Distribución de Probabilidad

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Distribución de Probabilidad"

Transcripción

1 Distribución de Probabilidad Variables discretas Álvaro José Flórez 1 Escuela de Ingeniería Industrial y Estadística Facultad de Ingenierías Febrero - Junio 2012

2 Modelos probabilísticos Un modelo es una traducción de la realidad para poder aplicar los instrumentos y técnicas de las teorías matemáticas para estudiar el comportamiento de sistemas complejos. Simplificación de la realidad. Determinista: Se conoce de manera puntual la forma del resultado ya que no hay incertidumbre. Estocástico (probabilístico): No se conoce el resultado puntual, sino su probabilidad y existe por tanto incertidumbre. Tiene como objetivo estudiar los resultados de un experimento aleatorio y predecir su comportamiento futuro, cuando se realiza bajo las mismas condiciones dadas inicialmente.

3 Algunos conceptos Variable aleatoria: Sea S un espacio muestral sobre el que se encuentra definida una función de probabilidad. Sea X una función de valor real definida sobre S, de manera que transforme los resultados de S en puntos sobre la recta de los reales. Se dice entonces que X es una variable aleatoria. Variable aleatoria discreta: Se dice que una variable aleatoria X es discreta si el númerica de valores que pueden tomar es contable (ya sea finito o infinito). Variables aleatoria continua: Se dice que una variable aleatoria X es continua si sus valores consisten en uno o más intervalos de la recta de los reales.

4 Distribución de probabilidad Si una v.a toma valores x 1, x 2,..., x n la regla que asocia a cada uno de ellos las probabilidades p 1, p 2,..., p n respectivamente, se denomina función de probabilidad. Ejemplo: En un proceso de inspección de elementos fabricados por una máquina se observan 3 elementos para determinar si se puede clasificar como correcto o defectuoso. Suponiendo que la probabilidad de que el elemento sea defectuoso es de Sea la variable aleatoria X el número de piezas que están defectuosas. Determine la función de probabilidad de X

5 Distribución de probabilidad Definición: para una variable aleatoria X con posibles valores x 1, x 2,..., x n, la función de probabilidad es una función f(x) tal que: 1 f(x i ) 0 n 2 i=1 f(x i) = 1 3 f(x i ) = P (X = x i ) Definición: La distribución de probabilidad acumulada de una variable aleatoria discreta X, se denota como F (x), está determinada como: Esta función debe satisfacer: 1 0 F (x) 1 F (x) = P (X x) = 2 Si x i x j, entonces F (x i ) F (x j ) x i X f(x i )

6 Valor Esperado y Varianza La esperanza (Valor esperado) de una variable aleatoria tiene sus orígenes en los juegos de azar. En este sentido, el valor esperado representa la cantidad de dinero promedio que el jugador está dispuesto a ganar o perder después de un número grande de apuestas. Este valor, que representa centralidad, al igual que la varianza, que describe dispersión, sirven de medidas que resumen una distribución de probabilidad La media o valor esperado de una variable discreta X, se denota como µ o E(X), es: E(X) = n x i f(x i ) i=1 La varianza de X, se denota como σ 2 o V (X), es: V (X) = n (x i E(X)) 2 f(x i ) i=1

7 Ejemplo Suponga que se tiene tres oportunidades para lanzar una moneda hasta que aparezca una cara. El juego termina en el momento en el que cae una cara o después de los tres intentos. Si en el primero, segundo o tercer lanzamiento aparece cara, el jugador recibe $500, $1000, $2000 Si no cae cara en ninguno de los lanzamientos el jugador pierde $5000 Estaría usted dispuesto a jugar?

8 Propiedades Para cualquier constante a y b se cumple que: E(aX) = ae(x) E(X + b) = E(X) + b E(aX + b) = ae(x) + b V (ax) = a 2 V (X) V (X + b) = V (X) V (ax + b) = a 2 V (X)

9 Ejemplo Una compañía proveedora de productos químicos tiene en existencia 100 libras de un producto que vende a los clientes en lotes de 5 libras. Sea X = número de lotes que pide un cliente seleccionado al azar y suponga que X tiene la siguiente función de probabilidad: 1 Calcule E(X) y V (X) X f(x) Calcule el número esperado, y la varianza, de libras sobrantes después que se envía el pedido al cliente.

10 Distribuciones de probabilidad Existen varias distribuciones especificas de probabilidad que se ha demostrado, empíricamente, ser modelos útiles para diversos problemas prácticos. La elección de la distribución de probabilidad para representar un fenómeno de interés debe ser motivada tanto por la comprensión de la naturaleza del fenómeno, como por la verificación de la distribución seleccionada a través de la evidencia empírica. En el caso discreto algunas de estas distribuciones son: Binomial Poisson Hipergeométrica

11 Distribuciones de probabilidad Proceso Bernoulli Un experimento Bernoulli debe tener las siguientes propiedades: El experimento consiste en n intentos repetidos. Los resultados de cada uno de los intentos pueden clasificarse como un éxito o como un fracaso. La probabilidad de éxito (p), permanece constante para todos los intentos. Los experimentos son independientes. Saber el resultado de una observación no te indica nada sobre las restantes observaciones

12 Distribución Binomial Definición: Un experimento Bernoulli puede resultar en un éxito con una probabilidad p y un fracaso con una probabilidad 1 p. Entonces la distribución de probabilidad de la variable aleatoria binomial X, que determina el número de éxitos en n ensayos independientes, es: f(x) = Donde 0 p 1. ( n x ) p x (1 p) n x x = 0, 1,..., n E(X) = np V (X) = np(1 p)

13 Distribución Binomial Fig: Representación gráfica Binomial(N=10,p=0.1) Y Y Binomial(N=10,p=0.3) Número de éxitos Número de éxitos Binomial(N=10,p=0.5) Y Y Binomial(N=10,p=0.8) Número de éxitos Número de éxitos

14 Ejemplos Un examen de estadística consta de 5 preguntas cada una de ellas con cuatro respuestas de las cuales una sola es correcta. Un alumno responde al azar (es decir, sin tener la menor idea sobre las preguntas). Cuál es la probabilidad de que resuelva bien a 3 o más preguntas?

15 Ejemplos Un examen de estadística consta de 5 preguntas cada una de ellas con cuatro respuestas de las cuales una sola es correcta. Un alumno responde al azar (es decir, sin tener la menor idea sobre las preguntas). Cuál es la probabilidad de que resuelva bien a 3 o más preguntas? Un catador de vinos afirma que el 90 % de las veces puede distinguir entre un vino fino y uno corriente con sólo degustar un sorbo. Para comprobar su afirmación, se le aplicará una pequeña prueba: degustar 9 muestras de vino y decidir en cada caso si se trata de vino fino o corriente. El criterio para aceptar su afirmación es que si acierta por lo menos en 6 muestras se aceptará su afirmación, y en caso contrario se rechazará como falsa. Determine la probabilidad de si el sujeto no conoce nada de vinos y sólo está adivinando, logre pasar esa prueba. Calcule la probabilidad de aun suponiendo que es cierto lo que afirma (que es capaz de acertar el 90 % de las veces), no logre pasar la prueba.

16 Distribución Hipergeométrica Sea N el número total de objetos en una población finita, de manera tal que k de éstos es de un tipo y N k de otros. Si se selecciona una muestra aleatoria de la población constituida por n objetos de la probabilidad de que x sea de un tipo exactamente y n x sea del otro, está dada por la función de probabilidad hipergeométrica: ( ) ( ) k N k x f(x) = ( N n n x ), x = 0, 1,..., n; x k, n x N k, N, n, k enteros positivos. El valor esperado y la varianza quedan definidos como: E(X) = nk ( ) N n V (X) = np(1 p) N N 1

17 Ejemplo La policía sospecha que en un camión cargado con 40 bultos de arroz se han camuflado paquetes de cocaína. Para confirmar su sospecha, la policía escoge al azar 5 bultos para inspeccionarlos. Si en efecto, de los 40 bultos de arroz, que contiene el camión, 10 tienen camufladas cocaína, Cuál es la probabilidad de que por lo menos uno de los bultos de la muestra contenga cocaína?

18 Ejemplo La policía sospecha que en un camión cargado con 40 bultos de arroz se han camuflado paquetes de cocaína. Para confirmar su sospecha, la policía escoge al azar 5 bultos para inspeccionarlos. Si en efecto, de los 40 bultos de arroz, que contiene el camión, 10 tienen camufladas cocaína, Cuál es la probabilidad de que por lo menos uno de los bultos de la muestra contenga cocaína? Cinco individuos de una población animal se cree está cerca de la extinción en cierta región, fueron capturados, marcados y liberados para mezclarse con la población. Después que tuvieron la oportunidad de mezclarse, se seleccionó una muestra aleatoria de 10 de estos animales. Si en realidad hay 25 animales de este tipo en la región, Cuál es la probabilidad de que se encuentren más de 2 animales marcados?

19 Distribución Poisson Distribución muy útil en la que la variable aleatoria representa el número de eventos independientes que ocurren a una velocidad constante en el tiempo o espacio. Algunos ejemplos comunes son: Número de fallas que presenta una máquina por día Número de defectos por metro de cable. Cantidad de fracturas por km 2 en la superficie de una caldera. Número de hormigas de una cierta especie por m 3 de tierra.

20 Proceso Poisson Algunas condiciones que se deben cumplir en un proceso poisson son: El número de resultados que ocurren en un intervalo de tiempo o región específico es independiente del número que ocurre en cualquier otro intervalo disjunto de tiempo o región del espacio disjunto. La probabilidad de que un resultado sencillo ocurra en un intervalo de tiempo muy corto o una región pequeña es proporcional a la longitud del intervalo de tiempo o al tamaño de la región.

21 Distribución Poisson Sea X una variable aleatoria que representa el número de eventos aleatorios independientes que ocurren a una rapidez constante sobre el tiempo o el espacio. Se dice entonces que la variable aleatoria X tiene una distribución de Poisson con función de probabilidad: f(x) = λx x! e λ, x = 0, 1, 2,... Para λ > 0. La media y la varianza son: E(X) = λ V (X) = λ

22 Distribución Poisson Fig: Representación gráfica Poisson(λ=1) Y Y Poisson(λ=3) Número de eventos por intervalo Número de eventos por intervalo Poisson(λ=5) Y Y Poisson(λ=10) Número de eventos por intervalo Número de eventos por intervalo

23 Ejemplo El número de grietas en un tramo de una autopista que son lo suficientemente importantes como para requerir reparación sigue una distribución Poisson con una media de 1.2 grietas por kilometro Cuál es la probabilidad de que se requiera reparar máximo 2 grietas en un tramo de 1 kilometro? Cuál es la probabilidad de que en trayecto de 5 kilómetros no se encuentre ninguna grieta? Se puede emplear un proceso Poisson para representar la ocurrencia de cargas estructurales con el tiempo. Suponga que el tiempo promedio entre ocurrencias de cargas es medio año. Cuántas cargas se espera que ocurran durante dos años? Cuál es la probabilidad de que ocurran más de cinco cargas durante dos años?

24 Otras distribuciones de probabilidad Algunas otras distribuciones de probabilidad discretas son: Uniforme. Geométrica Binomial Negativa. Multinomial

25 Bibliografía Canavos, G. (1988). Probabilidad y Estadística: Aplicaciones y métodos. Mc Graw Hill, México, vol. 1 edition. Devore, J. L. (2008). Probabilidad y estadística para ingeniería y ciencias. Thomson Paraninfo, México, vol. 7 edition. Montgomery, D. and Runger, G. (2004). Probabilidad y estadística aplicadas la ingeniería. Limusa-Wiley, México, 2 edition.

Distribución de Probabilidad

Distribución de Probabilidad Distribución de Probabilidad Variables continuas Álvaro José Flórez 1 Escuela de Ingeniería Industrial y Estadística Facultad de Ingenierías Febrero - Junio 2012 Distribuciones de probabilidad continuas

Más detalles

Juan Carlos Colonia DISTRIBUCIONES DISCRETAS IMPORTANTES

Juan Carlos Colonia DISTRIBUCIONES DISCRETAS IMPORTANTES Juan Carlos Colonia DISTRIBUCIONES DISCRETAS IMPORTANTES BIBLIOGRAFÍA Walpole, Ronal E., Myres, Raymond H., Myres, Sharon L.: Probabilidad y Estadística para Ingenieros. McGraw Hill-Interamericana. Canavos

Más detalles

PROBABILIDAD Y ESTADÍSTICA

PROBABILIDAD Y ESTADÍSTICA FACULTAD DE INGENIERÍA U N A M PROBABILIDAD Y ESTADÍSTICA Irene Patricia Valdez y Alfaro irenev@unam.mx T E M A S DEL CURSO 1. Análisis Estadístico de datos muestrales. 2. Fundamentos de la Teoría de la

Más detalles

MODELOS DISCRETOS DE PROBABILIDAD

MODELOS DISCRETOS DE PROBABILIDAD MODELOS DISCRETOS DE PROBABILIDAD M. en C. Juan Carlos Gutiérrez Matus Instituto Politécnico Nacional 2004 IPN UPIICSA c 2004 Juan C. Gutiérrez Matus Modelo Uniforme Discreto Modelo Uniforme Discreto Sea

Más detalles

El momento k-ésimo para una variable aleatoria discreta respecto del origen, es. n = esperanza matemática de X

El momento k-ésimo para una variable aleatoria discreta respecto del origen, es. n = esperanza matemática de X Momentos El momento k-ésimo para una variable aleatoria discreta respecto del origen, es E(x) n = i = 1 k i ( ) x.p x El primer momento centrado en el origen (k=1) es la esperanza matemática de X También

Más detalles

Algunas Distribuciones Discretas de Probabilidad. UCR ECCI CI-1352 Investigación de Operaciones I Prof. M.Sc. Kryscia Daviana Ramírez Benavides

Algunas Distribuciones Discretas de Probabilidad. UCR ECCI CI-1352 Investigación de Operaciones I Prof. M.Sc. Kryscia Daviana Ramírez Benavides Algunas Distribuciones Discretas de Probabilidad UCR ECCI CI-1352 Investigación de Operaciones I Prof. M.Sc. Kryscia Daviana Ramírez Benavides Introducción El comportamiento de una variable aleatoria queda

Más detalles

Introducción al Diseño de Experimentos.

Introducción al Diseño de Experimentos. Introducción al Diseño de Experimentos www.academia.utp.ac.pa/humberto-alvarez Introducción Una población o universo es una colección o totalidad de posibles individuos, especímenes, objetos o medidas

Más detalles

JUEGO DE BASKETBALL. Repaso de Distribuciones de Probabilidad Discretas y Continuas

JUEGO DE BASKETBALL. Repaso de Distribuciones de Probabilidad Discretas y Continuas JUEGO DE BASKETBALL Repaso de Distribuciones de Probabilidad Discretas y Continuas PREGUNTA #1 Qué es una variable aleatoria uniforme discreta? Cómo es su distribución? Qué es una variable aleatoria uniforme

Más detalles

TEMA 2.- VARIABLES ALEATORIAS UNIDIMENSIONALES.- CURSO 17/18

TEMA 2.- VARIABLES ALEATORIAS UNIDIMENSIONALES.- CURSO 17/18 TEMA 2.- VARIABLES ALEATORIAS UNIDIMENSIONALES.- CURSO 17/18 2.1. Concepto de variable aleatoria. Tipos de variables aleatorias: discretas y continuas. 2.2. Variables aleatorias discretas. Diagrama de

Más detalles

Introducción al Tema 7. Tema 6. Variables aleatorias unidimensionales Distribución. Características: media, varianza, etc. Transformaciones.

Introducción al Tema 7. Tema 6. Variables aleatorias unidimensionales Distribución. Características: media, varianza, etc. Transformaciones. Introducción al Tema 7 1 Tema 6. Variables aleatorias unidimensionales Distribución. Características: media, varianza, etc. Transformaciones. V.A. de uso frecuente Tema 7. Modelos probabiĺısticos discretos

Más detalles

Técnicas Cuantitativas para el Management y los Negocios I

Técnicas Cuantitativas para el Management y los Negocios I Técnicas Cuantitativas para el Management y los Negocios I Licenciado en Administración Módulo II: ESTADÍSTICA INFERENCIAL Contenidos Módulo II Unidad 4. Probabilidad Conceptos básicos de probabilidad:

Más detalles

contablemente infinito.

contablemente infinito. III. Variables aleatorias Discretas y sus Distribuciones de Probabilidad 1 Variable aleatoria discreta Definición Una variable aleatoria se llama discreta si se puede contar su conjunto de resultados posibles.

Más detalles

VARIABLES ALEATORIAS Variable: Característica de los individuos u objetos

VARIABLES ALEATORIAS Variable: Característica de los individuos u objetos 1 Definiciones VARIABLES ALEATORIAS Variable: Característica de los individuos u objetos Aleatoria: Azar 1. Una variable aleatoria ( v.a.) es una función que asigna un número real a cada resultado en el

Más detalles

El primer momento centrado en el origen (k=1) es la esperanza matemática de X

El primer momento centrado en el origen (k=1) es la esperanza matemática de X MOMENTO K-ÉSIMO PARA UNA VARIABLE ALEATORIA DISCRETA RESPECTO DEL ORIGEN E(x) n i 1 k x i.p x i El primer momento centrado en el origen (k=1) es la esperanza matemática de X También se definen momentos

Más detalles

Apuntes de Clases. Modelos de Probabilidad Discretos

Apuntes de Clases. Modelos de Probabilidad Discretos 2010 Índice 1. Distribución de Bernouilli 2 2. Distribución Binomial 3 3. Distribución Hipergeométrica 3.1. Aproximación Binomial de la distribución Hipergeométrica............. 7 4. Distribución Geométrica

Más detalles

Distribuciones Paramétricas

Distribuciones Paramétricas Distribuciones Paramétricas Objetivo: Estudiar el uso de formas matemáticas particulares, llamadas distribuciones paramétricas, para representar las variaciones en los datos. Una distribución paramétrica

Más detalles

Distribuciones de probabilidad Discretas

Distribuciones de probabilidad Discretas Distribuciones de probabilidad Discretas Distribución Uniforme Discreta Definición Una variable aleatoria X, tiene una distribución uniforme discreta, si cada uno de los valores x 1, x 2,.. x n, tiene

Más detalles

Cálculo y EstadísTICa. Primer Semestre.

Cálculo y EstadísTICa. Primer Semestre. Cálculo y EstadísTICa. Primer Semestre. EstadísTICa Curso Primero Graduado en Geomática y Topografía Escuela Técnica Superior de Ingenieros en Topografía, Geodesia y Cartografía. Universidad Politécnica

Más detalles

Ingeniería Programa(s) Educativo(s): Tipo de materia:

Ingeniería Programa(s) Educativo(s): Tipo de materia: UNIVERSIDAD AUTÓNOMA DE CHIHUAHUA UNIDAD ACADEMICA PROGRAMA DEL CURSO: PROBABILIDAD DES: Ingeniería Programa(s) Educativo(s): Tipo de materia: Obligatoria Clave de la materia: Semestre: 3 Área en plan

Más detalles

Prof. Eliana Guzmán U. Semestre A-2015

Prof. Eliana Guzmán U. Semestre A-2015 Unidad III. Variables aleatorias Prof. Eliana Guzmán U. Semestre A-2015 Variable Aleatoria Concepto: es una función que asigna un número real, a cada elemento del espacio muestral. Solo los experimentos

Más detalles

Definición de variable aleatoria

Definición de variable aleatoria Variables aleatorias Instituto Tecnológico Superior de Tepeaca Agosto-Diciembre 2015 Ingeniería en Sistemas Computacionales M.C. Ana Cristina Palacios García Definición de variable aleatoria Las variables

Más detalles

Curso de nivelación Estadística y Matemática

Curso de nivelación Estadística y Matemática Curso de nivelación Estadística y Matemática Tercera clase: Introducción al concepto de probabilidad y Distribuciones de probablidad discretas Programa Técnico en Riesgo, 2017 Agenda 1 Concepto de probabilidad

Más detalles

Intervalos de Confianza

Intervalos de Confianza Intervalos de Confianza Álvaro José Flórez 1 Escuela de Ingeniería Industrial y Estadística Facultad de Ingenierías Febrero - Junio 2012 Intervalo de Confianza Se puede hacer una estimación puntual de

Más detalles

Unidad 3. Probabilidad. Javier Santibáñez (IIMAS, UNAM) Inferencia Estadística Semestre / 22

Unidad 3. Probabilidad. Javier Santibáñez (IIMAS, UNAM) Inferencia Estadística Semestre / 22 Unidad 3. Probabilidad Javier Santibáñez (IIMAS, UNAM) Inferencia Estadística Semestre 2018-1 1 / 22 Espacios de probabilidad El modelo matemático para estudiar la probabilidad se conoce como espacio de

Más detalles

Probabilidad. Álvaro José Flórez. Febrero - Junio Facultad de Ingenierías. 1 Escuela de Ingeniería Industrial y Estadística

Probabilidad. Álvaro José Flórez. Febrero - Junio Facultad de Ingenierías. 1 Escuela de Ingeniería Industrial y Estadística Probabilidad Álvaro José Flórez 1 Escuela de Ingeniería Industrial y Estadística Facultad de Ingenierías Febrero - Junio 2012 Probabilidad Expresión del grado de certeza de que ocurrirá un determinado

Más detalles

Concepto de Probabilidad

Concepto de Probabilidad Concepto de Probabilidad Prof. Miguel Hesiquio Garduño. Est. Mirla Benavides Rojas Depto. De Ingeniería Química Petrolera ESIQIE-IPN hesiquiogm@yahoo.com.mx mbenavidesr5@gmail.com PROBABILIDAD En cualquier

Más detalles

Estadística Grupo V. Tema 10: Modelos de Probabilidad

Estadística Grupo V. Tema 10: Modelos de Probabilidad Estadística Grupo V Tema 10: Modelos de Probabilidad Algunos modelos de distribuciones de v.a. Hay variables aleatorias que aparecen con frecuencia en las Ciencias Sociales y Económicas. Experimentos dicotómicos

Más detalles

Variables aleatorias

Variables aleatorias Variables aleatorias DEFINICIÓN En temas anteriores, se han estudiado las variables estadísticas, que representaban el conjunto de resultados observados al realizar un experimento aleatorio, presentando

Más detalles

Esperanza Condicional

Esperanza Condicional Esperanza Condicional Podemos obtener la esperanza de una distribución condicional de la misma manera que para el caso unidimensional: 129 Caso 2 v.a. discretas X e Y: Caso 2 v.a. continuas X e Y: Percentiles

Más detalles

Distribuciones de probabilidad más usuales

Distribuciones de probabilidad más usuales Tema 5 Distribuciones de probabilidad más usuales En este tema se estudiarán algunas de las distribuciones discretas y continuas más comunes, que se pueden aplicar a una gran diversidad de problemas y

Más detalles

Variables Aleatorias y Principios de Simulación.

Variables Aleatorias y Principios de Simulación. Variables Aleatorias y Principios de Simulación http://humberto-r-alvarez-a.webs.com Conceptos de probabilidad La Teoría de Probabilidad trata fenómenos que pueden ser modelados por experimentos cuyos

Más detalles

Variables aleatorias discretas

Variables aleatorias discretas Variables aleatorias discretas Considere el espacio de probabilidad Ω, F, P) y la función X : Ω R. La imagen de Ω bajo X se define como sigue ImgX) = x R ω Ω : Xω) = x}. Si ImgX) es un conjunto contable,

Más detalles

Teoría Estadística Elemental I Teoría (resumida) del 2 do Tema

Teoría Estadística Elemental I Teoría (resumida) del 2 do Tema Teoría Estadística Elemental I Teoría (resumida) del 2 do Tema Raúl Jiménez Universidad Carlos III de Madrid Noviembre 2011 Consideremos el lanzamiento de un dado, Ω = {1, 2, 3, 4, 5, 6}, y supongamos

Más detalles

Estadística /Química 2004

Estadística /Química 2004 UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLAN LICENCIATURA EN: QUÍMICA. NOMBRE DE LA ASIGNATURA: ESTADÍSTICA. ÓRGANO INTERNO QUE COORDINA EL PROGRAMA DE LA ASIGNATURA:

Más detalles

Probabilidad Condicional

Probabilidad Condicional Probabilidad Condicional Independencia condicional Como hemos dicho, las probabilidades condicionales tienen las mismas propiedades que las probabilidades no condicionales. Un ejemplo más es el siguiente:

Más detalles

Tema 5: Modelos probabilísticos

Tema 5: Modelos probabilísticos Tema 5: Modelos probabilísticos 1. Variables aleatorias: a) Concepto. b) Variables discretas y continuas. c) Función de probabilidad (densidad) y función de distribución. d) Media y varianza de una variable

Más detalles

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO Facultad de Estudios Superiores Aragón Ingeniería Mecánica Programa de Asignatura

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO Facultad de Estudios Superiores Aragón Ingeniería Mecánica Programa de Asignatura UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO Facultad de Estudios Superiores Aragón Ingeniería Mecánica Programa de Asignatura NOMBRE DE LA ASIGNATURA: PROBABILIDAD Y ESTADÍSTICA PLAN 2007 Tipo de asignatura:

Más detalles

TOTAL DE HORAS: Semanas de clase: 5 Teóricas: 3 Prácticas: 2. SERIACIÓN OBLIGATORIA ANTECEDENTE: Ninguna SERIACIÓN OBLIGATORIA SUBSECUENTE: Ninguna

TOTAL DE HORAS: Semanas de clase: 5 Teóricas: 3 Prácticas: 2. SERIACIÓN OBLIGATORIA ANTECEDENTE: Ninguna SERIACIÓN OBLIGATORIA SUBSECUENTE: Ninguna UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN LICENCIATURA: INGENIERÍA EN TELECOMUNICACIONES, SISTEMAS Y ELECTRÓNICA DENOMINACIÓN DE LA ASIGNATURA: Probabilidad y Estadística

Más detalles

TEMA 3: Probabilidad. Modelos. Probabilidad

TEMA 3: Probabilidad. Modelos. Probabilidad TEM 3: Probabilidad. Modelos Probabilidad Fenómeno aleatorio: es aquel cuyos resultados son impredecibles. Ejemplos: Lanzamiento de una moneda: Resultados posibles: cara, cruz. Selección al azar de un

Más detalles

Juan José Hernández Ocaña

Juan José Hernández Ocaña En la mayoría de los casos el muestreo se realiza sin reemplazo, por lo tanto si el tamaño de la población es reducido, la probabilidad de cada observación cambiará Como la probabilidad de éxito no es

Más detalles

Matemática 3 Curso 2013

Matemática 3 Curso 2013 Matemática 3 Curso 2013 Práctica 3: Variables aleatorias discretas. Funciones de distribución Binomial, Geométrica, Hipergeométrica, Poisson. 1) Dadas las siguientes funciones, determinar cuales son funciones

Más detalles

Variables Aleatorias Discretas

Variables Aleatorias Discretas Unicatólica 15 de agosto de 2016 Variables aleatorias Se dice que hemos definido una variable aleatoria para un experimento aleatorio cuando hemos asociado un valor numérico a cada resultado del experimento.

Más detalles

Requisitos Matemáticos. Clase 01. Profesor: Carlos R. Pitta. ICPM050, Econometría. Universidad Austral de Chile Escuela de Ingeniería Comercial

Requisitos Matemáticos. Clase 01. Profesor: Carlos R. Pitta. ICPM050, Econometría. Universidad Austral de Chile Escuela de Ingeniería Comercial Universidad Austral de Chile Escuela de Ingeniería Comercial ICPM050, Econometría Clase 01 Requisitos Matemáticos Profesor: Carlos R. Pitta Econometría, Prof. Carlos R. Pitta, Universidad Austral de Chile.

Más detalles

La distribución de probabilidad de la variable aleatoria (v. a). Bernoulli, está dada por:

La distribución de probabilidad de la variable aleatoria (v. a). Bernoulli, está dada por: Distribución Bernoulli Una rueba o exerimento Bernoulli tiene uno de dos resultados mutuamente excluyentes, que generalmente se denotan S (éxito) y F (fracaso). Por ejemlo, al seleccionar un objeto ara

Más detalles

Variables Aleatorias Discretas

Variables Aleatorias Discretas Profesor Alberto Alvaradejo Ojeda 9 de septiembre de 2015 Índice 1. Variable aleatoria 3 1.1. Discretas...................................... 3 1.2. Continuas..................................... 3 1.3.

Más detalles

UNIVERSIDAD DE MANAGUA Al más alto nivel

UNIVERSIDAD DE MANAGUA Al más alto nivel UNIVERSIDAD DE MANAGUA Al más alto nivel Estadística Inferencial Encuentro #3 Tema: Distribución Discreta Prof.: MSc. Julio Rito Vargas A. Grupo:CCEE y ADMVA /2016 Objetivos: Definir la función de probabilidad

Más detalles

ESTADÍSTICA INFERENCIAL

ESTADÍSTICA INFERENCIAL ESTADÍSTICA INFERENCIAL ESTADÍSTICA INFERENCIAL 1 Sesión No. 4 Nombre: Distribuciones de probabilidad para variables Contextualización En la sesión anterior se definió el concepto de variable aleatoria

Más detalles

VARIABLES ALEATORIAS Y FUNCIÓN DE DISTRIBUCIÓN

VARIABLES ALEATORIAS Y FUNCIÓN DE DISTRIBUCIÓN VARIABLES ALEATORIAS Y FUNCIÓN DE DISTRIBUCIÓN BIBLIOGRAFIA Walpole, Ronal E., Myres, Raymond H., Myres, Sharon L.: Probabilidad y Estadística para Ingenieros. McGraw Hill-Interamericana. Canavos G. Probabilidad

Más detalles

DISTRIBUCIONES DE PROBABILIDAD. es una representación gráfica que permite visualizar un experimento de pasos múltiples.

DISTRIBUCIONES DE PROBABILIDAD. es una representación gráfica que permite visualizar un experimento de pasos múltiples. es una representación gráfica que permite visualizar un experimento de pasos múltiples. Considere un experimento que consiste en lanzar dos monedas. Defina los resultados experimentales en términos de

Más detalles

Tema 4. Variables aleatorias discretas

Tema 4. Variables aleatorias discretas Tema 4. Variables aleatorias discretas 508 Estadística. ETDI. Curs 2002/03 Cuestiones de Verdadero/Falso 1. En un proceso de Bernoulli, hay exactamente dos posibles resultados en cada prueba. 2. La fórmula

Más detalles

Probabilidad y Estadística

Probabilidad y Estadística Probabilidad y Estadística Tema 4 Variables aleatorias Objetivo de aprendizaje del tema Al finalizar el tema serás capaz de: Describir las características de las variables aleatorias discretas y continuas.

Más detalles

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN PLAN DE ESTUDIOS DE LA LICENCIATURA EN INGENIERÍA QUÍMICA

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN PLAN DE ESTUDIOS DE LA LICENCIATURA EN INGENIERÍA QUÍMICA UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN PLAN DE ESTUDIOS DE LA LICENCIATURA EN INGENIERÍA QUÍMICA PROGRAMA DE LA ASIGNATURA DE: PROBABILIDAD Y ESTADÍSTICA IDENTIFICACIÓN

Más detalles

Resumen de Probabilidad

Resumen de Probabilidad Definiciones básicas * Probabilidad Resumen de Probabilidad Para calcular la probabilidad de un evento A: P (A) = N o decasosfavorables N o decasosposibles * Espacio muestral (Ω) Es el conjunto de TODOS

Más detalles

Asignatura: Horas: Total (horas): Obligatoria X Teóricas 4.5 Semana 4.5 Optativa Prácticas Semanas 72.0

Asignatura: Horas: Total (horas): Obligatoria X Teóricas 4.5 Semana 4.5 Optativa Prácticas Semanas 72.0 UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTADES DE ECONOMÍA E INGENIERÍA LICENCIATURA EN ECONOMÍA Y NEGOCIOS PROGRAMA DE ESTUDIO Probabilidad y Estadística P84 /P74 /P94 09 Asignatura Clave Semestre

Más detalles

Objetivos. 1. Variable Aleatoria y Función de Probabilidad. Tema 4: Variables aleatorias discretas Denición de Variable aleatoria

Objetivos. 1. Variable Aleatoria y Función de Probabilidad. Tema 4: Variables aleatorias discretas Denición de Variable aleatoria Tema 4: Variables aleatorias discretas Objetivos Dominar el uso de las funciones asociadas a una variable aleatoria discreta para calcular probabilidades. Conocer el signicado y saber calcular la esperanza

Más detalles

Cap. Distribuciones de. probabilidad. discreta. Distribuciones de probabilidad. discreta Pearson Prentice Hall. All rights reserved

Cap. Distribuciones de. probabilidad. discreta. Distribuciones de probabilidad. discreta Pearson Prentice Hall. All rights reserved Cap 6 36 Distribuciones de Distribuciones de probabilidad discreta probabilidad discreta Variables aleatorias Una variable aleatoria (v.a.) es un número real asociado al resultado de un experimento aleatorio

Más detalles

Distribuciones Dis de probabilidad pr discretas Jhon Jairo Jair Pa P dilla a A., PhD. PhD

Distribuciones Dis de probabilidad pr discretas Jhon Jairo Jair Pa P dilla a A., PhD. PhD Distribuciones de probabilidad discretas Jhon Jairo Padilla A., PhD. Introducción A menudo, las observaciones de diferentes experimentos aleatorios tienen el mismo tipo general de comportamiento. Las v.a.

Más detalles

Distribuciones de probabilidad II

Distribuciones de probabilidad II II Facultad de Estudios Superiores Acatlán Licenciatura en Economía 20 de abril 2017 José A. Huitrón Mendoza Distribuciones de probabilidad de Poisson Enmarca el estudio de una variable aleatoria discreta

Más detalles

Percentiles. El percentil p de una variable aleatoria X es número más pequeño, que denominaremos x u que cumple:

Percentiles. El percentil p de una variable aleatoria X es número más pequeño, que denominaremos x u que cumple: Percentiles 130 El percentil p de una variable aleatoria X es número más pequeño, que denominaremos x u que cumple: el percentil es, por tanto, el valor de la variable aleatoria para el cual la función

Más detalles

Conceptos Básicos de Inferencia

Conceptos Básicos de Inferencia Conceptos Básicos de Inferencia Álvaro José Flórez 1 Escuela de Ingeniería Industrial y Estadística Facultad de Ingenierías Febrero - Junio 2012 Inferencia Estadística Cuando obtenemos una muestra, conocemos

Más detalles

TEMA 3.- MODELOS DISCRETOS

TEMA 3.- MODELOS DISCRETOS TEMA 3.- MODELOS DISCRETOS 3.1. Introducción. 3.2. Distribución uniforme discreta de parámetro n. 3.3.Distribución Bernoulli de parámetro p. 3.4.Distribución Binomial de parámetros n y p. Notación: X Bn,

Más detalles

Apellido y Nombres: Fecha: Carrera: Calificación 1ª Parte: Legajo: Calificación 2ª Parte: DNI: Calificación Definitiva:

Apellido y Nombres: Fecha: Carrera: Calificación 1ª Parte: Legajo: Calificación 2ª Parte: DNI: Calificación Definitiva: Cátedra: Probabilidad y Estadística Apellido y Nombres: Fecha: Carrera: Calificación 1ª Parte: Legajo: Calificación 2ª Parte: DNI: Calificación Definitiva: Atención! Para aprobar el examen se debe alcanzar

Más detalles

Programas Educativos de Programa académico. Ingeniería

Programas Educativos de Programa académico. Ingeniería UNIVERSIDAD AUTÓNOMA DE CHIHUAHUA Clave: 08MSU0017H FACULTAD DE INGENIERÍA Clave: 08USU4053W PROGRAMA ANALÍTICO DE LA UNIDAD DE APRENDIZAJE: PROBABILIDAD Y ESTADISTICA 1 DES: Ingeniería Programas Educativos

Más detalles

Planificaciones Probabilidad y Estadística A. Docente responsable: MANCILLA AGUILAR JOSE LUIS. 1 de 5

Planificaciones Probabilidad y Estadística A. Docente responsable: MANCILLA AGUILAR JOSE LUIS. 1 de 5 Planificaciones 6106 - Probabilidad y Estadística A Docente responsable: MANCILLA AGUILAR JOSE LUIS 1 de 5 OBJETIVOS 1) Introducir al alumno en la comprensión de la necesidad y oportunidad de la aplicación

Más detalles

UNIDAD 4: DISTRIBUCIÓN DE PROBABILIDAD

UNIDAD 4: DISTRIBUCIÓN DE PROBABILIDAD UNIDAD 4: DISTRIBUCIÓN DE PROBABILIDAD La Distribución de Probabilidad (DP) es la relación que se da entre los diferentes eventos de un espacio muestral y sus respectivas probabilidades de ocurrencia.

Más detalles

UNIVERSIDAD DEL NORTE

UNIVERSIDAD DEL NORTE UNIVERSIDAD DEL NORTE 1. IDENTIFICACIÓN DIVISIÓN ACADÉMICA DIVISIÓN DE CIENCIAS BÁSICAS DEPARTAMENTO MATEMÁTICAS Y ESATADÍSTICA. PROGRAMA ACADÉMICO ESTADÍSTICA I-AD CÓDIGO DE LA ASIGNATURA EST 1022 PRE-REQUISITO

Más detalles

Planificaciones Probabilidad y Estadística A. Docente responsable: MANCILLA AGUILAR JOSE LUIS. 1 de 6

Planificaciones Probabilidad y Estadística A. Docente responsable: MANCILLA AGUILAR JOSE LUIS. 1 de 6 Planificaciones 8103 - Probabilidad y Estadística A Docente responsable: MANCILLA AGUILAR JOSE LUIS 1 de 6 OBJETIVOS 1) Introducir al alumno en la comprensión de la necesidad y oportunidad de la aplicación

Más detalles

INGENIERÍA MECÁNICA INGENIERÍA QUÍMICA

INGENIERÍA MECÁNICA INGENIERÍA QUÍMICA PROGRAMA ANALÍTICO DEPARTAMENTO: CIENCIAS BÁSICAS CARRERAS: INGENIERÍA MECÁNICA INGENIERÍA QUÍMICA ASIGNATURA: PROBABILIDAD Y ESTADÍSTICA CÓDIGO: 0406 AÑO ACADÉMICO: 2018 PLAN DE ESTUDIO: 2005 1994 UBICACIÓN

Más detalles

Modelos de distribuciones discretas y continuas

Modelos de distribuciones discretas y continuas Ignacio Cascos Fernández Departamento de Estadística Universidad Carlos III de Madrid Modelos de distribuciones discretas y continuas Estadística I curso 2008 2009 1. Distribuciones discretas Aquellas

Más detalles

Fundamentos de Estadística y Simulación Básica

Fundamentos de Estadística y Simulación Básica Fundamentos de Estadística y Simulación Básica TEMA 4 Distribución de Probabilidades Distribución de Probabilidades Distribución de Probabilidades Variables Aleatorias: Discreta y Continua Función Densidad

Más detalles

viii CAPÍTULO 2 Métodos de muestreo CAPÍTULO 3 Análisis exploratorio de datos

viii CAPÍTULO 2 Métodos de muestreo CAPÍTULO 3 Análisis exploratorio de datos Contenido Acerca de los autores.............................. Prefacio.... xvii CAPÍTULO 1 Introducción... 1 Introducción.............................................. 1 1.1 Ideas de la estadística.........................................

Más detalles

CORPORACION UNIFICADA NACIONAL DE EDUCACION SUPERIOR CUN DEPARTAMENTO DE CIENCIAS BASICAS: MATEMATICAS

CORPORACION UNIFICADA NACIONAL DE EDUCACION SUPERIOR CUN DEPARTAMENTO DE CIENCIAS BASICAS: MATEMATICAS CORPORACION UNIFICADA NACIONAL DE EDUCACION SUPERIOR CUN DEPARTAMENTO DE CIENCIAS BASICAS: MATEMATICAS ACTIVIDAD ACADEMICA: ESTADISTICA DE LA PROBABILIDAD DOCENTE: LIC- ING: ROSMIRO FUENTES ROCHA UNIDAD

Más detalles

Pruebas de hipótesis

Pruebas de hipótesis Pruebas de hipótesis Álvaro José Flórez 1 Escuela de Ingeniería Industrial y Estadística Facultad de Ingenierías Febrero - Junio 2012 Prueba de hipótesis Uno de los objetivos de la estadística es hacer

Más detalles

Funciones generadoras de probabilidad

Funciones generadoras de probabilidad Funciones generadoras de probabilidad por Ramón Espinosa Armenta En este artículo veremos cómo utilizar funciones generadoras en teoría de la probabilidad. Sea Ω un conjunto finito o numerable de resultados

Más detalles

Tema 4: Modelos probabilísticos

Tema 4: Modelos probabilísticos Tema 4: Modelos probabilísticos 1. Variables aleatorias: a) Concepto. b) Variables discretas y continuas. c) Función de probabilidad (densidad) y función de distribución. d) Media y varianza de una variable

Más detalles

Técnicas Cuantitativas para el Management y los Negocios I

Técnicas Cuantitativas para el Management y los Negocios I Técnicas Cuantitativas para el Management y los Negocios I Licenciado en Administración Módulo II: ESTADÍSTICA INFERENCIAL Contenidos Módulo II Unidad 4. Probabilidad Conceptos básicos de probabilidad:

Más detalles

Biometría. Distribuciones de probabilidad para variables aleatorias discretas (Binomial, Hipergeométrica y Poisson)

Biometría. Distribuciones de probabilidad para variables aleatorias discretas (Binomial, Hipergeométrica y Poisson) Biometría Distribuciones de probabilidad para variables aleatorias discretas (Binomial, Hipergeométrica y Poisson) Variable aleatoria El resultado de un experimento aleatorio puede ser descripto en ocasiones

Más detalles

CI 41C HIDROLOGÍA HIDROLOGÍA PROBABILÍSTICA

CI 41C HIDROLOGÍA HIDROLOGÍA PROBABILÍSTICA CI 41C HIDROLOGÍA HIDROLOGÍA PROBABILÍSTICA alcantarilla Puente? Badén http://www.disasternews.net/multimedia/files/drought5_9412.jpg Fenómenos en Ingeniería (según certeza de ocurrencia) determinísticos

Más detalles

Tema 4: Variables aleatorias. Tema 4: Variables Aleatorias. Tema 4: Variables aleatorias. Objetivos del tema:

Tema 4: Variables aleatorias. Tema 4: Variables Aleatorias. Tema 4: Variables aleatorias. Objetivos del tema: Tema 4: Variables aleatorias Tema 4: Variables Aleatorias Distribución de Bernouilli Distribución Binomial Distribución de Poisson Distribución Exponencial Objetivos del tema: Al final del tema el alumno

Más detalles

Tema 5 Algunas distribuciones importantes

Tema 5 Algunas distribuciones importantes Algunas distribuciones importantes 1 Modelo Bernoulli Distribución Bernoulli Se llama experimento de Bernoulli a un experimento con las siguientes características: 1. Se realiza un experimento con dos

Más detalles

variables discretas: toman un conjunto finito o infinito numerable (que se pueden contar) de valores

variables discretas: toman un conjunto finito o infinito numerable (que se pueden contar) de valores Capítulo 4 Variables aleatorias discretas 4.1 Introducción 4.2 Distribución binomial 4.3 Distribución de Poisson 4.4 Función de probabilidad. Función de distribución 4.1. Introducción Recordemos que una

Más detalles

INGENIERO EN COMPUTACIÓN DISTRIBUCIONES DE PROBABILIDAD CONTINUA ELABORÓ: M. EN C. LUIS ENRIQUE KU MOO FECHA: AGOSTO DE 2017

INGENIERO EN COMPUTACIÓN DISTRIBUCIONES DE PROBABILIDAD CONTINUA ELABORÓ: M. EN C. LUIS ENRIQUE KU MOO FECHA: AGOSTO DE 2017 UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO CENTRO UNIVERSITARIO UAEM ZUMPANGO INGENIERO EN COMPUTACIÓN DISTRIBUCIONES DE PROBABILIDAD CONTINUA ELABORÓ: M. EN C. LUIS ENRIQUE KU MOO FECHA: AGOSTO DE 2017

Más detalles

N O S I N T E R E S A S A B E R E L N Ú M E R O D E É X I T O S Q U E S U C E D E N E N N I N T E N T O S J U A N J O S É H E R N Á N D E Z O C A Ñ A

N O S I N T E R E S A S A B E R E L N Ú M E R O D E É X I T O S Q U E S U C E D E N E N N I N T E N T O S J U A N J O S É H E R N Á N D E Z O C A Ñ A N O S I N T E R E S A S A B E R E L N Ú M E R O D E É X I T O S Q U E S U C E D E N E N N I N T E N T O S J U A N J O S É H E R N Á N D E Z O C A Ñ A DISTRIBUCIÓN DE PROBABILIDAD Consiste en todos los

Más detalles

Estadística. SESIÓN 9: Distribuciones de probabilidad discreta. Segunda parte.

Estadística. SESIÓN 9: Distribuciones de probabilidad discreta. Segunda parte. Estadística. SESIÓN 9: Distribuciones de probabilidad discreta. Segunda parte. Contextualización En la presente sesión analizarás y describirás un experimento binomial, definirás y conocerás la función

Más detalles

Modelos de distribuciones discretas y continuas

Modelos de distribuciones discretas y continuas Tema 6 Modelos de distribuciones discretas y continuas 6.1. Modelos de distribuciones discretas 6.1.1. Distribución uniforme sobre n puntos Definición 6.1.2 Se dice que una v.a. X sigue una distribución

Más detalles

DISTRIBUCIONES DE PROBABILIDAD DISCRETA

DISTRIBUCIONES DE PROBABILIDAD DISCRETA Probabilidad DISTRIBUCIONES DE PROBABILIDAD DISCRETA Copyright 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved. 4.1-1 Combinando métodos descriptivos y probabilidades En este capítulo vamos

Más detalles

ESCUELA COLOMBIANA DE INGENIERÍA

ESCUELA COLOMBIANA DE INGENIERÍA ESCUELA COLOMBIANA DE INGENIERÍA ASIGNATURA: PROBABILIDAD DEPARTAMENTO: MATEMÁTICAS PLANES DE ESTUDIO: CÓDIGO: Mnemónico PRBA Numérico 1. OBJETIVOS GENERALES Utilizar la teoría de la probabilidad en la

Más detalles