1. AA (2,2) 2. AA (1,3) 3. AA (1,-1) 4. AA (3,2) 1. AA -x-3y = 4 2. AA x-3y = AA -2x-3y = 0 4. AA 3x-2y = 4

Tamaño: px
Comenzar la demostración a partir de la página:

Download "1. AA (2,2) 2. AA (1,3) 3. AA (1,-1) 4. AA (3,2) 1. AA -x-3y = 4 2. AA x-3y = AA -2x-3y = 0 4. AA 3x-2y = 4"

Transcripción

1 MsMtes.om oleiones e tivies Sistems e euiones oleión.. Mr l opión que ontiene un soluión (xy) e l euión: x-y = -4.. (). (). (-) (). Mr l euión que mite l soluión (xy) = (-).. -x-y = 4. x-y = -. -x-y = 0 x-y = 4. Mr tos ls opiones que ontienen un soluión (xy) e l euión: x+y = -4.. (-44). (-). (0-) (-) 5. () 6. (-) 4. Mr tos ls euiones que miten l soluión (xy) = (-).. x-y =. -x-y = -. x+y = - x-y = x-y = x-y = 0 5. Une euión on un prej (xy) que se soluión. x+y = > < () x+y = > < (--). x+y = > -x-y = 4> < (--) < (-). x-y = > -x-y = -> < (-) < (0) x-y = 0> < (0) x+y = -> < (-) 6. Mr l euión uys soluiones formn l ret: x+y = -. x+y = -. x-y = x+y = 7. Mr l ret que ontiene tos ls soluiones e l euión: x+y = Mr tos ls euiones uys soluiones formn l ret: x-y =. 6x-4y =. x+y = - -9x+6y = x+4y = 6. -6x-4y = - 9 e oture e 05 Págin e 7

2 MsMtes.om oleiones e tivies Sistems e euiones oleión. 9. Une euión on su soluión gráfi: - x+y = x+4y = x+y = x+y = Mr l opión que ontiene un euión equivlente l euión: (x-y)-y = (-y).. 6x+7y =. 6x+y = -. 6x+y = 6x-7y =. Mr l opión que ontiene un euión equivlente l euión: x+y =.. -(y-x)-(x+) = x. -(y-x)-(x+) = -x. -(y-x)-(x-) = x -(y-x)-(x-) = -x. Mr tos ls euiones que son equivlentes l euión: x-y = 4.. (x-) = -y. (-x+y) = x. (x-y+)+y+ = 0 (x-y) = 4(-y) 5. (x-y)-(-x) = x+ 6. 4(x-)-(y+) = x-. Une euión on otr que se equivlente. x-(-y+)+ = 0 > < x-y = - -(x+y) = (-x) > < x+y =. -(-y+)-x = 0 > -x-(-y+)- = 0 > < x-y = 9 < x+y =. -(x-y) = (+x) > --(x+y) = -(-x) > < x+y = - < x+y = - -(-y-)-x = 0 > < x-y = -9 --(x+y) = (-x) > < x-y = - 4. Mr l opión que ontiene l expresión que result e espejr y en l euión: x-y =.. y = -x. y = x+. y = x- y = -x- 5. Mr l euión e l que se otiene l espejr: y = -x-.. x+y =. -x+y = -. -x+y = -x-y = 6. Une euión on l expresión que result l espejr x: 9 e oture e 05 Págin e 7

3 MsMtes.om oleiones e tivies Sistems e euiones oleión.. x-y = > x+y = > x-y = - > x+y = -> < x = -y- < x = y+ < x = -y < x = y-. x-y = > -x+y = > -x-y = - > -x-y = > < x = y- < x = -y < x = y+ < x = -y- 7. Esrie en sill el resulto e espjr l inógnit e l izquier en l euión superior: x-y = -4 x+y = -4 x+y = 4 x-y = 4 x = y = 8. Mr l opión que ontiene l soluión (xy) el sistem: x - y = - x - y = -.. (). (0). (-0) (--) 9. Mr el sistem que tiene e soluión: (xy) = (--).. x + y = x+y=. x - y = - x-y=. -x + y = x - y = - x - y = - x-y= 0. Une sistem on su soluión (xy). x-y= x+y=-4 > < (40) -x - y = - x+ y= 0 > < (-). x- y= x - y = 4 > x - y = - x-y= 4 > < (--) < (--). x+y= x- y= > x-y=- x+y= > < (-) < (0) -x - y = -4 x- y= 4 > < (0-) x-y= x - y = > < (0-). Mr tos ls opiones que ontienen un soluión (xy) el sistem: -x + y = - 4x - 6y =.. (). (--). () (--) 5. (5) 6. (-4-) 9 e oture e 05 Págin e 7

4 MsMtes.om oleiones e tivies Sistems e euiones oleión.. Mr toos los sistems que tienen e soluión: (xy) = (--).. x+y=- -x + y = 0. x+ y=0 x+y=4. x-y=- x - y = -4 x-y= x + y = x - y = 0 x+y= 6. x + y = -4 x-y=. Mr el sistem uy soluión gráfi es: x-y= x+y=. x-y= x + y =. x-y=0 x - y = 4 x - y = - x - y = - 4. Mr l opión que ontiene l soluión gráfi el sistem: x+ y=- x-y= Une sistem on su soluión gráfi: - - -x + y = -x - y = x + y = 4 x-y= x + y = x+y= x - y = x + y = Mr l opión que ontiene un sistem omptile etermino.. x + y = - -4x - 6y = 6. -x + y = - x+y=-. x - y = 6x - 4y = -4 x - y = 6x - 4y = - 7. Mr l opión que ontiene un sistem omptile inetermino.. x- y= -x + y = -. x-y=0 x-y=. -x + y = -4 6x - 4y = -8 x-y=- -x + y = - 9 e oture e 05 Págin 4 e 7

5 MsMtes.om oleiones e tivies Sistems e euiones oleión. 8. Mr l opión que ontiene un sistem omptile inomptile.. x-y= x + y = 0. x + y = - -x - y =. x - y = 4-4x + y = 4 x + y = -4-4x - 6y = 8 9. Mr tos ls opiones que ontienen un sistem omptile etermino.. x-y=- -x + y =. x-y=- -x - y = 4. x+y=-4 x+y= 4 x-y= 0 x- y=- 5. x-y=0 -x + 6y = 6. x - y = - 4x - 6y = - 0. Mr tos ls opiones que ontienen un sistem omptile inetermino.. -x + y = x-y=-. x- y= x-y=-. x- y= -x + y = x - y = 0 x- y= 5. x - y = -4x + 6y = - 6. x - y = 0-4x + 6y = -. Mr tos ls opiones que ontienen un sistem inomptile.. x - y = -4 4x - 6y = 8. x+ y= -x - y = -. x- y= - x - y = -4 x+y= x+y=6 5. x+ y= -x - y = x-y=- -x + y =. Esrie el número que flt e form que el sistem se omptile inetermino. x-y= x - y = -x + y =... -x + 4y = x+y=-6 -x + y= 4. x + y = -4x - y=-. Esrie el número que flt e form que el sistem se inomptile. x+ y= x - 4y = - -x + 4y =... x + y= x-y= x-y= 4. x - y = x + y = 4. Mr l euión equivlente que se otiene l plir el métoo e igulión en el sistem:. -x = -x. y+ = y+. +y = -y x - y = x + y =. x- = +x 5. Mr el sistem el que se otiene l plir el métoo e igulión l euión equivlente: -y = y+.. x - y = x - y =. x + y = x + y =. x + y = x - y = x - y = x + y = x - y = 6. Mr l euión equivlente que se otiene l plir el métoo e reuión en el sistem: x + y = -.. x =. x = -7. y = -8 y = -4 9 e oture e 05 Págin 5 e 7

6 MsMtes.om oleiones e tivies Sistems e euiones oleión. 7. Mr el sistem el que se otiene l plir el métoo e reuión l euión equivlente: 5y = 4.. x - y = x + y = -. x - y = x + y =. x + y = x + y = x - y = - x - y = - 8. Une sistem on l euión equivlente que se otiene l plir el métoo e igulión. x- y= x - y = > < -x- = x+ x - y = x + y = > < x+ = x+. x+ y=- x - y = > x- y=- x + y = > < x+ = -x < y- = y-. x - y = x - y = > x + y = x + y = - > < -x = --x < y+ = y+ x- y=- x - y = - > < y+ = y+ x - y = - x - y = - > < y+ = -y 9. Une sistem on l euión equivlente que se otiene l plir el métoo e reuión. x + y = x-y=- > < y = - x - y = x + y = > < 5y = 0. x - y = x-y=- > x + y = x+y= > < 5x = < x =. x - y = x - y = > x + y = x + y = - > < 5y = < 5x = 5 x - y = - x-y= > < y = x - y = - x - y = - > < x = 40. Esrie l soluión (xy) e los siguientes sistems e euiones:. x+ y= x + y = -. x+ y= -x + y =. x + y = x + y = 5 4. x - y = 4 4x - y = 6 5. x + y = -9 5x + 6y = x + 6y = 7-4x - y = x + y = x + y = 4 8. x + 5y = x + 7y = 9. 5x + y = 6x + y = 4. Esrie l expresión (xy) e tos ls soluiones que tiene el sistem e euiones:. -x + y = - 4x - y = ; k. -x + y = - 8x - 6y = 8 ; k. -x - y = x + 6y = -9 ; k 4. x - y = -4x + 6y = - ; k 9 e oture e 05 Págin 6 e 7

7 MsMtes.om oleiones e tivies Sistems e euiones oleión. Soluiones y-4 -y-4 4-y y+4; x+4 -x-4 4-x x no no (4-) (-) (-) k+ k (kk-) 4.. (k+k) kk- 4.. (-k-k) k -k k+ k kk- 9 e oture e 05 Págin 7 e 7

1. AA (-2,3) 2. AA (-3,2) 3. AA (1,3) 4. AA (-3,0) 1. AA x+y = AA 3x+2y = AA x+y = AA x-y = 1

1. AA (-2,3) 2. AA (-3,2) 3. AA (1,3) 4. AA (-3,0) 1. AA x+y = AA 3x+2y = AA x+y = AA x-y = 1 MsMtes.om Coleiones e tivies Sistems e euiones Coleión A.. Mr l opión que ontiene un soluión (xy) e l euión: -x-y =.. AA (-). AA () () (0). Mr l euión que mite l soluión (xy) = (-).. AA x+y =. AA x+y =

Más detalles

1. Marca la opción que contiene una solución (x,y) de la ecuación: x 2-2y 2 = AA (-2,3) 2. AA (-1,-1) 3. AA (0,2) 4.

1. Marca la opción que contiene una solución (x,y) de la ecuación: x 2-2y 2 = AA (-2,3) 2. AA (-1,-1) 3. AA (0,2) 4. Coleiones e tivies Coleión B.. Mr l opión que ontiene un soluión (xy) e l euión: x -y =.. AA (-3). AA (--) (0) (-). Mr l euión que mite l soluión (xy) = (-3).. AA x-y =. AA x +x+y = x - y = -4x +y = 5

Más detalles

Una ecuación lineal con dos incógnitas tiene infinitas soluciones y si las representamos forman una recta.

Una ecuación lineal con dos incógnitas tiene infinitas soluciones y si las representamos forman una recta. TEMA : SISTEMAS DE ECUACIONES ECUACIONES LINEALES CON DOS INCÓGNITAS Un euión linel on os inógnits es un igul lgeri el tipo: + = one e son ls inógnits,, son números onoios. Un soluión e un euión linel

Más detalles

CUESTIONES RESUELTAS 1. VECTORES Y MATRICES FUNDAMENTOS DE MATEMÁTICAS. 1º GRADO GESTIÓN AERONAÚTICA

CUESTIONES RESUELTAS 1. VECTORES Y MATRICES FUNDAMENTOS DE MATEMÁTICAS. 1º GRADO GESTIÓN AERONAÚTICA CUESTIONES RESUELTS. VECTORES Y MTRICES FUNDMENTOS DE MTEMÁTICS. º GRDO GESTIÓN ERONÚTIC. Se el onjunto e vetores } tl que entones se verifi:. El onjunto M es linelmente inepeniente.. El onjunto M tiene

Más detalles

1. AA AB = (-1,1) 2. AA AB = (5,9) 3. AA AB = (-5,-9) 4. AA AB = (1,-1) 3. AA A(1,-4) B(3,-5) < AB = (5,-5) D d A(-1,-2) B(3,2)

1. AA AB = (-1,1) 2. AA AB = (5,9) 3. AA AB = (-5,-9) 4. AA AB = (1,-1) 3. AA A(1,-4) B(3,-5) < AB = (5,-5) D d A(-1,-2) B(3,2) Mr l opión que ontiene el vetor fijo definido por los puntos A(3,4) y B(-2,-5). AA AB = (-1,1) AA AB = (5,9) AB = (-5,-9) AB = (1,-1) Mr tods ls opiones que definen el vetor fijo AB = (-2,1). AA A(-5,-3)

Más detalles

SESIÓN 11 SISTEMA DE ECUACIONES DE PRIMER GRADO CON DOS INCOGNITAS I

SESIÓN 11 SISTEMA DE ECUACIONES DE PRIMER GRADO CON DOS INCOGNITAS I Mtemátis I SESIÓN SISTEMA DE ECUACIONES DE PRIMER GRADO CON DOS INCOGNITAS I I. CONTENIDOS:. Conepto y representión geométri.. Métodos de soluión: o Igulión o Sustituión. o Reduión (sum y rest). o Determinnte.

Más detalles

A la vista de los resultados, geométricamente se trata de tres planos que se cortan en el punto (7/3, 6, 3)

A la vista de los resultados, geométricamente se trata de tres planos que se cortan en el punto (7/3, 6, 3) DP. - S - 59 7 Matemáticas ISSN: 988-379X Resuelve el siguiente sistema de ecuaciones 3 x + y 3z = y + 3z = 3z = 9 RESOLUIÓN: Se trata de un sistema triangular escalonado, por lo que podemos operar directamente:

Más detalles

Matrices y determinantes

Matrices y determinantes Mtemátis CCSS II Mtries José Mrí Mrtíne Meino (SM, www.profes.net) Mtries eterminntes CTS. Sen ls mtries, C. Hll l mtri ( C). Soluión: Mtemátis CCSS II Mtries José Mrí Mrtíne Meino (SM, www.profes.net)

Más detalles

ECUACIONES DE PRIMER GRADO CON TRES INCÓGNITAS. SOLUCIONES. INTERPRETACIÓN GEOMÉTRICA. SISTEMAS ESCALONADOS

ECUACIONES DE PRIMER GRADO CON TRES INCÓGNITAS. SOLUCIONES. INTERPRETACIÓN GEOMÉTRICA. SISTEMAS ESCALONADOS EUIONES DE PRIMER GRDO ON TRES INÓGNITS. SOLUIONES. INTERPRETIÓN GEOMÉTRI. Hagamos primero una breve introducción sobre la comodidad de resolver sistemas de ecuaciones presentados en forma escalonada.

Más detalles

x x = 0 es una ecuación compatible determinada por que sólo se

x x = 0 es una ecuación compatible determinada por que sólo se Euiones Denominmos euión l iguldd que se stisfe pr uno o más vlores de l(s) vrile(s), o inógnit(s), que interviene en ell. Ejemplos: + 5 + 5 + 6 0 + 0 Denominmos euión lgeri tod euión del tipo: n n n +

Más detalles

-5x 2 4ay 4-1 4b 2 z 2 3a 2 x 4 4a 2 b

-5x 2 4ay 4-1 4b 2 z 2 3a 2 x 4 4a 2 b MsMtes.om Coleiones de tividdes Expresiones lgebris Complet l siguiente tbl, referid los monomios que se indin. -5y x 6 x y x x 5 Coefiiente Grdo. Coefiiente Grdo Prte literl Prte literl bx x x b -x x

Más detalles

Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio

Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio Colegio Sn Ptriio A-09 - Inorpordo l Enseñnz Ofiil Fundión Edutiv Sn Ptriio MATEMÁTICA º AÑO Trjo prátio Nº 8 Sistems de dos euiones lineles on dos inógnits Un sistem de euiones es un onjunto de dos o

Más detalles

Taller: Sistemas de ecuaciones lineales

Taller: Sistemas de ecuaciones lineales Deprtmento de ienis ásis Asigntur: Mtemátis I Doente: Vitor Hugo Gil Avendño Apellidos-Nomres: 0 de mrzo de 08 Tller: Sistems de euiones lineles Un sistem de euiones es un onjunto de dos o más euiones

Más detalles

APUNTE: Matrices. Una matriz de tamaño n x m es un arreglo de números reales colocados en n filas (o renglones) y m columnas, de la siguiente forma:

APUNTE: Matrices. Una matriz de tamaño n x m es un arreglo de números reales colocados en n filas (o renglones) y m columnas, de la siguiente forma: PUNE: Mtries UNIVERSIDD NCIONL DE RIO NEGRO signtur: Mtemáti Crrers: Li. en ministrión Profesor: Prof. Mel Chresti Semestre: o ño: 6 Definiión Un mtriz e tmño n x m es un rreglo e números reles oloos en

Más detalles

se llama ecuación polinómica de primer grado con una incógnita. Dos ecuaciones son equivalentes cuando admiten el mismo conjunto solución.

se llama ecuación polinómica de primer grado con una incógnita. Dos ecuaciones son equivalentes cuando admiten el mismo conjunto solución. Euiones e ineuiones de Primer Grdo on un inógnit Se P () un euión polinómi, on P() un polinomio, resolver l mism es enontrr los eros o ríes de P(), es deir, los vlores de que nuln diho polinomio. X se

Más detalles

MATRICES: un apunte teórico-práctico

MATRICES: un apunte teórico-práctico MRICES: un punte teório-prátio Definiión Un mtriz e tmño n x m es un rreglo e números reles oloos en n fils (o renglones) y m olumns, e l siguiente form: [ ].. n Los números se llmn elementos o entrs e

Más detalles

Matemática II Tema 4: matriz inversa y determinante

Matemática II Tema 4: matriz inversa y determinante Mtemáti II Tem 4: mtriz invers y eterminnte 2012 2013 Ínie Mtriz invertile 1 Definiión y propiees 1 Cómputo e l mtriz invers 3 Determinnte e un mtriz 4 Propiees e los eterminntes 4 Cómputo el eterminnte

Más detalles

IES CASTELAR BADAJOZ Examen Junio de 2011(Específico) Solución Antonio Mengiano Corbacho UNIVERSIDAD DEL PAÍS VASCO MATEMÁTICAS II

IES CASTELAR BADAJOZ Examen Junio de 2011(Específico) Solución Antonio Mengiano Corbacho UNIVERSIDAD DEL PAÍS VASCO MATEMÁTICAS II IES STELR BDJOZ Emen Junio e (Espeífio) ntonio engino orho UIVERSIDD DEL PÍS VSO TEÁTIS II TEÁTIS II Tiempo máimo: hor minutos Instruiones: El lumno elegirá un e ls os opiones propuests un e ls utro uestiones

Más detalles

SISTEMAS DE ECUACIONES

SISTEMAS DE ECUACIONES SISTAS D CUACIONS. Resolver los siguientes sistems de dos euiones lineles on dos inógnits. Se puede resolver por ulquier método, pero deido que es fáil despejr l de l primer euión, lo resuelvo por sustituión.

Más detalles

Cuestionario Respuestas

Cuestionario Respuestas Cuestionrio Respuests Copright 2014, MtemtiTu Derehos reservdos 1) Un ineuión o desiguldd on un vrile (inógnit) es un enunido en que se presentn dos epresiones, l menos un on l vrile entre ells uno de

Más detalles

Hacia la universidad Álgebra lineal

Hacia la universidad Álgebra lineal Hi l universi Álger linel OPCIÓN A Soluionrio. Un mtriz ur A se llm ntisimétri uno su trspuest es igul su opuest. Otén l form generl e un mtriz A e oren que se ntisimétri. Clul A, A y A. Consieremos l

Más detalles

ECUACIONES DE PRIMER GRADO CON TRES INCÓGNITAS. SOLUCIONES. INTERPRETACIÓN GEOMÉTRICA

ECUACIONES DE PRIMER GRADO CON TRES INCÓGNITAS. SOLUCIONES. INTERPRETACIÓN GEOMÉTRICA Sistemas de ecuaciones de primer grado con incógnitas EUIONES DE PRIMER GRDO ON TRES INÓGNITS. SOLUIONES. INTERPRETIÓN GEOMÉTRI 9 RESOLUIÓN: Se trata de un sistema triangular escalonado, por lo que podemos

Más detalles

SISTEMAS DE DOS ECUACIONES LINEALES CON DOS INCÓGNITAS

SISTEMAS DE DOS ECUACIONES LINEALES CON DOS INCÓGNITAS MATEMÁ TTCAS BÁSICAS SISTEMAS DE DOS ECUACIONES LINEALES CON DOS INCÓGNITAS Ddos números reles l', b l, b, l Y ' l pr de euiones lx + b,y=l Y x + b y = se denomin un sistem linel de dos euiones en ls dos

Más detalles

MATRICES , B= , B= , I= ,I= 6.- Hallar todas las matrices A que satisfacen a la ecuación. , se pide : Calcular 3A A t -2I. ,hallarx 2 y X 3.

MATRICES , B= , B= , I= ,I= 6.- Hallar todas las matrices A que satisfacen a la ecuación. , se pide : Calcular 3A A t -2I. ,hallarx 2 y X 3. Ejeriios de ÁLGEBRA º Bhillerto págin MATRICES.- Dds ls mtries A=, B=, lulr A+B, A-B,AB,BA, AA,BB..- Dds ls mtries A=, B=, lulr A+B, A-B,AB,BA, AA,BB..- Clulr A -A I, siendo: A=, I=.- Resolver el sistem

Más detalles

Unidad 1 Matrices PÁGINA 7 SOLUCIONES. 1. La resolución de los sistemas puede expresarse de la forma siguiente:

Unidad 1 Matrices PÁGINA 7 SOLUCIONES. 1. La resolución de los sistemas puede expresarse de la forma siguiente: Uni Mtries PÁGINA 7 SOLUCIONES. L resoluión e los sistems puee expresrse e l form siguiente: L segun mtriz proporion l soluión x 5,y 6. L últim mtriz proporion l soluión x, y, z 4. . Vemos que P P. Pr

Más detalles

Departamento de Matemáticas

Departamento de Matemáticas Deprtmento e Mtemátis PROBLEMAS DE TRIGONOMETRÍA. RESOLUCIÓN DE TRIÁNGULOS. 1º Un señl e rreter ini que l peniente e ese trmo es el 1%, lo que quiere eir que por metros que reorre en horizontl siene 1

Más detalles

PRÁCTICA 1 ARITMÉTICA BÁSICA. MATRICES. DETERMINANTES.

PRÁCTICA 1 ARITMÉTICA BÁSICA. MATRICES. DETERMINANTES. PRÁCTICA ARITMÉTICA BÁSICA. MATRICES. DETERMINANTES..- OPERACIONES ARITMÉTICAS ELEMENTALES SUMA : + y DIFERENCIA : y PRODUCTO : *y o ien y DIVISIÓN : /y POTENCIA : ^y.- CELDAS EVALUABLES Est el y ls nteriores

Más detalles

SISTEMAS DE ECUACIONES LINEALES CON DOS INCÓGNITAS

SISTEMAS DE ECUACIONES LINEALES CON DOS INCÓGNITAS nstituto Dr. Jun Segundo Fernández Áre y urso: Mtemáti 4º ño. Profesor: Griel Bejr TRABAJO PRÁCTICO Nº. SISTEMAS DE ECUACIONES LINEALES CON DOS INCÓGNITAS RESOLUCIÓN DE SISTEMAS DE ECUACIONES Ténis de

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos IES ASTELAR BADAJOZ A enguino PRUEBA DE AESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO 7 (RESUELTOS por Antonio enguino) ATEÁTIAS II Tiempo máimo: hors minutos ontest de mner lr rond un de ls dos opiones propuests

Más detalles

Variable Conjunto al que pertenece

Variable Conjunto al que pertenece Por Más Mtemáti istem de euiones ituión : Césr Ymil horrron $ 00 Complet el udro Inógnits Cntidd de dinero horrdo por 00 Cntidd de dinero horrdo por Ymil Vrile Conjunto l que pertenee Plnteo de l situión

Más detalles

DETERMINANTES. GUIA DETERMINANTES 1

DETERMINANTES. GUIA DETERMINANTES 1 GUI DETERMINNTES DETERMINNTES. Los determinntes fueron originlmente investigdos por el mtemátio jponés Sei Kow lrededor de 8, por seprdo, por el filósofo mtemátio lemán Gottfried Wilhelm Leiniz lrededor

Más detalles

SISTEMAS DE ECUACIONES LINEALES

SISTEMAS DE ECUACIONES LINEALES UNEFA C.I.N.U. Mtemátis Mteril dptdo on fines instruionles por Teres Gómez, de: Oho, A., González N., Lorenzo J. Gómez T. (008) Fundmentos de Mtemátis, Unidd 5: Euiones e Ineuiones, CIU 008, UNEFA, Crs.

Más detalles

a b c =(b a)(c a) (c b)

a b c =(b a)(c a) (c b) E N U N C I D O S ÁLGEBR + y + z P.- Ddo el sistem de euiones se pide: y + z ) Enontrr pr qué vlores de el sistem tiene soluión úni ) Resuelve el sistem pr P.- Despej l mtriz X en l siguiente euión y hll

Más detalles

SISTEMAS DE ECUACIONES LINEALES. MÉTODO DE GAUSS

SISTEMAS DE ECUACIONES LINEALES. MÉTODO DE GAUSS SISTEMAS DE ECUACIONES LINEALES. MÉTODO DE GAUSS ECUACIÓN LINEAL CON VARIAS INCÓGNITAS.- Un ución linel con os o más incónits un ución en l que ls incónits tán sometis solmente ls opercion sum (o rt) proucto

Más detalles

TEORÍA DE ECUACIONES. una. igualdad

TEORÍA DE ECUACIONES. una. igualdad Euion Linel Los Ostáulos Todos los ser humnos, undo intentmos logrr ulquier os en l vid, nos enontrmos ostáulos que nos lo impiden, y entre myor difiultd enontrmos, myor filidd dquirimos. Los ostáulos

Más detalles

Ejercicios TIPO de estequiometría Factores Conversión 4º ESO diciembre

Ejercicios TIPO de estequiometría Factores Conversión 4º ESO diciembre Ejeriios TIPO e estequiometrí Ftores Conversión 4º ESO iiemre 011 1 1. Cálulos ms ms. Cálulos ms volumen. Cálulos volumen volumen 4. Cálulos on retivos impuros 5. Cálulos on renimiento istinto el 100 %

Más detalles

INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA:

INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMATICAS ASIGNATURA: MATEMATICAS DOCENTE: EDISON MEJÍA MONSALVE. TIPO DE GUIA: CONCEPTUAL - EJERCITACION PERIODO GRADO N FECHA DURACION 9

Más detalles

OBJETIVOS MÍNIMOS Y TRABAJO DE VERANO MATEMÁTICAS 2013

OBJETIVOS MÍNIMOS Y TRABAJO DE VERANO MATEMÁTICAS 2013 MATEMÁTICAS 0 OBJETIVOS MÍNIMOS REQUERIDOS - Operiones omins on números enteros. - Potenis ríes urs. - Operiones on friones. - Operiones on números eimles. - Euiones e primer seguno gro. - Usr e form eu

Más detalles

a vectores a y b se muestra en la figura del lado derecho.

a vectores a y b se muestra en la figura del lado derecho. Produto ruz o produto vetoril Otr form nturl de definir un produto entre vetores es trvés del áre del prlelogrmo determindo por dihos vetores. El prlelogrmo definido por los h vetores y se muestr en l

Más detalles

OPCIÓN A. Ejercicio 1. (Puntuación máxima: 3 puntos) Se considera el siguiente sistema lineal de ecuaciones, dependiente del parámetro real k:

OPCIÓN A. Ejercicio 1. (Puntuación máxima: 3 puntos) Se considera el siguiente sistema lineal de ecuaciones, dependiente del parámetro real k: UNIVERSIDDES PÚBLICS DE L COMUNIDD DE MDRID PRUEB DE CCESO ESUDIOS UNIVERSIRIOS (LOE) EMEN MODELOCURSO - MEMÁICS PLICDS LS CIENCIS SOCILES II INSRUCCIONES: El lumno deerá elegir un de ls dos opiones o

Más detalles

LOGRO Identifica las características de la ecuación cuadrática, aplicándolas en la resolución de problemas algebraicos y geométricos.

LOGRO Identifica las características de la ecuación cuadrática, aplicándolas en la resolución de problemas algebraicos y geométricos. INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMATICAS ASIGNATURA: MATEMATICAS DOCENTE: HUGO HERNAN BEDOYA TIPO DE GUIA: CONCEPTUAL - EJERCITACION PERIODO GRADO FECHA DURACION 9 DE MAYO

Más detalles

ALGEBRA. 1. Si A y B son matrices cuadradas de orden n, se cumple la relación (A-B) 2 = A 2-2AB+B 2?

ALGEBRA. 1. Si A y B son matrices cuadradas de orden n, se cumple la relación (A-B) 2 = A 2-2AB+B 2? ejeriiosemenes.om. Si A B son mtries udrds de orden n, se umple l relión (AB) A ABB?. Siendo que d e f. Hllr el vlor de: g h i ( e) i h g d g i d f ) (d e) f i e h ) h e ) h/ / e/ e i h i f i f. Enuni

Más detalles

5. RECTA Y PLANO EN EL ESPACIO

5. RECTA Y PLANO EN EL ESPACIO Teorí ejeriios de Mtemátis II. Geometrí Rets plnos en el espio. RECTA Y PLANO EN EL ESPACIO. PUNTOS EN EL ESPACIO Semos que pr determinr l posiión de un punto en el plno neesitmos tomr, por un prte, un

Más detalles

Tema 2 : Sistemas de ecuaciones lineales. Colección de problemas explicados y resueltos

Tema 2 : Sistemas de ecuaciones lineales. Colección de problemas explicados y resueltos Tem : Sistems e euiones lineles Coleión e prolems eplios resueltos.- Resolver un sistem por Guss. Resolver el siguiente sistem e euiones en form mtriil por Guss:.. El primer pso será onvertir est euión

Más detalles

ECUACIONES DE PRIMER Y SEGUNDO GRADO

ECUACIONES DE PRIMER Y SEGUNDO GRADO UNIDAD ECUACIONES DE PRIMER Y SEGUNDO GRADO EJERCICIOS RESUELTOS Ojetivo generl. Al terminr est Unidd resolverás ejeriios y prolems que involuren l soluión de euiones de primer grdo y de segundo grdo Ojetivo.

Más detalles

RECTAS Y PLANOS EN EL ESPACIO

RECTAS Y PLANOS EN EL ESPACIO RISTIN RON HERNÁNEZ Eccioes posicioes elis RETS Y PLNOS EN EL ESPIO. Eccioes de l ec e el espcio. Eccioes del plo. H de plos 4. Posicioes elis de dos plos 5. Posicioes elis de es plos 6. Posicioes elis

Más detalles

Tema 3: TOPOLOGIA Y DUALIDAD

Tema 3: TOPOLOGIA Y DUALIDAD Tema 3: TOPOLOGI Y DULIDD 3.0 OJETIVOS 3.1 IMPEDNI Y DMITNI OPERIONLES 3.2 DISTINTS PRTES DE UN IRUITO 3.3 TOPOLOGI DE UN IRUITO 3.3.1 GRFIO RETIULR 3.3.2 IRUITO ONEXO 3.3.3 LZO 3.3.4 GRUPO DE ORTE 3.3.5

Más detalles

CÁLCULO DE ÁREAS. Dados los siguientes paralelogramos (cuadrados o rectángulos), calcula las áreas de cada figura: 1. a.

CÁLCULO DE ÁREAS. Dados los siguientes paralelogramos (cuadrados o rectángulos), calcula las áreas de cada figura: 1. a. CÁLCULO DE ÁREAS. Ddos los siguientes prlelogrmos (cudrdos o rectángulos), clcul ls áres de cd figur: 1. k m y y A = = A = k m = mk A = 141. p m g s g t. 8p 5p m 7m 5k p. 4,5m 8p 7,m 1 k 5m 1 k Ddos los

Más detalles

SOLUCIONES DE LOS EJERCICIOS DE CORRIENTE CONTINUA -1 er TRIMESTRE-. problemas:11, 12 y 14

SOLUCIONES DE LOS EJERCICIOS DE CORRIENTE CONTINUA -1 er TRIMESTRE-. problemas:11, 12 y 14 R= SOLUCONES DE LOS PROLEMS DE ELECTRCDD DE C.C. SOLUCONES DE LOS EJERCCOS DE CORRENTE CONTNU - er TRMESTRE-. prolems:, y ª ) Soluionremos este prolem por el método generl de nálisis por lzos ásios, omprondo

Más detalles

, donde a y b son números cualesquiera.

, donde a y b son números cualesquiera. Mtemátis Mtries José Mrí Mrtínez Meino (SM, www.profes.net) MJ6 D l mtriz enuentr tos ls mtries P tles que P = P. Soluión: Se ese que Por tnto, ee umplirse que: Por tnto, P, one y son números ulesquier.

Más detalles

Superficies Cuadráticas

Superficies Cuadráticas Álger Geometrí Anlíti Superfiies Cuádris Ing. Vivin CAPPELLO Fultd Regionl L Plt Definiión: Superfiies Cudrátis Un superfiie udráti (ó uádri) es l gráfi de un euión de segundo grdo on tres vriles,,. L

Más detalles

Definiciones de seno, coseno OBJETIVOS CONTENIDOS PROCEDIMIENTOS. Definiciones de seno, coseno y tangente.

Definiciones de seno, coseno OBJETIVOS CONTENIDOS PROCEDIMIENTOS. Definiciones de seno, coseno y tangente. 89566 _ 009-06.qxd /6/08 :55 Págin Trigonometrí INTRODUCCIÓN En est unidd se pretende que los lumnos dquiern los onoimientos ásios en trigonometrí, que serán neesrios en ursos posteriores, sore todo pr

Más detalles

UNIVERSIDAD LIBRE FACULTAD DE INGENIERÌA DEPARTAMENTO DE CIENCIAS BÁSICAS TALLER N

UNIVERSIDAD LIBRE FACULTAD DE INGENIERÌA DEPARTAMENTO DE CIENCIAS BÁSICAS TALLER N UNIVERSIDAD LIBRE FACULTAD DE INGENIERÌA DEPARTAMENTO DE CIENCIAS BÁSICAS TALLER N NOMBRE DE LA ASIGNATURA: CALCULO MULTIVARIADO Y VECTORIAL TÍTULO: SUPERFICIES DURACIÓN: DOS CLASES CUATRO HORAS BIBLIOGRAFÍA

Más detalles

Introducción al álgebra en R

Introducción al álgebra en R Autor: hristin ortes Introuión l álger en R.- El álger trt e nties omo en l ritméti pero en form más generl; que mientrs que l ritméti utili nties enots por números on un solo vlor efinio el álger us letrs

Más detalles

APLICACIONES DE LA DERIVADA

APLICACIONES DE LA DERIVADA APLICACIONES DE LA DERIVADA.- BACHILLERATO.- TEORÍA Y EJERCICIOS. Pág. 1 Creimiento y dereimiento. APLICACIONES DE LA DERIVADA Cundo un funión es derivle en un punto, podemos onoer si es reiente o dereiente

Más detalles

Fracciones equivalentes

Fracciones equivalentes 6 Aritméti Friones equivlentes Reflexiones diionles Frión unitri. Es quell frión uyo numerdor es igul. Friones equivlentes. Son ls que representn l mism ntidd, un undo el numerdor y el denomindor sen distintos,

Más detalles

CALCULAR LA RAZÓN DE DOS SEGMENTOS

CALCULAR LA RAZÓN DE DOS SEGMENTOS 9 LULR L RZÓN DE DOS SEGMENTOS REPSO Y POYO OJETIVO 1 RET, SEMIRRET Y SEGMENTO Un ret es un líne ontinu formd por infinitos puntos, que no tiene ni prinipio ni finl. Dos puntos definen un ret. Por un punto

Más detalles

GESTIÓN ACADÉMICA PLAN DE ASIGNATURA GUÍA DIDÁCTICA

GESTIÓN ACADÉMICA PLAN DE ASIGNATURA GUÍA DIDÁCTICA CÓDIGO: PA-0-0 VERSIÓN:.0 FECHA: 3-0-0 PÁGINA: de Nomres y Apellidos del Estudinte: Grdo: 9º Periodo: º Doente: Esp. BLANCA ROZO BLANCO Durión: Áre: Mtemáti Asigntur: Mtemáti ESTÁNDAR: Identifi diferentes

Más detalles

( ) [ ( )( ) ] ( ) ( ( ) ) =

( ) [ ( )( ) ] ( ) ( ( ) ) = Ejeriios pr reuperr º ESO Nomre : Deprtmento de mtemátis Grupo: º Clulr el resultdo de ls siguientes epresiones: ; : ( [ ( ( ] ( ( ( º Clulr el resultdo de ls siguientes epresiones : ; 9 0 [( ( ( ] [ (

Más detalles

OBJETIVO 1 CalCUlaR la RazÓN DE DOS SEGMENTOS NOMBRE: CURSO: FECHA: RECTA, SEMIRRECTA Y SEGMENTO

OBJETIVO 1 CalCUlaR la RazÓN DE DOS SEGMENTOS NOMBRE: CURSO: FECHA: RECTA, SEMIRRECTA Y SEGMENTO OJETIVO 1 lulr l RzÓN DE DOS SEGMENTOS NOMRE: URSO: EH: RET, SEMIRRET Y SEGMENTO Un ret es un líne ontinu formd por infinitos puntos, que no tiene ni prinipio ni finl. Dos puntos definen un ret. Por un

Más detalles

GESTIÓN ACADÉMICA GUÍA DIDÁCTICA2

GESTIÓN ACADÉMICA GUÍA DIDÁCTICA2 GUÍA DIDÁCTICA CÓDIGO: PA-0-0 VERSIÓN:.0 FECHA: 9-06-03 PÁGINA: de Nomres y Apellidos del Estudinte: Grdo: 9º Periodo: º GUIA Doente: Durión: Áre: Mtemáti Asigntur: Mtemáti ESTÁNDAR: *Identifi diferentes

Más detalles

Colegio Nuestra Señora de Loreto TRIGONOMETRÍA 4º E.S.O.

Colegio Nuestra Señora de Loreto TRIGONOMETRÍA 4º E.S.O. TRIGONOMETRÍ 4º E.S.O. Frniso Suárez Bluen TRIGONOMETRÍ PREVIOS. Teorem de Tles (Semejnz) Si ortmos dos rets por un serie de rets prlels, los segmentos determindos en un de ells son proporionles los segmentos

Más detalles

1.6. BREVE REPASO DE LOGARITMOS.

1.6. BREVE REPASO DE LOGARITMOS. .. BREVE REPASO DE LOGARITMOS. Sistems de ritmos. Si ulquier número positivo puede tomrse omo Bse, eiste infinito número de sistems de logritmos, pero trdiionlmente, solo se utilizn dos sistems: o ritmos

Más detalles

z b 2 = z b y a + c 2 = y a z b + c

z b 2 = z b y a + c 2 = y a z b + c 47 ESTUDIO DEL CONO ELIPTICO Not: Lo diujos orrespondientes ls interseiones de este estudio tienen el mismo speto l estudio del ono irulr. Sin emrgo l interseión on plnos prlelos l plno son en este so

Más detalles

UNIDAD 14 LA ELIPSE Y LA HIPÉRBOLA

UNIDAD 14 LA ELIPSE Y LA HIPÉRBOLA UNIDAD LA ELIPSE Y LA HIPÉRBOLA EJERCICIOS RESUELTOS Ojetivo generl. Al terminr est Unidd plirás ls definiiones los elementos que rterizn l elipse l hipérol en ls soluiones de ejeriios prolems. Ojetivo.

Más detalles

SISTEMAS DE ECUACIONES DE PRIMER GRADO

SISTEMAS DE ECUACIONES DE PRIMER GRADO el log e me e i: Memáis I. Sisems e euiones. pág. SISTEMAS DE ECUACIONES DE PRIMER GRADO Un sisem e os euiones e primer gro on os inógnis puee esriirse sí: += `+`=` one los oefiienes e ls inógnis los érminos

Más detalles

1.- VECTORES EN EL PLANO. OPERACIONES. Cualquier vector v tiene dos componentes (v 1. v = (4,3) 1 2 1 2 u v. u = v (u, u ) = (v, v )

1.- VECTORES EN EL PLANO. OPERACIONES. Cualquier vector v tiene dos componentes (v 1. v = (4,3) 1 2 1 2 u v. u = v (u, u ) = (v, v ) º Bchillerto Mtemátics I Dpto e Mtemátics- I.E.S. Montes Orientles (Iznlloz-Curso 0/0 TEMA 8.- GEOMETRÍA ANALÍTICA. PROBLEMAS AFINES Y MÉTRICOS.- VECTORES EN EL PLANO. OPERACIONES. Concepto e vector Un

Más detalles

MATEMÁTICAS II Cónicas en coordenadas polares Curso 06-07

MATEMÁTICAS II Cónicas en coordenadas polares Curso 06-07 MATEMÁTICAS II Cónis en oorens olres Curso 06-07 ) El omet Hlley esribe un orbit elíti e exentrii e 07 l longitu el eje myor e l órbit es, roximmente, 68 unies stronómis (un u, istni mei entre l Tierr

Más detalles

Departamento: Física Aplicada III

Departamento: Física Aplicada III Fund mentos Físi os de l Ingenierí. (Ind ustri les) Prlelogrmo insrito en trpezoide Ddo un trpezoide (udrilátero irregulr que no tiene ningún ldo prlelo otro), demuestre, usndo el álger vetoril, que los

Más detalles

ÁLGEBRA Y GEOMETRÍA MATRICES Y DETERMINANTES TIPOS DE MATRICES

ÁLGEBRA Y GEOMETRÍA MATRICES Y DETERMINANTES TIPOS DE MATRICES MTRIES Y ETERMINNTES TIPOS E MTRIES ÁLGER Y GEOMETRÍ Mti nl: O Todos los elementos son nlos. Mti tingl speio: Los elementos sitdos po debjo de l digonl pincipl son 0. Mti tingl infeio: Los elementos sitdos

Más detalles

TEMA 9. DETERMINANTES.

TEMA 9. DETERMINANTES. Uni.Determinntes TEM. DETERMINNTES.. Coneptos previos, permutiones. Definiión generl e eterminntes. Determinnte e mtries e oren y oren... Determinnte mtries urs e oren.. Determinnte mtries urs e oren.

Más detalles

1 RESOLUCIÓN DE TRIÁNGULOS RECTÁNGULOS

1 RESOLUCIÓN DE TRIÁNGULOS RECTÁNGULOS T3: TRIGONOMETRÍ 1º T 1 RESOLUIÓN DE TRIÁNGULOS RETÁNGULOS Resolver un triángulo es llr ls longitudes de sus ldos y ls mplitudes de sus ángulos. Ls fórmuls que se plin son: ) Ls rzones trigonométris: ˆ

Más detalles

PROBLEMAS DE ÁLGEBRA DE MATRICES

PROBLEMAS DE ÁLGEBRA DE MATRICES Mtemátis Álger e mtries José Mrí Mrtínez Meino PROLEMS DE ÁLGER DE MTRCES Oservión: L myorí e estos ejeriios proeen e ls prues e Seletivi D l mtriz enuentr tos ls mtries P tles que P P Soluión: Se ese

Más detalles

1. PRODUCTO VECTORIAL DE DOS VECTORES LIBRES

1. PRODUCTO VECTORIAL DE DOS VECTORES LIBRES UNIDAD : Produto etoril y mixto. Apliione.. PRODUCTO VECTORIAL DE DOS VECTORES LIBRES Definiión: El produto etoril de do etore lire y, que e not por, e define omo: - Si 0 ó 0 ó y on proporionle, entone

Más detalles

Calcular los parámetros y los vértices de las siguientes hipérbola equilátera: La hipérbola equilátera es aquella cuyos ejes son iguales a = b

Calcular los parámetros y los vértices de las siguientes hipérbola equilátera: La hipérbola equilátera es aquella cuyos ejes son iguales a = b Problem relizdo por Elen Abd Felip Enunido: Clulr los prámetros y los vérties de ls siguientes hipérbol equiláter: y = 6 ) Según sus síntots b) Según sus ejes Bses teóris: L hipérbol equiláter es quell

Más detalles

Sistemas de Ecuaciones lineales Discusión con parámetros. Discutir el siguiente sistema de ecuaciones lineales según el valor del parámetro a:

Sistemas de Ecuaciones lineales Discusión con parámetros. Discutir el siguiente sistema de ecuaciones lineales según el valor del parámetro a: ALGEBRA Sistems de Euiones lineles Disusión on prámetros Disutir el siguiente sistem de euiones lineles según el vlor del prámetro : + ( + ) = + = + = Interpretión: Del enunido se dedue que se trt de un

Más detalles

DETERMINANTES. 1. Calcular el valor del determinante. Solución: Determinante tipo Van der Mondem. sustituyendo en la primera expresión

DETERMINANTES. 1. Calcular el valor del determinante. Solución: Determinante tipo Van der Mondem. sustituyendo en la primera expresión DETERMINANTES. lulr el vlor el eterminnte ² ² ² Soluión: Sno ftor omún e en lª fil Sno ftor omún e en l ª fil ² ² ² ² ² ² Determinnte tipo Vn er Monem. ² ² ² ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) sustituyeno

Más detalles

perspectiva cónica & proyección de sombras

perspectiva cónica & proyección de sombras expresión grái rojs mioletti primer ño este ossier es sólo un poyo el ontenio pso en lses, pensno en reorzr oneptos que pueen ser un tnto omplejos e explir... y más, e entener. l prouni on l que se ps

Más detalles

Taller de Matemáticas I

Taller de Matemáticas I Tller e Mtemátis I Semn 4 Tller e Mtemátis I Universi CNCI e Méio Tller e Mtemátis I Semn 4 Temrio. L igul mtemáti.. Ienties euiones.. Propiees e l igul.. Propiees e los números reles. Euión e primer gro

Más detalles

DISTINGUIR LAS RAZONES TRIGONOMÉTRICAS

DISTINGUIR LAS RAZONES TRIGONOMÉTRICAS 7 REPSO Y POYO OJETIVO DISTINGUIR LS RZONES TRIGONOMÉTRICS Nomre: Curso: Feh: Ddo un triánguo retánguo, definimos s rzones trigonométris de uno de sus ánguos gudos : seno sen oseno os tngente tg (teto

Más detalles

Hacia la universidad Análisis matemático

Hacia la universidad Análisis matemático Soluionrio Hi l universidd Análisis mtemátio OPCIÓN A. ) Define el onepto de funión ontinu en un punto. ) Si e e f( ), indi de form rzond en qué vlor no está definid f (). ) Clul el vlor R pr que l funión

Más detalles

CÁLCULO DE ÁREAS. Dados los siguientes paralelógramos ( cuadrados o rectángulos), calcula las áreas de cada figura : a

CÁLCULO DE ÁREAS. Dados los siguientes paralelógramos ( cuadrados o rectángulos), calcula las áreas de cada figura : a NOCION :. CÁLCULO DE ÁREAS CÁLCULO DE ÁREAS. Ddos los siguientes prlelógrmos ( cudrdos o rectángulos), clcul ls áres de cd figur : k m y y A = = A = k m = mk A = 4. p m g s g t A = A = A = 4. 8p 5p m 7m

Más detalles

PROBLEMAS RESUELTOS. a) Simplificar por el método de Karnaugh la siguiente expresión:

PROBLEMAS RESUELTOS. a) Simplificar por el método de Karnaugh la siguiente expresión: PROLEM REUELTO ) implifir por el métoo e Krnugh l siguiente expresión: ) Diujr un iruito que relie ih funión on puerts lógis (eletivi nluz). Otenemos l expresión nóni y relizmos el mp e Krnugh pr utro

Más detalles

que verifican A 2 = A.

que verifican A 2 = A. . Hll ls mtries A que verifin A A.. Do el sistem: m ( m ) m ) Disútelo en funión el vlor e m. ) Resuélvelo en el so m represent gráfimente l situión. 3. Consieremos ls mtries B C Hll un mtri A tl que A

Más detalles

Determinantes D - 1 DETERMINANTES

Determinantes D - 1 DETERMINANTES Determinntes D - DETERMINNTES Determinnte e un mtri ur e oren os Definiión: D un mtri ur e oren os numero rel: Det (), se llm eterminnte e l El eterminnte e un mtri ur e oren os es igul l routo e los elementos

Más detalles

Fatela Preuniversitarios

Fatela Preuniversitarios MATEMÁTICA GUÍA º 13 SISTEMAS DE ECUACIO ES LI EALES" En est guí se trtrá sore: Sistems de Euiones, Métodos de Resoluión: Form Gráfi. Sustituión. Igulión. De Reduión por Sums y Rests. Determinntes (Pr

Más detalles

APUNTE: TRIGONOMETRIA

APUNTE: TRIGONOMETRIA APUNTE: TRIGONOMETRIA UNIVERSIDAD NACIONAL DE RIO NEGRO Asigntur: Mtemáti Crrers: Li. en Eonomí Profesor: Prof. Mel S. Chresti Cutrimestre: ero Año: 06 o Coneptos Previos o Definiión de ángulo Un ángulo

Más detalles

3º Año. Vectores. Matemática

3º Año. Vectores. Matemática 3º Año Cód. 1302-17 P r o f. M ó n i N p o l i t n o P r o f. M. D e l L u j á n M r t í n e z R e v i s i ó n P r o f. P t r i i G o d i n o Dpto. de M temáti 1- INTRODUCCIÓN En diverss oportuniddes nos

Más detalles

Eje normal. P(x,y) LLR Eje focal

Eje normal. P(x,y) LLR Eje focal . L Hipérol...1 L Hipérol omo lugr geométrio. L hipérol es el lugr geométrio de todos los puntos tles que el vlor soluto de l difereni de sus distnis dos puntos fijos es un onstnte. Los puntos fijos se

Más detalles

Todos los ejercicios se escribirán utilizando factores de conversión.

Todos los ejercicios se escribirán utilizando factores de conversión. Ejeriios TIPO e estequiometrí Ftores Conversión 1CI noviemre 011 1 Resumen e ejeriios tipo e estequiometrí Toos los ejeriios se esriirán utilizno ftores e onversión. Oserv que l llve que te re toos los

Más detalles

Integración compleja

Integración compleja ntegrión omplej Aunque l interpretión ms omún de l integrl (definid) de un funión rel f es omo el áre bjo l urv y f(x) l definiión de l integrl es independiente de est interpretión, y l integrl puede usrse

Más detalles

344 MATEMÁTICAS 2. ESO MATERIAL FOTOCOPIABLE SANTILLANA EDUCACIÓN, S. L. OBJETIVO 1 LA RAZÓN DE DOS SEGMENTOS NOMBRE: CURSO: FECHA:

344 MATEMÁTICAS 2. ESO MATERIAL FOTOCOPIABLE SANTILLANA EDUCACIÓN, S. L. OBJETIVO 1 LA RAZÓN DE DOS SEGMENTOS NOMBRE: CURSO: FECHA: LULR OJETIVO 1 L RZÓN DE DOS SEGMENTOS NOMRE: URSO: EH: RET, SEMIRRET Y SEGMENTO Un ret es un líne ontinu formd por infinitos puntos, que no tiene ni prinipio ni finl. Dos puntos definen un ret. Por un

Más detalles

1.- MEDIDA DE ÁNGULOS. - El sistema sexagesimal que usa como unidad de medida el grado. Un grado es la 90-ava parte del ángulo recto.

1.- MEDIDA DE ÁNGULOS. - El sistema sexagesimal que usa como unidad de medida el grado. Un grado es la 90-ava parte del ángulo recto. º Bhillerto Mtemátis I Dpto de Mtemátis- I.E.S. Montes Orientles (Iznlloz)-Curso 0/0 TEMAS 4 y 5.- RESOLUCIÓN DE TRIÁNGULOS. FUNCIONES FÓRMULAS TRIGONOMÉTRICAS Pr medir ángulos se suelen usr dos sistems

Más detalles

Problemas puertas lógicas, karnaugh...

Problemas puertas lógicas, karnaugh... ENUNCIADOS Prolems puerts lógis, krnugh... 1. Psr el iruito formo por puerts lógis o iruito ominionl funión lógi o Boolen 2. Psr puerts lógis ls funiones oolens siguientes : F= AB'C'+D'+A+B'' F = A+B'+C'D''+A'+B''CA+B''

Más detalles

9 Proporcionalidad geométrica

9 Proporcionalidad geométrica 82485 _ 030-0368.qxd 12//07 15:37 Págin 343 Proporionlidd geométri INTRODUIÓN El estudio de l proporionlidd geométri y l semejnz de figurs es lgo omplejo pr los lumnos de este nivel edutivo. omenzmos l

Más detalles