INTEGRALES DOBLES Y MÚLTIPLES

Tamaño: px
Comenzar la demostración a partir de la página:

Download "INTEGRALES DOBLES Y MÚLTIPLES"

Transcripción

1 Análisis Mtemático C T.P. Nº TABAJO PÁCTICO Nº INTEALES DOBLES Y MÚLTIPLES Áre pln = dd olumen = f (, )dd ' ddd Áre de superficies lbeds = f f dd, sobre el plno. Cmbio de coordends: cos sen cos sen f (, )dd F(, ) dd ) Polres: f (,, )ddd b) Cilíndrics: r coscos r cossen f (,, )ddd F(,, ) ddd F(,, )r cosdrdd c) Esférics: rsen Coordends del centro de grvedd: ddd ; ddd ddd ; ddd dd ; dd = ddd ddd dd dd. Ddo el recinto del plno, se pide: ) epresentr el recinto b) Epresr I f (, ) dd medinte dos integrles simples sucesivs c) olver epresrl cmbindo el orden de integrción I ) : II ) : III ) : I ) :. Comprobr el vlor de ls siguientes integrles definids: ) ( ) dd 5 d) e dd b) dd e) dd c) 7 6 dd f) ( cos ) sendd

2 Análisis Mtemático C T.P. Nº. Dds ls integrles dobles: I ) sendd II) dd III) dd ) epresentr el recinto de integrción epresrlo en form nlític. b) Clculr l integrl propuest. c) Invertir el orden de integrción verificr el resultdo obtenido en b).. Hllr por integrción doble, el áre de l superficie limitd por el siguiente pr de curvs: ) = 5 ; 5 = 9 b) = ; = erificr l respuest cmbindo el orden de integrción. 5. Clculr por integrción doble el áre encerrd por cd uno de los siguientes pres de curvs: ) =, + = d) = 9+, = 9 b) =, = + e), + c) = ln, = e, =, = f) =, = + 6. Hllr ls coordends del centro de grvedd de ls superficies dds en el ejercicio nº suponiendo que l densidd es constnte. 7. Psr coordends polres, colocr los límites de integrción pr ls nuevs vribles luego resolver: dd ) dd ; b) 6 c) dd 8. Hllr el áre pln de cd un de ls siguientes superficies, plicndo coordends polres: ) Interior l circunferenci + = e interior l circunferenci + = 9/ b) (circunferenci) (+cos) (prábol) c) Interior l crdioide = +cos l derech de l rect cos = d), cos tg en el primer cudrnte. 9. Hllr el volumen de l región limitd por: ) =, =, =, =, =, = b) =, =, =, + =, = e c) + =, =, + = d) + =, =, = e) =, =, = - f) ++, ++,,, g) ++ = 8, =, + = 8, - = 8, =.. Usr l integrción triple pr hllr: ) El volumen, en el primer octnte, limitdo por =, = 6. b) El volumen, en el primer octnte, limitdo por = e =. Plnterlo proectndo sobre los tres plnos coordendos. c) El volumen, en el primer octnte, limitdo por = 9 = 9.

3 Análisis Mtemático C T.P. Nº d) El volumen, en el primer octnte, limitdo por +. e) El centro de grvedd del sólido limitdo por + =, + =, =, =.. Usr coordends cilíndrics o esférics pr resolver ls siguientes integrles: ) ( ) ddd b ) c ) d ) e ) h b b ( ddd ddd ddd ) ddd. Utilindo coordends cilíndrics determinr el volumen limitdo por: ) = +, = b) =, = c) + =, = (interior l superficie cónic) d) =, = cos, = e) + = 6, = (interior mbs superficies) f) =, = + g) +, /,,,.. Utilir coordends esférics pr: ) Clculr el volumen del cuerpo limitdo por + + = = + (l prte eterior con respecto l superficie cónic). b) Comprobr el resultdo del ejercicio c). c) Clculr el volumen del cuerpo limitdo por + + ( ) = l superficie = + (l prte interior respecto l superficie cónic). d) Clculr el volumen interior + =, debjo de + =, sobre el plno. e) Clculr el volumen encerrdo por: + + = ; = ; =.. Hllr el áre de l porción de: ) Prlelogrmo, sección del prism {, } con el plno =. b) Superficie cilíndric + = 6, interior l superficie + = 6. c) Superficie cónic + =, que qued sobre el cudrdo limitdo por =, =, =, = en el plno. d) Superficie cilíndric + = que está en el primer octnte sobre el triángulo limitdo por ls rects =, =, + = en el plno. e) Superficie cilíndric + = que qued entre los plnos =, =. f) Superficie cilíndric + = r que está entre los plnos = m, =. g) Prboloide = / + /, eterior = +. h) Superficie esféric + + = 5 comprendid entre = =. i) Prboloide + + = que está entre los plnos =, = =, en el primer octnte.

4 Análisis Mtemático C T.P. Nº EJECICIOS POPUESTOS. Clculr, plicndo coordends crtesins, el áre pln determind por: +,,.. Clculr el áre pln de l siguiente superficie: +cos (crdioide), (+cos) (prábol) tg (rect).. Clculr ls coordends del centro de grvedd del sólido limitdo por: =, =, =, =, =.. Clculr el volumen limitdo por: ) = + = 8. b) =, = +, = /, interior l prboloide. 5. ) Clculr el siguiente volumen, utilindo coordends esférics: d d d d d d. b) Plnter el volumen nterior en coordends crtesins. 6. Hllr el áre de l porción de: ) Superficie + =, comprendid entre = e = en el primer octnte. b) superficie + =, comprendid entre = + = /. 7. Plnter l integrl I d d / / / sen / / sen r cossen dr ) en coordends cilíndrics. b) en coordends crtesins. ESPUESTAS A LOS EJECICIOS. I ) ). I I ) ). I I I ) ). I ) ) (, ) (, ) (, ) (, ) ( -, ) (, / ) - - (, - )

5 Análisis Mtemático C T.P. Nº 5. I) b) d f(, ) d c) d f(, ) d. II) b) d f(, ) d c) d f(, ) d d f(, ) d. III) b) d f(, ) d d f(, ) d c) d f(, ) d. I) b) d f(, ) d d f(, ) d. I) ; II) 8 ; III) 9. ) 5; b) 9 c) 5. ) 7 e ; b) 6 ; c) e d) 8; e) - 6 ln ; ; f) ), ; b) ; 5 d f(, ) d d f(, ) d 8. ) ; b) ; c) d) 6 9. ) ; b) e - ; c) 8 ; d) 5 56 ; e) ; f) 5 ; g) 5. ) ; b) 6 8 ; c) ; d) 8 ; e) ; ; 5. ) ; b) 5 ; c) b ; d) h ; e) ) 9 ; b) 8 ; c) 6 ; d) ; e) 8 ; f) ; g) 9. ) ; b) 6 ; c) ; d) ; e) 5 7. ) ; b) 8; c) ; d) ; e) ; f) r ; g) m h) 5 ; i) 7 7 6

6 Análisis Mtemático C T.P. Nº 6 ESPUESTAS A LOS EJECICIOS POPUESTOS. 6. ) 6 5 / / 7 b ) Si proectmos sobre el plno. 8. ) b ) Posibles respuests / Si proectmos sobre el plno 6. ) d d d d ( ) b ) d d 5,, 7 7 d d d d d d d d d 7. ) Posibles respuests I I b ) Posibles respuests Si proectmos sobre el plno I Si proectmos sobre el plno I / / d d d d d d d d d d d d / d d 9 d d d d d 9 d d

7.10. Calcular el desarrollo de Taylor de grado 2 en x = 0 de la función. Cálculo integral: funciones reales de variable real.

7.10. Calcular el desarrollo de Taylor de grado 2 en x = 0 de la función. Cálculo integral: funciones reales de variable real. 7.. Clculr el desrrollo de Tylor de grdo en = de l función f () = te t dt, y utilizrlo pr clculr proimdmente, te t dt. Dr un estimción del error cometido. ( 997). 7.. Clculr el siguiente ite funcionl cos

Más detalles

Fundamentos Matemáticos de la Ingeniería. Tema 9: Cálculo integral de funciones de varias variables Curso

Fundamentos Matemáticos de la Ingeniería. Tema 9: Cálculo integral de funciones de varias variables Curso Fundmentos Mtemáticos de l Ingenierí. (Tem 9) Hoj Escuel Técnic Superior de Ingenierí Civil e Industril (Esp. en Hidrologí) Fundmentos Mtemáticos de l Ingenierí. Tem 9: Cálculo integrl de funciones de

Más detalles

Llamaremos S a la superficie dada y D a su proyección sobre el plano XY (ver figura).

Llamaremos S a la superficie dada y D a su proyección sobre el plano XY (ver figura). TEOREMA E GAU. 15. Hllr el flujo del cmpo i + j + z k trvés de l superficie z 1 +, z 1. ) irectmente. b) Aplicndo el teorem de Guss. olución Llmremos l superficie dd su proección sobre el plno XY (ver

Más detalles

Cálculo diferencial e integral 4

Cálculo diferencial e integral 4 Cálculo diferencil e integrl 4 Guí 2. emuestr el cso del teorem de Fubini que no se demostró en clse. Concretmente: se R = A B R n un rectángulo compcto con A y B rectángulos de dimensión menor. Supongmos

Más detalles

dx x 2 dx 22. x2 +x-2 dx cos 2 x+cosx senx

dx x 2 dx 22. x2 +x-2 dx cos 2 x+cosx senx Integrles Clculr l integrl: +e + -+ + sen(+) 6-7 - 8 9 - + ln - 9- + (-)cos 6 ln 7 e 8 sen 9 e - + + + +- +- -6 - ++ () Describir el método de integrción por cmbio de vrible () Usndo el cmbio de vrible

Más detalles

CÁLCULO DE ÁREAS DE RECINTOS PLANOS

CÁLCULO DE ÁREAS DE RECINTOS PLANOS CÁLCULO DE ÁREAS DE RECINTOS PLANOS Ejercicio Hllr el áre del recinto limitdo por l gráfic de = sen el eje OX entre 0 π Ejercicio Clculr el áre del recinto limitdo por ls curvs =, = 0 8 = + 8, =, ls verticles

Más detalles

Aplicaciones de la integral.

Aplicaciones de la integral. Cpítulo 6 Aplicciones de l integrl. 6.. Cálculo del áre de un figur pln. En generl, pr clculr el áre de un región pln:. L dividimos en frnjs, infinitmente estrechs, de mner horizontl o verticl,. Suponemos

Más detalles

b) Calcule el área del recinto limitado por la gráfica de la función f(x) y el eje de abscisas entre x = 1 e y x = e.

b) Calcule el área del recinto limitado por la gráfica de la función f(x) y el eje de abscisas entre x = 1 e y x = e. MsMtescom Integrles Selectividd CCNN Murci [] [EXT-A] ) Clcule l integrl indefinid rctgd, donde rctg denot l función rco-tngente de ) De tods ls primitivs de l función f() = rctg, encuentre l que ps por

Más detalles

EJERCICIOS DE CÁLCULO I. Para Grados en Ingeniería. Capítulo 4: Integración en una variable. Domingo Pestana Galván José Manuel Rodríguez García

EJERCICIOS DE CÁLCULO I. Para Grados en Ingeniería. Capítulo 4: Integración en una variable. Domingo Pestana Galván José Manuel Rodríguez García EJERCICIOS DE CÁLCULO I Pr Grdos en Ingenierí Cpítulo 4: Integrción en un vrible Domingo Pestn Glván José Mnuel Rodríguez Grcí Índice 4. Integrción en un vrible 4.. Cálculo de primitivs..................................

Más detalles

2. [ANDA] [JUN-B] Considera la función f: definida por f(x) = e

2. [ANDA] [JUN-B] Considera la función f: definida por f(x) = e Selectividd CCNN 5. [ANDA] [JUN-A] Se sbe que ls dos gráfics del dibujo corresponden l función f: definid por f() = e y su función derivd f'. ) Indic, rzonndo l respuest, cuál es l gráfic de f y cuál l

Más detalles

INTEGRALES DOBLES SOBRE REGIONES GENERA- LES.

INTEGRALES DOBLES SOBRE REGIONES GENERA- LES. INTEGRALES DOBLES SOBRE REGIONES GENERA- LES. 6. En l integrl dole f(, ), colocr los límites de integrción en mos órdenes, pr los siguientes recintos: i) trpecio de vértices (, ), (, ), (, ) (, ). ii)

Más detalles

Aplicaciones de la Integral.

Aplicaciones de la Integral. Seminrio 2 Aplicciones de l Integrl. 2.1. Áre de figurs plns. Definición 2.1.1. Se f : [, b] R continu y f(x) 0 x [, b]. El áre del recinto {(x, y) R 2 : x b, 0 y f(x)} viene dd por l integrl: A = f(x)

Más detalles

Aplicaciones de la derivada (II)

Aplicaciones de la derivada (II) UNIVERSIDAD DEL CAUCA Fcultd de Ciencis Nturles, Ects de l Educción Deprtmento de Mtemátics CÁLCULO I Ejercicios Rects tngentes Aplicciones de l derivd (II) 1. Se l curv gráfic de l ecución ( ) =. Encuentre

Más detalles

Teorema de Green. 6.1 Introducción

Teorema de Green. 6.1 Introducción SESIÓN 6 6.1 Introducción En est sesión se revis el primero de los 3 teorem clves del cálculo vectoril: el. Este teorem estblece que un integrl doble sobre un región del plno es igul un integrl de líne

Más detalles

Para demostrar la primera igualdad, se supondrá que la región D puede ser definida de la siguiente manera

Para demostrar la primera igualdad, se supondrá que la región D puede ser definida de la siguiente manera .7. Teorem de Green en el Plno. Se un curv cerrd, simple, suve trozos positivmente orientd en el plno, se l región limitd por l curv, e incluendo. Si F ( ) F ( ),, son continus tiene primers derivds prciles

Más detalles

Tema 7 Integral definida

Tema 7 Integral definida Tem 7 Integrl definid 1. INTEGRAL E RIEMANN efinición 1.1: Prtición Llmremos prtición de un intervlo [, b] culquier conjunto ordendo de puntos P = {x, x 1, x,..., x n } tl que = x < x 1 < x

Más detalles

CÁLCULO INTEGRAL SESIÓN 5: INTEGRAL DEFINIDA Y APLICACIONES DE LA INTEGRAL. INTEGRAL DEFINIDA

CÁLCULO INTEGRAL SESIÓN 5: INTEGRAL DEFINIDA Y APLICACIONES DE LA INTEGRAL. INTEGRAL DEFINIDA CÁLCULO INTEGRAL SESIÓN 5: INTEGRAL DEFINIDA Y APLICACIONES DE LA INTEGRAL. COMPETENCIA: resolver y plnter integrles que le yuden clculr el áre de un región cotd por dos o más funciones plicndo el teorem

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2016 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2016 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 06 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserv, Ejercicio, Opción A Reserv, Ejercicio, Opción B Reserv, Ejercicio,

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2016 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2016 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 6 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserv, Ejercicio, Opción A Reserv, Ejercicio, Opción B Reserv, Ejercicio,

Más detalles

Junio 2010 (Prueba General) JUNIO 2010 OPCIÓN A

Junio 2010 (Prueba General) JUNIO 2010 OPCIÓN A Junio 00 (Prueb Generl) JUNIO 00 OPCIÓN A.- ) Dds ls funciones f () = ln () y g() =, hllr el áre del recinto plno limitdo por ls rects =, = y ls gráfics de f () y g (). b) Dr un ejemplo de función continu

Más detalles

5.-CÁLCULO DE VOLÚMENES DE ROTACIÓN.

5.-CÁLCULO DE VOLÚMENES DE ROTACIÓN. 65 ) Clculr el áre interior de l stroide = cos t = sen t, t De l figur, el áre totl uscd A será cutro veces el áre curd: A = (sen t)(cos t)( sent) dt A = sen t cos t dt. Pero: cos sen = ; + cos cos =,

Más detalles

Contenido: Integral definida: (1º) Aplicación: Área entre dos curvas. Matemática II Sección F Semestre 2 Lcdo Eliezer Montoya

Contenido: Integral definida: (1º) Aplicación: Área entre dos curvas. Matemática II Sección F Semestre 2 Lcdo Eliezer Montoya REPÚBLICA BOLIVARIANA DE VENEZUELA MINISTERIO DEL PODER POPULAR PARA LA DEFENSA UNIVERSIDAD NACIONAL EXPERIMENTAL POLITÉCNICA DE LA FUERZA ARMADA NÚCLEO BARINAS Contenido: Integrl definid: (1º) Aplicción:

Más detalles

2.3.1 Cálculo de primitivas

2.3.1 Cálculo de primitivas Mtemátics I.3 Lists de ejercicios de Cálculo Integrl.3 Lists de ejercicios de Cálculo Integrl.3. Cálculo de primitivs 75. Encontrr l epresión de ls siguientes integrles indefinids: ) p) tg b) e sen cos

Más detalles

Tema 11: Integrales denidas

Tema 11: Integrales denidas Tem : Integrles denids My 9, 7 Denición y propieddes Denición. Si f ) es un función continu en un intervlo [, b] y denid positiv, f ), l integrl denid en ese intervlo l denimos como: f ). Si f ) > l integrl

Más detalles

7 Integral triple de Riemann

7 Integral triple de Riemann Miguel eyes, pto. de Mtemátic Aplicd, FI-UPM 1 7 Integrl triple de iemnn 7.1 efinición Llmremos rectángulo cerrdo de 3 (prlelepípedo) l producto de tres intervlos cerrdos y cotdos de, es decir = [, b]

Más detalles

CAMBIO DE VARIABLES EN LA INTEGRAL DOBLE.

CAMBIO DE VARIABLES EN LA INTEGRAL DOBLE. CAMBIO E VAIABLES EN LA INEGAL OBLE. 7. Se = [, ] [, ] se define : como (, ) = ( +, ). Encontrr = ( ). Es inecti? Cd n de ls componentes = +, =, es fnción de n sol rible. Pr er qe es inecti, bst comprobr

Más detalles

INTEGRAL DEFINIDA. 6.1 Aproximación intuitiva al concepto de integral definida. Propiedades con respecto al integrando y al intervalo de integración.

INTEGRAL DEFINIDA. 6.1 Aproximación intuitiva al concepto de integral definida. Propiedades con respecto al integrando y al intervalo de integración. INTEGRAL DEFINIDA Apuntes de A. Cñó Mtemátics II 6. Aproimción intuitiv l concepto de integrl definid. Propieddes con respecto l integrndo y l intervlo de integrción. 6. El teorem fundmentl del cálculo

Más detalles

5. Aplicación de la Integral de Riemann

5. Aplicación de la Integral de Riemann Ingenierí Mtemátic FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Diferencil e Integrl 8-2 Ingenierí Mtemátic Universidd de Chile SEMANA 9: APLICACIONES DE LA INTEGRAL 5. Aplicción

Más detalles

TEMA 1.2.4: APLICACIONES DEL CÁLCULO INTEGRAL

TEMA 1.2.4: APLICACIONES DEL CÁLCULO INTEGRAL Asigntur: Mtemátics I Profesor: Roque Molin Legz TEMA..4: APLICACIONES DEL CÁLCULO INTEGRAL Progrm detlldo: - Áres de recintos plnos. - Volúmenes de revolución. - Volumen de un sólido por secciones plns.

Más detalles

EJERCICIOS RESUELTOS

EJERCICIOS RESUELTOS FUNAMENTOS MATEMÁTICOS E LA INGENIEÍA Ingerierí Técnic Industril. Esecilidd en Mecánic. Boletin 7. Integrción Múltile EJECICIOS ESUELTOS Curso -. Clculr ls siguientes integrles iterds: Z Z Z y ( + y)dyd.

Más detalles

RELACIÓN DE PROBLEMAS DEL ESPACIO AFÍN EUCLÍDEO.

RELACIÓN DE PROBLEMAS DEL ESPACIO AFÍN EUCLÍDEO. RELACIÓN DE PROBLEMAS DEL ESPACIO AFÍN EUCLÍDEO. 1- Ddo el triángulo de vértices A=(1,-3,), B=(3,-1,0) y C(-1,5,4). ) Determinr ls coordends del bricentro. b) Si ABCD es un prlelogrmo, determinr ls coordends

Más detalles

Integrales de Superficie y sus Aplicaciones

Integrales de Superficie y sus Aplicaciones iclo Básico Deprtmento de Mtemátic Aplicd álculo Vectoril (054) Junio 01 UNIVERIDAD ENTRAL DE VENEZUELA FAULTAD DE INGENIERÍA Integrles de uperficie y sus Aplicciones José Luis Quintero 1. Encuentre un

Más detalles

APLICACIONES DE LA INTEGRAL DEFINIDA. A1. Curvas expresadas en forma explícita (Coordenadas Cartesianas)

APLICACIONES DE LA INTEGRAL DEFINIDA. A1. Curvas expresadas en forma explícita (Coordenadas Cartesianas) ESCUELA TÉCNICA SUPERIOR DE NÁUTICA Y MÁQUINAS NAVALES / NAUTIKAKO ETA ITSASONTZI MAKINETAKO GOI ESKOLA TEKNIKOA APLICACIONES DE LA INTEGRAL DEFINIDA CÁLCULO DE ÁREAS Y VOLÚMENES (De revolución) A. Cálculo

Más detalles

AREA DE CIENCIAS BÁSICAS - CÁLCULO INTEGRAL INTEGRAL DEFINIDA

AREA DE CIENCIAS BÁSICAS - CÁLCULO INTEGRAL INTEGRAL DEFINIDA GUIA DE INTEGRALES DEFINIDAS INTEGRAL DEFINIDA. APLICACIONES DE LA INTEGRAL DEFINIDA Teorem Fundmentl del Cálculo Áre jo l curv de un región Áre entre dos regiones COMPETENCIA: Resolver integrles plicndo

Más detalles

Tema 8 Integral definida

Tema 8 Integral definida Tem 8 Integrl definid ) Integrl definid Se y = f() un función ositiv y continu en el intervlo (, ). Consideremos el trecio mitilíneo, S, determindo or f(), f(), f() y el eje OX y dividmos el intervlo (,

Más detalles

Práctica 12. Calcula de manera simbólica la integral indefinida de una función. Ejemplo:

Práctica 12. Calcula de manera simbólica la integral indefinida de una función. Ejemplo: PRÁCTICA APLICACIONES DE LA INTEGRAL Práctics Mtlb Práctic Objetivos Profundizr en l comprensión del concepto de integrción. Aplicr l integrl l cálculo de áres y volúmenes Comndos de Mtlb int Clcul de

Más detalles

LA DERIVADA. Tan(ax)dx = - ln( Cos(ax) ) +C a. Cot(ax)dx = ln( Sen(ax) ) + C a. Sec(ax)dx = ln( Sec(ax)+Tan(ax) ) +C a

LA DERIVADA. Tan(ax)dx = - ln( Cos(ax) ) +C a. Cot(ax)dx = ln( Sen(ax) ) + C a. Sec(ax)dx = ln( Sec(ax)+Tan(ax) ) +C a LA DERIVADA ) m+ m +C, m = m+ ln(), m=- ) Sen() = - Cos()+ C ) Cos() = Sen() + C ) Tn() = - ln( Cos() ) +C ) Cot() = ln( Sen() ) + C ) Sec() = ln( Sec()+Tn() ) +C Csc() = - ln Csc()+Cot() +C 7) ( ) 8)

Más detalles

SELECTIVIDAD ANDALUCÍA. a) Esboza las gráficas de f y g sobre los mismos ejes y calcula los puntos de corte entre ambas gráficas.

SELECTIVIDAD ANDALUCÍA. a) Esboza las gráficas de f y g sobre los mismos ejes y calcula los puntos de corte entre ambas gráficas. SELECTIVIDAD. Est es un selección de cuestiones propuests en ls otrs comuniddes utónoms en l convoctori de Junio del.. En quells comuniddes en ls que no se indic nd, el formto de emen es similr l que se

Más detalles

2. [ANDA] [JUN-B] Determinar b sabiendo que b > 0 y que el área de la región limitada por la curva y = x 2 y la recta y = bx es igual

2. [ANDA] [JUN-B] Determinar b sabiendo que b > 0 y que el área de la región limitada por la curva y = x 2 y la recta y = bx es igual MsMtes.com Integrles Selectividd CCNN. [ANDA] [JUN-A] De l función f:(-,+ ) se se que f (x ) = y que f() =. (x+) () Determinr f. () Hllr l primitiv de f cuy gráfic ps por el punto (,).. [ANDA] [JUN-B]

Más detalles

f(x) dx = F (x) + C, siendo F (x) una antiderivada de f(x), es decir, siendo F (x) tal que F (x) = f(x)

f(x) dx = F (x) + C, siendo F (x) una antiderivada de f(x), es decir, siendo F (x) tal que F (x) = f(x) Cálculo de primitivs: f(x) dx = F (x) + C, siendo F (x) un ntiderivd de f(x), es decir, siendo F (x) tl que F (x) = f(x) L constnte C se denomin constnte de integrción; es un constnte rbitrri porque se

Más detalles

FUNCIONES. Analíticamente, la correspondencia anterior se escribe del modo siguiente:

FUNCIONES. Analíticamente, la correspondencia anterior se escribe del modo siguiente: FUNCIONES.- CONCEPTO DE FUNCIÓN Se dice que un correspondenci f definid entre dos conjuntos A B es un función (o plicción), si cd elemento del conjunto A le sign un elemento sólo uno del conjunto B. De

Más detalles

+ ax + b y g(x) = ce. (b) Calcula el área del recinto limitado por la gráfica de g, el eje de abscisas y la recta tangente del apartado anterior.

+ ax + b y g(x) = ce. (b) Calcula el área del recinto limitado por la gráfica de g, el eje de abscisas y la recta tangente del apartado anterior. MATEMÁTICAS II ACTIVIDADES REFUERZO ª EVALUACIÓN Ejercicio 1. Sen f : y g : ls funciones definids por f() = -( + 1) + + b y g() = ce Se sbe que ls gráfics de f y g se cortn en el punto ( 1, ) y tienen

Más detalles

5.4. Longitud de un Arco de Curva (Rectificación)

5.4. Longitud de un Arco de Curva (Rectificación) Ingenierí Mtemátic FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Diferencil e Integrl 7-2 SEMANA 1: APLICACIONES DE LA INTEGRAL 5.4. Longitud de un Arco de Curv (Rectificción)

Más detalles

Tema 11: Integral definida. Aplicaciones al cálculo de áreas

Tema 11: Integral definida. Aplicaciones al cálculo de áreas Tem : Integrl definid. Aplicciones l cálculo de áres. Introducción Ls integrles no vn permitir clculr áres de figurs no geométrics. En nuestro cso, nos limitremos clculr el áre jo un curv y el áre encerrd

Más detalles

1. Función primitiva. Integral de una función.

1. Función primitiva. Integral de una función. . Función primitiv. Integrl de un función. Considermos l función f() =. Nos preguntmos si eiste otr función F() tl que l derivrl nos de l función f(). F() = verific que F () = f(). Pero tmién nos vldrí

Más detalles

Dadas las matrices: y. a) Hallar A 10. b) Hallar la matriz inversa de B. c) En el caso particular de k=0, halla B 10. (PAU Septiembre )

Dadas las matrices: y. a) Hallar A 10. b) Hallar la matriz inversa de B. c) En el caso particular de k=0, halla B 10. (PAU Septiembre ) Dds ls mtrices: ) Hllr A. b) Hllr l mtri invers de B. c) En el cso prticulr de k=, hll B. (PAU Septiembre 4-5) ) A = = A = = = O A 4 = A A= O A = O ; lo mismo A 5, A 6 por tnto A = b) B = = ; Es un mtri

Más detalles

Tema 10: Integral definida. Aplicaciones al cálculo de áreas

Tema 10: Integral definida. Aplicaciones al cálculo de áreas Tem : Integrl definid. Aplicciones l cálculo de áres. Introducción Ls integrles nos vn permitir clculr áres de figurs no geométrics. En nuestro cso, nos limitremos clculr el áre jo un curv y el áre encerrd

Más detalles

INTEGRALES Curso , 2 tal que f(c) = k? ), para algún punto [a, b].

INTEGRALES Curso , 2 tal que f(c) = k? ), para algún punto [a, b]. INTEGRALES Curso 9-.- ) Enuncir el Teorem del vlor medio integrl y dr un interpretción del mismo. Cundo f(), cómo puede interpretrse geométricmente? cos si [-, ] ) Se f () = 4 + sen si (, ] ) Hllr I =

Más detalles

Z ξ. g(t)dt y proceda como sigue:

Z ξ. g(t)dt y proceda como sigue: Prolems Prolem.9. Sen f(x) y g(x) funciones continus en [,] y f (x) continu y de signo constnte en [,]. demuestre que (,) tl que f(x)g(x)dx = f() g(x)dx+ f() g(x)dx. R Pr esto considere l función G(x)

Más detalles

EJERCICIOS DE INTEGRAL DOBLE PROPUESTOS EN EXÁMENES

EJERCICIOS DE INTEGRAL DOBLE PROPUESTOS EN EXÁMENES TUTORÍA DE MATEMÁTICAS III (º A.D.E.) e-mil: imozs@elx.ned.es º) Obtener el lor de l integrl doble I ( y)( x y) R x dxdy efectndo el sigiente cmbio de rible: x ; y, siendo R l región del plno limitd por

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE MADRID JUNIO Tiempo máximo: 1 hora y 30 minutos OPCIÓN A

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE MADRID JUNIO Tiempo máximo: 1 hora y 30 minutos OPCIÓN A IES STELR BDJOZ PRUEB DE ESO (LOGSE) UNIVERSIDD DE MDRID JUNIO MTEMÁTIS II Tiempo máimo: hor minutos El lumno contestrá los cutro ejercicios de un de ls dos opciones ( o B) que se le ofrecen Nunc deberá

Más detalles

Integración múltiple. Langley Photography/Getty Images

Integración múltiple. Langley Photography/Getty Images Integrción múltiple En este cpítulo se introduce el concepto de integrles dobles sobre regiones en el plno e integrles triples sobre regiones en el espcio. En este cpítulo, se prenderá: Cómo evlur un integrl

Más detalles

TEMA 8 GEOMETRÍA ANALÍTICA

TEMA 8 GEOMETRÍA ANALÍTICA Tem 8 Geometrí Anlític Mtemátics º ESO TEMA 8 GEOMETRÍA ANALÍTICA RELACIÓN ENTRE PUNTOS DEL PLANO EJERCICIO : Hll el punto medio del segmento de extremos P, y Q,. Ls coordends del punto medio, M, son l

Más detalles

CA LCULO Hoja 11. Integrales triples. Aplicaciones.

CA LCULO Hoja 11. Integrales triples. Aplicaciones. CA LCULO Hoj.. Clculr ls siguientes integrles triles en los recintos indicdos: () xzy x yzdxdydz, = (x, y, z) R : x, y, z. () zxy (d) y dxdydz, = (x, y, z) R : x, y, z. (c) π. z y zx zx dxdydz, con el

Más detalles

Práctico 9 - Cálculo de integrales. 1. Teorema fundamental y regla de Barrow

Práctico 9 - Cálculo de integrales. 1. Teorema fundamental y regla de Barrow Universidd de l Repúblic Cálculo Fcultd de Ingenierí - IMERL Segundo semestre 6 Práctico 9 - Cálculo de integrles. Teorem fundmentl y regl de Brrow. Utilizndo los resultdos del ejercicio 9 del práctico

Más detalles

PRIMITIVA E INTEGRACIÓN INDEFINIDA

PRIMITIVA E INTEGRACIÓN INDEFINIDA TEMA CÁLCULO DE PRIMITIVAS. - PRIMITIVA E INTEGRACIÓN INDEFINIDA PRIMITIVA DE UNA FUNCIÓN f(): F() es un primitiv de f() si F () = f() Ejemplos: función: f() Primitiv: F() sen - cos Not: Un función tiene

Más detalles

Integral definida. Áreas MATEMÁTICAS II 1

Integral definida. Áreas MATEMÁTICAS II 1 Integrl definid. Áres MATEMÁTICAS II APROXIMACIÓN AL VALOR DEL ÁREA BAJO UNA CURVA L integrl definid está históricmente relciond con el prolem de definir y clculr el áre de figurs plns. En geometrí se

Más detalles

el blog de mate de aida: MATE I. Cónicas pág. 1

el blog de mate de aida: MATE I. Cónicas pág. 1 el blog de mte de id: MATE I. Cónics pág. 1 SECCIONES CÓNICAS Un superficie cónic se obtiene l girr un rect g (llmd genertriz), lrededor de otr rect e, llmd eje de giro, l que cort en un punto V (vértice).

Más detalles

Aplicaciones de la integral.

Aplicaciones de la integral. Tem 10 Aplicciones de l integrl. 10.1. Áre de figurs plns. 10.1.1. Áre encerrd entre un curv y el eje de bsciss. Se f : [, b] R un función integrble, tl que f(x 0 x [, b]. El áre del recinto C = {(x, y

Más detalles

EJERCICIOS DE INTEGRACIÓN DEFINIDA

EJERCICIOS DE INTEGRACIÓN DEFINIDA EJERCICIOS DE INTEGRACIÓN DEFINIDA. Definición de función integrble. Primers propieddes. Clculr ls integrles de ls siguientes funciones en los intervlos que se indicn: ) f(x) = [x] en [, n], con n N. b)

Más detalles

BLOQUE II Análisis. Resoluciones de la autoevaluación del libro de texto. sea continua en x = 1.

BLOQUE II Análisis. Resoluciones de la autoevaluación del libro de texto. sea continua en x = 1. Pág. de 7 x si x Ì Hll el vlor de k pr que l función fx = x + k si x > se continu en x =. b Represent l función pr ese vlor de k. c Es derivble en x =? Pr que f se continu en x =, h de ser fx = f. x 8

Más detalles

BLOQUE II ANÁLISIS. Página 234. a) Halla el valor de k para que la función f(x) = continua en x = 1. x 2 + k si x > 1

BLOQUE II ANÁLISIS. Página 234. a) Halla el valor de k para que la función f(x) = continua en x = 1. x 2 + k si x > 1 II BLOQUE II ANÁLISIS Págin 3 3x si x Ì Hll el vlor de k pr que l función fx = continu en x =. x + k si x > se b Represent l función pr ese vlor de k. c Es derivble en x =? Pr que f se continu en x =,

Más detalles

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen, 7 de Septiembre de 2004 Primera parte

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen, 7 de Septiembre de 2004 Primera parte CÁLCULO Primer curso de Ingeniero de Telecomunicción Exmen, 7 de Septiembre de 24 Primer prte Ejercicio. Clculr ls coordends de los puntos P y Q de l prábol y x 2, tles que el triángulo formdo por el eje

Más detalles

Solución Segunda Prueba Intermedia (23/01/2018) Curso 2017/18

Solución Segunda Prueba Intermedia (23/01/2018) Curso 2017/18 Solución Segund Prueb Intermedi 3//8) Curso 7/8 Problem. Indic si los siguientes enuncidos son VERDADEROS o FALSOS, justicndo l respuest. ) Si f : [, b] R es continu con c f)d < b f)d. b) Si f : [, + )

Más detalles

TEMA 9: INTEGRALES. CÁLCULO DE ÁREAS

TEMA 9: INTEGRALES. CÁLCULO DE ÁREAS TEMA 9: INTEGRALES. CÁLCULO DE ÁREAS. ÁREA BAJO UNA CURVA. El prolem que pretendemos resolver es el cálculo del áre limitd por l gráfic de un función f() continu y positiv, el eje X y ls sciss = y =. Si

Más detalles

Determinantes y la Regla de Cramer

Determinantes y la Regla de Cramer Determinntes y l Regl de Crmer Mtriz Invers Not: un mtriz cudrd que no tiene invers se llm mtriz singulr. Ejemplo: Hllr l invers de A. A 4 Si l plicr el método de Guss se obtiene ceros en los elementos

Más detalles

INTEGRAL DEFINIDA 2º BACHILLER

INTEGRAL DEFINIDA 2º BACHILLER Colegio Vizcy Mtemátics II UNIDAD DIDÁCTICA INTEGRAL DEFINIDA º BACHILLER 9 Colegio Vizcy Mtemátics II OBJETIVOS DIDÁCTICOS. Aproximr por exceso y por defecto, medinte rectángulos, el áre encerrd por un

Más detalles

Aplicaciones de la integral

Aplicaciones de la integral 5 Mtemátics I : Cálculo integrl en I Tem 4 Aplicciones de l integrl 4. Áres de superficies plns 4.. Funciones dds de form explícit A l vist del estudio de l integrl definid relizdo en el Tem 3, prece rzonle

Más detalles

8 - Ecuación de Dirichlet.

8 - Ecuación de Dirichlet. Ecuciones Diferenciles de Orden Superior Prte V III Integrl de Dirichle t Ing. Rmón scl Prof esor Titulr de nálisi s de Señles Sistems Teorí de los Circuit os I I en l UTN, Fcultd Regionl vellned uenos

Más detalles

Grado en Biología Tema 3 Integración. La regla del trapecio.

Grado en Biología Tema 3 Integración. La regla del trapecio. Grdo en Biologí Tem Integrción Sección.: Aproximción numéric de integrles definids. Hy funciones de ls que no se puede hllr un primitiv en términos de funciones elementles. Esto sucede, por ejemplo, con

Más detalles

CAPÍTULO 7 CÁLCULO INTEGRAL EN VARIAS VARIABLES

CAPÍTULO 7 CÁLCULO INTEGRAL EN VARIAS VARIABLES CAPÍTULO 7 CÁLCULO INTEGAL EN VAIA VAIABLE 1. INTEOGANTE CENTALE EL CAPÍTULO Clculr integrles dobles en coordends crtesins y polres, sobre dominios sencillos. Usr l integrl doble pr el cálculo de áres.

Más detalles

MATEMÁTICAS (II) JUNIO 2002

MATEMÁTICAS (II) JUNIO 2002 MTEMÁTICS (II) JUNIO El emen present dos opciones, B. El lumno deberá elegir UN Y SÓLO UN de ells resolver los cutro ejercicios de que const. No se permite el usó de clculdors con cpcidd de representción

Más detalles

Autoevaluación. Bloque II. Análisis. BACHILLERATO Matemáticas aplicadas a las Ciencias Sociales II. Página Calcula los siguientes límites: lm í

Autoevaluación. Bloque II. Análisis. BACHILLERATO Matemáticas aplicadas a las Ciencias Sociales II. Página Calcula los siguientes límites: lm í Mtemátics plicds ls Ciencis Sociles II Autoevlución Págin Clcul los siguientes lmites: ) b) e log( ) 6 5 c) ) ` j 6 5 ( ) ( ) 6 ( 5 ) 6 5 6 6 ( 5 )( 5 ) 6 5 b) e log( ) ( ) ( ) 6 5 6 5 c) k ( ) ( ) ( )(

Más detalles

5. Integral y Aplicaciones

5. Integral y Aplicaciones Métodos Mtemáticos (Curso 203 204) Grdo en Óptic y Optometrí 29 5. Integrl y Aplicciones Primitiv de un función Un función F es un primitiv de f, en un intervlo I, si F (x) = f(x) pr todo x en I. Observción

Más detalles

LA RECTA DEL PLANO P O L I T E C N I C O 1 ECUACIÓN VECTORIAL Y ECUACIONES PARAMÉTRICAS

LA RECTA DEL PLANO P O L I T E C N I C O 1 ECUACIÓN VECTORIAL Y ECUACIONES PARAMÉTRICAS L Rect del Plno Mtemátic 4º Año Cód. 44-5 P r o f. M r í d e l L u j á n M r t í n e z P r o f. J u n C r l o s B u e P r o f. M i r t R o s i t o P r o f. V e r ó n i c F i l o t t i Dpto. de Mtemátic

Más detalles

TRIGONOMETRÍA Sistemas de Medición de Ángulos Equivalencia entre los tres Sistemas

TRIGONOMETRÍA Sistemas de Medición de Ángulos Equivalencia entre los tres Sistemas TRIGONOMETRÍA Sistems de Medición de Ángulos Equivlenci entre los tres Sistems Áre del Circulo =. r 360º = Rd = 400 G º = R = G 360º 400 G Longitud de l Circunferenci C =. rdio Áre de Anillo o Coron Circulr

Más detalles

Grado en Química Bloque 1 Funciones de una variable

Grado en Química Bloque 1 Funciones de una variable Grdo en Químic Bloque Funciones de un vrible Sección.6: Integrción y plicciones. L integrl sirve pr clculr áres de figurs plns limitds por curvs. Pr definir l integrl de un función f : [, b] R se utilizn

Más detalles

Cálculo de áreas de figuras planas. Cálculo de volúmenes de sólidos de revolución. Cálculo de áreas de superficies de revolución.

Cálculo de áreas de figuras planas. Cálculo de volúmenes de sólidos de revolución. Cálculo de áreas de superficies de revolución. APLICACIONES DE LA INTEGRAL DEFINIDA Cálculo de áres de figurs plns. Cálculo de volúmenes de sólidos de revolución. Cálculo de longitud de rco de curv. Cálculo de áres de superficies de revolución. Cálculo

Más detalles

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 6 Curso preprtorio de l prueb de cceso l universidd pr myores de 5 ños curso 1/11 Nuri Torrdo Robles Deprtmento de Estdístic Universidd Crlos III de Mdrid

Más detalles

METODOS NUMERICOS TALLER 7, SEMESTRE Se obtuvieron los siguientes datos de la distancia recorrida por un cohete contra el tiempo:

METODOS NUMERICOS TALLER 7, SEMESTRE Se obtuvieron los siguientes datos de la distancia recorrida por un cohete contra el tiempo: METODOS NUMERICOS 697 TALLER 7, SEMESTRE Tem: Derivción e integrción numérics Se recomiend relizr los ejercicios propuestos en el texto guí, en prticulr los siguientes: Sección :,,, 7, 8,, Sección :, 8

Más detalles

Para funciones de una variable, el área que encierra la gráfica de la función sobre un intervalo se puede medir con

Para funciones de una variable, el área que encierra la gráfica de la función sobre un intervalo se puede medir con Integrción sore conjuntos sencillos - Fernndo Sánchez - - Pr funciones de un vrile, el áre que encierr l gráfic de l función sore un intervlo se puede medir con f ( ) I [, ] En el cso de funciones de dos

Más detalles

SELECCIÓN DE PROBLEMAS DEL TEMA 5: INTEGRACIÓN. Análisis Matemático (Grupo 1)

SELECCIÓN DE PROBLEMAS DEL TEMA 5: INTEGRACIÓN. Análisis Matemático (Grupo 1) INTEGRACIÓN. Análisis Mtemático (Grupo ). Clcul ls siguientes integrles indefinids: ( R) ( ) + 4 + 6 4 (e) ln (g) (j) e (m) sen (o) + (h) cos ( ) (k) ln (n) e sen b (p) e sen sen sen (l) (ñ) cos sen rctn

Más detalles

1. La integral doble.

1. La integral doble. UNIVESIA POLITÉCNICA E CATAGENA eprtmento de Mtemátic Aplicd y Estdístic Fundmentos Mtemáticos Curso 2008/09. Integrción Múltiples 1. L integrl doble. Supongmos que tenemos un rectángulo en 2 de l form

Más detalles

Integración de funciones de una variable real

Integración de funciones de una variable real Cpítulo 5 Integrción de funciones de un vrible rel 5.1. Introducción Los inicios del Cálculo Integrl se remontn Arquímedes, mtemático, físico e ingeniero griego del S.III A.C., quién clculó el áre de numeross

Más detalles

MATEMÁTICAS 2º BACH CIENCIAS INTEGRAL DEFINIDA

MATEMÁTICAS 2º BACH CIENCIAS INTEGRAL DEFINIDA Profesor: Fernndo Ureñ Portero 1. APROXIMACIÓN DE ÁREAS BAJO UNA CURVA Hy infinidd de funciones extríds del mundo rel (científico, económico, físic )pr ls cules tiene especil relevnci clculr el áre jo

Más detalles

Electromagnetismo I. +q" #2q" d" 2d"

Electromagnetismo I. +q #2q d 2d Electromgnetismo I Semestre: 215-2 Prof. Alejndro Reyes Corondo Ayud. Crlos Alberto Mciel Escudero Ayud. Christin Esprz López Solución l Tre 4 Solución por Christin Esprz López 1.- Problem: (2pts Clcul

Más detalles

INTEGRAL DEFINIDA APLICACIÓN al CÁLCULO de ÁREAS

INTEGRAL DEFINIDA APLICACIÓN al CÁLCULO de ÁREAS INTEGRL DEFINID PLICCIÓN l CÁLCULO de ÁRES MTEMÁTICS II º Bchillerto lfonso González IES Fernndo de Men Dpto. de Mtemátics I) CONCEPTO DE INTEGRL DEFINID (ver págs. 7 y 7 del liro de ed. ny) DEF: dx =

Más detalles

Integrales triples en coordenadas rectangulares. Integrales triples. S n = a

Integrales triples en coordenadas rectangulares. Integrales triples. S n = a 5.5 Integrles triples en coordends rectngulres 859. Evlúe lím erfsd lím : q 4. Conversión un integrl polr Evlúe l integrl q q : q s + + d d. d 43. Eistenci Integre l función f(, ) 5 ( ) sore el disco #

Más detalles

05Chapter 5-1 1/31/09 11:07 AM Page 233

05Chapter 5-1 1/31/09 11:07 AM Page 233 5Chpter 5- //9 :7 AM Pge 5 Integrles múltiples Cundo l ren está sec, se puede juntr pr formr montones cónicos. Cundo l ren está húmed, sus propieddes físics cmbin se puede usr pr crer cstillos de ren como

Más detalles

Integración. 1. El cálculo de áreas, longitudes de arco y volúmenes.

Integración. 1. El cálculo de áreas, longitudes de arco y volúmenes. Integrción El cálculo integrl es de grn importnci en muchs áres de estudio, como l economí, l biologí, l químic, l físic y l mtemátic en generl. Ls plicciones más conocids del cálculo integrl son en: 1.

Más detalles

Aplicaciones de la integral

Aplicaciones de la integral CAPÍTULO Aplicciones de l integrl. Momentos centro de un ms.. Centro de ms de un sistem unidimensionl Considerr el sistem unidimensionl, tl como se muestr en l siguiente figur, formdo por un vrill (de

Más detalles

1 APLICACIONES DE LA INTEGRAL

1 APLICACIONES DE LA INTEGRAL UNIVERSIDAD DE CONCEPCION DEPARTAMENTO DE MATEMATICA Prof Jorge Ruiz Cstillo 1 APLICACIONES DE LA INTEGRAL 11 Are entre curvs Definición- Sen f,g :[, b] R dos funciones integrbles, entonces el áre de l

Más detalles

= α G. TRIGONOMETRÍA Sistemas de Medición de Ángulos Equivalencia entre los tres Sistemas. Funciones Trigonométricas

= α G. TRIGONOMETRÍA Sistemas de Medición de Ángulos Equivalencia entre los tres Sistemas. Funciones Trigonométricas TRIGONOMETRÍA Sistems de Medición de Ángulos Equivlenci entre los tres Sistems Áre del Circulo = π. r 360º = πrd = 400 G α º = α R = α G 360º π 400 G C = π. rdio Longitud de l Circunferenci Áre de Anillo

Más detalles

Función Cuadrática. 1. Si f ( x) x x 2, determine su forma canónica

Función Cuadrática. 1. Si f ( x) x x 2, determine su forma canónica Función Cudrátic. Si f ( ), determine su form cnónic. Determine el ámbito de l función ( 4). Hlle l ecución de l prábol que tiene vértice V (,) y cort l eje y en el punto (0,5). 4. Grfique l función f

Más detalles

Integral Definida. Tema 6. 6.1 Introducción. 6.2 Definición de Integral Definida

Integral Definida. Tema 6. 6.1 Introducción. 6.2 Definición de Integral Definida Tem 6 Integrl Definid 6.1 Introducción En este tem estudiremos l Integrl Definid o Integrl de Riemnn, un concepto mtemático que esencilmente puede describirse como el límite de un sum cundo el número de

Más detalles

Escuela de Ciencias Exactas y Naturales (ECEN)Profesor: Allan Gen Palma EL CÁLCULO INTEGRAL EN LA OBTENCIÓN DEL VOLÚMENES DE SÓLIDOS DE REVOLUCIÓN

Escuela de Ciencias Exactas y Naturales (ECEN)Profesor: Allan Gen Palma EL CÁLCULO INTEGRAL EN LA OBTENCIÓN DEL VOLÚMENES DE SÓLIDOS DE REVOLUCIÓN Cálculo Integrl III- Escuel de Ciencis Ects Nturles (ECEN)Profesor: Alln Gen Plm EL CÁLCULO INTEGRAL EN LA OBTENCIÓN DEL VOLÚMENES DE SÓLIDOS DE REVOLUCIÓN Un sólido de revolución es generdo l girr un

Más detalles

( ) ( ) DEPARTAMENTO DE ECONOMÍA Examen Final (sólo 2ª parte) de Análisis Matemático 21-Mayo-2015 GRADOS ECO y ENI NOMBRE: D.N.I.

( ) ( ) DEPARTAMENTO DE ECONOMÍA Examen Final (sólo 2ª parte) de Análisis Matemático 21-Mayo-2015 GRADOS ECO y ENI NOMBRE: D.N.I. DEPARTAMENTO DE ECONOMÍA Emen Finl (sólo ª prte) de Análisis Mtemático -Mo-05 GRADOS ECO ENI NOMBRE: DNI TURNO: TEST 45 PUNTOS (Cd pregunt contestd correctmente sum 05 puntos, contestd errónemente rest

Más detalles