Plantear la tabla de variables y dimensiones para la obtención de los parámetros de Rateau y obtener solamente el coeciente de caudal.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Plantear la tabla de variables y dimensiones para la obtención de los parámetros de Rateau y obtener solamente el coeciente de caudal."

Transcripción

1 Mecánica de fluidos Marzo Conocida la altura neta (o bien su altura de presión equivalente P ), el diámetro D, el número de revoluciones en la unidad de tiempo N, las características del uido (µ, ρ), el caudal está determinado. Habrá, pues, una relación de la forma: F (D, N, ρ, Q, µ, p) = 0 Plantear la tabla de variables y dimensiones para la obtención de los parámetros de Rateau y obtener solamente el coeciente de caudal. Solución: M L T D N ρ Q µ p Coeciente de caudal: π Q π Q = QD α N β ρ γ L 3 T 1 L α T β M γ L 3γ = M 0 L 0 T 0 γ = α 3γ = 0 1 β = 0 = α = 3 β = 1 γ = 0 π Q = Q ND 3 Curso Página 1 de 2

2 Mecánica de fluidos Marzo Hallar el peso de la compuerta de la gura (cuadrada de 2 m de lado) para que la resultante de momentos respecto de la charnela sea nula. Solución: Altura equivalente: P = γh 10 4 Pa = 10 4 N/m 3 h h = 1 m Empuje del agua: E = γl G S = 10 4 N/m 3 2,5 m 4 m 2 = N Posición del empuje (desde la cota libre con altura equivalente): x C = x G + I 1 G x G S = = 5,067 2 m Posición del empuje desde la charnela: 5,067 4 = 1,067 m Momentos en el eje de la charnela: N 1,067 m = W 0,866 m Peso: W = N 123 kn Curso Página 2 de 2

3

4

5

6

7

8

9

10

11 3.

12

13

14

15 MECÁNICA DE FLUIDOS ENERGÍA Y MULTIGRADO Problemas - 13 junio 2012 Problema 1 (1 er Parcial): En una tubería horizontal hay un estrechamiento brusco para pasar de un diámetro D 1 = 0,8 m a D 2 = 0,5 m. Por la conducción circula un caudal Q = 1,28 m 3 /s de un líquido de peso específico N/m 3. La presión en 2 se mide mediante un tubo piezométrico, en el cual el líquido alcanza una altura h 2 sobre el eje de la conducción. Calcular el empuje E que el líquido ejerce sobre el estrechamiento, sabiendo que el coeficiente de contracción es C c = 2/3. D 1 h 2 = 4 m E? D 2 Problema 2 (2º Parcial): Dos depósitos están unidos a través de una bomba de 40 m de altura neta mediante dos tramos de tubería de k = 0,8 mm, cuyos diámetros y longitudes respectivas son: D 1 = 0,5 m ; L 1 = 60 m ; D 2 = 0,4 m ; L 2 = 103 m Si la diferencia de niveles entre los depósitos es de 24 m, hallar el caudal. El fluido bombeado es agua. No se consideran pérdidas de carga localizadas. g = 10 m/s 2 NOTA: Explicar el procedimiento a seguir en la fase de comprobación.

16 Fuidos - Energía y Multigrado Problemas - 13 junio 2012 SOLUCIÓN Problema 1: Teorema de la cantidad de movimiento: Σ F = ρq( v 2 v 1 ) Proyectado sobre la horizontal: F 1 F 2 R x = ρq(v 2 v 1 ) p 1 S 1 p 2 S 2 R x = ρq(v 2 v 1 ) Obtenemos densidad, secciones, velocidades y presiones: ρ = γ g 1500 kg/m3 ; S 1 = πd2 1 4 v 1 = Q = 1,28 S 1 = 0,503 m 2 ; S 2 = πd ,503 = 2,54 m/s ; v 2 = Q S = 1,28 = 6,53 m/s 0,196 p 2 = γh 2 = = 60 kpa Obtenemos p 1 de la aplicación de Bernouilli: ( 1 ) 2 v 2 ( 2 1 ) 2 H 12 = 1 C c 2g = 2/3 1 6, ,8 = 0,542 m H 1 = H 2 + H 12 z 1 + p 1 γ + v2 1 2g = z 2 + p 2 γ + v2 2 2g + H p , ,8 = 0,196 m 2 = , ,8 + 0,542 p 1 = 95,8 kpa Sustituyendo en el teorema de la cantidad de movimiento: , ,196 R x = ,28 (6,53 2,54) R x = 28, 7 kn Ē + R x = 0 E = R x E = 28, 7 kn en la dirección dibujada. Curso Página 1 de 2

17 Fuidos - Energía y Multigrado Problemas - 13 junio 2012 Problema 2: 1. Pérdida de carga y rugosidad relativa: z a + P a γ + v2 a 2g +H n H = z b + P b γ + v2 b 2g H n = (z b z a )+ H H = = 16 m ε 1 = K D 1 = 0,0008 0,5 = 0,0016 ; ε 2 = K D 2 = 0,0008 0,4 = 0, Con ε obtenemos del ábaco directamente los coecientes de fricción suponiendo régimen turbulento rugoso (o mediante la fórmula de Colebrook): 1 f1 = 0,86 ln( ε 1 3,7 ) f 1 = 0,0225 ; 3. Pérdida de carga en función de la velocidad: H 1 = f 1 L 1 D 1 v 2 1 2g L 2 v2 2 H 2 = f 2 D 2 2g = 0, ,4 4. Continuidad: 60 v1 2 = 0,0225 0,5 19,6 = 0,137v2 1 v ,6 = 0,313v2 2 1 f2 = 0,86 ln( ε 2 3,7 ) f 2 = 0,0238 v 1 S 1 = v 2 S 2 v 1 = v 2 S 2 /S 1 = 0,64 v 1 5. Pérdida de carga total: H = 0,137v ,313v 2 2 = 0,056v ,313v 2 2 = 0,369v Igualando: H = 0,369v 2 2 = 16 v 2 = 6,58 m/s 7. Caudal: Q = v 2 S 2 = 0,82 m 3 /s 8. Fase de comprobación: Con la velocidad de cada tramo se calculan de nuevo los coecientes de fricción y con ellos la pérdida de carga. En el caso de resultado inaceptable se repite el proceso a partir del apartado 3 con los coecientes de fricción obtenidos en la fase de comprobación. Curso Página 2 de 2

18

19 FLUIDOS ENERGÍA Y MULTIGRADO Problemas 2 29 mayo 2012 Apellidos Nombre Grupo 1.- La instalación de suministro de agua para una población eleva el agua una altura de 42 m a través de dos tuberías en serie de características L 1 =60 m, D 1 =0,3 m, f 1 =0,036 y L 2 =50 m, D 2 =0,25 m, f 2 =0,03. Para el bombeo se dispone de dos bombas B1 y B2 de curvas características H=30+10Q-100Q² y H=45+15Q-150Q² conectadas en serie. Se desprecian las pérdidas de carga localizadas. Calcula: a) Caudal de bombeo suministrado. (4ptos) b) Altura neta de cada bomba. (1pto) NOTA: En el caso de resolución gráfica debe hacerse en esta hoja 2.- Si hubiera que aumentar el caudal hasta 0,4 m³/s qué diámetro sería necesario para una única tubería de longitud L=140 m si la pérdida de carga es ΔH=3 m? Datos: rugosidad de la tubería K=0,2 mm, viscosidad del agua 10-3 kg m -1 s -1. a) Calcula el diámetro de la tubería. (NOTA: Hacer sólo una iteración) (4ptos) b) Explica si es posible bombear los 0,4 m³/s con la tubería calculada usando las bombas en serie del apartado anterior. (1pto)

20 Fuidos - Energía y Multigrado Problemas 2-29 mayo 2012 SOLUCIÓN Apartado 1: a) Caudal de bombeo suministrado: Acoplamiento de Bombas: H = Q 100Q Q 150Q 2 = Q 250Q 2 Conducción: L 1 8Q 2 H = f 1 D1 5 π 2 g +f L 2 8Q 2 2 D2 5 π 2 g H = H g + H = Q 2 Punto de funcionamiento: Q 250Q 2 = Q 2 Q = 0,3 m 3 /s b) Altura neta de cada bomba: 60 8Q Q 2 = 0,036 +0,03 0,3 5 3,14 2 9,8 0,25 5 3,14 2 9,8 = 200Q2 H 1 = Q 100Q 2 = , ,3 2 = 24 m H 1 = 24 m H 2 = Q 150Q 2 = , ,3 2 = 36 m H 2 = 36 m Apartado 2: a) Diámetro de la tubería: H = f L D 5 8Q 2 π 2 g A = D5 f = 8Q2 L π 2 g H = 8 0, ,14 2 9,8 3 = 0,617 f inicial = 0,03 D = 5 0,617 0,03 = 0,45 m v = Q S = 4Q πd = 4 0,4 = 2,51 2 m/s 3,14 0,452 Re = ρvd ,51 0,45 = = 1, µ 10 3 ε = K D = 0,0002 0,45 = 0,00044 Se obtiene f del ábaco de Moody: f = 0,0167 D = 5 0,617 0,0166 = 0,4 m D = 0,4 m b) Explicación: Sí es posible. Con Q = 0,4 m 3 /s la altura del acoplamiento es H = 45 m, luego con H g = 42 m y H = 3 m se obtiene justo el punto de funcionamiento. H = H g + H Curso Página 1 de 2

21 Fuidos - Energía y Multigrado Problemas 2-29 mayo 2012 Solución gráca del apartado 1: punto de funcionamiento H=30+10Q 100Q 2 H=45+15Q 150Q 2 Acoplamiento serie Instalacion H [m] Q [m 3 /s] Curso Página 2 de 2

22

23 MECÁNICA DE FLUIDOS ENERGÍA Y MULTIGRADO Problemas - 13 julio Por el codo de la figura circula un caudal de 0,3 m 3 /s de un líquido de densidad relativa 0,835. La tubería se contrae desde 0,3 m a 0,15 m de diámetro sin pérdida de carga. Calcular L. L Hg 2.- Cuando la altura de presión en A es de 3 m y el caudal que entra en la bomba B es 0,08 m 3 /s, la potencia neta que ésta comunica al sistema es de 100 CV. Cual será la cota de la superficie libre del agua en el depósito superior en las condiciones citadas? D 2 = 0,25 m L 2 = 1800 m f 2 = 0,02 0 m A B C D 1 = 0,2 m L 1 = 1200 m f 1 = 0,018 D 3 = 0,15 m L 3 = 1500 m f 3 = 0,02 D A = 0,2 m

24 Fuidos - Energía y Multigrado Problemas - 13 julio 2012 SOLUCIÓN Problema 1: Datos: γ = 8350 N/m 3, γ Hg = N/m 3, Q = 0,3 m 3 /s, D 1 = 0,3 m, D 2 = 0,15 m, g = 9,8 m/s 2. Continuidad: v 1 = Q S 1 = 4Q πd 2 1 Bernouilli: = 4,24 m/s ; v 2 = Q S 2 = 4Q πd 2 2 = 16,97 m/s z 1 + p 1 γ + v2 1 2g = z 2 + p 2 γ + v2 2 2g p 1 p 2 + z 1 z 2 = v2 2 v1 2 γ 2g Igualdad de presión en el piezómetro: (1) p M = p N p M = p 1 γa p N = p 2 + γ ( (z 2 z 1 ) a L ) + γ Hg L p 1 γa = P 2 + γ ( (z 2 z 1 ) a L ) + γ Hg L p 1 p ( 2 γhg ) + z 1 z 2 = L γ γ 1 (2) De (1) y (2) se obtiene: v 2 2 v 2 1 2g ( γhg ) = L γ 1 L = 0,90 m Curso Página 1 de 2

25 Fuidos - Energía y Multigrado Problemas - 13 julio 2012 Problema 2: Datos: P n = 100 C.V. = W, γ = N/m 3, Q 1 = 0,08 m 3 /s, p A γ = 3 m. Altura neta: H n = P n γq = 91, 87 m Tramo paralelo: L 2 H 2 = H 3 f 2 D 2 5 Q 1 = Q 2 + Q 3 Velocidad: Energía: v A = v 1 = 2,55 m/s 8Q 2 2 gπ 2 = f 3 L 3 D3 5 8Q 2 3 gπ 2 z A + p A γ + v2 A 2g + H n H 1 H 3 = z D + p D γ + v2 D 2g { Q2 = 0,061 m 3 /s Q 3 = 0,019 m 3 /s p A γ + v2 A 2g + H L 1 8Q 2 1 n f 1 D1 5 gπ f 2 3 L 3 D3 5 8Q 2 3 gπ 2 = z D z D 47 m Curso Página 2 de 2

26

PROBLEMAS BOMBAS CENTRÍFUGAS

PROBLEMAS BOMBAS CENTRÍFUGAS PROBLEMAS BOMBAS CENTRÍFUGAS P.1 Una bomba centrífuga que gira a 1450 rpm tiene un rodete con las siguientes características: β 1 =18º, β 2 =28º, r 1 =100 mm, r 2 =200 mm, b 1 =45 mm, b 2 =25 mm Determinar

Más detalles

PRÁCTICA 2: DETERMINACIÓN DE PÉRDIDAS POR FRICCIÓN EN UN SISTEMA DE TUBERÍAS

PRÁCTICA 2: DETERMINACIÓN DE PÉRDIDAS POR FRICCIÓN EN UN SISTEMA DE TUBERÍAS Universidad Nacional Experimental Francisco de Miranda Área de Tecnología Programa de Ingeniería Química Departamento de Energética Laboratorio de Operaciones Unitarias I PRÁCTICA : DETERMINACIÓN DE PÉRDIDAS

Más detalles

Prácticas de Laboratorio de Hidráulica

Prácticas de Laboratorio de Hidráulica Universidad Politécnica de Madrid E.T.S. Ingenieros de Caminos, Canales y Puertos Prácticas de Laboratorio de Hidráulica Jaime García Palacios Francisco V. Laguna Peñuelas 2008 Índice general 7. Pérdidas

Más detalles

Trabajo Práctico N 4. Dinámica de los Fluidos

Trabajo Práctico N 4. Dinámica de los Fluidos Trabajo Práctico N 4 Dinámica de los Fluidos Objetivo del Práctico: Este práctico está destinado a: - El estudio y la aplicación de la ecuación de Bernoulli - El estudio y aplicación de la ecuación de

Más detalles

PROBLEMAS DE NAVIDAD 2003

PROBLEMAS DE NAVIDAD 2003 PROBLEMAS DE NAVIDAD 2003 1 PROBLEMAS DE NAVIDAD 2003 Fig. Navidad 2003-1 Navidad 2003-1. Una conducción de sección cuadrada contiene en su interior un haz de cinco tubos de 5 cm de diámetro cada uno,

Más detalles

Anexo 9. Ventilador ANEXO 9. DISEÑO DEL VENTILADOR

Anexo 9. Ventilador ANEXO 9. DISEÑO DEL VENTILADOR ANEXO 9. DISEÑO DEL VENTILADOR A continuación del filtro de mangas en el tren de tratamiento se sitúa un ventilador centrífugo encargado de aspirar el caudal de gases desde el desorbedor, pasando por los

Más detalles

U.L.A. FACULTAD DE INGENIERIA. Mérida, 02/10/2008 ESCUELA DE MECANICA. MECANICA DE FLUIDOS. Sección 01 y 02. TERCER EXAMEN PARCIAL

U.L.A. FACULTAD DE INGENIERIA. Mérida, 02/10/2008 ESCUELA DE MECANICA. MECANICA DE FLUIDOS. Sección 01 y 02. TERCER EXAMEN PARCIAL U.L.A. FACULTAD DE INGENIERIA. Mérida, 02/10/2008 ESCUELA DE MECANICA. MECANICA DE FLUIDOS. Sección 01 y 02. TERCER EXAMEN PARCIAL Problema 1 Para construir una bomba grande que debe suministrar 2 m 3

Más detalles

HIDRÁULICA GENERAL GUÍA DE TRABAJOS PRÁCTICOS UNIDAD VII UNIDAD VII:

HIDRÁULICA GENERAL GUÍA DE TRABAJOS PRÁCTICOS UNIDAD VII UNIDAD VII: UNIA VII: Acción dinámica de los fluidos. Generalidades. Ecuación de la cantidad de movimiento. Coeficiente de oussinesq. Ecuación de la cantidad de movimiento aplicada a un tubo de corriente. Escurrimiento

Más detalles

OPERACIONES BÁSICAS I EJERCICIOS DE FLUJO DE FLUIDOS

OPERACIONES BÁSICAS I EJERCICIOS DE FLUJO DE FLUIDOS OPERACIONES BÁSICAS I EJERCICIOS DE FLUJO DE FLUIDOS 1. Por una tubería de 0.15 m de diámetro interno circula un aceite petrolífero de densidad 0.855 g/cm 3 a 20 ºC, a razón de 1.4 L/s. Se ha determinado

Más detalles

INSTALACIONES HIDRÁULICAS

INSTALACIONES HIDRÁULICAS Universidad de Navarra Escuela Superior de Ingenieros Nafarroako Unibertsitatea Ingeniarien Goi Mailako Eskola INSTALACIONES HIDRÁULICAS CAMPUS TECNOLÓGICO DE LA UNIVERSIDAD DE NAVARRA. NAFARROAKO UNIBERTSITATEKO

Más detalles

Prácticas de Laboratorio de Hidráulica

Prácticas de Laboratorio de Hidráulica Universidad Politécnica de Madrid E.T.S. Ingenieros de Caminos, Canales y Puertos Prácticas de Laboratorio de Hidráulica Jaime García Palacios Francisco V. Laguna Peñuelas 2010 Índice general 3. Venturi

Más detalles

PROBLEMAS DE HIDRÁULICA Y NEUMÁTICA. 1. Expresa en bares y en pascales una presión de 45 atmósferas. (Sol: 45,5927 bar;

PROBLEMAS DE HIDRÁULICA Y NEUMÁTICA. 1. Expresa en bares y en pascales una presión de 45 atmósferas. (Sol: 45,5927 bar; PROBLEMAS DE HIDRÁULICA Y NEUMÁTICA 1. Expresa en bares y en pascales una presión de 45 atmósferas. (Sol: 45,5927 bar; 4.558.500 Pa) 2. Expresa en bares, en atmósferas y en milímetros de mercurio una presión

Más detalles

PÉRDIDAS DE CARGA EN TUBERÍAS

PÉRDIDAS DE CARGA EN TUBERÍAS Prácticas de Laboratorio PÉRDIDAS DE CARGA EN TUBERÍAS 1. INTRODUCCIÓN TEÓRICA.. DESCRIPCIÓN DE LA INSTALACIÓN E INSTRUMENTACIÓN. 3. DEFINICIÓN DE OBJETIVOS Y TRABAJO A REALIZAR. 4. EXPOSICIÓN DE RESULTADOS.

Más detalles

Solución: 1º) H m = 28,8 m 2º) W = W K V. 30 m. 2 m D. Bomba K C. 3 m 3 m

Solución: 1º) H m = 28,8 m 2º) W = W K V. 30 m. 2 m D. Bomba K C. 3 m 3 m 89. Una bomba centrífuga se utiliza para elevar agua, según el esquema representado en la figura. Teniendo en cuenta los datos indicados en la figura: 1º) Calcular la altura manométrica de la bomba y la

Más detalles

1. Relacionar la presión manométrica en el interior de una gota con la tensión superficial.

1. Relacionar la presión manométrica en el interior de una gota con la tensión superficial. TEMA 1 1. Relacionar la presión manométrica en el interior de una gota con la tensión superficial. 2. Una gota de agua de diámetro 0,5mm tiene una presión en su interior es mayor que la atmosférica en

Más detalles

EJERCICIOS NEUMÁTICA/HIDRÁULICA. SELECTIVIDAD

EJERCICIOS NEUMÁTICA/HIDRÁULICA. SELECTIVIDAD EJERCICIOS NEUMÁTICA/HIDRÁULICA. SELECTIVIDAD 83.- Un cilindro neumático tiene las siguientes características: Diámetro del émbolo: 100 mm, diámetro del vástago: 20 mm, carrera: 700 mm, presión de trabajo:

Más detalles

M. EN C. AG. ABILIO MARÍN TELLO

M. EN C. AG. ABILIO MARÍN TELLO M. EN C. AG. ABILIO MARÍN TELLO Perdidas de energía en tuberías y accesorios UNIDAD DE COMPETENCIA IV TUBERÍAS 4.1. Ecuación de Darcy-Weisbach 4.2. Diagrama de Moody 4.3. Pérdidas menores 4.1. Ecuación

Más detalles

HOJA ELECTRÓNICA PARA EL CÁLCULO DEL GOLPE DE ARIETE EN LA LÍNEA DE IMPULSIÓN CÁLCULO ESTRUCTURAL DE LA TUBERÍA - INGRESO DE DATOS SECCIÓN 1

HOJA ELECTRÓNICA PARA EL CÁLCULO DEL GOLPE DE ARIETE EN LA LÍNEA DE IMPULSIÓN CÁLCULO ESTRUCTURAL DE LA TUBERÍA - INGRESO DE DATOS SECCIÓN 1 HOJA ELECTRÓNICA PARA EL CÁLCULO DEL GOLPE DE ARIETE EN LA LÍNEA DE IMPULSIÓN CÁLCULO ESTRUCTURAL DE LA TUBERÍA - INGRESO DE DATOS SECCIÓN 1 Seccion de la Tubería: Impulsión Clasificación API de la tubería:

Más detalles

Redes ramificadas Ecuaciones generales para el estado estacionario Holger Benavides Muñoz

Redes ramificadas Ecuaciones generales para el estado estacionario Holger Benavides Muñoz utpl \ucg \ hidráulica & saneamiento www.utpl.edu.ec/ucg Hidráulica de tuberías Redes ramificadas Ecuaciones generales para el estado estacionario Holger Benavides Muñoz. Diseño de redes ramificadas o

Más detalles

Hidráulica. Temario: Tuberías Hidrostática Hidrodinámica. Energía. Perdidas de Carga Software para diseño Información en la Web

Hidráulica. Temario: Tuberías Hidrostática Hidrodinámica. Energía. Perdidas de Carga Software para diseño Información en la Web Temario: Tuberías Hidrostática Hidrodinámica Hidráulica Flujo laminar intermedio turbulento Energía Bernoulli Torricelli Ec. Gral del gasto Perdidas de Carga Software para diseño Información en la Web

Más detalles

EJERCICIOS NEUMÁTICA/HIDRÁULICA. SELECTIVIDAD

EJERCICIOS NEUMÁTICA/HIDRÁULICA. SELECTIVIDAD EJERCICIOS NEUMÁTICA/HIDRÁULICA. SELECTIVIDAD 83.- Un cilindro neumático tiene las siguientes características: Diámetro del émbolo: 100 mm, diámetro del vástago: 20 mm, carrera: 700 mm, presión de trabajo:

Más detalles

UNIDAD 3 HIDRODINÁMICA. PRINCIPIOS FUNDAMENTALES. Capítulo 3 Modelos de problemas en tuberías

UNIDAD 3 HIDRODINÁMICA. PRINCIPIOS FUNDAMENTALES. Capítulo 3 Modelos de problemas en tuberías UNIDD 3 IDRODINÁMIC. PRINCIPIOS FUNDMENTLES Capítulo 3 Modelos de problemas en tuberías SECCIÓN : PLNTEMIENTO GENERL. LINE DE ENERGÍ. LÍNE PIEZOMÉTRIC. INTRODUCCIÓN Estudiada la ecuación de continuidad,

Más detalles

Unidad XIII: Flujo Interno con Fricción. Algunos problemas desarrollados

Unidad XIII: Flujo Interno con Fricción. Algunos problemas desarrollados Unidad XIII: Flujo Interno con Fricción Algunos problemas desarrollados Problema 95: Calcule el mínimo diámetro de una tubería de acero comercial (ε = 0.046 mm) que debe transportar un caudal de 8 m 3

Más detalles

Flujo en tuberías. Juan Manuel Rodríguez Prieto I.M., M.Sc., Ph.D.

Flujo en tuberías. Juan Manuel Rodríguez Prieto I.M., M.Sc., Ph.D. Flujo en tuberías Juan Manuel Rodríguez Prieto I.M., M.Sc., Ph.D. La velocidad del fluido en una tubería cambia de cero en la superficie debido a la condición de nodeslizamiento hasta un máximo en el centro

Más detalles

Numero de Reynolds y Radio Hidráulico.

Numero de Reynolds y Radio Hidráulico. UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA ÀREA DE TECNOLOGÌA PROGRAMA DE INGENIERÍA QUÌMICA CATEDRA: FENÒMENOS DE TRANSPORTE PROFESOR: Ing. Alejandro Proaño Numero de Reynolds y Radio Hidráulico.

Más detalles

Corrección del Examen ordinario de Sistemas y Máquinas de Fluidos /2016. Ejercicio 1

Corrección del Examen ordinario de Sistemas y Máquinas de Fluidos /2016. Ejercicio 1 Corrección del Examen ordinario de Sistemas y Máquinas de Fluidos - 015/016 Nombre y apellidos: Pr. 1 Pr. Pr. 3 Teo. I Teo. II Teo. III 1,50,00 0,50 1,00 1,00 1,00 Ejercicio 1 a) Por un conducto triangular

Más detalles

UNIVERSIDAD DEL ZULIA FACULTAD DE INGENIERÍA ESCUELA DE INGENIERÍA QUÍMICA DEPARTAMENTO DE INGENIERÍA QUÍMICA BÁSICA UNITARIAS I

UNIVERSIDAD DEL ZULIA FACULTAD DE INGENIERÍA ESCUELA DE INGENIERÍA QUÍMICA DEPARTAMENTO DE INGENIERÍA QUÍMICA BÁSICA UNITARIAS I UNIVERSIDAD DEL ZULIA FACULTAD DE INGENIERÍA ESCUELA DE INGENIERÍA QUÍMICA DEPARTAMENTO DE INGENIERÍA QUÍMICA BÁSICA LABORATORIO DE OPERACIONES UNITARIAS I PÉRDIDAS DE CARGA POR FRICCIÓN Profesora: Marianela

Más detalles

INGENIERIA CIVIL ASIGNATURA: HIDRÁULICA GENERAL GUÍA DE PRÁCTICA DE LABORATORIO Nº 1 AÑO 2010

INGENIERIA CIVIL ASIGNATURA: HIDRÁULICA GENERAL GUÍA DE PRÁCTICA DE LABORATORIO Nº 1 AÑO 2010 AÑO 010 OBJETIVOS DE LA PRÁCTICA DE LABORATORIO 1. Visualización de escurrimientos en tuberías en general.. Aplicación del Teorema de Bernoulli a través de la medición de sus variables. 3. Medición de

Más detalles

Flujo en Cañerías. Ejercicio 9.3. A muy bajas temperaturas,

Flujo en Cañerías. Ejercicio 9.3. A muy bajas temperaturas, Flujo en Cañerías Ejercicio 9.1. El huelgo radial entre el émbolo y la pared de un cilindro es 0,075mm, la longitud del émbolo es 250mm y su diámetro es de 100mm. Hay agua en un lado y en otro del émbolo

Más detalles

Para conocer el caudal que circula por el punto 2, es necesario determinar la velocidad a la que se mueve el fluido. Para ello aplicamos Bernoulli.

Para conocer el caudal que circula por el punto 2, es necesario determinar la velocidad a la que se mueve el fluido. Para ello aplicamos Bernoulli. Edificio Minas, Pº Alfonso XIII, 8 3003 Cartagena (SPAIN) Tel. 968-3573 Fax. 968-3573 TEMA. DINÁMICA Problemas Tema. Cuál será el caudal que circula por una tubería de 0,505 m de diámetro y es detectado

Más detalles

ANÁLISIS DEL COMPORTAMIENTO FLUIDO DINÁMICO DE UNA SECCIÓN DE DUCTO DE AGUA DE CIRCULACIÓN, APLICANDO ANSYS/FLOTRAN

ANÁLISIS DEL COMPORTAMIENTO FLUIDO DINÁMICO DE UNA SECCIÓN DE DUCTO DE AGUA DE CIRCULACIÓN, APLICANDO ANSYS/FLOTRAN ANÁLISIS DEL COMPORTAMIENTO FLUIDO DINÁMICO DE UNA SECCIÓN DE DUCTO DE AGUA DE CIRCULACIÓN, APLICANDO ANSYS/FLOTRAN Oscar Dorantes, Antonio Carnero, Rodolfo Muñoz Instituto de Investigaciones Eléctricas

Más detalles

MECÁNICA DE FLUIDOS CURSO (1) TEMA 5 INSTALACIONES HIDRÁULICAS

MECÁNICA DE FLUIDOS CURSO (1) TEMA 5 INSTALACIONES HIDRÁULICAS MECÁNICA DE FLUIDOS CURSO 007-008 (1) TEMA 5 INSTALACIONES HIDRÁULICAS MECÁNICA DE FLUIDOS CURSO 007-008 () INDICE TEMA 5 5 INSTALACIONES HIDRÁULICAS 5.1 Generalidades 5.1.1 Definición y Modelado de una

Más detalles

Hidráulica. Reposo (hidrostática) Movimiento (hidrodinámica) en tubos o conductos abiertos.

Hidráulica. Reposo (hidrostática) Movimiento (hidrodinámica) en tubos o conductos abiertos. Hidráulica Temario: Hidráulica Hidrostática Hidrodinámica Flujo laminar intermedio turbulento Energía Bernoulli Torricelli Ec. Gral del gasto Tuberías Perdidas de Carga Perdidas de cargas. Bombas: tipos

Más detalles

DIMENSIONAMIENTO DE CÁRCAMO DE BOMBEO EB-42 Caracteristicas del Equipo Propuesto:

DIMENSIONAMIENTO DE CÁRCAMO DE BOMBEO EB-42 Caracteristicas del Equipo Propuesto: DIMENSIONAMIENTO DE CÁRCAMO DE BOMBEO EB-42 Caracteristicas del Equipo Propuesto: Nombre de Cárcamo Cárcamo de aguas crudas No de TAG CBAC-1-3/R Ubicación del Cárcamo En EB-42 Elemento de entrada Tubo

Más detalles

TABLAS Y DIAGRAMAS INGENIERÍA FLUIDOMECÁNICA

TABLAS Y DIAGRAMAS INGENIERÍA FLUIDOMECÁNICA DEPARTAMENTO DE INGENIERÍA NUCLEAR Y MECÁNICA DE FLUIDOS INGENIARITZA NUKLEARRA ETA JARIAKINEN MEKANIKA SAILA TABLAS Y DIAGRAMAS INGENIERÍA FLUIDOMECÁNICA TABLAS Y DIAGRAMAS INGENIERÍA FLUIDOMECÁNICA Conersión

Más detalles

Problemas Tema 2. Nota: El peso del aire contenido en el sistema puede considerarse despreciable. P C = P A + γ ΔZ. ; γ r = γ agua 1,60 = ,60

Problemas Tema 2. Nota: El peso del aire contenido en el sistema puede considerarse despreciable. P C = P A + γ ΔZ. ; γ r = γ agua 1,60 = ,60 roblemas Tema 1. En el siguiente esquema se dispone de un VACUOMETRO en A que indica una presión ABSOLUTA de 90,41 ka, determinar la densidad relativa (Dr) del líquido B. Nota: El peso del aire contenido

Más detalles

ANEXO DE CALCULOS Plantas primera y segunda

ANEXO DE CALCULOS Plantas primera y segunda ANEXO DE CALCULOS Plantas primera y segunda Fórmulas Generales Emplearemos las siguientes: H = Z + (P/γ ) ; γ = ρ x g ; H 1 = H 2 + h f Siendo: H = Altura piezométrica (mca). z = Cota (m). P/γ = Altura

Más detalles

PROBLEMAS DE NAVIDAD 2001

PROBLEMAS DE NAVIDAD 2001 PROBLEMAS DE NAVIDAD 2001 PROBLEMAS DE NAVIDAD 2001 Navidad 2001-1 Para la conducción cuya sección transversal se representa en la figura se pide: Calcular el caudal de agua que puede trasegar suponiendo

Más detalles

Cálculo Fontanería. Anexo cálculo fontanería

Cálculo Fontanería. Anexo cálculo fontanería Cálculo Fontanería Anexo cálculo fontanería ANEXO DE CALCULOS Planta Baja Fórmulas Generales Emplearemos las siguientes: H = Z + (P/γ ) ; γ = ρ x g ; H 1 = H 2 + h f Siendo: H = Altura piezométrica (mca).

Más detalles

Balance de energía en un diafragma

Balance de energía en un diafragma Balance de energía en un diafragma Objetivos de la práctica! Estudiar el perfil de presiones que se produce a lo largo de una tubería en la que se encuentra instalado un diafragma.! Determinar el coeficiente

Más detalles

FENÓMENOS DE TRASPORTE

FENÓMENOS DE TRASPORTE FENÓMENOS DE TRASPORTE EN METALURGIA EXTRACTIVA Clase 05/06 Transporte de Momentum Pro. Leandro Voisin A, MSc., Dr. Académico Uniersidad de Chile. Jee del Laboratorio de Pirometalurgia. Inestigador Senior

Más detalles

Dinámica de Fluidos. Mecánica y Fluidos VERANO

Dinámica de Fluidos. Mecánica y Fluidos VERANO Dinámica de Fluidos Mecánica y Fluidos VERANO 1 Temas Tipos de Movimiento Ecuación de Continuidad Ecuación de Bernouilli Circulación de Fluidos Viscosos 2 TIPOS DE MOVIMIENTO Régimen Laminar: El flujo

Más detalles

TEMA 3 (Parte II) Dinámica de fluidos viscosos

TEMA 3 (Parte II) Dinámica de fluidos viscosos TEMA 3 (arte II) Dinámica de fluidos viscosos B E db dm de dm e db t C db db r r de r r ( d ) ( ds) e( d ) e( ds) dm dm t S C S rimera ley de la Termodinámica: Energías específicas: de - Energía cinética

Más detalles

MECANICA DE FLUIDOS Y MAQUINAS FLUIDODINAMICAS. Guía Trabajos Prácticos N 10: Pérdidas de carga en sistemas de cañerías.

MECANICA DE FLUIDOS Y MAQUINAS FLUIDODINAMICAS. Guía Trabajos Prácticos N 10: Pérdidas de carga en sistemas de cañerías. MECANICA DE FLUIDOS Y MAQUINAS FLUIDODINAMICAS Guía Trabajos Prácticos N 10: Pérdidas de carga en sistemas de cañerías. 1. Calcule la potencia suministrada a la bomba que se muestra en la figura 1 si su

Más detalles

PÉRDIDAS DE CARGA FRICCIONALES

PÉRDIDAS DE CARGA FRICCIONALES PÉRDIDAS DE CARGA FRICCIONALES La pérdida de carga friccional que tiene lugar en una conducción representa la pérdida de energía de un flujo hidráulico a lo largo de la misma por efecto del rozamiento.

Más detalles

Ingeniería en Alimentos - Fenómenos de Transporte - Año 2016 SITUACIONES PROBLEMÁTICAS Nº 1

Ingeniería en Alimentos - Fenómenos de Transporte - Año 2016 SITUACIONES PROBLEMÁTICAS Nº 1 Frecuentemente el hombre se convierte en aquello que cree ser. Si persevera afirmando ser incapaz de hacer determinada cosa, puede ser que eso, de hecho, acontezca. Si, al contrario, se considera capaz

Más detalles

UNIDAD 4 SISTEMAS COMPLEJOS DE TUBERÍAS

UNIDAD 4 SISTEMAS COMPLEJOS DE TUBERÍAS UNIDD SISTEMS COMPLEJOS DE TUERÍS Capítulo CONCEPTO ELEMENTL DE OM Y TURIN TURINS Noción básica de turbina El agua puede emplearse para producir energía mediante su conducción a un nivel situado a una

Más detalles

HIDRODINÁMICA. Profesor: Robinson Pino H.

HIDRODINÁMICA. Profesor: Robinson Pino H. HIDRODINÁMICA Profesor: Robinson Pino H. 1 CARACTERÍSTICAS DEL MOVIMIENTO DE LOS FLUIDOS Flujo laminar: Ocurre cuando las moléculas de un fluido en movimiento siguen trayectorias paralelas. Flujo turbulento:

Más detalles

TEMA N 2 HIDRAULICA DE SISTEMAS

TEMA N 2 HIDRAULICA DE SISTEMAS TEMA N 2 HIDRAULICA DE SISTEMAS 2.1. HIDRAULICA DE SISTEMAS En este capitulo se realiza una síntesis de los conceptos básicos de hidráulica que serán de utilidad práctica en la materia Ingeniería Sanitaria,

Más detalles

1. OBJETO PRINCIPIOS DE CÁLCULO CONDICIONES DE DISEÑO RESULTADOS... 8

1. OBJETO PRINCIPIOS DE CÁLCULO CONDICIONES DE DISEÑO RESULTADOS... 8 ÍNDICE 1. OBJETO... 2 2. PRINCIPIOS DE CÁLCULO... 3 3. CONDICIONES DE DISEÑO... 7 4. RESULTADOS... 8 Página 1 de 8 1. OBJETO Esta memoria justificativa da respuesta a los diámetros utilizados en las tuberías

Más detalles

Índice de Tablas VIII

Índice de Tablas VIII Índice CAPITULO 1 INTRODUCCION... 1 1.1 Antecedentes y motivación... 2 1.2 Descripción del problema... 2 1.3 Solución propuesta... 3 1.4 Objetivos... 4 1.5 Alcances... 4 1.6 Metodología y herramientas

Más detalles

PONTIFICIA UNIVERSIDAD CATÓLICA DEL PERÚ

PONTIFICIA UNIVERSIDAD CATÓLICA DEL PERÚ PONTIFICIA UNIVERSIDAD CATÓLICA DEL PERÚ FACULTAD DE CIENCIA E INGENIERÍA Diseño Hidráulico de un Sistema Gravimétrico para Relaves Mineros con un Caudal de 202 m 3 /h y 220 m de Desnivel ANEXOS Tesis

Más detalles

dg + v² 1 2g =h 2+ p 2 dg + v² 2 B A

dg + v² 1 2g =h 2+ p 2 dg + v² 2 B A . El émbolo mayor de una prensa hidráulica tiene un radio de 5 cm. Qué fuerza debe aplicarse al émbolo menor de radio 3 cm para elevar un coche de 000 Kg?. A nivel del mar un manómetro de un sistema neumático

Más detalles

ALCANTARILLADO 3. ASPECTOS HIDRAULICOS DE LOS ALCANTARILLADOS Fórmulas para cálculos hidráulicos

ALCANTARILLADO 3. ASPECTOS HIDRAULICOS DE LOS ALCANTARILLADOS Fórmulas para cálculos hidráulicos ALCANTARILLADO 3. ASPECTOS HIDRAULICOS DE LOS ALCANTARILLADOS 3.1. Fórmulas para cálculos hidráulicos Para los cálculos hidráulicos de tuberías existe gran diversidad de fórmulas, en este boletín se aplicarán

Más detalles

MECÁNICA DE FLUIDOS E HIDRÁULICA. EXÁMEN PARCIAL 8 de Noviembre de 2011

MECÁNICA DE FLUIDOS E HIDRÁULICA. EXÁMEN PARCIAL 8 de Noviembre de 2011 Noviembre de 2011 MEÁNI DE FLUIDOS E HIDRÁULI. EXÁMEN PRIL 8 de Noviembre de 2011 1.- TEORI (25%) a) Definición de fluido. b) Definición de viscosidad. Ecuación dimensional de la viscosidad dinámica. Unidades

Más detalles

6. pérdidas de carga en conduc tos climaver

6. pérdidas de carga en conduc tos climaver 6. pérdidas de carga en conduc tos climaver manual de conduc tos de aire acondicionado climaver 62 El aire que circula por la red de conductos, recibe la energía de impulsión (aspiración) por medio de

Más detalles

REAL SOCIEDAD ESPAÑOLA DE FÍSICA REAL SOCIEDAD ESPAÑOLA DE FÍSICA. XX Olimpiada FASE LOCAL DE LA RIOJA. 27 de febrero de 2009.

REAL SOCIEDAD ESPAÑOLA DE FÍSICA REAL SOCIEDAD ESPAÑOLA DE FÍSICA. XX Olimpiada FASE LOCAL DE LA RIOJA. 27 de febrero de 2009. XX Olimpiada ESPAÑOLA DE FÍSICA FASE LOCAL DE LA RIOJA 7 de febrero de 009 ª Parte P y P Esta prueba consiste en la resolución de dos problemas. Razona siempre tus planteamientos No olvides poner tus apellidos,

Más detalles

Cálculo de la potencia de una bomba

Cálculo de la potencia de una bomba UNIVERSIDAD VERACRUZANA FACULTAD DE CIENCIAS QUÍMICAS PROGRAMA EDUCATIVO INGENIERÍA QUÍMICA Manual de Usuario para el Programa de Computo Cálculo de la potencia de una bomba El programa de cómputo fue

Más detalles

Ejercicio 1. L=200 m L=800 m. (B) H B =34 mca. Ejercicio 2

Ejercicio 1. L=200 m L=800 m. (B) H B =34 mca. Ejercicio 2 Ejercicio 1 Se desea trasegar agua desde el depósito A al C utilizando para ello la bomba B. Las pérdidas de carga por fricción son del 5 por mil, y las pérdidas de carga localizadas en cada punto del

Más detalles

UNIVERSIDAD NACIONAL DEL SANTA FACULTAD DE INGENIERÍA DEPARTAMENTO ACADÉMICO DE ENERGÍA Y FÍSICA FÍSICA II FLUIDOS

UNIVERSIDAD NACIONAL DEL SANTA FACULTAD DE INGENIERÍA DEPARTAMENTO ACADÉMICO DE ENERGÍA Y FÍSICA FÍSICA II FLUIDOS UNIVERSIDD NCIONL DEL SNT FCULTD DE INGENIERÍ DEPRTMENTO CDÉMICO DE ENERGÍ Y FÍSIC I FLUIDOS ESCUEL CDÉMIC PROFESIONL INGENIERÍ GROINDUSTRIL CICLO: - III CICLO DOCENTE: - NUEVO CHIMBOTE PERÚ 2 0 1 5 FISIC

Más detalles

SISTEMA DE AGUA POTABLE DE ESMERALDAS DATOS DEL SISTEMA DE BOMBEO, AGUA POTABLE

SISTEMA DE AGUA POTABLE DE ESMERALDAS DATOS DEL SISTEMA DE BOMBEO, AGUA POTABLE Estudios de Evaluación, Factibilidad y Diseños Definitivos del Sistema Regional de Agua potable Esmeraldas DATOS DEL SISTEMA DE BOMBEO, AGUA POTABLE 1. Condiciones de funcionamiento Fluido de bombeo Agua

Más detalles

6.- a) Explique el funcionamiento del circuito neumático representado en el esquema. b) defina cada uno de los elementos que lo componen.

6.- a) Explique el funcionamiento del circuito neumático representado en el esquema. b) defina cada uno de los elementos que lo componen. 1.- a) Describa los componentes empleados en el circuito neumático representado en la siguiente figura. (0,5 puntos) b) Explique el funcionamiento del circuito neumático. (1,5 puntos) 2.-.- Se dispone

Más detalles

PRÁCTICA 1: MEDIDORES DE FLUJO

PRÁCTICA 1: MEDIDORES DE FLUJO 1 Universidad Nacional Experimental Francisco De Miranda Área De Tecnología Programa De Ingeniería Química Departamento de Energética Laboratorio de Operaciones Unitarias I PRÁCTICA 1: MEDIDORES DE FLUJO

Más detalles

UNIVERSIDAD SIMÓN BOLÍVAR UNIDAD DE LABORATORIOS LABORATORIO A SECCIÓN DE MECÁNICA DE FLUIDOS

UNIVERSIDAD SIMÓN BOLÍVAR UNIDAD DE LABORATORIOS LABORATORIO A SECCIÓN DE MECÁNICA DE FLUIDOS 1. Objetivos UNIVERSIDAD SIMÓN BOLÍVAR PRÁCTICA ESTUDIO DEL FLUJO TURBULENTO EN TUBERÍAS LISAS Analizar flujo turbulento en un banco de tuberías lisas. Determinar las pérdidas de carga en tuberías lisas..

Más detalles

PROBLEMAS TEMA I: ESTÁTICA DE FLUIDOS Y FENÓMENOS DE SUPERFICIE

PROBLEMAS TEMA I: ESTÁTICA DE FLUIDOS Y FENÓMENOS DE SUPERFICIE PROBLEMAS TEMA I: ESTÁTICA DE FLUIDOS Y FENÓMENOS DE SUPERFICIE Curso 2016-2017 1. Desde una bolsa de goteo colocada 1.6 m por encima del brazo de un paciente fluye plasma de 1.06 g/cm 3 de densidad por

Más detalles

DINÁMICA DE FLUIDOS ÍNDICE

DINÁMICA DE FLUIDOS ÍNDICE DINÁMICA DE FLUIDOS ÍNDICE. Tipos de flujo. Ecuación de continuidad 3. Ecuación de Bernouilli 4. Aplicaciones de la ecuación de Bernouilli 5. Efecto Magnus 6. Viscosidad BIBLIOGRAFÍA: Cap. 3 del Tipler

Más detalles

ESTATICA DE FLUIDOS. 2. Un recipiente cónico de radio de la base R y altura H ( V

ESTATICA DE FLUIDOS. 2. Un recipiente cónico de radio de la base R y altura H ( V ESTTI DE FLUIDOS 1. Un gran depósito se llena de agua asta una altura de 3,6m; sobre la superficie libre de 0,5 m 2 existe una sobrepresión que ejerce una fuerza de 6000 N; la presión atmosférica es de

Más detalles

MECANICA DE LOS FLUIDOS

MECANICA DE LOS FLUIDOS MECANICA DE LOS FLUIDOS 7 FUNDAMENTOS DEL FLUJO DE FLUIDOS Ing. Alejandro Mayori Flujo de Fluidos o Hidrodinámica es el estudio de los Fluidos en Movimiento Principios Fundamentales: 1. Conservación de

Más detalles

SECCIÓN 1: HIDRÁULICA APLICADA

SECCIÓN 1: HIDRÁULICA APLICADA SECCIÓN : HIDRÁULICA APLICADA INTRODUCCIÓN En esta unidad se va a pasar un breve repaso a la hidráulica moderna, Ley Universal para después recordar las fórmulas exponenciales o empíricas que todavía tienen

Más detalles

Capítulo 8. Flujo de fluidos a régimen transitorio.

Capítulo 8. Flujo de fluidos a régimen transitorio. Capítulo 8 Flujo de fluidos a régimen transitorio. Flujo de fluidos a régimen transitorio. En flujo de fluidos se puede encontrar el régimen transitorio fenómeno de la descarga de tanques. cuando se presenta

Más detalles

DETERMINACION DE LAS CURVAS DE FLUJO MEDIANTE EL VISCOSIMETRO DE TUBO CAPILAR

DETERMINACION DE LAS CURVAS DE FLUJO MEDIANTE EL VISCOSIMETRO DE TUBO CAPILAR 1 DETERMINACION DE LAS CURVAS DE FLUJO MEDIANTE EL VISCOSIMETRO DE TUBO CAPILAR Preparado por; Ing. Esteban L. Ibarrola Cátedra de Mecánica de los Fluidos- FCEFyN - UNC 1. Fluidos newtonianos La distribución

Más detalles

Trabajo Práctico n 2. Estática de los Fluidos

Trabajo Práctico n 2. Estática de los Fluidos Trabajo Práctico n 2 Estática de los Fluidos Objetivo del Práctico: Este práctico está destinado a: - Determinar la variación de la presión en un fluido en reposo - Calcular las fuerzas que ejerce un fluido

Más detalles

PÉRDIDAS DE CARGA. E.T.S. Ingenieros Industriales. Curso PRÁCTICAS DE MECÁNICA DE FLUIDOS ÍNDICE. Área de Mecánica de Fluidos

PÉRDIDAS DE CARGA. E.T.S. Ingenieros Industriales. Curso PRÁCTICAS DE MECÁNICA DE FLUIDOS ÍNDICE. Área de Mecánica de Fluidos Prácticas de Mecánica de Fluidos Pérdidas de Carga 1/10 UNIVERSIDAD DE OVIEDO E.T.S. Ingenieros Industriales 3 er curso Curso 004-005 PRÁCTICAS DE MECÁNICA DE FLUIDOS PÉRDIDAS DE CARGA ÍNDICE 1. Introducción

Más detalles

HIDRAULICA DE POTENCIA. Unidad 1. Bases físicas de la hidráulica

HIDRAULICA DE POTENCIA. Unidad 1. Bases físicas de la hidráulica HIDRAULICA DE POTENCIA Unidad 1. Bases físicas de la hidráulica Presión Este término se refiere a los efectos de una fuerza que actúa distribuida sobre una superficie. La fuerza causante de la presión

Más detalles

CATEDRA DE FISICA I HIDROSTÁTICA E HIDRODINÁMICA - PROBLEMAS RESUELTOS

CATEDRA DE FISICA I HIDROSTÁTICA E HIDRODINÁMICA - PROBLEMAS RESUELTOS CATEDRA DE FISICA I Ing. Civil, Ing. Electromecánica, Ing. Eléctrica, Ing. Mecánica IDROSTÁTICA E IDRODINÁMICA - PROBLEMAS RESUELTOS PROBLEMA Nº 2: Tres líquidos inmiscibles se vierten en un recipiente

Más detalles

BOMBAS SELECCIÓN Y APLICACIÓN

BOMBAS SELECCIÓN Y APLICACIÓN BOMBAS SELECCIÓN Y APLICACIÓN Parámetros de selección de una bomba Naturaleza del líquido a bombear. Capacidad requerida Condiciones en el lado de succión Condiciones en el lado de la descarga La carga

Más detalles

Física de fluidos. Densidad. kg/m. kg/m = S. kg/m. Principio de Arquímedes

Física de fluidos. Densidad. kg/m. kg/m = S. kg/m. Principio de Arquímedes Física de fluidos Densidad ρ V dv 3 σ S ds L dl λ Principio de Arquímedes Principio de Arquímedes: todo cuerpo sumergido en un fluido eperimenta un empuje vertical y hacia arriba igual al peso de fluido

Más detalles

Mecánica de Fluidos GIEAI 2016/17

Mecánica de Fluidos GIEAI 2016/17 Mecánica de Fluidos GIEAI 016/17 Mecánica de Fluidos º curso GIEAI 016/17 Resumen Flujo viscoso incompresible interno Número de Reynolds régimen laminar Flujos planos: flujo de Couette Flujo en conductos

Más detalles

Física General II. Guía N 2: Hidrodinámica y Viscosidad

Física General II. Guía N 2: Hidrodinámica y Viscosidad Física General II Guía N 2: Hidrodinámica y Viscosidad Problema 1: Ley de Torricelli. La figura muestra un líquido que está siendo descargado de un tanque a través de un orificio que se encuentra a una

Más detalles

Soluciones a los problemas de los temas 9 y 10

Soluciones a los problemas de los temas 9 y 10 Asignatura Física General. Licenciatura en Química. Grupo B Soluciones a los problemas de los temas 9 y 10 1. El peso del hombre es: P = G M T m R T (1) i) Si el radio de la tierra se duplica R T = R T

Más detalles

PLAN DE ESTUDIOS 1996

PLAN DE ESTUDIOS 1996 Ríos Rosas, 21 28003 MADRID. UNIVERSIDAD POLITÉCNICA DE MADRID ESCUELA TÉCNICA SUPERIOR DE INGENIEROS DE MINAS ------- DEPARTAMENTO DE INGENIERÍA DE MATERIALES PROGRAMA DE LA ASIGNATURA MECÁNICA DE FLUIDOS

Más detalles

Índice INTRODUCCIÓN... 9

Índice INTRODUCCIÓN... 9 Índice INTRODUCCIÓN... 9. CONDUCCIÓN EN RÉGIMEN ESTACIONARIO.... CONDUCCIÓN EN RÉGIMEN VARIABLE... 33 3. SUPERFICIES ADICIONALES... 59 4. CONVECCIÓN... 75 5. TRANSMISIÓN DE CALOR EN LOS CAMBIOS DE ESTADO...

Más detalles

PROBLEMAS TEMA 6. Determinamos el número de Reynolds para comprobar en que régimen de flujo trabajamos. VD μ. Re =

PROBLEMAS TEMA 6. Determinamos el número de Reynolds para comprobar en que régimen de flujo trabajamos. VD μ. Re = Edificio Minas, Pº Alfonso XIII, 48 00 Cartagena (SPAIN) Tel. 968-57 Fax. 968-57 PROBLEMAS TEMA 6 1. Calcular las pérdidas de carga en una tubería de fibrocemento de 400 m, de diámetro nominal 150mm (FC

Más detalles

Ayudantía 7 - Solucionario Física General III (FIS130) Hidrodinámica

Ayudantía 7 - Solucionario Física General III (FIS130) Hidrodinámica Ayudantía 7 - Solucionario Física General III (FIS130) Hidrodinámica Pregunta 1 Considere el agua que fluye con rapidez de 3 [m/s] sometida a una presión de 00 [KPa], por una cañería horizontal que más

Más detalles

Planta Altura Cotas Grupos (Fontanería) Planta Planta 1

Planta Altura Cotas Grupos (Fontanería) Planta Planta 1 8. Abastecimiento. 8.1. Datos de grupos y plantas. Planta Altura Cotas Grupos (Fontanería) Planta 1 0.00 0.00 Planta 1 8.2. Datos de obra. Caudal acumulado con simultaneidad Presión de suministro en acometida:

Más detalles

ANEXO nº 2 CÁLCULO DE LA RED INTERIOR Y DE ABASTECIMIENTO DE AGUA

ANEXO nº 2 CÁLCULO DE LA RED INTERIOR Y DE ABASTECIMIENTO DE AGUA ANEXO nº CÁLCULO DE LA RED INTERIOR Y DE ABASTECIMIENTO DE AGUA ANEXOS MAYO 01 1 ÍNDICE DE CONTENIDOS: 1. ESTIMACIÓN DEL CONSUMO... 3. CRITERIOS DE DISEÑO DE LAS CONDUCCIONES... 3 3. CÁLCULO DE LA ACOMETIDA...

Más detalles

Problemas de Mecánica y Ondas II. Boletín nº 2. (Fluidos) Es incompresible? Existe la función de corriente? Determínela en caso afirmativo.

Problemas de Mecánica y Ondas II. Boletín nº 2. (Fluidos) Es incompresible? Existe la función de corriente? Determínela en caso afirmativo. Problemas de Mecánica y Ondas II. oletín nº 2. (Fluidos) 15. Considere un flujo cuyas componentes de la velocidad son 3 2 u = 0 v = y 4 z w=3y z Es incompresible? Existe la función de corriente? Determínela

Más detalles

Redes ramificadas Análisis de redes ramificadas con nudo de

Redes ramificadas Análisis de redes ramificadas con nudo de utpl \ucg \ centro de investigaciones en ingeniería hidráulica & saneamiento www.utpl.edu.ec Hidráulica de tuberías Redes ramificadas Análisis de redes ramificadas con nudo de altura conocido Holger Benavides

Más detalles

DINÁMICA DE FLUIDOS REALES. Asignatura: Operaciones Unitarias Profesor: Jimmy Walker Alumnos: Giovanni Ramirez Luis Cabrera Antonio Marín

DINÁMICA DE FLUIDOS REALES. Asignatura: Operaciones Unitarias Profesor: Jimmy Walker Alumnos: Giovanni Ramirez Luis Cabrera Antonio Marín DINÁMICA DE FLUIDOS REALES Asignatura: Operaciones Unitarias Profesor: Jimmy Walker Alumnos: Giovanni Ramirez Luis Cabrera Antonio Marín Viscosidad Consideraciones Fluido ideal Viscosidad =0 Fluido real

Más detalles

Trabajo Práctico N 6 FLUJO EN CONDUCTOS CERRADOS

Trabajo Práctico N 6 FLUJO EN CONDUCTOS CERRADOS Objetivo del Práctico: Trabajo Práctico N 6 FLUJO EN CONDUCTOS CERRADOS Este práctico está destinado a: - El cálculo de sistemas de tubería con sus correspondientes pérdidas de carga. - Utilizar de diagramas

Más detalles

TITULACIÓN: INGENIERO TÉCNICO DE MINAS

TITULACIÓN: INGENIERO TÉCNICO DE MINAS Ríos Rosas, 21 28003 MADRID. UNIVERSIDAD POLITÉCNICA DE MADRID ESCUELA TÉCNICA SUPERIOR DE INGENIEROS DE MINAS ------- TITULACIÓN: INGENIERO TÉCNICO DE MINAS ESPECIALIDAD EN: RECURSOS ENERGÉTICOS COMBUSTIBLES

Más detalles

Capítulo 10. Flujo de fluidos incompresibles a través de sistemas complejos.

Capítulo 10. Flujo de fluidos incompresibles a través de sistemas complejos. Capítulo 10 Flujo de fluidos incompresibles a través de sistemas complejos. Flujo de fluidos a través de sistemas complejos. La mayoría de los sistemas por los que se desplazan los fluidos incompresibles,

Más detalles

RECUPERACIÓN DEL SEGUNDO TRIMESTRE TECNOLOGÍA INDUSTRIAL 2º DE BACHIILERATO

RECUPERACIÓN DEL SEGUNDO TRIMESTRE TECNOLOGÍA INDUSTRIAL 2º DE BACHIILERATO 1 RECUPERACIÓN DEL SEGUNDO TRIMESTRE TECNOLOGÍA INDUSTRIAL 2º DE BACHIILERATO 1. Realizar 20 ejercicios de la siguiente relación. 2. Entregarlos antes del 30 de Abril 3. Realizar el examen de recuperación

Más detalles

SISTEMA REGIONAL DE AGUA POTABLE ESMERALDAS CARACTERÍSTICAS BOMBEO DE AGUA CRUDA

SISTEMA REGIONAL DE AGUA POTABLE ESMERALDAS CARACTERÍSTICAS BOMBEO DE AGUA CRUDA 0.90 0.60 0.30 0.10 0.15 0.15 0.30 2.50 0.10 0.0 0.20 0.10 Codo de 90 Codo de 5 Codo de 22.5 Codo de 11.25 Reducción Te paso lateral Ye V. Check V. Bola V. Mariposa V. Compuerta V. Antiariete Total 0+000

Más detalles

SEGUNDO EXAMEN PARCIAL. Teoría.

SEGUNDO EXAMEN PARCIAL. Teoría. U. L. A. FACULTA E INGENIERIA. Mérida, 7/07/008 ESCUELA E MECANICA. MECANICA E FLUIOS. SEGUNO EXAMEN PARCIAL. Teoría.. Que significa que el Flujo es Uniforme?. ( punto).. Que significa que el Flujo es

Más detalles

6. INSTALACIÓN DE FONTANERÍA

6. INSTALACIÓN DE FONTANERÍA 6. INSTALACIÓN DE FONTANERÍA Para el cálculo de las tuberías nos basaremos en el teorema de Bernoulli, que nos indica: Po + = P1 Z o + Z δ δ 1 Siendo: P 0 /δ: Altura debido a la presión de la calle. Z

Más detalles

Problemas de Estática y Dinámica DINÁMICA DE FLUIDOS

Problemas de Estática y Dinámica DINÁMICA DE FLUIDOS Problemas de Estática y Dinámica DINÁMICA DE FLUIDOS (1 er Q.:prob pares, 2 ndo Q.:prob impares) 1. En el esquema adjunto las secciones de la tubería son 40 y 12 cm 2, y la velocidad del agua en la primera

Más detalles

FISICA I HOJA 8 ESCUELA POLITÉCNICA DE INGENIERÍA DE MINAS Y ENERGIA 8. ELASTICIDAD FORMULARIO

FISICA I HOJA 8 ESCUELA POLITÉCNICA DE INGENIERÍA DE MINAS Y ENERGIA 8. ELASTICIDAD FORMULARIO 8. ELASTICIDAD FORMULARIO Tmf de carga? 8.1) Que diámetro mínimo debe tener un cable de acero para poder aguantar 1 Resistencia a la rotura E R = 7,85x10 8 N.m -2 8.2) Desde un barco se lanzó una pesa

Más detalles

SELECTIVIDAD: Neumática y Oleohidráulica

SELECTIVIDAD: Neumática y Oleohidráulica IES Francisco de los Cobos Luis Carrasco Abril (Departamento de Tecnología) 1 SELECTIVIDAD: Neumática y Oleohidráulica ESTA RELACIÓN EMPIEZA EN EL PROBLEMA 5 (NO EXISTEN LOS PROBLEMAS 1 AL 4) 5.- Represente

Más detalles

Diámetro (m) Velocidad (m/s) Número de Reynolds , , , /3,28 0,

Diámetro (m) Velocidad (m/s) Número de Reynolds , , , /3,28 0, Corrección del examen final de Sistemas y Máquinas de Fluidos - 2012 Problema 1 a)en un experimento para determinar el número de Reynolds crítico en función de la escala de un sistema hidráulico, al usar

Más detalles