Unidad 10 Límites de funciones. Continuidad.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Unidad 10 Límites de funciones. Continuidad."

Transcripción

1 Unidad 10 Límites de funciones. Continuidad. PÁGINA 01 SOLUCIONES 1. Podemos decir lo siguiente: f( ) tiende a () cuando tiende a ( ) y tiende a ( ) ( y tiende a ( ) g ( ) tiende a ( ) cuando tiende a ) ( ) cuando tiende a. cuando tiende a ( ). ( ) h ( ) tiende a ( ) cuando tiende a ( ) y tiende a () cuando tiende a. t ( ) tiende a ( ) cuando tiende a ( ) y tiende a ( ) cuando tiende a ( ). 19

2 PÁGINA 19 SOLUCIONES 1. Designamos los colores por: rojo (R), verde (V), azul (Z) y amarillo (A); y las tres formas por: cuadrada (C), circular (O), triangular (T) y pentagonal (P). Por ensayo y error las colocamos en un tablero 4 4, cumpliendo las condiciones que marca el enunciado. Una solución es: Podemos encontrar hasta 7 soluciones distintas.. El número total de amanitas ha de ser múltiplo de 9 menos 1, es decir, 8 amanitas. Haciendo el problema mediante ecuaciones: 8 8 = = 8 amanitas

3 . El enunciado del problema nos muestra que el número de latas de zumo debe ser un número impar. Por ensayo y error dirigido obtenemos: Hay 7 latas de zumo. El 1. er amigo se bebe 7 0,5 4 latas. Quedan latas. = El. o amigo se bebe 0,5 latas. Queda 1 lata. = El dueño de la casa se bebe 1 0,5 1 lata. = Luego, efectivamente, había inicialmente 7 latas de zumo. Este problema se puede resolver también por medio de ecuaciones. 4. Sea n un número real. i n ( n ) = ( 1) ( 1) ( 1) Veamos si 1 1 n n n n n n = ( ) ( n ) i n n1 1 =, pues es producto de tres números consecutivos. i i i i i i ( ) ( ) Si n= n 1= y n 1=, luego n1 n n 1 = = 1, i i i i i i ( ) ( ) Si n 1= n=, por lo que n n1 n n 1 = = 1, i i ( ) ( ) Si n 1= n=, porloquen n1 n n 1= = 1, ( n ) i En cualquier caso, efectivamente, n 1 = 1. i i i i i 141

4 PÁGINA 14

5 SOLUCIONES 1. Las soluciones quedan: a) f () = 1; g) f ( ) = 1 l) f ( ) = 1,5 r) g( ) noeiste 5,5,5 b) f ( )no eiste h) f ( ) = 1,5 m) g(1) = s) g(,5) no eiste c) f ( ) = i) f ( 5) no definida n) g( ) = t) g( ) no eiste 1 d) f ( ) = if ( 6) = 1 o) g( ) = u) g( ) no eiste 5 e) f(5) = j) f( ) = 1 p) g() = 0 6 f) f ( ) = 1 k) f ( ) = q) g( ) = Las correspondencias quedan: a) g( ) = b) g(1) = c) g( ) = 1 1. Las gráficas quedan: 14

6 PÁGINA 144

7 SOLUCIONES 4. Las respuestas quedan: a) f ( ) = h) g( ) = 1 b) f ( ) = i) g( ) = 1 c) f ( ) = 1 j) g( ) = d) Asíntota horizontal : y = 1. k) Asíntota horizontal : y= 0. Asíntotas verticales : = 1; = 1. Asíntota vertical : =. e) f ( ) = l) g( ) = 1 f) f ( ) = m) g( ) = 0 1 g) f ( ) = 1 n) g( ) = Las representaciones quedan: 145

8 6. Los resultados son: 5 a) = b) = c) = d) = 9 1 e) ( 7) = 7 f) g) 10 = 0 h) 1 0 = = 1 6 i) = 0 j) = k) = 0 l) = 1 1 m) = n) = o) 6 = p) =

9 PÁGINA 4 147

10 SOLUCIONES 7. Los ites y la gráfica quedan: f () = ( 1) = f () f () ( ) = = = f () = ( ) = f () = ( 1) = f () no eiste f () = ; f () = 8. Los ites quedan: a) [ 7 ] = b) = c) [4 7 5] = d) [ 4] = 5 1] 7 5 e) = 0 f) = g) = h) = 4 5 i) 6 = 9. Los ites quedan: a) 1 0 ( 1)( ) = = ( 1)( ) 4 ( 1) ( 1) 0 b) = = 1 c) 9 0 ( )( ) = = ( )(5 ) 17 d) ( 1)( 1)( = ( 1)( 1) 1) 4 = 148

11 0 ( )( ) 1 e) = = = ( )( 6) ( )( ) 4 f) ( )( ) = =± 4 4 ( ) ( 1 1)( 1 1) g) = = = = ( 1 1) ( 1 1) ( 1 1) ( 1) ( 1) ( 1) ( 1) 0 ( 1) ( 1) ( 1) h) = = = = ( 1)( 1) 1 0 ( ) ( ) ( )( ) i) = = = 8 0 ( ) ( ) 10. Los ites quedan: a) 1 1 = 1 b) = ; = = ( )( ) c) = = = 0 d) ( ) 0 ( ) = = = ( )( ) e) = = = = f) 1 ( ) ( )( 1) = = 4 4 = 149

12 11. Los ites quedan: a) = e = e = e = = 6 b) e e = e = 0 5 c) ( ) = e = e = e = e 1. Las asíntotas quedan: a) Asíntota vertical : = 1 d) Asíntota horizontal : y = 0 Asíntota horizontal : y = b) Asíntotas verticales : = ; = e) Asíntota verticales : = 1; =1 Asíntota horizontal : y = 0 Asíntota horizontal : y = 1 c) Asíntota vertical : = f) Asíntota vertical : = 0 Asíntota oblicua : y = Asíntota oblicua : y = 150

13 PÁGINA 5 151

14 SOLUCIONES 1. Los ites quedan: a) = 6 b) 4 6 = = c) = ( 6 4)( 1) 1 d) = = 1 0 ( )( 1) e) = = ( 4 )( 1) 4 f) 6 (1 1) [ ] = e = e = e Queda: a) F (0) = 5000 animales hay en la actualidad ( t = 0). b) La población tiende a estabilizarse a animales, puesto que: 15000t = 7500 t t 15. Queda la epresión: = 0 9 Los beneficios se anulan cuando el tiempo crece indefinidamente. 16. Queda: a) M (0) = 40 montajes b) t 600t t 10 = ; = 600 t t t t c) = 500 t = 1,8 días. El máimo número de montajes que puede hacer es 600. t 15

15 17. Las asíntotas son: = 0 y C( ) =. Las tendencias son: = ; = La función y = es creciente en todo su dominio y el valor máimo lo alcanza en = 0 y 5 vale 8. La función f( ) = es decreciente en su dominio ( para > 0 ) y el valor 0,5,5 máimo lo alcanza en = 0 y vale 8. Por tanto la máima puntuación es 8 puntos. 15

16 PÁGINA 6 154

17 SOLUCIONES 19. Se calcula del siguiente modo: ( ) f ( ) = 1 = 1 ( ) f ( ) = = ( ) f ( ) = = 0 f ( ) =6 f ( ) f ( ) = 6 f ( ) =6 f(0) = ; f(1) = 0; f() =6 {} La función f( ) es continua en 0 0. El estudio en cada caso queda: a) f( ) no es continua en = 0 pues no está definida en ese punto. b) g ( ) es continua en toda la recta real. c) h ( ) es continua en toda la recta real. g ( ) = 1. 0 h ( ) = 1. 1 f ( ) noeiste En cada caso queda: i f ( ) = i f ( ) = 1 0 i f ( ) = 0 i f ( ) = i f( )es discontinua no evitable en = 0 155

18 i g( ) = 1 i g( ) = 1 i g( ) = i g( ) = i g ( )es discontinua no evitable en = i h( ) = i h( ) = 0 i h( ) = 1 1 i h( ) = 1 1 i h ( )es continua en = 1. En cada caso queda: a) Veamos la continuidad de f( ) en = y= 4. f () = ( ) f ( ) = 4 = 0 f ( ) = 0 = f () = 0 Luego f ( ) es continua en =. f ( ) = ( ) = 0 f (4) = ( ) f ( ) = = f ( ) = 5= 5 f ( ) Luego f ( ) no es continua en = 4. 4 b) Veamos la continuidad de g ( ) en = 0y=. g(0) =1 5 g( ) = =1 5 g( ) Luego g( ) no es continua en = 0. 0 g( ) = 1= g() = g( ) = 1= 10 g( ) = g() = Luego g( ) es continua en =. g( ) = = 156

Matemáticas aplicadas a las Ciencias Sociales

Matemáticas aplicadas a las Ciencias Sociales UNIDAD 0: Límites de funciones. Continuidad ACTIVIDADES-PÁG. 08. Podemos decir lo siguiente: a) Para esta función: f () tiende a cuando tiende a f () tiende a + cuando tiende a por la izquierda f () tiende

Más detalles

MatemáticasI. Características a) b) c) Dominio R R R Recorrido 0, [- 1, 1] R Simetría Eje OY Origen de

MatemáticasI. Características a) b) c) Dominio R R R Recorrido 0, [- 1, 1] R Simetría Eje OY Origen de UNIDAD 10: Propiedades globales de las funciones ACTIVIDADES-PÁG. 6 1. El día 1 de julio ocupará una superficie de 1 1,08 1 = 10,87 cm. La gráfica buscada podría ser la siguiente:. Las características

Más detalles

Unidad 5 Límites de funciones. Continuidad

Unidad 5 Límites de funciones. Continuidad Unidad 5 Límites de funciones. Continuidad PÁGINA 104 SOLUCIONES 1. Los límites quedan: lím f( ) = 4; lím f( ) = 4 lím f( ) = 4 lím f ( ) = ; lím f( ) = 0 no eiste lím f ( ) 0 0 lím f ( ) = ; lím f ( )

Más detalles

Unidad 5 Límites de funciones. Continuidad

Unidad 5 Límites de funciones. Continuidad Unidad 5 Límites de funciones. Continuidad PÁGINA 104 SOLUCIONES 1. Los límites quedan: lím f( ) = 4; lím f( ) = 4 lím f( ) = 4 lím f ( ) = ; lím f( ) = 0 no eiste lím f ( ) 0 0 lím f ( ) = ; lím f ( )

Más detalles

SOLUCIÓN. BLOQUE DE FUNCIONES.

SOLUCIÓN. BLOQUE DE FUNCIONES. SOLUCIÓN. BLOQUE DE FUNCIONES. Análisis de funciones 1. a) y c) son funciones, porque para cada valor de hay un único valor de y. b) no es una función, porque para cada valor de hay dos valores de y. 2.

Más detalles

Estudio Gráfico de Funciones

Estudio Gráfico de Funciones Esquema 1 2 Esquema 1 2 Definición es una correspondencia entre dos conjuntos A B tal que a cada elemento del conjunto A le corresponde un único valor solo uno del conjunto B. La gráfica de la función

Más detalles

1 Elabora una tabla de valores de la función f(x) = x 2-4x + 3 en puntos x próximos a x = 2. Sugiere la tabla

1 Elabora una tabla de valores de la función f(x) = x 2-4x + 3 en puntos x próximos a x = 2. Sugiere la tabla Unidad nº 9 CARACTERÍSTICAS DE LAS GRÁFICAS! 1 PROBLEMAS PROPUESTOS 1 Elabora una tabla de valores de la función f() - + en puntos próimos a. Sugiere la tabla que f() es continua en? 1 9 1 99 1 999 1 01

Más detalles

ANÁLISIS (Selectividad)

ANÁLISIS (Selectividad) ANÁLISIS (Selectividad) 1 Sea f : R R la función definida por f() ln ( +1). (a) Determina los intervalos de crecimiento y decrecimiento y los etremos relativos de la función f (puntos donde se alcanzan

Más detalles

Tema 10: Funciones racionales y potenciales. Asíntotas.

Tema 10: Funciones racionales y potenciales. Asíntotas. 1 Tema 10: Funciones racionales y potenciales. Asíntotas. 1. Funciones racionales. Una función racional es de la forma =p()/q(), donde p() y q() son polinomios, con q()0. El dominio de una función racional

Más detalles

a) p = ½. b) p = 0. c) Ninguna de las anteriores. Solución: Para que sea continua en x = 0 debe cumplirse que lím

a) p = ½. b) p = 0. c) Ninguna de las anteriores. Solución: Para que sea continua en x = 0 debe cumplirse que lím Matemáticas Empresariales I PREGUNTAS DE TIPO TEST DERIVADAS Y APLICACIONES si 0. La función f ( ) sen es continua en = 0 si: p si 0 a) p = ½. b) p = 0. Para que sea continua en = 0 debe cumplirse que

Más detalles

ANÁLISIS. Página a) Escribe la expresión analítica de esta función. b) Observa la gráfica y di el valor de los siguientes límites:

ANÁLISIS. Página a) Escribe la expresión analítica de esta función. b) Observa la gráfica y di el valor de los siguientes límites: II ANÁLISIS Página 00 a) Escribe la epresión analítica de esta función. b) Observa la gráfica y di el valor de los siguientes ites: f (); f (); f () 8 @ 8 4 ( + ), Ì a) f () = 3 4, > 8 +@ 4 5 b) f () =

Más detalles

lim lim 3 2x + = lim lim 4 = es: lim = 2 x x x + 5 A) 4 B) 0 C) D) 2 E) lim x x 7 x+ lim Lim x lim 4x Sesión 5 Unidad II Límite de una función.

lim lim 3 2x + = lim lim 4 = es: lim = 2 x x x + 5 A) 4 B) 0 C) D) 2 E) lim x x 7 x+ lim Lim x lim 4x Sesión 5 Unidad II Límite de una función. Sesión Unidad II Límite de una unción. 7.- Calcula el +.- El ite.- El E. Límites en el ininito 7 9 + 8 + A) B) 9 C) D) 0. 8.- El A) B) C) D) 0 + + + A) 0 B) C) D) - 9.- El valor del + 9 A) B) C) D) A)

Más detalles

Resoluciones de la autoevaluación del libro de texto. (x + 3) x = 1 x = 3

Resoluciones de la autoevaluación del libro de texto. (x + 3) x = 1 x = 3 Resoluciones de la autoevaluación del libro de teto Pág. de 6 a) Escribe la epresión analítica de esta función. b) Observa la gráfica y di el valor de los siguientes ites: f (); f (); f () 8 @ 8 4 ( +

Más detalles

. Si grado p x grado q x lim f x = k con lo que la función f x tiene una asíntota horizontal.

. Si grado p x grado q x lim f x = k con lo que la función f x tiene una asíntota horizontal. Límites y continuidad de funciones. Curso 4/5 Ejercicio. Determina las asíntotas de la función f ( ) y analiza la posición de la gráfica con respecto a ellas. f ( ) 3 8 p ( ) q( ) R Una función cuya epresión

Más detalles

Estudio de una función. Un resumen de los contenidos que aplicamos en el estudio de una función, que se encuentran en el módulo:

Estudio de una función. Un resumen de los contenidos que aplicamos en el estudio de una función, que se encuentran en el módulo: Estudio de una función Un resumen de los contenidos que aplicamos en el estudio de una función, que se encuentran en el módulo: Una función f () tiene asíntota vertical en asi f () a Una función f () tiene

Más detalles

1. Halla el dominio, el recorrido, las asíntotas y los límites e imágenes que se indican para cada gráfica. y asíntota vertical de:

1. Halla el dominio, el recorrido, las asíntotas y los límites e imágenes que se indican para cada gráfica. y asíntota vertical de: Identificación gráfica de funciones, límites asíntotas Al observar la gráfica de una función es posible determinar gran cantidad de parámetros características de dicha función aunque no conozcamos su epresión,

Más detalles

Eje OY (Vertical) => Se hace la x = 0, y se despeja la y. Corte (0,y)

Eje OY (Vertical) => Se hace la x = 0, y se despeja la y. Corte (0,y) Estudio de funciones y su representación gráfica. TIPO I. Funciones Polinómicas. Ejemplo: y 4 1º. Dominio. El dominio de una función es el conjunto de valores para los que está definida la función. En

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2017 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2017 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 07 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva,

Más detalles

EXAMEN DE LÍMITES Y CONTINUIDAD

EXAMEN DE LÍMITES Y CONTINUIDAD EXAMEN DE LÍMITES Y CONTINUIDAD Se recomienda: a) Antes de hacer algo, leer todo el eamen. b) Resolver antes las preguntas que se te den mejor. c) Responde a cada parte del eamen en una hoja distinta.

Más detalles

LÍMITES DE FUNCIONES. CONTINUIDAD Y RAMAS INFINITAS

LÍMITES DE FUNCIONES. CONTINUIDAD Y RAMAS INFINITAS LÍMITES DE FUNCIONES. CONTINUIDAD Y RAMAS INFINITAS Página 7 PARA EMPEZAR, REFLEXIONA Y RESUELVE El valor de la función f () = + 5 para = 5 no se puede obtener directamente porque el denominador se hace

Más detalles

MA-1111, MODELO II, Enero Marzo 2007 JUSTIFIQUE TODAS SUS RESPUESTAS 1. a) Hallar. b) Definir formalmente. d) Hallar ø. x 1. f) Hallar. lim.

MA-1111, MODELO II, Enero Marzo 2007 JUSTIFIQUE TODAS SUS RESPUESTAS 1. a) Hallar. b) Definir formalmente. d) Hallar ø. x 1. f) Hallar. lim. do Parcial MODELO MATEMATICAS I MA- MA-, MODELO II, Enero Marzo 007 JUSTIFIQUE TODAS SUS RESPUESTAS. a Hallar b Definir formalmente Lim f L c Hallar y representar las asíntotas de la función: - 7 e Hallar

Más detalles

CONTROL 5: DERIVADAS. APLICACIONES 31-Enero- 2018

CONTROL 5: DERIVADAS. APLICACIONES 31-Enero- 2018 CONTROL 5: DERIVADAS. APLICACIONES 31-Enero- 01 Nombre: OBSERVACIONES IMPORTANTES: El alumno deberá elegir una opción A o B y responder a todas las cuestiones de esa opción. Nunca podrá mezclar cuestiones

Más detalles

DEPARTAMENTO DE FUNDAMENTOS DE ECONOMÍA E HISTORIA ECONÓMICA

DEPARTAMENTO DE FUNDAMENTOS DE ECONOMÍA E HISTORIA ECONÓMICA DEPARTAMENTO DE FUNDAMENTOS DE ECONOMÍA E HISTORIA ECONÓMICA Análisis Matemático I EXAMEN FINAL Septiembre de 00 APELLIDOS: NOMBRE: DNI CUESTIONARIO DE RESPUESTA MÚLTIPLE (50%) (Cada respuesta incorrecta

Más detalles

"""##$##""" !!!""#""!!!

##$## !!!#!!! Unidad nº 9 CARACTERÍSTICAS DE LAS GRÁFICAS! 11 AUTTOEEVALLUACI IÓN 1 Eplica qué significan los símbolos 0 y -. 0 ( tiende a 0) significa que tomamos valores ( 0) cuya distancia a 0, dada por, se hace

Más detalles

1. Definición y formas de de definir una función

1. Definición y formas de de definir una función Tema 7. Funciones 1. Definición y formas de definir una función 1.1. Definición de una función 1.. Formas de definir una función 1..1. A Partir de gráfica 1... Epresión algebraica 1..3. Tabla. Dominio

Más detalles

LÍMITES DE FUNCIONES. CONTINUIDAD Y RAMAS INFINITAS

LÍMITES DE FUNCIONES. CONTINUIDAD Y RAMAS INFINITAS UNIDAD 6 LÍMITES DE FUNCIONES. CONTINUIDAD Y RAMAS INFINITAS Página 38. Representa gráficamente las siguientes funciones y di, de cada una de ellas, si es continua o discontinua: < 0 a) y = + 3 < b) y

Más detalles

Unidad 8 Funciones racionales

Unidad 8 Funciones racionales Unidad 8 Funciones racionales PÁGINA 59 SOLUCIONES. Son magnitudes inversamente proporcionales las que intervienen en las cuestiones a) y d).. La epresión algebraica correspondiente al problema es: t ciudades

Más detalles

Una función f(x) es una regla que asocia a cada valor posible de la variable independiente un valor, y solo uno, de los números reales

Una función f(x) es una regla que asocia a cada valor posible de la variable independiente un valor, y solo uno, de los números reales Tema : Limite y continuidad 0. INTRODUCCIÓN Las gráficas de algunas funciones presentan características especiales que, para su estudio, requieren del uso del cálculo. Por ahora, con nuestras herramientas

Más detalles

f cuando x toma valores cercanos a 2. Si x se aproxima a 2, la función toma valores cercanos a 5. Se escribe: ( ) 5

f cuando x toma valores cercanos a 2. Si x se aproxima a 2, la función toma valores cercanos a 5. Se escribe: ( ) 5 IES Padre Poveda (Guadi) UNIDAD LÍMITES Y CONTINUIDAD.. INTRODUCCIÓN. Fíjate en el comportamiento de la función ( ) f cuando toma valores cercanos a. Si se aproima a, la función toma valores cercanos a

Más detalles

Problemas Tema 9 Solución a problemas de derivadas - Hoja 8 - Todos resueltos

Problemas Tema 9 Solución a problemas de derivadas - Hoja 8 - Todos resueltos página 1/10 Problemas Tema 9 Solución a problemas de derivadas - Hoja 8 - Todos resueltos Hoja 8. Problema 1 a) Deriva f ()=arcosen( 1 2 ) 1 f ' ( )= 2 1 ( 1 2 ) 2 2 1 = 1 2 1 2 b) Determina el punto (,

Más detalles

LÍMITES DE FUNCIONES. CONTINUIDAD Y RAMAS INFINITAS

LÍMITES DE FUNCIONES. CONTINUIDAD Y RAMAS INFINITAS UNIDAD 8 LÍMITES DE FUNCIONES. CONTINUIDAD Y RAMAS INFINITAS Página 6. Representa gráficamente las siguientes funciones y di, de cada una de ellas, si es continua o discontinua: < 0 a) y = + < b) y = 0

Más detalles

Examen de Análisis Matemático. a) (1 punto) Calcula las derivadas de las siguientes funciones: (1 + 3x) 1 2

Examen de Análisis Matemático. a) (1 punto) Calcula las derivadas de las siguientes funciones: (1 + 3x) 1 2 Curso º Bachillerato 16/05/017 Ejercicio 1 a) (1 punto) Calcula las derivadas de las siguientes funciones: f() = 1+3 ; g() = ln(1 5) + e7 b) (1 punto) Estudia la derivabilidad de la función dada por: a)

Más detalles

TEMA 9- LÍMITES Y CONTINUIDAD MATEMÁTICAS I 1º BACHILLERATO 1 TEMA 9 LÍMITES DE FUNCIONES, CONTINUIDAD Y RAMAS INFINITAS

TEMA 9- LÍMITES Y CONTINUIDAD MATEMÁTICAS I 1º BACHILLERATO 1 TEMA 9 LÍMITES DE FUNCIONES, CONTINUIDAD Y RAMAS INFINITAS TEMA 9- LÍMITES Y CONTINUIDAD MATEMÁTICAS I 1º BACHILLERATO 1 TEMA 9 LÍMITES DE FUNCIONES, CONTINUIDAD Y RAMAS INFINITAS TEMA 9- LÍMITES Y CONTINUIDAD MATEMÁTICAS I 1º BACHILLERATO 9.1. LÍMITE DE UNA FUNCIÓN

Más detalles

Opción A. teorema se puede aplicar también si sale /, y cuando x. Como. , la recta x = 0 es una A.V. de la función f.

Opción A. teorema se puede aplicar también si sale /, y cuando x. Como. , la recta x = 0 es una A.V. de la función f. Opción A 1 Ejercicio 1. [ 5 puntos] Sea f la función definida, para 0, por f e. Determina las asíntotas de la gráfica de f. La recta = a es una asíntota vertical (A.V.) de la función f si lim f Veamos

Más detalles

TEMA 10.-LÍMITES DE FUNCIONES Y CONTINUIDAD

TEMA 10.-LÍMITES DE FUNCIONES Y CONTINUIDAD TEMA.-Límites de funciones y continuidad.- Matemáticas I. SUCESIONES DE NÚMEROS REALES TEMA.-LÍMITES DE FUNCIONES Y CONTINUIDAD Una sucesión de números reales es un conjunto de números (a, a, a 3,...,

Más detalles

Procedimiento para determinar las asíntotas verticales de una función

Procedimiento para determinar las asíntotas verticales de una función DETERMINACIÓN DE ASÍNTOTAS EN UNA FUNCIÓN Las asíntotas son rectas a las cuales la función se va aproimando indefinidamente, cuando por lo menos una de las variables ( o y) tienden al infinito. Una definición

Más detalles

Procedimiento para determinar las asíntotas verticales de una función

Procedimiento para determinar las asíntotas verticales de una función DETERMINACIÓN DE ASÍNTOTAS EN UNA FUNCIÓN Las asíntotas son rectas a las cuales la función se va aproimando indefinidamente, cuando por lo menos una de las variables ( o y) tienden al infinito. Una definición

Más detalles

LÍMITES Y CONTINUIDAD

LÍMITES Y CONTINUIDAD LÍMITES Y CONTINUIDAD. LÍMITE DE UNA FUNCIÓN EN UN PUNTO Dada una función f(), diremos que el ite de f() cuando tiende a a es el número real L y lo escribiremos f() = L, si al tomar cada vez valores más

Más detalles

Bloque II. Análisis. Autoevaluación. BACHILLERATO Matemáticas aplicadas a las Ciencias Sociales I. Página 210

Bloque II. Análisis. Autoevaluación. BACHILLERATO Matemáticas aplicadas a las Ciencias Sociales I. Página 210 Matemáticas aplicadas a las Ciencias Sociales I Autoevaluación Página 0 Observa la gráfica de la función y f () y a partir de ella responde: a) Cuál es su dominio de definición? su recorrido? b) Representa

Más detalles

FACULTAD de INGENIERÍA Análisis Matemático A

FACULTAD de INGENIERÍA Análisis Matemático A FACULTAD de INGENIERÍA Anális Matemático A Página FACULTAD de INGENIERÍA Anális Matemático A g( ) g( ) g () d) g( ) 6) Encuentre los guientes ites endo f ( ) a cada paso indicando el álgebra de ites utilizado.

Más detalles

SOLUCIONES ( ) ( ) ( ) 2 ( ) ( ) Fecha: La pendiente de la recta es m = = x = 4. x = 2 2x. Ejercicio nº 1.- Solución: La recta será:

SOLUCIONES ( ) ( ) ( ) 2 ( ) ( ) Fecha: La pendiente de la recta es m = = x = 4. x = 2 2x. Ejercicio nº 1.- Solución: La recta será: Ejercicio nº.- Halla la ecuación de la recta tangente a la curva que sea paralela a la recta y. SOLUCIONES ' Fecha: La pendiente de la recta es m Cuando, y La recta será: Ejercicio nº.- y ( ) Averigua

Más detalles

= 1. x = 3: Lím = Asíntota vertical en x = 3: = 0 ; No se anula nunca. Punto de corte con OY es (0, 3) 3 x

= 1. x = 3: Lím = Asíntota vertical en x = 3: = 0 ; No se anula nunca. Punto de corte con OY es (0, 3) 3 x Modelo 4. Problema A.- (Calificación máima: puntos) 4 si Se considera la función real de variable real f ( ) si > a) Determínense las asíntotas de la función y los puntos de corte con los ejes. a. Asíntotas

Más detalles

f cuando x toma valores cercanos a 2. Si x se aproxima a 2, la función toma valores cercanos a 5. Se escribe: ( ) 5

f cuando x toma valores cercanos a 2. Si x se aproxima a 2, la función toma valores cercanos a 5. Se escribe: ( ) 5 IES Padre Poveda (Guadi) UNIDAD : LÍMITES Y CONTINUIDAD.. INTRODUCCIÓN. Fíjate en el comportamiento de la función ( ) f cuando toma valores cercanos a. Si se aproima a, la función toma valores cercanos

Más detalles

I.- Límite de una función

I.- Límite de una función I.- Límite de una función a) En un punto En la mayoría de las funciones que vas a encontrarte, el límite, cuando tiende a un número real c, coincide con el valor numérico f(c), siempre que c pertenezca

Más detalles

SOLUCIONES DE LAS ACTIVIDADES Págs. 239 a 257

SOLUCIONES DE LAS ACTIVIDADES Págs. 239 a 257 TEMA. LÍMITES Y CONTINUIDAD SOLUCIONES DE LAS ACTIVIDADES Págs. 9 a 7 Página 9 Página. a) f() 0. a) f() 0, 0,0 0,00 0,000 f(),,9,99,999,9,99,999,9999 f() 00 0.000 0 6 0 8 b) f() 0 0, 0,0 0,00 0,000 f(),,0,00,000

Más detalles

5 GUÍA PARA REALIZAR ESTUDIO DE FUNCIÓN

5 GUÍA PARA REALIZAR ESTUDIO DE FUNCIÓN 5 GUÍA PARA REALIZAR ESTUDIO DE UNCIÓN ) Determinar el Dominio de la función. ) Hallar, si eisten, las Intersecciones con los Ejes de Coordenadas Signo. ( Int. con eje y, hacer = Int. con eje, hacer y

Más detalles

UNIDAD 9 LÍMITES DE FUNCIONES. CONTINUIDAD.

UNIDAD 9 LÍMITES DE FUNCIONES. CONTINUIDAD. IES Padre Poveda (Guadi) UNIDAD 9 LÍMITES DE FUNCIONES. CONTINUIDAD.. Límite de una función en un punto... Límites laterales... Límite de una función en un punto.. Límites en el infinito... Comportamiento

Más detalles

DEPARTAMENTO DE FUNDAMENTOS DE ECONOMÍA E HISTORIA ECONÓMICA APELLIDOS:

DEPARTAMENTO DE FUNDAMENTOS DE ECONOMÍA E HISTORIA ECONÓMICA APELLIDOS: DEPARTAMENTO DE FUNDAMENTOS DE ECONOMÍA E HISTORIA ECONÓMICA Análisis Matemático I EXAMEN FINAL APELLIDOS: NOMBRE: D.N.I. CUESTIONARIO DE RESPUESTA MÚLTIPLE (5%) (Cada respuesta incorrecta resta, puntos)

Más detalles

Matemáticas Problemas resueltos de gráficas de funciones (1) PROBLEMAS RESUELTOS DE GRÁFICAS DE FUNCIONES (1)

Matemáticas Problemas resueltos de gráficas de funciones (1) PROBLEMAS RESUELTOS DE GRÁFICAS DE FUNCIONES (1) PROBLEMAS RESUELTOS DE GRÁFICAS DE FUNCIONES (1) 1) Halle los intervalos de monotonía y los etremos relativos, los intervalos de curvatura y los puntos de infleión de la función g() + +. Represéntela gráficamente.

Más detalles

I.- Representación gráfica de una función polinómica

I.- Representación gráfica de una función polinómica Los campos a considerar en el estudio de una representación gráfica son; Dominio de la función Continuidad y derivabilidad Simetrías Periodicidad Asíntotas Verticales Horizontales Oblicuas Posición de

Más detalles

Unidad 9 Propiedades globales de las funciones

Unidad 9 Propiedades globales de las funciones Unidad 9 Propiedades globales de las funciones PÁGINA 199 SOLUCIONES 1. Las soluciones pueden quedar así: a) b). Los dominios quedan: Domf Domg 3, 3 151 PÁGINA 13 SOLUCIONES 1. Designamos los colores por:

Más detalles

CUESTIONES RESUELTAS 2. FUNCIONES REALES DE VARIABLE REAL FUNDAMENTOS DE MATEMÁTICAS. 1º GRADO GESTIÓN AERONAÚTICA CURSO

CUESTIONES RESUELTAS 2. FUNCIONES REALES DE VARIABLE REAL FUNDAMENTOS DE MATEMÁTICAS. 1º GRADO GESTIÓN AERONAÚTICA CURSO CUESTIONES RESUELTAS. FUNCIONES REALES DE VARIABLE REAL FUNDAMENTOS DE MATEMÁTICAS. º GRADO GESTIÓN AERONAÚTICA CURSO 0-0. CONCEPTOS DE DOMINIO, RECORRIDO Y GRÁFICA e. Sea f() definida por: f ( ) Entonces

Más detalles

Curso: 2º Bachillerato Recuperación. Fecha: 14 de Enero de º Evaluación

Curso: 2º Bachillerato Recuperación. Fecha: 14 de Enero de º Evaluación Alumn@: Nota Curso: º Bacillerato Recuperación Feca: de Enero de 6 º Evaluación.- Calcule las dimensiones de tres campos cuadrados que no tienen ningún lado común y que satisfacen que el perímetro de uno

Más detalles

UNIDAD 8 Representación de funciones

UNIDAD 8 Representación de funciones Pág. de 6 Representa las siguientes funciones racionales: y 5 + 7 es raíz del denominador y no lo es del numerador, es asíntota vertical. Veamos la posición de la curva respecto a ella estudiando sus signos

Más detalles

Matemática Aplicada y Estadística - Grado en Farmacia - Curso 2011/ HOJA 1 1 SOLUCIONES DE LOS EJERCICIOS DE LA HOJA 1

Matemática Aplicada y Estadística - Grado en Farmacia - Curso 2011/ HOJA 1 1 SOLUCIONES DE LOS EJERCICIOS DE LA HOJA 1 Matemática Aplicada y Estadística - Grado en Farmacia - Curso 011/01 - HOJA 1 1 SOLUCIONES DE LOS EJERCICIOS DE LA HOJA 1 1 Una relación lineal es una epresión de la forma f() = a + b. Si llamamos a la

Más detalles

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN GLOBAL. PRIMERA EVALUACIÓN. ANÁLISIS

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN GLOBAL. PRIMERA EVALUACIÓN. ANÁLISIS Eamen Global Análisis Matemáticas II Curso 010-011 I E S ATENEA SAN SEBASTIÁN DE LOS REYES EXAMEN GLOBAL PRIMERA EVALUACIÓN ANÁLISIS Curso 010-011 1-I-011 MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES

Más detalles

EJERCICIOS REPASO FUNCIONES. MATEMÁTICAS 4º ESO. 1) Halla el dominio de las siguientes funciones: = 2x

EJERCICIOS REPASO FUNCIONES. MATEMÁTICAS 4º ESO. 1) Halla el dominio de las siguientes funciones: = 2x EJERCICIOS REPASO FUNCIONES. MATEMÁTICAS º ESO 1) Halla el dominio de las siguientes funciones: a) f ( ) = + 1 función polinómica Dom( f ) = R b) 1 f ( ) / = 0} = R {} c) f ( ) = ( 1) función polinómica

Más detalles

lím x 1 r x a, donde a es un nº que cumple que el ) es algún 1. ASÍNTOTAS DE UNA FUNCIÓN

lím x 1 r x a, donde a es un nº que cumple que el ) es algún 1. ASÍNTOTAS DE UNA FUNCIÓN . ASÍNTOTAS DE UNA FUNCIÓN Las asíntotas son rectas a las cuales la función se va aproimando indefinidamente, cuando por lo menos una de las variables ( o y) tienden al infinito. Una definición más formal

Más detalles

RESOLUCIÓN DE ACTIVIDADES

RESOLUCIÓN DE ACTIVIDADES RESOLUCIÓN DE ACTIVIDADES Actividades iniciales. Representa ráficamente la siuiente función y estudia su continuidad en = : = = f() = f() En = la función no es continua.. Puedes definir la función en alún

Más detalles

Límites de funciones. Continuidad de funciones. Derivabilidad. Propiedades de las funciones derivables. Optimización.

Límites de funciones. Continuidad de funciones. Derivabilidad. Propiedades de las funciones derivables. Optimización. TEMA 1 Límites de funciones. Continuidad de funciones. Derivabilidad. Propiedades de las funciones derivables. Optimización. Límite finito en un punto: Consideremos una función f definida en las proimidades

Más detalles

1) La función no está definida para x = 0 ya que anula el denominador de su exponente, por tanto, D = R- {0}.

1) La función no está definida para x = 0 ya que anula el denominador de su exponente, por tanto, D = R- {0}. 6. Estudiar y representar gráficamente las siguientes funciones: a) ( ) f e b) Solución f( ) + 3 + c) f( ) ln + a) Para estudiar la función e se realizan los siguientes pasos: f( ) ) La función no está

Más detalles

= +1. A la hora de representar funciones tenemos que tener en cuenta los siguientes puntos.

= +1. A la hora de representar funciones tenemos que tener en cuenta los siguientes puntos. Ejemplo 1 Dibujar la función: = +1 A la hora de representar funciones tenemos que tener en cuenta los siguientes puntos. Dominio Puntos de corte con los ejes Simetría Asíntotas Crecimiento decrecimiento/máximos

Más detalles

CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN DE RECUPERACIÓN E P, 11-NOVIEMBRE 2000, 13H

CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN DE RECUPERACIÓN E P, 11-NOVIEMBRE 2000, 13H CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN DE RECUPERACIÓN E1100 00P, 11-NOVIEMBRE 000, 1H 1) Determinar los valores de para los cuales está definida la función f) = 9 y obtener también el intervalo formado

Más detalles

1.- Sea la función f definida por f( x)

1.- Sea la función f definida por f( x) Solución Eamen Final de la 3ª Evaluación de º Bcto..- Sea la función f definida por f( ) a) El dominio de la función es Dom( f) estudiando las asíntotas verticales:, por tanto vamos a empezar La función

Más detalles

REPRESENTACIÓN DE FUNCIONES

REPRESENTACIÓN DE FUNCIONES REPRESENTACIÓN DE FUNCIONES Página 5 REFLEXIONA Y RESUELVE Descripción de una gráfica Copia en tu cuaderno los datos encuadrados en rojo. A partir de ellos, y sin mirar la gráfica que aparece al principio,

Más detalles

DOSIER FUNCIONES, LÍMITES Y CONTINUIDAD MACS 1

DOSIER FUNCIONES, LÍMITES Y CONTINUIDAD MACS 1 DOSIER FUNCIONES, LÍMITES CONTINUIDAD MACS En qué intervalos es creciente esta función? decreciente? En =, es cóncava o convea? f() La función es creciente en (6, ) (, ). La función es decreciente en (,

Más detalles

EJERCICIOS RESUELTOS TEMA 2: DERIVADA DE UNA FUNCIÓN EN UN PUNTO. FUNCIÓN DERIVADA. APLICACIONES.

EJERCICIOS RESUELTOS TEMA 2: DERIVADA DE UNA FUNCIÓN EN UN PUNTO. FUNCIÓN DERIVADA. APLICACIONES. EJERCICIOS RESUELTOS TEMA : DERIVADA DE UNA FUNCIÓN EN UN PUNTO. FUNCIÓN DERIVADA. APLICACIONES. Ejercicio 1 Calcula las funciones derivadas de las siguientes funciones y simplifícalas: a) f ( ) sine b)

Más detalles

RESUMEN PARA HACER EL ANÁLISIS COMPLETO DE UNA FUNCIÓN:

RESUMEN PARA HACER EL ANÁLISIS COMPLETO DE UNA FUNCIÓN: RESUMEN PARA HACER EL ANÁLISIS COMPLETO DE UNA FUNCIÓN: Ejemplo: 1 Dominio Representación de en el intervalo [,] Los puntos que no pertenecen al dominio de una función racional, son aquellos que anulan

Más detalles

Funciones. 1. Indica, de forma razonada, si las siguientes gráficas corresponden a funciones. a) b) c)

Funciones. 1. Indica, de forma razonada, si las siguientes gráficas corresponden a funciones. a) b) c) Funciones 1. Indica, de forma razonada, si las siguientes gráficas corresponden a funciones.. Representa las funciones dadas a partir de las siguientes tablas. 3 1 0 4 4 1 0 1 5 6 3 0 1 3 y 7 1 14 y 6

Más detalles

Tema 5 Funciones(V). Representación de Funciones

Tema 5 Funciones(V). Representación de Funciones Tema 5 Funciones(V). Representación de Funciones 1. Representación de funciones 1.1. Dominio 1.. Puntos de corte con los ejes 1..1. Con eje OX 1... Con eje OY 1.. Signo de la función 1.4. Simetría y periodicidad

Más detalles

REPRESENTACIÓN DE FUNCIONES

REPRESENTACIÓN DE FUNCIONES REPRESENTACIÓN DE FUNCIONES GRÁFICA DE UNA FUNCIÓN: Conjunto de puntos del plano (,y), en los que y = f(), es decir, conjunto de puntos del plano en los que la segunda coordenada es la imagen de la primera.

Más detalles

Ejercicios de representación de funciones: Primer ejemplo:

Ejercicios de representación de funciones: Primer ejemplo: www.juliweb.es tlf. 69886 Ejercicios de representación de funciones: Primer ejemplo: f ( ) º) Dominio. Dom f ( ) R {} º) Simetrías. f ( ) No es par f ( ) f ( ) No es impar No hay simetría. º) Puntos de

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2002 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2002 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 00 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio 1, Opción A Junio, Ejercicio 1, Opción B Reserva 1, Ejercicio 1, Opción B Reserva 1, Ejercicio, Opción A

Más detalles

EXAMEN DE MATEMÁTICAS (2º DE BACHILLERATO) ANÁLISIS (DERIVADAS)

EXAMEN DE MATEMÁTICAS (2º DE BACHILLERATO) ANÁLISIS (DERIVADAS) EXAMEN DE MATEMÁTICAS (º DE BACHILLERATO) ANÁLISIS (DERIVADAS) 009 1 (CLS09) (1 punto) Probar que la ecuación e + 0 tiene alguna solución (CLJ13) (1 punto) Sea la función + Calcula sus asíntotas y estudia

Más detalles

Soluciones de las actividades

Soluciones de las actividades Soluciones de las actividades Página 09. Se divide coste entre tiempo y resulta 0,8 para todos los planes, por tanto es una función tal que: c(t) 0,8t c(,), miles de euros. Página 0. Las soluciones son:

Más detalles

TEMA 9: FUNCIONES, LÍMITES Y CONTINUIDAD

TEMA 9: FUNCIONES, LÍMITES Y CONTINUIDAD º CONCEPTOS PREVIOS Ejercicio º Valor absoluto a,b, TEMA 9: FUNCIONES, LÍMITES Y CONTINUIDAD º Intervalos: a, b, a, b, a, b Semirrectas:, a, -,a, a,, a, Representa gráficamente las siguientes funciones,

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

tiene una rama infinita cuando x, f(x) o ambas al mismo tiempo crecen infinitamente. De esta manera el punto ( x, f ( x))

tiene una rama infinita cuando x, f(x) o ambas al mismo tiempo crecen infinitamente. De esta manera el punto ( x, f ( x)) Matemáticas II Curso 03-04 6. Asíntotas Se dice que una función y f ( tiene una rama infinita cuando, f( o ambas al mismo tiempo crecen infinitamente. De esta manera el punto (, f ( ) se aleja infinitamente

Más detalles

Trabajo Práctico N 5

Trabajo Práctico N 5 Trabajo Práctico N 5 Asíntota Continuidad Algunos ejemplos para tener en cuenta Asíntotas. Asíntota vertical (AV) Decimos que la recta = a es AV de f() f() = ± f() = ± a + Por ejemplo, para hallar la AV

Más detalles

REACTIVOS DE LA UNIDAD 4 FUNCIONES EXPONENCIALES Y LOGARITMICAS. Resuelve cada una de las preguntas siguiente y elige la respuesta correcta

REACTIVOS DE LA UNIDAD 4 FUNCIONES EXPONENCIALES Y LOGARITMICAS. Resuelve cada una de las preguntas siguiente y elige la respuesta correcta REACTIVOS DE LA UNIDAD 4 FUNCIONES EXPONENCIALES Y LOGARITMICAS Resuelve cada una de las preguntas siguiente y elige la respuesta correcta 1.-El punto común a todas las funciones eponenciales de la forma

Más detalles

INTRODUCCIÓN A LAS MATEMATICAS SUPERIORES TEMA 4 FUNCIONES

INTRODUCCIÓN A LAS MATEMATICAS SUPERIORES TEMA 4 FUNCIONES INTRODUCCIÓN A LAS MATEMATICAS SUPERIORES TEMA 4 FUNCIONES Def.(Thomas, Pág. 8): Una función de un conjunto D a un conjunto I es una regla que asigna un único elemento f() de I, a cada elemento de D. Def.(Thomas,

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 0 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

REPRESENTACIÓN GRÁFICA DE FUNCIONES

REPRESENTACIÓN GRÁFICA DE FUNCIONES Página 1 de 5 REPRESENTACIÓN GRÁFICA DE FUNCIONES 1 Determinar en cuál de los siguientes intervalos la función f(x) = ln (x+1) es estrictamente cóncava. A (-, 0) B [-1, 1] C (-1, ) D Nunca es estrictamente

Más detalles

Problemas de continuidad y límites resueltos

Problemas de continuidad y límites resueltos Problemas de continuidad y límites resueltos Razona de manera justificada el dominio de la siguientes funciones. a) f ()=ln( ) b) f ()= ( )( 3) c) f ()= cos( ) a) La raíz cuadrada solo admite discriminantes

Más detalles

REPRESENTACIÓN DE FUNCIONES

REPRESENTACIÓN DE FUNCIONES 8 REPRESENTACIÓN DE FUNCIONES Página 86 Descripción de una gráfica. Copia en tu cuaderno los datos encuadrados en rojo. A partir de ellos y sin mirar la gráfica que aparece al principio, representa esta

Más detalles

Matemáticas II TEMA 7 Límites y continuidad de funciones Problemas Propuestos

Matemáticas II TEMA 7 Límites y continuidad de funciones Problemas Propuestos Matemáticas II TEMA 7 Límites y continuidad de funciones Problemas Propuestos Definición de ites Demuestra, aplicando la definición, que ( ) Demuestra, aplicando la definición, que + + 8 Cálculo de ites

Más detalles

x - Verticales. No tiene asíntotas verticales porque f(x) está definida en R y no cambia de criterio en ningún punto. - Oblicuas.

x - Verticales. No tiene asíntotas verticales porque f(x) está definida en R y no cambia de criterio en ningún punto. - Oblicuas. f ( ) + +. Dominio D (f ) R 4. Recorrido Im( f ) [, ). Puntos de corte - Con el eje y, donde 0 y + + y P (0,) - Con el eje, donde y 0 No hay punto de corte con el eje 4. Asíntotas - Horizontales lim +

Más detalles

ln( = x, como x = f -1 (y), cambiamos y por x, entonces Ej 1. (2 puntos) Sea f ( x ) = 2e + 8, entonces: a) La función inversa de f es:

ln( = x, como x = f -1 (y), cambiamos y por x, entonces Ej 1. (2 puntos) Sea f ( x ) = 2e + 8, entonces: a) La función inversa de f es: ANÁLIS. MAT. ING. - EXACTAS C 7 APELLIDO: NOMBRES: SOBRE Nº: Duración del eamen: hs DNI/CI/LC/LE/PAS. Nº: E-MAIL: CALIFICACIÓN: TEMA - --7 TELÉFONOS part: cel: Apellido del evaluador: + Ej. ( puntos) Sea

Más detalles

PREPARATORIA CENTRO CALMECAC educando con perspectiva de futuro

PREPARATORIA CENTRO CALMECAC educando con perspectiva de futuro PREPARATORIA CENTRO CALMECAC educando con perspectiva de futuro Guía para Eámenes Final y Etemporáneo del Curso de Matemáticas V CALCULO DIFERENCIAL E INTEGRAL Esta guía tiene como propósito proporcionarte

Más detalles

Estudio de las funciones RACIONALES

Estudio de las funciones RACIONALES Estudio de las funciones RACIONALES 2 o BACH_MAT_CCSS_II Cuaderno de ejercicios MATEMÁTICAS JRM Nombre y apellidos..... Funciones racionales. Página 1 RESUMEN DE OBJETIVOS 1. Cálculo de las raíces, los

Más detalles

y esboza su gráfica, apoyándote en la gráfica de f ( x ) que aparece debajo. 3 log + 1

y esboza su gráfica, apoyándote en la gráfica de f ( x ) que aparece debajo. 3 log + 1 Funciones Límites y continuidad Curso 06/7 Ejercicio puntos 0 Dadas las unciones = e, g = y h ( ) log ( ) =, se pide: Encuentra el dominio de la unción ( g h) Encuentra la unción y esboza su gráica, apoyándote

Más detalles

M a t e m á t i c a s I I 1

M a t e m á t i c a s I I 1 Matemáticas II Matemáticas II ARAGÓN CONVOCATORIA JUNIO 009 SOLUCIÓN DE LA PRUEBA DE ACCESO AUTOR: José Luis Pérez Sanz. Algebra Opción A a) Las matrices correspondientes son: A m m m m m m A* El determinante

Más detalles

MatemáticasI. , y decreciente en (1, 3). Tiene un máximo relativo en el punto (1, 4) y un mínimo relativo en (0, 3). 16. x

MatemáticasI. , y decreciente en (1, 3). Tiene un máximo relativo en el punto (1, 4) y un mínimo relativo en (0, 3). 16. x UNIDAD 14: Aplicaciones de las derivadas ACTIVIDADES-PÁG. 38 1. La función y = f () es creciente en 1 3,, y decreciente en (1, 3). Tiene un máimo relativo en el punto (1, 4) y un mínimo relativo en (0,

Más detalles

FUNCIONES. Función. π k π +, k } (los puntos que quitamos anulan el coseno). 2. tg x: {x / x =

FUNCIONES. Función. π k π +, k } (los puntos que quitamos anulan el coseno). 2. tg x: {x / x = Función FUNCIONES Es una relación entre dos magnitudes variables, de tal manera que a cada valor de la primera, llamada independiente, le corresponde un único valor de la segunda, llamada dependiente.

Más detalles

LÍMITES Y CONTINUIDAD. 1º Bto. Sociales. CONCEPTO DE LÍMITE DE UNA FUNCIÓN LÍMITE DE UNA FUNCIÓN EN UN PUNTO CONCEPTO DE LÍMITE DE UNA FUNCIÓN

LÍMITES Y CONTINUIDAD. 1º Bto. Sociales. CONCEPTO DE LÍMITE DE UNA FUNCIÓN LÍMITE DE UNA FUNCIÓN EN UN PUNTO CONCEPTO DE LÍMITE DE UNA FUNCIÓN LÍMITES Y CONTINUIDAD º Bto. Sociales. CONCEPTO DE LÍMITE DE UNA FUNCIÓN Sea f() =. Vamos a darle valores a cercanos a y vamos a ver cómo se comporta f()..9.99.999.9999.99999 f() 4.8 4.98 4.998 4.9998

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2008 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2008 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 008 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva,

Más detalles

Representación gráfica de funciones. Un ejemplo resuelto. Para comprobar si tiene asíntotas oblicuas, calculamos el límite cuando x tiende a -

Representación gráfica de funciones. Un ejemplo resuelto. Para comprobar si tiene asíntotas oblicuas, calculamos el límite cuando x tiende a - Representación gráica de unciones. Un ejemplo resuelto Consideremos la unción deinida por la epresión + =. Dominio Debemos ecluir del dominio los valores de que anulan el denominador. Así, el dominio Dom

Más detalles

Estudio de funciones mediante límites y derivadas

Estudio de funciones mediante límites y derivadas Estudio de funciones mediante límites y derivadas CVS0. El precio del billete de una línea de autobús se obtiene sumando dos cantidades, una fija y otra proporcional a los kilómetros recorridos. Por un

Más detalles