Aplicaciones lineales. Diagonalización. . La aplicación f es lineal si se verifican las dos condiciones siguientes:

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Aplicaciones lineales. Diagonalización. . La aplicación f es lineal si se verifican las dos condiciones siguientes:"

Transcripción

1 Aplicacioes lieales Diagoalizació Defiició: Sea V y W dos espacios vectoriales sobre el mismo cuerpo y sea la aplicació f:v W v f v w La aplicació f es lieal si se verifica las dos codicioes siguietes: 1) u,v V, f u v f uf v 2) K, v V, f v f v o bie e ua úica codició:, K, u,v V, fu v f u fv A las aplicacioes lieales se les dice tambié homomorfismos Subcojutos otables: Defiició: Sea f:v W ua aplicació lieal: Núcleo de la aplicació lieal f 1 N(f) Ker(f) vv/f v 0 f 0 V Image de la aplicació lieal f Im f f V w W / v V, f v w W Propiedades de las aplicacioes lieales Sea f:v W ua aplicació lieal: f V W 2 f v f v 3 La image por f de cualquier subespacio vectorial E de V es u subespacio vectorial de W 4 Image de f es u subespacio vectorial del espacio vectorial W 5 La image iversa de u subespacio vectorial H de W es u subespacio vectorial de V 6 Núcleo de f es u subespacio vectorial del espacio vectorial V 7 La image de u sistema geerador del espacio vectorial V es u sistema geerador del espacio vectorial f(v) 8 Si S es u sistema ligado de V, etoces, f(s es u sistema ligado de W 9 La image iversa de u sistema libre e W es u sistema libre e V Teorema de la dimesió Sea f ua aplicació lieal de V e W etoces se verifica que: dimv=dimn(f)+dimim(f) Uidad Docete de Matemáticas de la ETSITGC Asigatura: ÁLGEBRA Y GEOMETRÍA 1

2 Aplicacioes lieales Diagoalizació Clasificació de las aplicacioes lieales Moomorfismo es ua aplicació lieal iyectiva Epimorfismo es ua aplicació lieal sobreyectiva Isomorfismo es ua aplicació lieal biyectiva (iyectiva y sobreyectiva) Edomorfismo o trasformació lieal es ua aplicació lieal de u espacio vectorial e sí mismo Automorfismo es u edomorfismo que además es isomorfismo Caracterizació de las aplicacioes lieales Sea f:v W ua aplicació lieal: N f 0 dimn f 0 f es u moomorfismo f es u epimorfismo Im f W dim Im f dim W Trasformacioes Lieales: Ecuació de ua trasformació lieal Sea f:v V ua trasformació lieal co B=u 1, u 2,, u ua base de V tal que: f u1 a11u1 a12u2 a1u f u2 a21u1 a22u2 a2u f u a1u1 a2u2 au etoces x x u x u V y f x y u y u y1 a11x1 a21x2 a1x y2 a12x1 a22x2 a2x y a1x1 a2x2 ax Escrito e forma matricial y1 a11 a21 a1 x1 y2 a12 a22 a2 x2 y a a a x 1 2 Uidad Docete de Matemáticas de la ETSITGC Asigatura: ÁLGEBRA Y GEOMETRÍA 2

3 Aplicacioes lieales Diagoalizació Si llamamos y1 y2 Y, y x1 a11 a21 a1 x2 X a a a, A= , abreviadamete la ecuació x a1 a2 a matricial aterior se escribe Y AX, dode A es la matriz que defie la aplicació lieal f respecto de la base B del espacio vectorial V Observacioes: Las ecuacioes de la aplicació lieal f: Y=AX so las ecuacioes paramétricas del subespacio image de f Las ecuacioes cartesiaas del Núcleo de f so: AX=0 Cambio de base e ua trasformació lieal Sea f:v V ua trasformació lieal y sea B=u 1, u 2,, u y B =u' 1,u' 2,,u' dos bases de V tales que P represeta la matriz del cambio de base de B a B Si Y=AX es la ecuació matricial de la trasformació lieal f co A=M(f,B) etoces la matriz que defie f respecto B es: A =M(f,B )=P -1 AP resultado Y =A X El Espacio Vectorial de las Trasformacioes Lieales El cojuto de todas las trasformacioes lieales posibles del espacio vectorial V co la suma de aplicacioes y el producto de u escalar por ua aplicació tiee estructura de espacio vectorial sobre R Co la suma y la composició de aplicacioes costituye u aillo uitario E particular las trasformacioes lieales biyectivas forma u grupo respecto de la composició Teorema Si f:v V es ua trasformació lieal y A es la matriz cuadrada de orde que defie f respecto de ua base B del espacio vectorial V Etoces las afirmacioes siguietes so equivaletes: f es biyectiva f es iyectiva Nf 0 Im(f)=V f es sobreyectiva Uidad Docete de Matemáticas de la ETSITGC Asigatura: ÁLGEBRA Y GEOMETRÍA 3

4 Aplicacioes lieales Diagoalizació rago(a)= A 0 Trasforma u sistema libre de vectores de V e u sistema libre Ivariates Sea f:v V ua trasformació lieal Defiició: U vector v V es u vector ivariate por f si f v v Defiició: U subespacio vectorial F es u subespacio ivariate por f si f(f) F, es decir, vff v F Si f es biyectiva etoces f(f)=f Cosecuecias: 1 Si v V es u vector ivariate por f, etoces v es u subespacio ivariate por f 2 Los subespacios 0, N(f), Im(f) y V so subespacios ivariates por f 3 La suma e itersecció de subespacios ivariates por f es u subespacio ivariate por f Diagoalizació de matrices: Matrices semejates Defiició: Dos matrices A,A ' M Kso semejates si y sólo si existe ua matriz P M K ivertible tal que A'=P -1 A P Observació: Todas las matrices asociadas a la misma trasformació lieal f respecto de cualquier base de V so semejates etre sí Itroducció Muchas veces es idispesable ecotrar ua base de V respecto de la cual M(f,B) sea lo más secilla posible, el grado máximo de simplicidad que se puede esperar viee dado por las matrices diagoales A 1 1 veces o es posible, por ejemplo, 0 1 Defiició: Ua matriz A M K es diagoalizable si existe ua matriz diagoal semejate a ella Defiició: Ua trasformació lieal de V es diagoalizable si su matriz asociada es diagoalizable Uidad Docete de Matemáticas de la ETSITGC Asigatura: ÁLGEBRA Y GEOMETRÍA 4

5 Valores y vectores propios Defiicioes: Aplicacioes lieales Diagoalizació Sea f:v V ua trasformació lieal y ua matriz A M K asociada a f respecto de ua base B del espacio vectorial V U vector v V co v 0 es u vector propio o autovector de f si existe u valor f v v U valor propio o autovalor de f es K tal que f v v U vector v V co v 0 es u vector propio o autovector de A si existe u valor Av v U valor propio o autovalor de A es K tal que Av v Cosecuecia: si es u valor propio de u vector propio v, etoces es úico Teorema Ua trasformació lieal f:v V es diagoalizable si existe ua base B* de V formada por vectores propios de f Corolario Ua matriz A M K Defiició: es diagoalizable si y sólo si existe ua base B* del espacio vectorial K Poliomio característico de A es el siguiete poliomio e la variable :P( ) A I Proposició U escalar es u valor propio de A si y sólo si es raíz del poliomio característico de A K tal que K tal que Propiedades de los valores y vectores propios El cojuto V de vectores propios asociados a u mismo valor propio juto co el vector 0, es u subespacio vectorial del espacio vectorial V=K Dicho subespacio V se llama subespacio propio asociado al valor propio La multiplicidad geométrica de u valor propio (es decir, la dimesió de V ) es meor o igual que su multiplicidad algebraica (es decir, el orde de multiplicidad de como raíz del poliomio característico) Si es u valor propio co orde de multiplicidad uo, es decir, si es ua raíz simple del poliomio característico, etoces, la dimesió de su subespacio propio asociado, V, es tambié uo Sea 1, 2,, p valores propios distitos etre si de ua matriz A M (K) Si B 1, B 2,,B p so Uidad Docete de Matemáticas de la ETSITGC Asigatura: ÁLGEBRA Y GEOMETRÍA 5

6 bases de V, 1 V 2 Aplicacioes lieales Diagoalizació,, V, respectivamete, etoces B B1B 2 Bp es libre p Los vectores propios asociado a valores propios distitos etre sí So liealmete idepedietes Si A M (K) tiee valores propios distitos etre sí etoces A es diagoalizable El subespacio propio de vectores propios asociados a u mismo valor propio es ivariate por la trasformació lieal que defie A Si es u valor propio de A, etoces es u valor propio de A Si 0 es u valor propio de A y existe A -1, etoces 1/ es u valor propio de A -1 El poliomio característico de ua matriz es igual al de su matriz traspuesta Dos matrices semejates tiee el mismo poliomio característico Si A y A so matrices semejates, etoces: El determiate de A es igual al determiate de A La traza de A es igual a la traza de A La suma de los adjutos de la diagoal pricipal de A es igual a la suma de los adjutos de la diagoal pricipal de A Caracterizació de las matrices diagoalizables Ua matriz A es diagoalizable e K si y sólo si se verifica las codicioes siguietes: 1 Todos los valores propios de A perteece al cuerpo K 2 El orde de multiplicidad de cada valor propio como raíz del poliomio característico es igual a la dimesió del correspodiete subespacio propio asociado Diagoalizació de las matrices simétricas reales Teorema: Todas las raíces del poliomio característico de ua matriz simétrica so reales Teorema: Todas las matrices simétricas so diagoalizables e TEOREMA FUNDAMENTAL DE LAS MATRICES INVERTIBLES Sea A M (R) que defie ua trasformació lieal f:v V respecto de ua base B del espacio vectorial V Los euciados siguietes so equivaletes: A es ivertible AX=b tiee solució úica para toda b de AX=0 tiee solamete la solució trivial A es u producto de matrices elemetales Uidad Docete de Matemáticas de la ETSITGC Asigatura: ÁLGEBRA Y GEOMETRÍA 6

7 Aplicacioes lieales Diagoalizació Rago(A)= N(f)=0 Los vectores columa de A forma ua base de Los vectores fila de A forma ua base de A 0 El cero o es u valor propio de A f es biyectiva Im(f)= Uidad Docete de Matemáticas de la ETSITGC Asigatura: ÁLGEBRA Y GEOMETRÍA 7

Aplicaciones Lineales. Diagonalización 1.- Sean xy

Aplicaciones Lineales. Diagonalización 1.- Sean xy Aplicacioes Lieales. Diagoalizació.- Sea xy, vectores propios de ua matriz A asociados al mismo valor propio. Etoces: a) x+ y tambié es vector propio de A. b) x+ y tambié es vector propio de A, si x +

Más detalles

Espacio Vectorial Definición: Sea V un conjunto donde hemos definido una ley u operación interna, que

Espacio Vectorial Definición: Sea V un conjunto donde hemos definido una ley u operación interna, que Sea V u cojuto dode hemos defiido ua ley u operació itera, que desigaremos por + V V. Sea K u cuerpo (comutativo) y sea, por último, ua operació extera que desigaremos por K V V. Diremos que (V,+, ) tiee

Más detalles

Tema 2: Diagonalización de matrices cuadradas

Tema 2: Diagonalización de matrices cuadradas Departameto de Aálisis Ecoómico UNIVERSIDAD DE ZARAGOZA Tema : Diagoalizació de matrices cuadradas.1. El cojuto R Defiició: Dados úmeros reales x 1, x,..., x R, se llama -tupla ordeada a x = ( x 1,, x,...,

Más detalles

Prácticas de Matemáticas I y Matemáticas II con DERIVE-5 138

Prácticas de Matemáticas I y Matemáticas II con DERIVE-5 138 Prácticas de Matemáticas I y Matemáticas II co DERIVE-5 8. DIGONLIZCIÓN... PRINCIPLES FUNCIONES DE DERIVE PR L DIGONLIZCION: CLCULO DE UTOVLORES Y UTOVECTORES. tes de iiciar el estudio de los pricipales

Más detalles

Vectores y matrices. x 1. x 2. x n. vector columna. X x 1, x 2,...,x n vector fila. a 11 a a 1m. a 21 a a 2m... a n1 a n2...

Vectores y matrices. x 1. x 2. x n. vector columna. X x 1, x 2,...,x n vector fila. a 11 a a 1m. a 21 a a 2m... a n1 a n2... Vectores y matrices x 1 X x 2. x vector columa X x 1, x 2,...,x vector fila a 11 a 12... a 1m A a 21 a 22... a 2m............ a 1 a 2... a m Matriz traspuesta a 11 a 21... a 1 A a 12 a 22... a 2............

Más detalles

Prácticas de Matemáticas I y Matemáticas II con DERIVE 136

Prácticas de Matemáticas I y Matemáticas II con DERIVE 136 Prácticas de Matemáticas I y Matemáticas II co DERIVE 6. DIGONLIZCIÓN... PRINCIPLES FUNCIONES DE DERIVE PR L DIGONLIZCION: CLCULO DE UTOVLORES Y UTOVECTORES. tes de iiciar el estudio de los pricipales

Más detalles

2.- ESPACIOS VECTORIALES. MATRICES.

2.- ESPACIOS VECTORIALES. MATRICES. 2.- ESPACIOS VECTORIALES. MATRICES. 2.1. -ESPACIOS VECTORIALES Sea u cojuto V, etre cuyos elemetos (a los que llamaremos vectores) hay defiidas dos operacioes: SUMA DE DOS ELEMENTOS DE V: Si u, v V, etoces

Más detalles

Capítulo III Teoría de grupos

Capítulo III Teoría de grupos Capítulo III Teoría de grupos Tema 1. Leyes de composició iteras. 1.1 Leyes de composició iteras. Dado u cojuto A, se defie como Ley de composició itera defiida e A a toda aplicació, A A A ( x, y) x y

Más detalles

Tema 2. Espacios vectoriales, aplicaciones lineales, diagonalización

Tema 2. Espacios vectoriales, aplicaciones lineales, diagonalización Tema 2. Espacios vectoriales, aplicacioes lieales, diagoalizació Asigatura: Matemáticas I Grado e Igeiería Electróica Idustrial Uiversidad de Graada Prof. Rafael López Camio Uiversidad de Graada 3 de septiembre

Más detalles

CAP ITULO I ALGEBRA LINEAL. 1

CAP ITULO I ALGEBRA LINEAL. 1 CAPÍTULO I ÁLGEBRA LINEAL 1 Tema 1 Espacios Vectoriales Notaremos por R al cuerpo de los úmeros reales Defiició 11 Sea E u cojuto o vacío e el que se tiee defiida ua ley de composició itera (llamada suma):

Más detalles

α, entonces se cumple que: T ( x) α T ( x)

α, entonces se cumple que: T ( x) α T ( x) HÉCTOR ESCOAR Uidad 3 Álgebra Lieal ALGERA LINEAL UNIDAD 3: OPERADORES LINEALES CONCEPTO DE OPERADOR LINEAL: sea V, dos espacios lieales, etoces u operador lieal (trasformació lieal) es ua fució T : V

Más detalles

CAPITULO 0 CONCEPTOS BASICOS DE ALGEBRA Y PROGRAMACION LINEAL Algebra lineal Notación básica.

CAPITULO 0 CONCEPTOS BASICOS DE ALGEBRA Y PROGRAMACION LINEAL Algebra lineal Notación básica. 5 CAPIULO 0 CONCEPOS BASICOS DE ALGEBRA Y PROGRAMACION LINEAL Este capítulo proporcioa u pequeño resume acerca de coceptos básicos de álgebra y programació lieal que resulta fudametales para el bue etedimieto

Más detalles

Transformaciones Lineales

Transformaciones Lineales Trasformacioes Lieales 1 Trasformacioes Lieales Las trasformacioes lieales iterviee e muchas situacioes e Matemáticas y so alguas de las fucioes más importates. E Geometría modela las simetrías de u objeto,

Más detalles

GUÍA DE ESTUDIO ÁLGEBRA LINEAL

GUÍA DE ESTUDIO ÁLGEBRA LINEAL GUÍ DE ESUDIO ÁLGER LINEL ema. Espacios Vectoriales ) LOS NÚMEROS El sistema de úmeros reales cosiste e u cojuto R de elemetos llamados úmeros reales y dos operacioes deomiadas: adició y multiplicació,

Más detalles

AMPLIACIÓN DE FUNDAMENTOS DE MATEMÁTICA APLICADA

AMPLIACIÓN DE FUNDAMENTOS DE MATEMÁTICA APLICADA AMPLIACIÓN DE FUNDAMENTOS DE MATEMÁTICA APLICADA FERNANDO LUIS GARCÍA ALONSO ANTONIO PÉREZ CARRIÓ JOSÉ ANTONIO REYES PERALES Profesores Titulares de la Escuela Politécica Superior de la Uiversidad de Alicate

Más detalles

TEMA 12 ESPACIOS VECTORIALES. A lo largo de este tema 12 denotaremos mediante la letra K un cuerpo conmutativo, (K, +, ).

TEMA 12 ESPACIOS VECTORIALES. A lo largo de este tema 12 denotaremos mediante la letra K un cuerpo conmutativo, (K, +, ). 1. Espacios Vectoriales. 2. Subespacios Vectoriales. 2.1. tersecció de Subespacios. 2.2. Uió de Subespacios. 2.3. Suma de Subespacios. 2.4. Suma Directa de Subespacios. 3. Aplicacioes Lieales. Espacio

Más detalles

DISCUSIÓN Y RESOLUCIÓN DE ECUACIONES LINEALES. TEOREMA DE ROUCHE. REGLA DE CRAMER. MÉTODO DE GAUSS-JORDAN

DISCUSIÓN Y RESOLUCIÓN DE ECUACIONES LINEALES. TEOREMA DE ROUCHE. REGLA DE CRAMER. MÉTODO DE GAUSS-JORDAN DISCUSIÓN Y RESOLUCIÓN DE ECUACIONES LINEALES. TEOREMA DE ROUCHE. REGLA DE CRAMER. MÉTODO DE GAUSS-JORDAN Ídice. INTRODUCCIÓN2 2. SISTEMAS DE ECUACIONES LINEALES2 Defiicioes básicas.2 Iterpretació vectorial3

Más detalles

CLASE SOBRE APLICACIONES LINEALES

CLASE SOBRE APLICACIONES LINEALES Álgebra Mauel Hervás Curso 0-0 CLAS SOBR APLICACIONS LINALS. INTRODUCCIÓN l problema que se va a abordar es la forma de RLACIONAR los elemetos de dos espacios vectoriales, mediate expresioes matemáticas.

Más detalles

Determinantes. Ramón Espinoza Armenta AVC APOYO VIRTUAL PARA EL CONOCIMIENTO

Determinantes. Ramón Espinoza Armenta AVC APOYO VIRTUAL PARA EL CONOCIMIENTO Determiates Ramó Espioza Armeta AVC APOYO VIRTUAL PARA EL CONOCIMIENTO Sea A M ( K), dode 2. El i-ésimo meor de A es la matriz A i, obteida a partir de A elimiado el regló i y la columa. Eemplo. Sea 3

Más detalles

ÍNDICE. Prólogo Capítulo 1. Ecuaciones diferenciales ordinarias. Generalidades.. 11 Introducción teórica Ejercicios resueltos...

ÍNDICE. Prólogo Capítulo 1. Ecuaciones diferenciales ordinarias. Generalidades.. 11 Introducción teórica Ejercicios resueltos... ÍNDICE Prólogo... 9 Capítulo 1. Ecuacioes difereciales ordiarias. Geeralidades.. 11 Itroducció teórica... 13 Ejercicios resueltos.... 16 Capítulo 2. itegració de la ecuació de primer orde. La ecuació lieal...................................................................

Más detalles

CRIPTOGRAFIA BASICA Y SISTEMAS DE ECUACIONES LINEALES

CRIPTOGRAFIA BASICA Y SISTEMAS DE ECUACIONES LINEALES MATEMÁTICA I - 0 - Capítulo 6 ------------------------------------------------------------------------------------ CRIPTOGRAFIA BASICA Y SISTEMAS DE ECUACIONES LINEALES Las matrices iversas se puede usar

Más detalles

GUÍA DE ESTUDIO ÁLGEBRA LINEAL

GUÍA DE ESTUDIO ÁLGEBRA LINEAL GUÍ DE ESUDIO ÁLGER LINEL ema 3. rasformacioes Lieales. QUÉ ES UN RNSFORMCIÓN? E térmios geerales, ua trasformació es ua fució que permite trasformar u vector que perteece a u espacio vectorial (domiio)

Más detalles

Un sistema de m ecuaciones lineales con n incógnitas es un conjunto de m igualdades del tipo:......

Un sistema de m ecuaciones lineales con n incógnitas es un conjunto de m igualdades del tipo:...... 1. Sistemas de m ecuacioes lieales co icógitas U sistema de m ecuacioes lieales co icógitas es u cojuto de m igualdades del tipo: a11x 1 a1 x... a1 x b1 a1x1 ax... ax b (1)... am1x1 amx... amx bm Los úmeros

Más detalles

b) Encontrar: τ o σ ; π o σ ; σ y τ. 2. Usar la definición de determinante para encontrar: 4. Calcular los determinantes de las siguientes matrices:

b) Encontrar: τ o σ ; π o σ ; σ y τ. 2. Usar la definición de determinante para encontrar: 4. Calcular los determinantes de las siguientes matrices: EJERCICIOS PROPUESTOS. Tarea 3. Cosiderar las siguietes particioes de S 5 σ = 354 τ = 354 π = 453. a) Determiar el sigo de cada ua de las ateriores particioes. b) Ecotrar: τ o σ ; π o σ ; σ y τ.. Usar

Más detalles

UNIVERSIDAD DIEGO PORTALES Instituto de Ciencias Básicas. Álgebra Lineal. Isabel Arratia Zárate

UNIVERSIDAD DIEGO PORTALES Instituto de Ciencias Básicas. Álgebra Lineal. Isabel Arratia Zárate UNIVERSIDAD DIEGO PORTALES Istituto de Ciecias Básicas Álgebra Lieal Isabel Arratia Zárate Matrices y Sistemas de ecuacioes lieales Algebra Lieal - I. Arratia Z. Matrices: defiicioes y otacioes básicas

Más detalles

2 OBJETIVOS TERMINALES. Al finalizar el curso el estudiante estará en capacidad de:

2 OBJETIVOS TERMINALES. Al finalizar el curso el estudiante estará en capacidad de: MATERIA: ÁLGEBRA LINEAL CÓDIGO: 08091 REQUISITOS: Algebra y Fucioes (08272), Lógica y Argumetació (0827) PROGRAMAS: Admiistració de Empresas, Biología, Ecoomía (ENI), Ecoomía (EPP), Igeierías, Química,

Más detalles

ÁLGEBRA DPTO. MATEMÁTICA APLICADA II ESCUELA TÉCNICA SUPERIOR INGENIEROS INGENIERÍA INDUSTRIAL PLAN DE LA ASIGNATURA. 1. Información general.

ÁLGEBRA DPTO. MATEMÁTICA APLICADA II ESCUELA TÉCNICA SUPERIOR INGENIEROS INGENIERÍA INDUSTRIAL PLAN DE LA ASIGNATURA. 1. Información general. DPTO. MATEMÁTICA APLICADA II ESCUELA TÉCNICA SUPERIOR INGENIEROS INGENIERÍA INDUSTRIAL PLAN DE LA ASIGNATURA ÁLGEBRA CURSO 2009-2010 1. Iformació geeral. La asigatura de Álgebra es ua materia obligatoria

Más detalles

Los vectores desempeñan un papel importante en Matemáticas, Física e Ingeniería y actualmente en materias como procesamiento de imágenes.

Los vectores desempeñan un papel importante en Matemáticas, Física e Ingeniería y actualmente en materias como procesamiento de imágenes. ESPACIOS VECTORIALES 1. INTRODUCCIÓN Escalares y Vectores E la técica existe catidades como Logitud, Área, Volume, Temperatura, Presió, Masa, Potecial, Carga eléctrica que se represeta por u úmero real.

Más detalles

Convolución discreta cíclica

Convolución discreta cíclica Covolució discreta cíclica Estos aputes está escritos por Darío Coutiño Aquio y Egor Maximeko. Objetivos. Defiir la covolució discreta cíclica y demostrar el teorema sobre la covolució discreta cíclica

Más detalles

Sistemas de Ecuaciones Lineales. M. en I. Gerardo Avilés Rosas

Sistemas de Ecuaciones Lineales. M. en I. Gerardo Avilés Rosas Sistemas de Ecuacioes Lieales M. e I. Gerardo Avilés Rosas Octubre de 206 Tema 5 Sistemas de Ecuacioes Lieales Objetivo: El alumo formulará, como modelo matemático de problemas, sistemas de ecuacioes lieales

Más detalles

Universidad Antonio Nariño Matemáticas Especiales

Universidad Antonio Nariño Matemáticas Especiales Uiversidad Atoio Nariño Matemáticas Especiales Guía N 1: Números Complejos Grupo de Matemáticas Especiales Resume Se preseta el cojuto de los úmeros complejos juto co sus operacioes y estructuras relacioadas.

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales UNIVERSIDAD DE JAÉN FACULTAD DE CIENCIAS SOCIALES Y JURÍDICAS Departameto de Matemáticas (Área de Álgebra) Curso 24/5 PRÁCTICA Nº 4 Sistemas de ecuacioes lieales E esta práctica veremos cómo los determiates

Más detalles

GUIA DE ESTUDIO Nro 1

GUIA DE ESTUDIO Nro 1 MATERIA: MATEMÁTICA I CURSO: I AÑO EJE ESTRUCTURAL I: CONCEPTOS FUNDAMENTALES DEL ALGEBRA GRUPOS CONCEPTUALES: - Epresioes algebraicas. Poliomios. - Ecuacioes. Iecuacioes. TEMARIO: GUIA DE ESTUDIO Nro

Más detalles

Guía Semana 9 1. RESUMEN. Universidad de Chile. Ingeniería Matemática

Guía Semana 9 1. RESUMEN. Universidad de Chile. Ingeniería Matemática 1. RESUMEN Igeiería Matemática FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo e Varias Variables 08-1 Igeiería Matemática Guía Semaa 9 Teorema de los multiplicadores de Lagrage

Más detalles

ALGEBRA VECTORIAL Y MATRICES.

ALGEBRA VECTORIAL Y MATRICES. ALGEBRA VECTORIAL Y MATRICES. Cosideraremos como ua matriz cuadrada de orde. Determiate es el valor umérico úico asociado a toda matriz cuadrada. Propiedades de los determiates Las propiedades más importates

Más detalles

ÁLGEBRA DPTO. MATEMÁTICA APLICADA II ESCUELA TÉCNICA SUPERIOR INGENIEROS INGENIERÍA INDUSTRIAL PLAN DE LA ASIGNATURA. 1. Información general.

ÁLGEBRA DPTO. MATEMÁTICA APLICADA II ESCUELA TÉCNICA SUPERIOR INGENIEROS INGENIERÍA INDUSTRIAL PLAN DE LA ASIGNATURA. 1. Información general. DPTO. MATEMÁTICA APLICADA II ESCUELA TÉCNICA SUPERIOR INGENIEROS INGENIERÍA INDUSTRIAL PLAN DE LA ASIGNATURA ÁLGEBRA CURSO 2004-2005 1. Iformació geeral. La asigatura de Álgebra es ua materia obligatoria

Más detalles

DPTO. MATEMÁTICA APLICADA II ESCUELA TÉCNICA SUPERIOR de INGENIEROS INGENIERO AERONÁUTICO PLAN DE LA ASIGNATURA ÁLGEBRA

DPTO. MATEMÁTICA APLICADA II ESCUELA TÉCNICA SUPERIOR de INGENIEROS INGENIERO AERONÁUTICO PLAN DE LA ASIGNATURA ÁLGEBRA DPTO. MATEMÁTICA APLICADA II ESCUELA TÉCNICA SUPERIOR de INGENIEROS INGENIERO AERONÁUTICO PLAN DE LA ASIGNATURA ÁLGEBRA CURSO 2010-2011 1. Iformació geeral. Esta asigatura es obligatoria, se imparte e

Más detalles

1) Considera el sistema de ecuaciones:

1) Considera el sistema de ecuaciones: SESIÓN 4: Álgebra lieal umérica ) Cosidera el sistema de ecuacioes: x + aa aa y a) Calcula las matrices iterativas de los métodos de Jacobi y Gauss-Seidel. b) Para qué valores de a coverge el método de

Más detalles

CONTENIDOS PROGRAMÁTICOS FECHA: FEBRERO DE 2006

CONTENIDOS PROGRAMÁTICOS FECHA: FEBRERO DE 2006 UNIVERSIDAD PEDAGOGICA Y TECNOLOGICA DE COLOBIA FACULTAD DE CIENCIAS ESCUELA DE ATEATICAS Y ESTADISTICA PLANES DE ESTUDIO SEESTRE : III ASIGNATURA : Algebra lieal CÓDIGO: 8106381 CREDITOS: 3 PRESENTACIÓN

Más detalles

UNIVERSIDAD DE COSTA RICA FACULTAD DE CIENCIAS MA-0292 ÁLGEBRA LINEAL PARA COMPUTACIÓN CARTA AL ESTUDIANTE I CICLO 2017

UNIVERSIDAD DE COSTA RICA FACULTAD DE CIENCIAS MA-0292 ÁLGEBRA LINEAL PARA COMPUTACIÓN CARTA AL ESTUDIANTE I CICLO 2017 UNIVERSIDAD DE COSTA RICA FACULTAD DE CIENCIAS MA-0292 ÁLGEBRA LINEAL PARA COMPUTACIÓN CARTA AL ESTUDIANTE I CICLO 2017 Naturaleza del curso: Teórico-Práctico No de horas preseciales: 5 No de horas estudio

Más detalles

MATEMÁTICA I Capítulo 5. a, a,..., a, término independiente b e incógnitas. = b, por ejemplo 2

MATEMÁTICA I Capítulo 5. a, a,..., a, término independiente b e incógnitas. = b, por ejemplo 2 MTEMÁTIC I - Capítulo MTRICES.. Itroducció. Nocioes básicas. Ua ecuació lieal co coeficietes reales a, a,..., a, térmio idepediete b e icógitas x, x,..., x es ua expresió de la forma a. x + a. x +... +

Más detalles

E.T.S.I. Industriales y Telecomunicación Curso Grados E.T.S.I. Industriales y Telecomunicación. Tema 1: Números complejos

E.T.S.I. Industriales y Telecomunicación Curso Grados E.T.S.I. Industriales y Telecomunicación. Tema 1: Números complejos Grados E.T.S.I. Idustriales y Telecomuicació Asigatura: Cálculo I Coocimietos previos Para poder seguir adecuadamete este tema, se requiere que el alumo repase y poga al día sus coocimietos e los siguietes

Más detalles

MÉTODOS MATEMÁTICOS ESPACIOS DE HILBERT Y OPERADORES LINEALES. Profesora: Mª Cruz Boscá TEMA 2: ESPACIOS EUCLÍDEOS Y DE HILBERT

MÉTODOS MATEMÁTICOS ESPACIOS DE HILBERT Y OPERADORES LINEALES. Profesora: Mª Cruz Boscá TEMA 2: ESPACIOS EUCLÍDEOS Y DE HILBERT ÉTODOS ATEÁTICOS ESPACIOS DE HILBERT Y OPERADORES LINEALES Profesora: ª Cruz Boscá TEA : ESPACIOS EUCLÍDEOS Y DE HILBERT Sea u espacio lieal L (X, +, ) sobre el cuerpo k Producto itero o escalar y espacio

Más detalles

ELEMENTOS DE ÁLGEBRA MATRICIAL

ELEMENTOS DE ÁLGEBRA MATRICIAL ELEMENTOS DE ÁLGEBRA MATRICIAL Ezequiel Uriel DEFINICIONES Matriz Ua matriz de orde o dimesió p- o ua matriz ( p)- es ua ordeació rectagular de elemetos dispuestos e filas y p columas de la siguiete forma:

Más detalles

Aritmética. Introducción. De la definición anterior se pueden deducir las siguientes propiedades:

Aritmética. Introducción. De la definición anterior se pueden deducir las siguientes propiedades: Aritmética Itroducció Bautizo: Decimos a divide a b (a factor de b, a es divisor de b, b es múltiplo de a, b es divisible por a) si existe u etero c tal que b=ac Lo aterior se simboliza como a b, e caso

Más detalles

DPTO. MATEMÁTICA APLICADA II ESCUELA TÉCNICA SUPERIOR de INGENIEROS INGENIERO AERONÁUTICO PLAN DE LA ASIGNATURA ÁLGEBRA

DPTO. MATEMÁTICA APLICADA II ESCUELA TÉCNICA SUPERIOR de INGENIEROS INGENIERO AERONÁUTICO PLAN DE LA ASIGNATURA ÁLGEBRA DPTO. MATEMÁTICA APLICADA II ESCUELA TÉCNICA SUPERIOR de INGENIEROS INGENIERO AERONÁUTICO PLAN DE LA ASIGNATURA ÁLGEBRA CURSOS 2010-2011 2011-2012 2012-2013 1. Iformació geeral. Esta asigatura es obligatoria,

Más detalles

TEMA 4. APLICACIONES LINEALES

TEMA 4. APLICACIONES LINEALES TEMA 4. APLICACIONES LINEALES 1.- Definición y propiedades. 2.- Aplicaciones lineales inyectivas y Suprayectivas. 3.- Núcleo, imagen, matriz asociada y rango de una aplicación lineal. 4.- Operaciones con

Más detalles

TEMA 12. Espacios Vectoriales. Variedad lineal. Aplicaciones lineales. Teorema de la Isomorfía.

TEMA 12. Espacios Vectoriales. Variedad lineal. Aplicaciones lineales. Teorema de la Isomorfía. Tema 2- Espacios Vectoriales. Variedad Lieal. Aplicacioes lieales. Teorema de la Isomorfia TEMA 2. Espacios Vectoriales. Variedad lieal. Aplicacioes lieales. Teorema de la Isomorfía.. Itroducció. La utilizació

Más detalles

Asignatura: Geometría I Grado en Matemáticas. Universidad de Granada Tema 2. Espacios vectoriales

Asignatura: Geometría I Grado en Matemáticas. Universidad de Granada Tema 2. Espacios vectoriales Asigatura: Geometría I Grado e Matemáticas. Uiversidad de Graada Tema 2. Espacios vectoriales Prof. Rafael López Camio Uiversidad de Graada 14 de diciembre de 2012 Ídice 1. Espacio vectorial 2 2. Subespacio

Más detalles

Ejercicio 1- Sea Q el conjunto de los números racionales y N el de los números naturales incluido el cero. Se define en Q la siguiente relación R:

Ejercicio 1- Sea Q el conjunto de los números racionales y N el de los números naturales incluido el cero. Se define en Q la siguiente relación R: PREPARADORES DE OPOSICIONES PARA LA ENSEÑANZA Matemáticas MATEMATICAS Ejercicio - Sea Q el cojuto de los úmeros racioales y N el de los úmeros aturales icluido el cero. Se defie e Q la siguiete relació

Más detalles

es ligada, siendo v V Dos subespacios F y G de V son suplementarios si y solo si se verifica:

es ligada, siendo v V Dos subespacios F y G de V son suplementarios si y solo si se verifica: 1- Dado el sbcojto F={ ( λ μ, λ,μ, μ) R / λ, μ R} de R, se verifica qe: a) dim F= b) {(1,1,0,0),(-,0,,-1)} es a base de F c) F o es sbespacio vectorial de R - E sistema ligado, se verifica qe: a) Agregado

Más detalles

UNIVERSIDAD AUTÓNOMA DE YUCATÁN FACULTAD DE MATEMÁTICAS LICENCIATURA EN CIENCIAS DE LA COMPUTACIÓN ÁLGEBRA LINEAL TERCER SEMESTRE

UNIVERSIDAD AUTÓNOMA DE YUCATÁN FACULTAD DE MATEMÁTICAS LICENCIATURA EN CIENCIAS DE LA COMPUTACIÓN ÁLGEBRA LINEAL TERCER SEMESTRE UNIVERSIDAD AUTÓNOMA DE YUCATÁN FACULTAD DE MATEMÁTICAS LICENCIATURA EN CIENCIAS DE LA COMPUTACIÓN MATERIA: NIVEL: ÁLGEBRA LINEAL TERCER SEMESTRE Fecha de elaboració: Julio de 1998. Duració: 90 horas,

Más detalles

- Fernando Sánchez - Departamento de Matemáticas - Universidad de Extremadura

- Fernando Sánchez - Departamento de Matemáticas - Universidad de Extremadura - Ferado Sáchez - - 5 Números Cálculo I complejos 14 10 2015 E el cuerpo de los úmeros reales ecuacioes como x 2 + 1 = 0 o tiee solució: el poliomio x 2 + 1 o tiee raíces reales. Hace falta exteder el

Más detalles

APUNTE TEORICO DE SISTEMAS DE ECUACIONES DIFERENCIALES

APUNTE TEORICO DE SISTEMAS DE ECUACIONES DIFERENCIALES APUNTE TEORICO DE SISTEMAS DE ECUACIONES DIFERENCIALES [6.08] ALGEBRA II Autor: Berardo Ortega Ídice SISTEMAS DE ECUACIONES DIFERENCIALES ORDINARIAS...3 De primer orde co coeficietes costates..3 Sistemas

Más detalles

Por P. Diaz Muñoz y M. Sánchez Marcos.

Por P. Diaz Muñoz y M. Sánchez Marcos. APLICACIONES DE LA INTERPOLACION A LA REPRESENTACION DE FUNCIONALES LINEALES SOBRE UN SUBESPACIO DE DIMENSION FINITA DE C (Q). Por P. Diaz Muñoz y M. Sáchez Marcos. 0.- INTRODUCCION Sea C(Q) el espacio

Más detalles

- Fernando Sánchez - Departamento de Matemáticas - Universidad de Extremadura. Cálculo I

- Fernando Sánchez - Departamento de Matemáticas - Universidad de Extremadura. Cálculo I - Ferado Sáchez - - Números Cálculo I complejos 09 0 07 E el cuerpo de los úmeros reales ecuacioes como x + = 0 o tiee solució: el poliomio x + o tiee raíces reales. Hace falta exteder el cocepto de úmero

Más detalles

Curso: 3 E.M. ALGEBRA 8

Curso: 3 E.M. ALGEBRA 8 Colegio SSCC Cocepció - Depto. de Matemáticas Uidad de Apredizaje: POLINOMIOS Capacidades/Destreza/Habilidad: Racioamieto Matemático/ Aplicació / Calcular, Resolver Valores/ Actitudes: Respeto, Solidaridad,

Más detalles

MATEMÁTICA LIC. Y PROF. EN CS. BIOLÓGICAS

MATEMÁTICA LIC. Y PROF. EN CS. BIOLÓGICAS Defiició de límite de ua fució (segú Heie) Sea f : D R ua fució y a R (D R) Diremos que se cumple que f() L R a f( ) L si para cualquier sucesió { } D { a} tal que a Ejemplos: ) Probar que Demostració:

Más detalles

TEMA 10: POSICIONES RELATIVAS DE RECTAS Y PLANOS

TEMA 10: POSICIONES RELATIVAS DE RECTAS Y PLANOS TEMA 0: POSICIONES RELATIVAS DE RECTAS Y PLANOS Ates de itroducir los coceptos que correspode a este apartado, haremos u repaso de dos coceptos que ecesitamos, matrices y determiates, así como alguas de

Más detalles

NOTA: EN TODO EL CAPÍTULO Usamos H para representar un espacio de Hilbert separable. la traza también se puede definir como tra = n=1

NOTA: EN TODO EL CAPÍTULO Usamos H para representar un espacio de Hilbert separable. la traza también se puede definir como tra = n=1 CAPÍTULO 7: DE LOS IDEALES DE LA CLASE DE TRAZA Y DE HILBERT -SCHMIDT. NOTA: EN TODO EL CAPÍTULO Usamos H para represetar u espacio de Hilbert separable. Defiició Sea A B(H) u operador positivo si {ϕ }

Más detalles

1) El signo de un número racional (resp. real) no nulo es un homomorfismo

1) El signo de un número racional (resp. real) no nulo es un homomorfismo Capítulo 5 Homomorfismos Les mathématicies étudiet pas des objets, mais des relatios etre les objets Poicaré Hemos visto alguas ocioes básicas de grupos y varios ejemplos. Para comparar grupos, estudiar

Más detalles

LOS NUMEROS REALES. Conjunto no vacío designado como R y denominado conjunto de los números reales. En

LOS NUMEROS REALES. Conjunto no vacío designado como R y denominado conjunto de los números reales. En LOS NUMEROS REALES Cojuto o vacío desigado como R y deomiado cojuto de los úmeros reales. E él se defie ua relació de igualdad = y dos operacioes algebraicas + y. Relació de igualdad Defiició: R = (a,b)

Más detalles

FACULTAD DE CIECIAS I CICLO DEL 2014 ESCUELA DE MATEMATICAS. Carta al estudiante. Información general

FACULTAD DE CIECIAS I CICLO DEL 2014 ESCUELA DE MATEMATICAS. Carta al estudiante. Información general UIVERSIDAD DE COSTA RICA DPTO. DE MATEMÁTICA APLICADA FACULTAD DE CIECIAS I CICLO DEL 2014 ESCUELA DE MATEMATICAS Carta al estudiate Iformació geeral Nombre del curso: Álgebra lieal Sigla: MA 1004 Naturaleza

Más detalles

Álgebra I Práctica 3 - Números enteros (Parte 1)

Álgebra I Práctica 3 - Números enteros (Parte 1) FCEyN - UBA - 1er cuatrimestre 015 Divisibilidad y algoritmo de divisió Álgebra I Práctica 3 - Números eteros (Parte 1 1. Decidir cuáles de las siguietes afirmacioes so verdaderas a, b, c Z i a b c a c

Más detalles

ÁLGEBRA LINEAL I Práctica 6

ÁLGEBRA LINEAL I Práctica 6 ÁLGEBRA LINEAL I Práctica 6 Aplicaciones Lineales (Curso 2012 2013) 1. De las siguientes aplicaciones definidas entre espacios vectoriales reales, determinar cuáles son homomorfismos, monomorfismos, epimorfismos

Más detalles

2.2. Estadísticos de tendencia central

2.2. Estadísticos de tendencia central 40 Bioestadística: Métodos y Aplicacioes La dispersió o variació co respecto a este cetro; Los datos que ocupa ciertas posicioes. La simetría de los datos. La forma e la que los datos se agrupa. Cetro,

Más detalles

Solución del Examen Extraordinario de Algebra y Matemática Discreta, Primer Curso, Facultad de Informática

Solución del Examen Extraordinario de Algebra y Matemática Discreta, Primer Curso, Facultad de Informática Solució del Exame Extraordiario de Algebra y Matemática Discreta, 0-09-2008. Primer Curso, Facultad de Iformática Putuació Máxima Posible: 20 putos Ejercicio Primero (Grafos, etc). a) ( puto) Defia Grafo

Más detalles

Capítulo 9. Método variacional

Capítulo 9. Método variacional Capítulo 9 Método variacioal 9 Miimizació de la eergía 9 Familia de fucioes 9 Partícula ecerrada e ua dimesió etre [-aa] 9 Oscilador armóico e ua dimesió 93 Átomo de helio 93 Combiació lieal de fucioes

Más detalles

SISTEMAS DE ECUACIONES LINEALES.

SISTEMAS DE ECUACIONES LINEALES. SISTEMS DE ECUCIONES LINELES. SISTEMS DE ECUCIONES LINELES. U sistema de ecuacioes lieales es u cojuto de m ecuacioes co icógitas de la forma: a x + a2 x2 + a3 x3 + + a x b a2 x + a22 x2 + a23 x3 + + a2

Más detalles

ÁLGEBRA LINEAL I Práctica 6

ÁLGEBRA LINEAL I Práctica 6 ÁLGEBRA LINEAL I Práctica 6 Aplicaciones Lineales (Curso 2016 2017) 1. De las siguientes aplicaciones definidas entre espacios vectoriales reales determinar cuáles son homomorfismos monomorfismos epimorfismos

Más detalles

Tema 2. Aplicaciones lineales. Diagonalización de endomorfismos.

Tema 2. Aplicaciones lineales. Diagonalización de endomorfismos. Tema 2. Aplicaciones lineales. Diagonalización de endomorfismos. Álgebra Lineal Escuela Politécnica Superior Universidad de Málaga Emilio Muñoz-Velasco (Basado en los apuntes de Jesús Medina e Inmaculada

Más detalles

Funciones Exponencial y Logaritmo

Funciones Exponencial y Logaritmo . 9th May 2007 La fució expoecial Itroducció. Recuerdo Sabemos lo siguiete para la sucesió a = + h ) Si lim h 2, 0) etoces lim a = 0. 2 Si lim h / [ 2, 0] etoces lim a o existe. 3 Si lim h = 0 y lim h

Más detalles

Ir?-4ac > O, a > 01 Ir?-4ac > O, a < 01 Ir?- 4ac = 01 (a < O) X+J?..~±~b' -4.c ~±.Jb' -4.c. -b±~b2-4ac. 1.2 {2a si a > O

Ir?-4ac > O, a > 01 Ir?-4ac > O, a < 01 Ir?- 4ac = 01 (a < O) X+J?..~±~b' -4.c ~±.Jb' -4.c. -b±~b2-4ac. 1.2 {2a si a > O MATEMÁTICAS BÁSICAS X+J?..~±~b' -4.c ~±.Jb' -4.c 1. {a si a > O ( Recordar que -. 4a - =. ) a 4a a - a SI a < O Así que, si b - 4ac ~ O hay solamete dos raíces e R de la ecuació ax + bx + c = O, a saber,

Más detalles

1. ESPACIOS VECTORIALES

1. ESPACIOS VECTORIALES Espacios Vectoiales Heamietas ifomáticas paa el igeieo e el estudio del algeba lieal. ESPACIOS VECTORIALES.. ESTRUCTURA DE ESPACIO VECTORIAL... Defiició..2. Ejemplos de espacios vectoiales..3. Popiedades

Más detalles

Identificación de Sistemas

Identificación de Sistemas Idetificació de Sistemas Estimació de Míimos Cuadrados Autor: Dr. Jua Carlos Gómez Estimació de Míimos M Cuadrados para Estructura de Regresor Lieal Se asume que la relació etrada-salida puede ser descripta

Más detalles

6.3. Uso de la SVD para determinar la estructura de una matriz. Primero definiremos algunas características de matrices.

6.3. Uso de la SVD para determinar la estructura de una matriz. Primero definiremos algunas características de matrices. Edgar Acuña/ ESMA 6665 Lecc 8 75 6.3. Uso de la SVD para determiar la estructura de ua matriz Primero defiiremos alguas características de matrices. Rago de ua matriz: Sea A ua matriz m x se etoces su

Más detalles

2 Algunos conceptos de convergencia de sucesiones de variables aleatorias

2 Algunos conceptos de convergencia de sucesiones de variables aleatorias INTRODUCCIÓN A LA CONVERGENCIA DE SUCESIONES DE VARIABLES ALEATORIAS Juliá de la Horra Departameto de Matemáticas U.A.M. 1 Itroducció Se puede utilizar diferetes coceptos de covergecia para las sucesioes

Más detalles

FACTORIZACIÓN DE POLINOMIOS

FACTORIZACIÓN DE POLINOMIOS FACTORIZACIÓN DE OLINOMIOS. VALOR NUMÉRICO Y RAÍCES DE UN OLINOMIO Sea u poliomio y a u úmero real cualquiera. Se llama valor umérico de e = a y se deota por a, al úmero que resulta al sustituir e la variable

Más detalles

FUNCIONES. ( a) IGUALDAD DE FUNCIONES Sí y son dos funciones, diremos que las funciones f y

FUNCIONES. ( a) IGUALDAD DE FUNCIONES Sí y son dos funciones, diremos que las funciones f y CALCULO P.C.I. PRIMER SEMESTRE 04 FUNCIONES Sí A y B so dos cojutos o vacío, ua fució de A e B asiga a cada elemeto a perteeciete al cojuto A u úico elemeto b de B que deomiamos image de a. Además diremos

Más detalles

Aplicaciones Lineales (Curso )

Aplicaciones Lineales (Curso ) ÁLGEBRA Práctica 6 Aplicaciones Lineales (Curso 2010 2011) 1. De las siguientes aplicaciones definidas entre espacios vectoriales reales determinar cuáles son homomorfismos monomorfismos epimorfismos o

Más detalles

Coordinación de Matemática II (MAT022)

Coordinación de Matemática II (MAT022) Coordiació de Matemática II MAT0 Guía de ejercicios Ejercicios Mat0 parte complemetos Operacioes co matrices. Cosidere A = 0 0 3 B = cuado sea posible si o se puede justificar 0 3 5 6 y C = 0 calcular

Más detalles

Sistemas de Ecuaciones lineales.

Sistemas de Ecuaciones lineales. UTN Facultad Regioal Bahía Blaca Álgebra y Geometría Aalítica Sistemas de Ecuacioes lieales Ídice de temas 1-Itroducció 11-Ecuació lieal de 1er grado e ua o más icógitas 3 1-Solució de ua ecuació lieal

Más detalles

AMPLIACIÓN DE MATEMÁTICAS APLICACIONES.

AMPLIACIÓN DE MATEMÁTICAS APLICACIONES. AMPLIACIÓN DE MATEMÁTICAS APLICACIONES. Ejemplo 1. La ecuació poliómica x 2 + 2x + 2 = 0, co coeficietes reales, tiee dos solucioes complejas cojugadas: 1 + i y 1 i. Este o es u hecho aislado. Proposició

Más detalles

CAPÍTULO 7 ESPACIOS VECTORIALES EUCLIDIANOS

CAPÍTULO 7 ESPACIOS VECTORIALES EUCLIDIANOS 9 CAPÍTULO 7 ESPACIOS VECTORIALES EUCLIDIANOS 7 INTRODUCCIÓN E el capítulo 3 calculamos el águlo etre dos vectores del espacio y obtuvimos que si ad be cf u a, b, c, v d, e, f y es el águlo etre u y v,

Más detalles

Los números complejos

Los números complejos Los úmeros complejos Los úmeros complejos Forma biómica Defiició z = a + bi, o bie, z = (a, b) siedo a la parte real y b la parte imagiaria. a = r cos α b = r se α Opuesto z = a bi Cojugado z = a bi Represetació

Más detalles

A = 1. Demuestra que P (1) es cierta. 2. Demuestra que si P (h) es cierta, entonces P (h + 1) es cierta.

A = 1. Demuestra que P (1) es cierta. 2. Demuestra que si P (h) es cierta, entonces P (h + 1) es cierta. . POTENCIAS DE MATRICES CUADRADAS E este capítulo vamos a tratar de expoer distitas técicas para hallar las potecias aturales de matrices cuadradas. Esta cuestió es de gra importacia y tiee muchas aplicacioes

Más detalles

UNIDAD 2 Ecuaciones Diferenciales Lineales de Orden Superior

UNIDAD 2 Ecuaciones Diferenciales Lineales de Orden Superior UNIDAD Ecuacioes Difereciales Lieales de Orde Superior. Defiició Ua ecuació diferecial lieal de orde tiee la forma: d y a a a a y= g d d d Si las fucioes a a so todas costates (o cero) etoces se dice que

Más detalles

5. Aplicaciones Lineales

5. Aplicaciones Lineales Contents 5 Aplicaciones Lineales 2 5.1 Aplicaciones lineales. Definición y propiedades........................ 2 5.2 Núcleo e Imagen.................................................... 3 5.3 Descomposición

Más detalles

Construcción de los números reales.

Construcción de los números reales. B Costrucció de los úmeros reales. E el cojuto C de las sucesioes de Cauchy de úmeros racioales defiimos la relació siguiete: si (x ) =1 e (y ) =1 so dos sucesioes de C etoces (x ) =1 (y ) =1, si lím (x

Más detalles

Olimpiada Nacional de Matemática 2018 Fase Final - Nivel U. Soluciones

Olimpiada Nacional de Matemática 2018 Fase Final - Nivel U. Soluciones limpiada Nacioal de Matemática Fase Fial - Nivel U Solucioes Problema 1. Sea a y reales positivos. Se defie la curva l como y = ax y como el orige del plao cartesiao. Para u puto cualquiera P sobre la

Más detalles

Tema 8. Derivabilidad y reglas de derivación. 8.1 Derivada de una función

Tema 8. Derivabilidad y reglas de derivación. 8.1 Derivada de una función Tema 8 Derivabilidad y reglas de derivació 8. Derivada de ua fució f : I R es derivable e a I si eiste el límite que llamaremos f 0 (a) f() f(a) lim a a Ejercicio 8.. Si f() 3 calcular f 0 () f(a + ) f(a)

Más detalles

Estadística Descriptiva

Estadística Descriptiva Estadística Descriptiva TEMA 1 Estadística Descriptiva 1. Variables estadísticas uidimesioales a) Itroducció b) Estudio descriptivo de ua variable c) Represetacioes gráficas d) Medidas de tedecia cetral

Más detalles

FACULTAD DE CIENCIAS II CICLO DEL 2015 ESCUELA DE MATEMATICAS. Carta al estudiante. Información general

FACULTAD DE CIENCIAS II CICLO DEL 2015 ESCUELA DE MATEMATICAS. Carta al estudiante. Información general UNIVERSIDAD DE COSTA RICA DPTO. DE MATEMÁTICA APLICADA FACULTAD DE CIENCIAS II CICLO DEL 2015 ESCUELA DE MATEMATICAS Carta al estudiate Iformació geeral Nombre del curso: Álgebra lieal Sigla: MA 1004 Naturaleza

Más detalles

TEMA 1. Métodos directos de resolución de Sistemas de Ecuaciones Lineales

TEMA 1. Métodos directos de resolución de Sistemas de Ecuaciones Lineales TEMA. Métodos directos de resolució de Sistemas de Ecuacioes Lieales Nota previa: Para repasar los coceptos básicos se puede cosultar la págia de la U. D. Matemáticas http://asigaturas.topografia.upm.es/matematicas/primero/aputes/sistemas/idex0.htm.

Más detalles

Formas bilineales y cuadráticas. Ley de inercia de las formas cuadráticas

Formas bilineales y cuadráticas. Ley de inercia de las formas cuadráticas TEMA 46 Formas bilieales y cuadráticas. Ley de iercia de las formas cuadráticas E la primera secció se cofiere estructura de K-espacio vectorial al cojuto formado por las aplicacioes bilieales del producto

Más detalles