Funciones más usuales La función constante Consideremos la función más sencilla, por ejemplo. La imagen de cualquier número es siempre 2. Si hacemos una

Más detalles

Movimientos en el plano

Movimientos en el plano 7 Movimientos en el plano Objetivos En esta quincena aprenderás a: Manejar el concepto de vector como elemento direccional del plano. Reconocer los movimientos principales en el plano: traslaciones, giros

Más detalles

requerido). vectoriales, y operan según el Álgebra a continuación. 2.1.2 Vector. dirección. representados.

requerido). vectoriales, y operan según el Álgebra a continuación. 2.1.2 Vector. dirección. representados. 2.1 Vectores. 2.1.1 Introducción. Cuando queremos referirnos al tiempo que demanda un suceso determinado, nos basta con una magnitud (se demoró 3 segundos, saltó durante 1 minuto, volverá el próximo año,

Más detalles

35 Facultad de Ciencias Universidad de Los Andes Mérida-Venezuela. Potencial Eléctrico

35 Facultad de Ciencias Universidad de Los Andes Mérida-Venezuela. Potencial Eléctrico q 1 q 2 Prof. Félix Aguirre 35 Energía Electrostática Potencial Eléctrico La interacción electrostática es representada muy bien a través de la ley de Coulomb, esto es: mediante fuerzas. Existen, sin embargo,

Más detalles

1.1 CANTIDADES VECTORIALES Y ESCALARES. Definición de Magnitud

1.1 CANTIDADES VECTORIALES Y ESCALARES. Definición de Magnitud 1.1 CANTIDADES VECTORIALES Y ESCALARES Definición de Magnitud Atributo de un fenómeno, cuerpo o sustancia que puede ser distinguido cualitativamente y determinado cuantitativamente. También se entiende

Más detalles

Unidad V: Integración

Unidad V: Integración Unidad V: Integración 5.1 Introducción La integración es un concepto fundamental de las matemáticas avanzadas, especialmente en los campos del cálculo y del análisis matemático. Básicamente, una integral

Más detalles

Apoyo para la preparación de los estudios de Ingeniería y Arquitectura Física (Preparación a la Universidad) Unidad 4: Vectores

Apoyo para la preparación de los estudios de Ingeniería y Arquitectura Física (Preparación a la Universidad) Unidad 4: Vectores Apoyo para la preparación de los estudios de Ingeniería y Arquitectura Física (Preparación a la Universidad) Unidad 4: Vectores Universidad Politécnica de Madrid 5 de marzo de 2010 2 4.1. Planificación

Más detalles

TEMA: CAMPO ELÉCTRICO

TEMA: CAMPO ELÉCTRICO TEMA: CAMPO ELÉCTRICO C-J-06 Una carga puntual de valor Q ocupa la posición (0,0) del plano XY en el vacío. En un punto A del eje X el potencial es V = -120 V, y el campo eléctrico es E = -80 i N/C, siendo

Más detalles

Adición de sistemas de fuerzas coplanares

Adición de sistemas de fuerzas coplanares Adición de sistemas de fuerzas coplanares Ejemplo: Determine magnitud y orientación de la fuerza resultante a) Notación escalar: Fx = Rx Rx = 600 (cos 30) 400 (sen 45) Rx = 236.8 N Fy = Ry Ry = 600 (sen

Más detalles

Ejercicios de Trigonometría

Ejercicios de Trigonometría Ejercicios de Trigonometría 1) Indica la medida de estos ángulos en radianes: a) 0º b) 45º c) 60º d) 120º Recuerda que 360º son 2π radianes, con lo que para hacer la conversión realizaremos una simple

Más detalles

A.2. Notación y representación gráfica de vectores. Tipos de vectores.

A.2. Notación y representación gráfica de vectores. Tipos de vectores. Apéndice A: Vectores A.1. Magnitudes escalares y vectoriales Las magnitudes escalares son aquellas magnitudes físicas que quedan completamente definidas por un módulo (valor numérico) y la unidad de medida

Más detalles

TEORÍA TEMA 9. 2. Definición de ESFUERZOS CARACTERÍSTICOS ( Mf.; Q; N)

TEORÍA TEMA 9. 2. Definición de ESFUERZOS CARACTERÍSTICOS ( Mf.; Q; N) 1. Definición de Viga de alma llena TEORÍA TEMA 9 2. Definición de ESFUERZOS CARACTERÍSTICOS ( Mf.; Q; N) 3. Determinación de los esfuerzos característicos i. Concepto de Polígonos de Presiones ii. Caso

Más detalles

Aproximación local. Plano tangente. Derivadas parciales.

Aproximación local. Plano tangente. Derivadas parciales. Univ. de Alcalá de Henares Ingeniería de Telecomunicación Cálculo. Segundo parcial. Curso 004-005 Aproximación local. Plano tangente. Derivadas parciales. 1. Plano tangente 1.1. El problema de la aproximación

Más detalles

CURSO BÁSICO DE FÍSICA MECÁNICA PROYECTO UNICOMFACAUCA TU PROYECTO DE VIDA

CURSO BÁSICO DE FÍSICA MECÁNICA PROYECTO UNICOMFACAUCA TU PROYECTO DE VIDA UNICOMFACAUCA TU DE VIDA Tabla de contenido... 2 PARTES DE UN VECTOR... 3 Notación... 5 Tipos de vectores... 5 Componentes de un vector... 6 Operaciones con vectores... 7 Suma de vectores... 7 Resta de

Más detalles

Resortes y fuerzas. Analiza la siguiente situación. Ley de Hooke. 2do Medio > Física Ley de Hooke. Qué aprenderé?

Resortes y fuerzas. Analiza la siguiente situación. Ley de Hooke. 2do Medio > Física Ley de Hooke. Qué aprenderé? 2do Medio > Física Ley de Hooke Resortes y fuerzas Analiza la siguiente situación Aníbal trabaja en una fábrica de entretenimientos electrónicos. Es el encargado de diseñar algunas de las máquinas que

Más detalles

VECTORES. Módulo, dirección y sentido de un vector fijo En un vector fijo se llama módulo del mismo a la longitud del segmento que lo define.

VECTORES. Módulo, dirección y sentido de un vector fijo En un vector fijo se llama módulo del mismo a la longitud del segmento que lo define. VECTORES El estudio de los vectores es uno de tantos conocimientos de las matemáticas que provienen de la física. En esta ciencia se distingue entre magnitudes escalares y magnitudes vectoriales. Se llaman

Más detalles

Álgebra Vectorial. Principios de Mecánica. Licenciatura de Física. Curso 2007-2008. 1

Álgebra Vectorial. Principios de Mecánica. Licenciatura de Física. Curso 2007-2008. 1 Álgebra Vectorial Principios de Mecánica. Licenciatura de Física. Curso 2007-2008. 1 Indice. 1. Magnitudes Escalares y Vectoriales. 2. Vectores. 3. Suma de Vectores. Producto de un vector por un escalar.

Más detalles

Electrostática: ejercicios resueltos

Electrostática: ejercicios resueltos Electrostática: ejercicios resueltos 1) Dos cargas de 4 y 9 microculombios se hallan situadas en los puntos (2,0) y (4,0) del eje 0X. Calcula el campo y el potencial eléctrico en el punto medio. 2) Dos

Más detalles

UNIVERSIDAD VERACRUZANA FACULTAD DE INGENIERÍA MECÁNICA ELÉCTRICA

UNIVERSIDAD VERACRUZANA FACULTAD DE INGENIERÍA MECÁNICA ELÉCTRICA UNIVERSIDAD VERACRUZANA FACULTAD DE INGENIERÍA MECÁNICA ELÉCTRICA PROBLEMAS SELECTOS ESTÁTICA: SISTEMAS EQUIVALENTES Y EQUILIBRIO DE CUERPOS RÍGIDOS MONOGRAFIA Que para obtener el título de: INGENIERO

Más detalles

DESIGUALDADES E INECUACIONES

DESIGUALDADES E INECUACIONES DESIGUALDAD DESIGUALDADES E INECUACIONES Para hablar de la NO IGUALDAD podemos utilizar varios términos o palabras. Como son: distinto y desigual. El término "DISTINTO" (signo ), no tiene apenas importancia

Más detalles

SISTEMAS DE COORDENADAS SISTEMA COORDENADO UNIDIMENSIONAL

SISTEMAS DE COORDENADAS SISTEMA COORDENADO UNIDIMENSIONAL SISTEMAS DE COORDENADAS En la vida diaria, nos encontramos con el problema de ordenar algunos objetos; de tal manera que es necesario agruparlos, identificarlos, seleccionarlos, estereotiparlos, etc.,

Más detalles

V. FRICCIÓN. que actúan sobre él son su peso y la reacción de la superficie; en este caso la reacción es perpendicular o normal a dicha

V. FRICCIÓN. que actúan sobre él son su peso y la reacción de la superficie; en este caso la reacción es perpendicular o normal a dicha V. FRICCIÓN La fricción o rozamiento es una fuerza de importancia singular. La estudiaremos en este lugar como una aplicación concreta de los proble-mas de equilibrio, aun cuando la fricción aparece también

Más detalles

SOLUCIONES CIRCUNFERENCIA. 1. Ecuación de la circunferencia cuyo centro es el punto (1, 2) y que pasa por el punto (2,3).

SOLUCIONES CIRCUNFERENCIA. 1. Ecuación de la circunferencia cuyo centro es el punto (1, 2) y que pasa por el punto (2,3). SOLUCIONES CIRCUNFERENCIA 1. Ecuación de la circunferencia cuyo centro es el punto (1,) y que pasa por el punto (,). Para determinar la ecuación de la circunferencia es necesario conocer el centro y el

Más detalles

Cantidades vectoriales y escalares

Cantidades vectoriales y escalares Solución: Al sustituir las unidades por las cantidades en cada término, tenemos m m, m = ( ) H ^ ist se obtiene m = m + m Con esto se satisfacen tanto la regla 1 como la regla 2. Por tanto, la ecuación

Más detalles

, y su resultado es igual a la suma de los productos de las coordenadas correspondientes. Si u = (u 1, u 2 ) y v = (v 1, v 2 ), = u1 v 1 + u 2 v 2

, y su resultado es igual a la suma de los productos de las coordenadas correspondientes. Si u = (u 1, u 2 ) y v = (v 1, v 2 ), = u1 v 1 + u 2 v 2 Los vectores Los vectores Distancia entre dos puntos del plano Dados dos puntos coordenados del plano, P 1 = (x 1, y 1 ) y P = (x, y ), la distancia entre estos dos puntos, d(p 1,P ), se calcula de la

Más detalles

BASES Y DIMENSIÓN. Propiedades de las bases. Ejemplos de bases.

BASES Y DIMENSIÓN. Propiedades de las bases. Ejemplos de bases. BASES Y DIMENSIÓN Definición: Base. Se llama base de un espacio (o subespacio) vectorial a un sistema generador de dicho espacio o subespacio, que sea a la vez linealmente independiente. β Propiedades

Más detalles

Cap. 24 La Ley de Gauss

Cap. 24 La Ley de Gauss Cap. 24 La Ley de Gauss Una misma ley física enunciada desde diferentes puntos de vista Coulomb Gauss Son equivalentes Pero ambas tienen situaciones para las cuales son superiores que la otra Aquí hay

Más detalles

1. Trabajo y energía TRABAJO HECHO POR UNA FUERZA CONSTANTE

1. Trabajo y energía TRABAJO HECHO POR UNA FUERZA CONSTANTE Trabajo y energía 1. Trabajo y energía Hasta ahora hemos estudiado el movimiento traslacional de un objeto en términos de las tres leyes de Newton. En este análisis la fuerza ha jugado un papel central.

Más detalles

Ecuaciones de primer grado con dos incógnitas

Ecuaciones de primer grado con dos incógnitas Ecuaciones de primer grado con dos incógnitas Si decimos: "las edades de mis padres suman 120 años", podemos expresar esta frase algebraicamente de la siguiente forma: Entonces, Denominamos x a la edad

Más detalles

APUNTES DE MATEMÁTICAS TEMA 4: VECTORES 1º BACHILLERATO

APUNTES DE MATEMÁTICAS TEMA 4: VECTORES 1º BACHILLERATO APUNTES DE MATEMÁTICAS TEMA 4: VECTORES 1º BACHILLERATO ÍNDICE VECTORES EN EL PLANO... 3 Vector Fijo... 3 VECTOR LIBRE... 3 Operaciones con Vectores... 3 Suma de vectores... 3 Producto de un número por

Más detalles

1.4.- D E S I G U A L D A D E S

1.4.- D E S I G U A L D A D E S 1.4.- D E S I G U A L D A D E S OBJETIVO: Que el alumno conozca y maneje las reglas empleadas en la resolución de desigualdades y las use para determinar el conjunto solución de una desigualdad dada y

Más detalles

Dinámica. Fuerza es lo que produce cualquier cambio en la velocidad de un objeto. Una fuerza es lo que causa una aceleración

Dinámica. Fuerza es lo que produce cualquier cambio en la velocidad de un objeto. Una fuerza es lo que causa una aceleración Tema 4 Dinámica Fuerza Fuerza es lo que produce cualquier cambio en la velocidad de un objeto Una fuerza es lo que causa una aceleración La fuerza neta es la suma de todas las fuerzas que actúan sobre

Más detalles

TRABAJO Y ENERGÍA; FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS

TRABAJO Y ENERGÍA; FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS TRABAJO Y ENERGÍA; FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS 1. CONCEPTO DE TRABAJO: A) Trabajo de una fuerza constante Todos sabemos que cuesta trabajo tirar de un sofá pesado, levantar una pila de libros

Más detalles

TEMA II ÁLGEBRA VECTORIAL; FUNDAMENTOS. 2.1.- Definicion, notacion y clasificacion de los vectores.

TEMA II ÁLGEBRA VECTORIAL; FUNDAMENTOS. 2.1.- Definicion, notacion y clasificacion de los vectores. J.A DÁVILA BAZ - J. PAJÓN PERMUY CÁLCULO VECTORIAL 29 UNIDAD DIDÁCTICA I: CÁLCULO VECTORIAL. TEMA II ÁLGEBRA VECTORIAL; FUNDAMENTOS 2.1.- Definicion, notacion y clasificacion de los vectores. Un vector

Más detalles

La forma algebraica de la ecuación producto cruz es más complicada que la del producto escalar. Para dos vectores 3D y,

La forma algebraica de la ecuación producto cruz es más complicada que la del producto escalar. Para dos vectores 3D y, Materia: Matemática de 5to Tema: Producto Cruz Marco Teórico Mientras que un producto escalar de dos vectores produce un valor escalar; el producto cruz de los mismos dos vectores produce una cantidad

Más detalles

VECTORES. Se representa gráficamente por medio de una flecha, por ejemplo: Todos los vectores poseen las siguientes características:

VECTORES. Se representa gráficamente por medio de una flecha, por ejemplo: Todos los vectores poseen las siguientes características: Un vector v es un segmento orientado. VECTORES Se representa gráficamente por medio de una flecha, por ejemplo: Todos los vectores poseen las siguientes características: Punto de aplicación: es el lugar

Más detalles

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Universidad de Cádiz Departamento de Matemáticas MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Tema 4 La recta en el plano Elaborado por la Profesora Doctora María Teresa

Más detalles

Tema 2. Espacios Vectoriales. 2.1. Introducción

Tema 2. Espacios Vectoriales. 2.1. Introducción Tema 2 Espacios Vectoriales 2.1. Introducción Estamos habituados en diferentes cursos a trabajar con el concepto de vector. Concretamente sabemos que un vector es un segmento orientado caracterizado por

Más detalles

ENERGÍA (II) FUERZAS CONSERVATIVAS

ENERGÍA (II) FUERZAS CONSERVATIVAS NRGÍA (II) URZAS CONSRVATIVAS IS La Magdalena. Avilés. Asturias Cuando elevamos un cuerpo una altura h, la fuerza realiza trabajo positivo (comunica energía cinética al cuerpo). No podríamos aplicar la

Más detalles

ESTATICA Y RESISTENCIA DE MATERIALES (Ing. Industrial) T P Nº 1: SISTEMAS DE FUERZAS

ESTATICA Y RESISTENCIA DE MATERIALES (Ing. Industrial) T P Nº 1: SISTEMAS DE FUERZAS ESTATICA Y RESISTENCIA DE MATERIALES (Ing. Industrial) T P Nº 1: SISTEMAS DE FUERZAS Fuerzas Concurrentes 1- Las fuerzas F1, F2 y F3, que actúan en el punto A del soporte de la figura, están especificadas

Más detalles

Ejercicios en LATEX. Universidad Tecnológica de Bolívar

Ejercicios en LATEX. Universidad Tecnológica de Bolívar Universidad Tecnológica de Bolívar Estática Ejercicios en LATEX Entregado por: Beicker Baena Baldiris Yeison Sarmiento Lopez Yair Franco Puello Álvaro Polo Ulloque Profesor: Alfredo Abuchar 6 de septiembre

Más detalles

Representación de un Vector

Representación de un Vector VECTORES Vectores Los vectores se caracterizan por tener una magnitud, expresable por un número real, una dirección y un sentido. Un ejemplo de vectores son los desplazamientos. Otro ejemplo de vectores

Más detalles

PARÁBOLA. 1) para la parte positiva: 2) para la parte negativa: 3) para la parte positiva: 4) para la parte negativa:

PARÁBOLA. 1) para la parte positiva: 2) para la parte negativa: 3) para la parte positiva: 4) para la parte negativa: Página 90 5 LA PARÁBOLA 5.1 DEFINICIONES La parábola es el lugar geométrico 4 de todos los puntos cuyas distancias a una recta fija, llamada, y a un punto fijo, llamado foco, son iguales entre sí. Hay

Más detalles

Segundo de Bachillerato Geometría en el espacio

Segundo de Bachillerato Geometría en el espacio Segundo de Bachillerato Geometría en el espacio Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid 204-205. Coordenadas de un vector En el conjunto de los vectores libres del espacio el concepto

Más detalles

Universidad de la Frontera. Geometría Anaĺıtica: Departamento de Matemática y Estadística. Cĺınica de Matemática. J. Labrin - G.

Universidad de la Frontera. Geometría Anaĺıtica: Departamento de Matemática y Estadística. Cĺınica de Matemática. J. Labrin - G. Universidad de la Frontera Departamento de Matemática y Estadística Cĺınica de Matemática 1 Geometría Anaĺıtica: J. Labrin - G.Riquelme 1. Los puntos extremos de un segmento son P 1 (2,4) y P 2 (8, 4).

Más detalles

CARTILLA DE ESTÁTICA FUERZA CONCURRENTES Y NO CONURRENTES APOYOS REACCIONES DE APOYO

CARTILLA DE ESTÁTICA FUERZA CONCURRENTES Y NO CONURRENTES APOYOS REACCIONES DE APOYO CARTILLA DE ESTÁTICA FUERZA CONCURRENTES Y NO CONURRENTES APOYOS REACCIONES DE APOYO 1- Calcular, gráfica y analíticamente, la tensión en los cables que sostienen una lámpara de 30 Kg. de peso. El centro

Más detalles

Potencial eléctrico. du = - F dl

Potencial eléctrico. du = - F dl Introducción Como la fuerza gravitatoria, la fuerza eléctrica es conservativa. Existe una función energía potencial asociada con la fuerza eléctrica. Como veremos, la energía potencial asociada a una partícula

Más detalles

Geometría Tridimensional

Geometría Tridimensional Capítulo 4 Geometría Tridimensional En dos dimensiones trabajamos en el plano mientras que en tres dimensiones trabajaremos en el espacio, también provisto de un sistema de coordenadas. En el espacio,

Más detalles

Problemas de Física 1 o Bachillerato

Problemas de Física 1 o Bachillerato Problemas de Física o Bachillerato Principio de conservación de la energía mecánica. Desde una altura h dejamos caer un cuerpo. Hallar en qué punto de su recorrido se cumple E c = 4 E p 2. Desde la parte

Más detalles

Apuntes de Matemática Discreta 9. Funciones

Apuntes de Matemática Discreta 9. Funciones Apuntes de Matemática Discreta 9. Funciones Francisco José González Gutiérrez Cádiz, Octubre de 004 Universidad de Cádiz Departamento de Matemáticas ii Lección 9 Funciones Contenido 9.1 Definiciones y

Más detalles

EXAMEN FÍSICA 2º BACHILLERATO TEMA 1: CAMPO GRAVITATORIO

EXAMEN FÍSICA 2º BACHILLERATO TEMA 1: CAMPO GRAVITATORIO INSTRUCCIONES GENERALES Y VALORACIÓN La prueba consiste de dos opciones, A y B, y el alumno deberá optar por una de las opciones y resolver las tres cuestiones y los dos problemas planteados en ella, sin

Más detalles

VECTORES. Abel Moreno Lorente. February 3, 2015

VECTORES. Abel Moreno Lorente. February 3, 2015 VECTORES Abel Moreno Lorente February 3, 015 1 Aspectos grácos. 1.1 Deniciones. Un vector entre dos puntos A y B es el segmento de recta orientado que tiene su origen en A y su extremo en B. A este vector

Más detalles

CAMPO ELÉCTRICO FCA 10 ANDALUCÍA

CAMPO ELÉCTRICO FCA 10 ANDALUCÍA CMO LÉCTRICO FC 0 NDLUCÍ. a) xplique la relación entre campo y potencial electrostáticos. b) Una partícula cargada se mueve espontáneamente hacia puntos en los que el potencial electrostático es mayor.

Más detalles

Vectores no colineales.

Vectores no colineales. Vectores no colineales. Por definición son aquellos vectores que no tienen igual dirección. La resultante de los mismos no surge de la suma algebraica de los módulos de dichos vectores, sino que deben

Más detalles

INTRODUCCIÓN A VECTORES Y MAGNITUDES

INTRODUCCIÓN A VECTORES Y MAGNITUDES C U R S O: FÍSIC Mención MTERIL: FM-01 INTRODUCCIÓN VECTORES Y MGNITUDES La Física tiene por objetivo describir los fenómenos que ocurren en la naturaleza, a través de relaciones entre magnitudes físicas.

Más detalles

Funciones lineales. Objetivos. Antes de empezar. 1.Función de proporcionalidad directa pág. 170 Definición Representación gráfica

Funciones lineales. Objetivos. Antes de empezar. 1.Función de proporcionalidad directa pág. 170 Definición Representación gráfica 10 Funciones lineales Objetivos En esta quincena aprenderás a: Identificar problemas en los que intervienen magnitudes directamente proporcionales. Calcular la función que relaciona a esas magnitudes a

Más detalles

Vectores. Observación: 1. Cantidades vectoriales.

Vectores. Observación: 1. Cantidades vectoriales. Vectores. 1. Cantidades vectoriales. Los vectores se definen como expresiones matemáticas que poseen magnitud y dirección, y que se suman de acuerdo con la ley del paralelogramo. Los vectores se representan,

Más detalles

Teoría Tema 5 Espacios vectoriales

Teoría Tema 5 Espacios vectoriales página 1/14 Teoría Tema 5 Espacios vectoriales Índice de contenido Puntos en 2 y 3 dimensiones...2 Vectores en el plano...5 Suma de vectores...7 Combinación lineal de vectores...8 Sistema generador...10

Más detalles

Lección 7 - Coordenadas rectangulares y gráficas

Lección 7 - Coordenadas rectangulares y gráficas Lección 7 - Coordenadas rectangulares gráficas Coordenadas rectangulares gráficas Objetivos: Al terminar esta lección podrás usar un sistema de coordenadas rectangulares para identificar puntos en un plano

Más detalles

Práctica La Conservación de la Energía

Práctica La Conservación de la Energía Práctica La Conservación de la Energía Eduardo Rodríguez Departamento de Física, Universidad de Concepción 30 de junio de 2003 La Conservación de la Energía Un péndulo en oscilación llega finalmente al

Más detalles

GEOMETRÍA ANALÍTICA 2º Curso de Bachillerato 22 de mayo de 2008

GEOMETRÍA ANALÍTICA 2º Curso de Bachillerato 22 de mayo de 2008 1. Sean los puntos A (1, 0,-1) y B (,-1, 3). Calcular la distancia del origen de coordenadas a la recta que pasa por A y B. Calculemos la recta que pasa por A y B. El vector AB es (1,-1,4) y por tanto

Más detalles

Esta es la forma vectorial de la recta. Si desarrollamos las dos posibles ecuaciones, tendremos las ecuaciones paramétricas de la recta:

Esta es la forma vectorial de la recta. Si desarrollamos las dos posibles ecuaciones, tendremos las ecuaciones paramétricas de la recta: Todo el mundo sabe que dos puntos definen una recta, pero los matemáticos son un poco diferentes y, aún aceptando la máxima universal, ellos prefieren decir que un punto y un vector nos definen una recta.

Más detalles

FÍSICA I PRÁCTICA 1 DIAGRAMAS DE CUERPO LIBRE. UNIVERSIDAD POLITÉCNICA DE EL SALVADOR ESCUELA DE FORMACIÓN BÁSICA. OBJETIVOS DEL APRENDIZAJE:

FÍSICA I PRÁCTICA 1 DIAGRAMAS DE CUERPO LIBRE. UNIVERSIDAD POLITÉCNICA DE EL SALVADOR ESCUELA DE FORMACIÓN BÁSICA. OBJETIVOS DEL APRENDIZAJE: UNIVERSIDAD POLITÉCNICA DE EL SALVADOR ESCUELA DE FORMACIÓN BÁSICA. FÍSICA I PRÁCTICA 1 DIAGRAMAS DE CUERPO LIBRE. OBJETIVOS DEL APRENDIZAJE: IDENTIFICAR LAS FUERZAS QUE ACTÚAN SOBRE UN OBJETO. REPRESENTAR

Más detalles

Estática. Análisis Estructural

Estática. Análisis Estructural Estática 6 Análisis Estructural Objetivos Determinar las fuerzas en los miembros de una estructura usando el método de uniones y secciones. Analizar las fuerzas que actúan en los miembros de armazones

Más detalles

Sistemas de vectores deslizantes

Sistemas de vectores deslizantes Capítulo 1 Sistemas de vectores deslizantes 1.1. Vectores. Álgebra vectorial. En Física, se denomina magnitud fsica (o simplemente, magnitud) a todo aquello que es susceptible de ser cuantificado o medido

Más detalles

1. ESCALARES Y VECTORES

1. ESCALARES Y VECTORES 1. ESCLRES Y VECTORES lgunas magnitudes físicas se especifican por completo mediante un solo número acompañado de su unidad, por ejemplo, el tiempo, la temperatura, la masa, la densidad, etc. Estas magnitudes

Más detalles

4 APLICACIONES LINEALES. DIAGONALIZACIÓN

4 APLICACIONES LINEALES. DIAGONALIZACIÓN 4 APLICACIONES LINEALES DIAGONALIZACIÓN DE MATRICES En ocasiones, y con objeto de simplificar ciertos cálculos, es conveniente poder transformar una matriz en otra matriz lo más sencilla posible Esto nos

Más detalles