a) DIAGRAMA DE DISPERSION

Tamaño: px
Comenzar la demostración a partir de la página:

Download "a) DIAGRAMA DE DISPERSION"

Transcripción

1 SIS A EJEMPLO.- Se ha recogdo datos de una localdad medante sendas encuestas sobre el consumo (Y) de productos de hogar y de la renta (X) de los consumdores consultados, obtenéndose los sguentes resultados: Observacón Y X 4, , , , ,4 6 3,8 60,9 7 4, 6, ,6 9,6 6,7 0 3,5 57,8 5,6 7,3 5,8 70,5 a) DIAGRAMA DE DISPERSION Se pde: a) Realzar el grafco correspondente (dagrama de dspersón) b) Encontrar los estmadores (coefcentes) de acuerdo a la tendenca aproxmada en a) para Y sobre X c) Elabore la tabla de análss de varanza (ANOVA) d) Establezca un ntervalo de confanza del 95% para los estmadores y para la varanza de regresón. e) Se rechazaría la hpótess de que el verdadero coefcente de la pendente es 0,3. f) Halle los resduos (error) correspondente g) Proceda b) para X sobre Y (regresón nversa) h) Pronostque Y para X=60 por el método matrcal y drectamente por el modelo encontrado en b). Observando la grafca vemos una tendenca lneal que tendrá la forma: y = α + βx + u b) CALCULO DE LOS ESTIMADORES Donde los coefcentes (estmadores) son determnados medante: Opcón Opcón x = Σx n β = S xy α = y βx y = Σy n = x y nx y x nx α = y x x xy n x ( x) n xy x y β = n x ( x) EDWIN CHAMBI CANAZA de 8

2 Para emplear las deduccones mostradas necestamos elaborar la sguente tabla: Tabla Nº Observacón Y X Y² X² XY 4,80 64,00 3, ,00 307,0 5,30 68,00 8,09 464,00 360,40 3 6,50 79,00 4,5 64,00 53,50 4 3,0 56,00 0,4 336,00 79,0 5 6,00 69,40 36,00 486,36 46,40 6 3,80 60,90 4, ,8 3,4 7 4,0 6,80 7, ,84 63,76 8 7,00 75,60 49,00 575,36 59,0 9,60 6,70 6, ,89 60,4 0 3,50 57,80,5 3340,84 0,30 5,60 7,30 3,36 57,9 404,88 5,80 70,50 33, ,5 408,90 58,30 798,00 304,7 5366, ,58 Con las sumatoras de la tabla mostrada calculamos los coefcentes: Opcón β = S xy = β = 0,7980 α = y βx α = α = 7,09966 x = Σx n 66,5 y = Σy n 4,85833 = x nx = S yy = y ny =,4696 S xy = x y nxy = 00,63 Por lo tanto: α = 7,09966 Donde la regresón será: c) CALCULO DE TABLA ANOVA Suma de cuadrados resduales (RSS o SRC) RSS = u = S yy S xy Sxx RSS = = Suma explcada de cuadrados (ESS o SEC) ESS = S xy = = Opcón SIS A α = α = 7, β = β = 0,7980 β = 0,7980 Y = 7, ,798X EDWIN CHAMBI CANAZA de 8

3 Suma total de cuadrados (TSS o STC) TSS = S yy =.469 TSS = ESS + RSS = =.469 Coefcente de determnacón (r xy ) r xy = ESS TSS = Coefcente de correlacón (r xy ) Varanza de la regresón S xy = S yy = 0,848 r xy = 0,848 = 0.98 σ = RSS n = S yy r xy n Error estándar de la regresón: σ = = = = Varanza y desvacón estándar (error estándar o típca) del estmador α Var α = σ n + x =,69478 SE α = Var α =,6458 Varanza y desvacón estándar (error estándar o típca) del estmador β Covaranza entre los estmadores: FUENTE DE VARIACION REGRESION (ESS o SEC) RESIDUO (RSS o SRC) TOTAL (TSS o STC) Var β = σ = 0, SE β = Var β = 0,04556 Cov α, β = σ x = 0,04004 TABLA ANOVA (regresón smple k = ) SUMA DE CUADRADOS GRADOS DE LIBERTAD S yy r xy k S yy r xy n k S yy n CUADRADOS MEDIOS SIS A F S yy r xy = MS k F = MS MS S yy ( r xy ) n k = MS EDWIN CHAMBI CANAZA 3 de 8

4 Par nuestro ejemplo tenemos: Tabla Nº ANÁLISIS DE VARIANZA (TABLA ANOVA) Fuente de Suma de Grados de Promedo de varacón cuadrados lbertad los cuadrados F Regresón 8, , ,6833 Resduos 3, , Total, d) ANALISIS DEL ITERVALO DE CONFIANZA PARA α, β y (σ ) SIS A Con 5% de sgnfcanca o el 95% de confanza y (n-k)= (-)=0 grados de lbertad de tablas (Dstrbucón t de Student) encontramos t α =.8 Para α : Para β : α α P t α SE(α) t α = α 7,099 α P.8.8 = 0.95,6457 7,099 α.8.8,6457 7,099.8,6457 α 7, , α α ó α = ± β β P t α SE(β) t α = α 0,798 β P.8.8 = , , ,04556 β 0, , β β ó α = ± Para La Varanza (σ ) : P n σ σ (n ) χ α/ σ = α χ α/ Con (n-)= (-)=0 g.l. y 5% de sgnfcanca o 95% de confanza encontramos de tablas (j-cuadrado) los sguentes valores χ α/ = y χ α/ = P σ ( ) = 0.95 P σ = 0.95 ó σ ; EDWIN CHAMBI CANAZA 4 de 8

5 e) PRUEBAS DE HIPÓTESIS SIS A Método : método de ntervalos de confanza la cual se encontró en el ncso d) donde obtuvmos el sguente ntervalo para la pendente: β Por lo tanto rechazamos la hpótess de que β = 0.3 ya que este valor no se encuentra en el ntervalo encontrado. Método : prueba blateral (dos lados o dos colas) H o : β = 0.3 ; H : β 0.3 Escogemos un nvel de sgnfcanca de α = 5% o lo que es lo msmo una confanza del α = 95%, Calculamos t = β β que tene una dstrbucón t-student entonces de tablas SE(β ) con n = = 0 g.l. y α/ = Encontrando as t α/ =.8 con la cual defnmos la regón crtca R. C. = t α/ ; t α/ R. C. =.8;.8 Con nuestros datos calculamos: β β 0, t = = SE(β) 0,04556 t = Como t = R. C. =.8;.8 rechazamos H o, es decr se rechaza la hpótess de que el verdadero coefcente de la pendente es. Método 3: De la msma forma que el método, pero se toma el valor absoluto el valor de t β β t = SE(β) = 0, ,04556 t = = Además conocemos t α/ =.8 por lo tanto como: t > tα >.8 Rechazamos H o f) CALCULO DE LOS RESIDUOS Análss de los resduales Observacón Y X Pronostco Resduos y = α + βx e = y y 4,80 64,00 4,4088 0,399 5,30 68,00 5,80 0, ,50 79,00 7,059-0, ,0 56,00,9703 0, ,00 69,40 5,3797 0,60 6 3,80 60,90 3,853-0, ,0 6,80 4,930 0, ,00 75,60 6,4946 0, ,60 6,70 3,995 -, ,50 57,80 3,939 0,0603 5,60 7,30 5,90-0,304 5,80 70,50 5,5775 0,4 EDWIN CHAMBI CANAZA 5 de 8

6 SIS A g) REGRESION INVERSA El modelo para una regresón nversa es: Utlzando la tabla Nº se calculo: x = α` + β`y + v x = Σx n 66,5 y = Σy n 4,85833 = x nx = S yy = y ny =,4696 S xy = x y nxy = 00,63 Donde Los estmadores son: β` = S xy S yy = 00,63,4696 = α` = x β`y = 66, ,85833 Por lo tanto el modelo es: α` = x = y Cuya suma de cuadrados resduales (RSS o SRC) es: h) METODO MATRICIAL Conocendo los datos correspondentes: Los estmadores se obtenen a partr de: RSS = S xy = S yy Observacón Y X 4, , , , ,4 6 3,8 60,9 7 4, 6, ,6 9,6 6,7 0 3,5 57,8 5,6 7,3 5,8 70,5 Defnendo las matrces X e Y: β = X T X X T Y EDWIN CHAMBI CANAZA 6 de 8

7 SIS A Y Para X=60 Y es: 60.9 X X T X T X β = X T X X T Y β = Y Y = βx Y y la matrz de varanzas _ covaranzas es: Var_Cov = σ X T X Var_Cov Para calcular drectamente usamos el modelo encontrado en b), así reemplazamos X=60 en: Y = 7, ,798X Y = 7, ,798(60) y obtenemos Y = la cual es la msma del método matrcal. EJEMPLO.- Basado en una muestra de 0 observacones se obtuveron los sguentes resultados: Y = 0 X = 700 X Y = X = 3000 Y = 300 Con el coefcente de correlacón r = Pero al verfcar por segunda vez estos cálculos, se encontró que se habían regstrado dos pares de observacones Y X Y X 90 0 En lugar de EDWIN CHAMBI CANAZA 7 de 8

8 Cuál será el efecto de este error en r? obténgase la r correcta. Llevando a una tabla los datos: Y X Y² X² XY ANTES AHORA SIS A Donde los nuevos valores se calculan a contnuacón: Y 0 (80 50) (90 40) 0 X X Y 700 (0 0) (0 0) ( ) ( ) ( ) ( ) X Y ( ) ( ) Sabemos que: r xy = S xy S yy = x nx Donde: S yy = y ny S xy = x y nx y La tendenca tene la forma: y = α + βx + u ; β = S xy ; α = y βx Realzando los cálculos correspondentes con los datos Corregdos tenemos: x = 7 y= = 3760 S yy = 7690 S xy = 5880 β= α= y = x r xy = r xy = S xy S yy = r xy = Por lo tanto el efecto es: error Por tanto la r correcta es: r xy = la cual nos ndca una perfecta correlacón de los datos tomados por segunda vez. EDWIN CHAMBI CANAZA 8 de 8

Inferencia en Regresión Lineal Simple

Inferencia en Regresión Lineal Simple Inferenca en Regresón Lneal Smple Modelo de regresón lneal smple: Se tenen n observacones de una varable explcatva x y de una varable respuesta y, ( x, y)(, x, y),...,( x n, y n ) el modelo estadístco

Más detalles

EJERCICIO 1 1. VERDADERO 2. VERDADERO (Esta afirmación no es cierta en el caso del modelo general). 3. En el modelo lineal general

EJERCICIO 1 1. VERDADERO 2. VERDADERO (Esta afirmación no es cierta en el caso del modelo general). 3. En el modelo lineal general PRÁCTICA 6: MODELO DE REGRESIÓN MÚLTIPLE SOLUCIÓN EJERCICIO. VERDADERO. VERDADERO (Esta afrmacón no es certa en el caso del modelo general. 3. En el modelo lneal general Y =X β + ε, explcar la forma que

Más detalles

Especialista en Estadística y Docencia Universitaria REGRESION LINEAL MULTIPLE

Especialista en Estadística y Docencia Universitaria REGRESION LINEAL MULTIPLE Especalsta en Estadístca y Docenca Unverstara REGRESION LINEAL MULTIPLE El modelo de regresón lneal múltple El modelo de regresón lneal múltple con p varables predctoras y basado en n observacones tomadas

Más detalles

PRÁCTICA 16: MODELO DE REGRESIÓN MÚLTIPLE SOLUCIÓN

PRÁCTICA 16: MODELO DE REGRESIÓN MÚLTIPLE SOLUCIÓN PRÁCTICA 6: MODELO DE REGRESIÓN MÚLTIPLE SOLUCIÓN EJERCICIO. VERDADERO. VERDADERO (Esta afrmacón no es certa en el caso del modelo general). 3. En el modelo lneal general Y = X b + e, explcar la forma

Más detalles

Modelos lineales Regresión simple y múl3ple

Modelos lineales Regresión simple y múl3ple Modelos lneales Regresón smple y múl3ple Dept. of Marne Scence and Appled Bology Jose Jacobo Zubcoff Modelos de Regresón Smple Que tpo de relacón exste entre varables Predccón de valores a partr de una

Más detalles

Ejercicios y Talleres. puedes enviarlos a

Ejercicios y Talleres. puedes enviarlos a Ejerccos y Talleres puedes envarlos a klasesdematematcasymas@gmal.com www.klasesdematematcasymas.com EJERCICIOS DE REGRESIONES Y ANALISIS DE COVARIANZA Analzar la nformacón recoplada por medo de los dferentes

Más detalles

CURSO INTERNACIONAL: CONSTRUCCIÓN DE ESCENARIOS ECONÓMICOS Y ECONOMETRÍA AVANZADA. Instructor: Horacio Catalán Alonso

CURSO INTERNACIONAL: CONSTRUCCIÓN DE ESCENARIOS ECONÓMICOS Y ECONOMETRÍA AVANZADA. Instructor: Horacio Catalán Alonso CURSO ITERACIOAL: COSTRUCCIÓ DE ESCEARIOS ECOÓMICOS ECOOMETRÍA AVAZADA Instructor: Horaco Catalán Alonso Modelo de Regresón Lneal Smple El modelo de regresón lneal representa un marco metodológco, que

Más detalles

Prueba de Inferencia Estadística y Contraste de Hipótesis. 8 de octubre de 2012 GRUPO A

Prueba de Inferencia Estadística y Contraste de Hipótesis. 8 de octubre de 2012 GRUPO A Prueba de Inferenca Estadístca y Contraste de Hpótess 8 de octubre de 01 GRUPO A 1.- Se ha observado un ángulo cnco veces, obtenéndose los sguentes valores: Se pde: 65º5 ; 65º33 ; 65º3 ; 65º8 ; 65º7 a)

Más detalles

Prueba de Evaluación Continua

Prueba de Evaluación Continua Estadístca Descrptva y Regresón y Correlacón Prueba de Evaluacón Contnua 1-III-18 1.- Dada la varable x y la nueva varable y=a+bx, ndcar (demostrándolo) la expresón exstente entre las respectvas medas

Más detalles

Aspectos fundamentales en el análisis de asociación

Aspectos fundamentales en el análisis de asociación Carrera: Ingenería de Almentos Perodo: BR01 Docente: Lc. María V. León Asgnatura: Estadístca II Seccón A Análss de Regresón y Correlacón Lneal Smple Poblacones bvarantes Una poblacón b-varante contene

Más detalles

PyE_ EF1_TIPO1_

PyE_ EF1_TIPO1_ SEMESTRE 00- TIPO DURACIÓN MÁIMA.5 HORAS DICIEMBRE DE 00 NOMBRE. El índce de clardad se determnó en los celos de Morelos, para cada uno de los 365 días de un año, obtenéndose los sguentes datos. Límtes

Más detalles

Muestra: son datos de corte transversal correspondientes a 120 familias españolas.

Muestra: son datos de corte transversal correspondientes a 120 familias españolas. Capítulo II: El Modelo Lneal Clásco - Estmacón Aplcacones Informátcas 3. APLICACIONES INFORMÁTICAS Fchero : cp.wf (modelo de regresón smple) Seres: : consumo famlar mensual en mles de pesetas RENTA: renta

Más detalles

Instituto Tecnológico Superior del Sur del Estado de Yucatán EGRESIÓN LINEAL REGRESI. 10 kg. 10 cm

Instituto Tecnológico Superior del Sur del Estado de Yucatán EGRESIÓN LINEAL REGRESI. 10 kg. 10 cm Insttuto Tecnológco Superor del Sur del Estado de Yucatán REGRESI EGRESIÓN LINEAL 100 90 80 70 60 10 kg. 50 40 10 cm. 30 140 150 160 170 180 190 200 Objetvo de la undad Insttuto Tecnológco Superor del

Más detalles

EJERCICIOS: Tema 3. Los ejercicios señalados con.r se consideran de conocimientos previos necesarios para la comprensión del tema 3.

EJERCICIOS: Tema 3. Los ejercicios señalados con.r se consideran de conocimientos previos necesarios para la comprensión del tema 3. EJERCICIOS: Tema 3 Los ejerccos señalados con.r se consderan de conocmentos prevos necesaros para la comprensón del tema 3. Ejercco 1.R Dos bblotecas con el msmo fondo bblográfco especalzado ofrecen las

Más detalles

UNIDAD 12: Distribuciones bidimensionales. Correlación y regresión

UNIDAD 12: Distribuciones bidimensionales. Correlación y regresión Matemátcas aplcadas a las Cencas Socales UNIDAD 1: Dstrbucones bdmensonales. Correlacón regresón ACTIVIDADES-PÁG. 68 1. La meda la desvacón típca son: 1,866 0,065. Los jugadores que se encuentran por encma

Más detalles

DISTRIBUCIONES BIDIMENSIONALES

DISTRIBUCIONES BIDIMENSIONALES Matemátcas 1º CT 1 DISTRIBUCIONES BIDIMENSIONALES PROBLEMAS RESUELTOS 1. a) Asoca las rectas de regresón: y = +16, y = 1 e y = 0,5 + 5 a las nubes de puntos sguentes: b) Asgna los coefcentes de correlacón

Más detalles

DISEÑO COMPLETAMENTE ALEATORIZADO

DISEÑO COMPLETAMENTE ALEATORIZADO DISEÑO COMPLETAMENTE ALEATORIZADO yj µ + τ + uj ; :,..., I ; j:,..., n µ : Meda general ; τ : Efecto del tratamento esmo u j : Errores expermentales HIPOTESIS DEL MODELO La meda sea cero: La varanza sea

Más detalles

EXAMEN FINAL DE ECONOMETRIA, 3º CURSO (GRADOS EN ECO y ADE) 17 de Mayo de :00 horas

EXAMEN FINAL DE ECONOMETRIA, 3º CURSO (GRADOS EN ECO y ADE) 17 de Mayo de :00 horas EXAMEN FINAL DE ECONOMETRIA, 3º CURSO (GRADOS EN ECO y ADE) 7 de Mayo de 08 9:00 horas Prmer Apelldo: Nombre: DNI: Teléfono: Segundo Apelldo: Grupo y Grado: Profesor(a): e-mal: Pregunta A B C En Blanco

Más detalles

REGRESION LINEAL SIMPLE

REGRESION LINEAL SIMPLE REGREION LINEAL IMPLE Jorge Galbat Resco e dspone de una mustra de observacones formadas por pares de varables: (x 1, y 1 ) (x, y ).. (x n, y n ) A través de esta muestra, se desea estudar la relacón exstente

Más detalles

EJERCICIOS. Ejercicio 1.- Para el modelo de regresión simple siguiente: Y i = βx i + ε i i =1,..., 100. se tienen las siguientes medias muestrales:

EJERCICIOS. Ejercicio 1.- Para el modelo de regresión simple siguiente: Y i = βx i + ε i i =1,..., 100. se tienen las siguientes medias muestrales: EJERCICIOS Tema 2: MODELO DE REGRESION LINEAL SIMPLE Ejercco 1.- Para el modelo de regresón smple sguente: Y = βx + ε =1,..., 100 se tenen las sguentes medas muestrales: ( P y ) /n =0.3065 ( P y 2 ) /n

Más detalles

Regresión lineal y correlación lineal

Regresión lineal y correlación lineal UNIVERSIDAD ESTATAL DEL SUR DE MANABÍ Creada medante regstro Ofcal 61 del 7 de Febrero del 001 CARRERA DE AUDITORÍA Novembre 016 abrl 017 Semnaro de Investgacón Regresón lneal y correlacón lneal Dra. Marsabel

Más detalles

EXAMEN FINAL DE ECONOMETRIA, 3º CURSO (GRADOS EN ECO y ADE) 20 DE JUNIO DE horas

EXAMEN FINAL DE ECONOMETRIA, 3º CURSO (GRADOS EN ECO y ADE) 20 DE JUNIO DE horas EXAMEN FINAL DE ECONOMETRIA, 3º CURSO (GRADOS EN ECO y ADE) 0 DE JUNIO DE 018 15.30 horas Prmer Apelldo: Nombre: DNI: Teléfono: Segundo Apelldo: Grupo y Grado: Profesor(a): e-mal: Pregunta 1 A B C En Blanco

Más detalles

Universidad de Sonora Departamento de Matemáticas Área Económico Administrativa

Universidad de Sonora Departamento de Matemáticas Área Económico Administrativa Unversdad de onora Departamento de Matemátcas Área Económco Admnstratva Matera: Estadístca I Maestro: Dr. Francsco Javer Tapa Moreno emestre: 016-1 Hermosllo, onora, a 17 de 016. Introduccón En la clase

Más detalles

Regresión y Correlación Métodos numéricos

Regresión y Correlación Métodos numéricos Regresón y Correlacón Métodos numércos Prof. Mguel Hesquo Garduño. Est. Mrla Benavdes Rojas Depto. De Ingenería Químca Petrolera ESIQIE-IPN hesquogm@yahoo.com.mx mbenavdesr5@gmal.com Regresón lneal El

Más detalles

EXAMEN FINAL DE ECONOMETRIA, 3º CURSO (GRADOS EN ECO y ADE) 6 de Junio de :00 horas. Pregunta 19 A B C En Blanco. Pregunta 18 A B C En Blanco

EXAMEN FINAL DE ECONOMETRIA, 3º CURSO (GRADOS EN ECO y ADE) 6 de Junio de :00 horas. Pregunta 19 A B C En Blanco. Pregunta 18 A B C En Blanco EXAMEN FINAL DE ECONOMETRIA, 3º CURSO (GRADOS EN ECO y ADE) 6 de Juno de 3 9: horas Prmer Apelldo: Nombre: DNI: Teléfono: Segundo Apelldo: Grupo y Grado: Profesor(a): e mal: Pregunta A B C En Blanco Pregunta

Más detalles

EXAMEN FINAL DE ECONOMETRIA, 3º CURSO (GRADOS EN ECO y ADE) 19 de Septiembre de :30 horas. Pregunta 19 A B C En Blanco

EXAMEN FINAL DE ECONOMETRIA, 3º CURSO (GRADOS EN ECO y ADE) 19 de Septiembre de :30 horas. Pregunta 19 A B C En Blanco EXAMEN FINAL DE ECONOMETRIA, 3º CURSO (GRADOS EN ECO y ADE) 19 de Septembre de 01 15:30 horas Prmer Apelldo: Nombre: DNI: Teléfono: Segundo Apelldo: Grupo y Grado: Profesor(a): e mal: Pregunta 1 A B C

Más detalles

Problemas donde intervienen dos o más variables numéricas

Problemas donde intervienen dos o más variables numéricas Análss de Regresón y Correlacón Lneal Problemas donde ntervenen dos o más varables numércas Estudaremos el tpo de relacones que exsten entre ellas, y de que forma se asocan Ejemplos: La presón de una masa

Más detalles

PyE_ EF2_TIPO1_

PyE_ EF2_TIPO1_ UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉICO FACULTAD DE INGENIERÍA DIVISIÓN DE CIENCIAS BÁSICAS COORDINACIÓN DE CIENCIAS APLICADAS DEPARTAMENTO DE PROBABILIDAD Y ESTADÍSTICA SEGUNDO EAMEN FINAL RESOLUCIÓN SEMESTRE

Más detalles

PUBLICACIONES DE 4º CURSO

PUBLICACIONES DE 4º CURSO PUBLICACIONES DE 4º CURSO Grado: DERECHO-ADE Asgnatura: ECONOMERÍA Grupos: Únco ema: ESQUEMA EMA Profesores: Inmaculada Vllanúa Departamento de ANÁLISIS ECONÓMICO Curso Académco 04/5 ema : El Modelo Lneal

Más detalles

Regresión de Datos de Vida

Regresión de Datos de Vida Regresón de Datos de Vda Resumen El procedmento Regresón de Datos de Vda está dseñado para ajustar un modelo estadístco paramétrco relaconado con tempos de falla a una o más varables predctoras. Los predctores

Más detalles

Análisis de Regresión y Correlación

Análisis de Regresión y Correlación 1 Análss de Regresón y Correlacón El análss de regresón consste en emplear métodos que permtan determnar la mejor relacón funconal entre dos o más varables concomtantes (o relaconadas). El análss de correlacón

Más detalles

Tema 6. Estadística descriptiva bivariable con variables numéricas

Tema 6. Estadística descriptiva bivariable con variables numéricas Clase 6 Tema 6. Estadístca descrptva bvarable con varables numércas Estadístca bvarable: tpos de relacón Relacón entre varables cuanttatvas Para dentfcar las característcas de una relacón entre dos varables

Más detalles

Licenciatura en Administración y Dirección de Empresas INTRODUCCIÓN A LA ESTADÍSTICA EMPRESARIAL

Licenciatura en Administración y Dirección de Empresas INTRODUCCIÓN A LA ESTADÍSTICA EMPRESARIAL INTRODUCCIÓN A LA ESTADÍSTICA EMPRESARIAL Relacón de Ejerccos nº 2 ( tema 5) Curso 2002/2003 1) Las cento trenta agencas de una entdad bancara presentaban, en el ejercco 2002, los sguentes datos correspondentes

Más detalles

llamadas variables independientes, d e es, tomando valores en R las p+1 variables consideradas.

llamadas variables independientes, d e es, tomando valores en R las p+1 variables consideradas. Análss de Regresón Lneal Mª Dolores Cubles de la Vega Departamento de Estadístca e Investgacón Operatva Unversdad de Sevlla El Análss de Regresón es un conjunto de técncas estadístcas cuyo objetvo es nvestgar

Más detalles

Tema 2: El modelo clásico de regresión

Tema 2: El modelo clásico de regresión CURSO 010/011 Tema : El modelo clásco de regresón Aránzazu de Juan Fernández ECONOMETRÍA I ESQUEMA DEL TEMA Presentacón del modelo Hpótess del modelo Estmacón MCO Propedades algebracas de los estmadores

Más detalles

ACTIVIDADES ESTADÍSTICA UNIDIMENSIONAL. a) Calcula la temperatura media y la temperatura mediana de la semana.

ACTIVIDADES ESTADÍSTICA UNIDIMENSIONAL. a) Calcula la temperatura media y la temperatura mediana de la semana. Matemátcas Aplcadas a las Cencas Socales I ACTIVIDADES ESTADÍSTICA UNIDIMENSIONAL 1) Se ha meddo la temperatura en grados centígrados la presón atmosférca en mm en una cudad durante una semana obtenéndose

Más detalles

e i para construir el modelo econométrico que se escribe a continuación:

e i para construir el modelo econométrico que se escribe a continuación: 5.3 Especfcacón del modelo empírco Para este análss se formló n modelo econométrco de seccón crzada, porqe las observacones corresponden a las característcas de las personas encestadas en n msmo período

Más detalles

COLEGIO INGLÉS MEDIDAS DE DISPERSIÓN

COLEGIO INGLÉS MEDIDAS DE DISPERSIÓN COLEGIO IGLÉS DEPARTAMETO IVEL: CUARTO MEDIO PSU. UIDAD: ESTADISTICA 3 PROFESOR: ATALIA MORALES A. ROLADO SAEZ M. MIGUEL GUTIÉRREZ S. JAVIER FRIGERIO B. MEDIDAS DE DISPERSIÓ Las meddas de dspersón dan

Más detalles

REGRESION Y CORRELACION

REGRESION Y CORRELACION nav Estadístca (complementos) 1 REGRESION Y CORRELACION Fórmulas báscas en la regresón lneal smple Como ejemplo de análss de regresón, descrbremos el caso de Pzzería Armand, cadena de restaurantes de comda

Más detalles

Análisis de la varianza de un factor

Análisis de la varianza de un factor Análss de la varanza de un factor El test t de muestras se aplca cuando se queren comparar las medas de dos poblacones con dstrbucones normales con varanzas guales y se observan muestras ndependentes para

Más detalles

Tema 5: Incumplimiento de las Hipótesis sobre el Término de Perturbación

Tema 5: Incumplimiento de las Hipótesis sobre el Término de Perturbación Tema 5: Incumplmento de las Hpótess sobre el Térmno de Perturbacón TEMA 5: INCMPLIMIENTO DE LAS HIPÓTESIS SOBRE EL TÉRMINO DE PERTRBACIÓN 5.) Introduccón 5.) El Modelo de Regresón Lneal Generalzado 5.3)

Más detalles

Solución de los Ejercicios de Práctica # 1. Econometría 1 Prof. R. Bernal

Solución de los Ejercicios de Práctica # 1. Econometría 1 Prof. R. Bernal Solucón de los Ejerccos de ráctca # 1 Econometría 1 rof. R. Bernal 1. La tabla de frecuencas está dada por: Marca A Marca B

Más detalles

Medidas de centralización

Medidas de centralización 1 Meddas de centralzacón Meda Datos no agrupados = x X = n = 0 Datos agrupados = x X = n = 0 Medana Ordenamos la varable de menor a mayor. Calculamos la columna de la frecuenca relatva acumulada F. Buscamos

Más detalles

Figura 1

Figura 1 5 Regresón Lneal Smple 5. Introduccón 90 En muchos problemas centífcos nteresa hallar la relacón entre una varable (Y), llamada varable de respuesta, ó varable de salda, ó varable dependente y un conjunto

Más detalles

Tema 3: Procedimientos de Constrastación y Selección de Modelos

Tema 3: Procedimientos de Constrastación y Selección de Modelos Tema 3: Procedmentos de Constrastacón y Seleccón de Modelos TEMA 3: PROCEDIMIENTOS DE CONTRASTACIÓN Y SELECCIÓN DE MODELOS 3) Introduccón a los Modelos con Restrccones Estmacón Restrngda 3) Contrastes

Más detalles

HERRAMIENTAS ESTADÍSTICAS-COMPARACIÓN DE MÁS DE DOS MUESTRAS: ANOVA (PARTE I)

HERRAMIENTAS ESTADÍSTICAS-COMPARACIÓN DE MÁS DE DOS MUESTRAS: ANOVA (PARTE I) HERRAMIENTAS ESTADÍSTICAS-COMPARACIÓN DE MÁS DE DOS MUESTRAS: Módulo 13 APUNTES DE CLASE Profesor: Arturo Ruz-Falcó Rojas Madrd, Mayo 009 Pág. 1 Módulo 13. HERRAMIENTAS ESTADÍSTICAS-COMPARACIÓN DE MÁS

Más detalles

Lo que nos interesa en el análisis de varianza de una vía es extender el test t para dos muestras independientes, para comparar más de dos muestras.

Lo que nos interesa en el análisis de varianza de una vía es extender el test t para dos muestras independientes, para comparar más de dos muestras. Capítulo : Comparacón de varos tratamentos o grupos Muchas preguntas de nvestgacón en educacón, pscología, negocos, ndustra y cencas naturales tenen que ver con la comparacón de varos grupos o tratamentos.

Más detalles

ESTADÍSTICA BIDIMENSIONAL ÍNDICE GENERAL

ESTADÍSTICA BIDIMENSIONAL ÍNDICE GENERAL ESTADÍSTICA BIDIMESIOAL ÍDICE GEERAL 1.-Varable Estadístca Bdmensonal. Tablas de frecuenca... 1.1.- Concepto de varable estadístca bdmensonal. Eemplos.... 1..-Tablas bdmensonales de frecuencas. Tablas

Más detalles

Relación 2: Regresión Lineal.

Relación 2: Regresión Lineal. Relacón 2: Regresón Lneal. 1. Se llevó a cabo un estudo acerca de la cantdad de azúcar refnada (Y ) medante un certo proceso a varas temperaturas dferentes (X). Los datos se codfcan y regstraron en el

Más detalles

TEMA III EL ANÁLISIS DE REGRESIÓN LINEAL MÚLTIPLE

TEMA III EL ANÁLISIS DE REGRESIÓN LINEAL MÚLTIPLE TEMA III EL ANÁLISIS DE REGRESIÓN LINEAL MÚLTIPLE LECTURA OBLIGATORIA Regresón Lneal Múltple. En Ral, A. y Varela, J. (008). Estadístca Práctca para la Investgacón en Cencas de la Salud. Coruña: Netbblo.

Más detalles

Erratas y modificaciones

Erratas y modificaciones Erratas y modfcacones Págna 39 Tabla fnal: Dce: Expermental T Debe decr: Expermental T Págna 40 Tabla comenzo: Dce: T 0 Debe decr: T Dce: 3 T Debe decr: 3 T Págna 05 Párrafo : Debe qutarse el acento de

Más detalles

Ejercicio nº 1. a) Elabora una tabla de frecuencias. b) Representa gráficamente la distribución.

Ejercicio nº 1. a) Elabora una tabla de frecuencias. b) Representa gráficamente la distribución. Ejercco nº En una empresa de teleonía están nteresados en saber cuál es el número de aparatos teleóncos (ncludos teléonos móvles) que se tene en las vvendas. Se hace una encuesta y, hasta ahora, han recbdo

Más detalles

17/02/2015. Ángel Serrano Sánchez de León

17/02/2015. Ángel Serrano Sánchez de León Ángel Serrano Sánchez de León 1 Índce Introduccón Varables estadístcas Dstrbucones esde frecuencas c Introduccón a la representacón gráfca de datos Meddas de tendenca central: meda (artmétca, geométrca,

Más detalles

Estadística Teórica I EXÁMENES

Estadística Teórica I EXÁMENES Estadístca Descrptva EXCEL SPSS Facultad Cencas Económcas y Empresarales Departamento de Economía Aplcada Profesor: Santago de la Fuente Fernández Estadístca Teórca I EXÁMEES Estadístca Descrptva EXCEL

Más detalles

REGRESION LINEAL SIMPLE

REGRESION LINEAL SIMPLE REGREION LINEAL IMPLE Jorge Galbat Resco e dspone de una muestra de observacones formadas por pares de varables: (x 1, y 1 ), (x, y ),.., (x n, y n ) A través de esta muestra, se desea estudar la relacón

Más detalles

TEMA III EL ANÁLISIS DE REGRESIÓN LINEAL MÚLTIPLE

TEMA III EL ANÁLISIS DE REGRESIÓN LINEAL MÚLTIPLE TEMA III EL ANÁLISIS DE REGRESIÓN LINEAL MÚLTIPLE LECTURA OBLIGATORIA Regresón Lneal Múltple. En Ral, A. y Varela, J. (008). Estadístca Práctca para la Investgacón en Cencas de la Salud. Coruña: Netbblo.

Más detalles

Examen Final de Econometría Grado

Examen Final de Econometría Grado Examen Fnal de Econometría Grado 17 de Mayo de 2016 15.30 horas Apelldos: Grado (ADE/ ECO): Nombre del profesor(a): Nombre: Grupo: Emal: Antes de empezar a resolver el examen, rellene TODA la nformacón

Más detalles

b) Realiza el diagrama de dispersión c) Calcula media y desviación típica de cada variable 2

b) Realiza el diagrama de dispersión c) Calcula media y desviación típica de cada variable 2 Ejercco 1: Varable dscreta. Datos con recuencas. Tabla de doble entrada En una clase compuesta por alumnos se ha hecho un estudo sobre el número de horas daras de estudo X el número de suspensos Y, obtenéndose

Más detalles

Análisis de la varianza de un factor

Análisis de la varianza de un factor Análss de la varanza de un factor El test t de muestras se aplca cuando se queren comparar las medas de dos poblacones con dstrbucones normales con varanzas guales y se observan muestras ndependentes para

Más detalles

Relaciones entre variables

Relaciones entre variables Relacones entre varables Las técncas de regresón permten hacer predccones sobre los valores de certa varable Y (dependente), a partr de los de otra (ndependente), entre las que se ntuye que exste una relacón.

Más detalles

3. VARIABLES ALEATORIAS.

3. VARIABLES ALEATORIAS. 3. VARIABLES ALEATORIAS. Una varable aleatora es una varable que toma valores numércos determnados por el resultado de un epermento aleatoro (no hay que confundr la varable aleatora con sus posbles valores)

Más detalles

Regresión Binomial Negativa

Regresión Binomial Negativa Regresón Bnomal Negatva Resumen El procedmento Regresón Bnomal Negatva está dseñado para ajustar un modelo de regresón en el cual la varable dependente Y consste de conteos. El modelo de regresón ajustado

Más detalles

Regresión Lineal Simple y Correlación

Regresión Lineal Simple y Correlación 4 Regresón Lneal Smple y Correlacón 4.1. Fundamentos teórcos 4.1.1. Regresón La regresón es la parte de la estadístca que trata de determnar la posble relacón entre una varable numérca, que suele llamarse

Más detalles

) para toda permutación (p p 1 p

) para toda permutación (p p 1 p 09 Elena J. Martínez do cuat. 004 Análss de la varanza de dos factores El problema anteror consderaba la comparacón de muestras para detectar dferencas entre las respectvas poblacones. En el modelo de

Más detalles

CAPÍTULO 4 MARCO TEÓRICO

CAPÍTULO 4 MARCO TEÓRICO CAPÍTULO 4 MARCO TEÓRICO Cabe menconar que durante el proceso de medcón, la precsón y la exacttud de cualquer magntud físca está lmtada. Esta lmtacón se debe a que las medcones físcas sempre contenen errores.

Más detalles

Curso Práctico de Bioestadística Con Herramientas De Excel

Curso Práctico de Bioestadística Con Herramientas De Excel Curso Práctco de Boestadístca Con Herramentas De Excel Fabrzo Marcllo Morla MBA barcllo@gmal.com (593-9) 419439 Otras Publcacones del msmo autor en Repostoro ESPOL Fabrzo Marcllo Morla Guayaqul, 1966.

Más detalles

Modelo Lineal Múltiple. Clase 03. Profesor: Carlos R. Pitta. ICPM050, Econometría. Universidad Austral de Chile Escuela de Ingeniería Comercial

Modelo Lineal Múltiple. Clase 03. Profesor: Carlos R. Pitta. ICPM050, Econometría. Universidad Austral de Chile Escuela de Ingeniería Comercial Unversdad Austral de Chle Escuela de Ingenería Comercal ICPM050, Econometría Clase 03 Modelo Lneal Múltple Profesor: Carlos R. Ptta Econometría, Prof. Carlos R. Ptta, Unversdad Austral de Chle. Análss

Más detalles

Instrucciones: Leer detenidamente los siete enunciados y resolver seis de los siete problemas propuestos. Frecuencia absoluta (f i )

Instrucciones: Leer detenidamente los siete enunciados y resolver seis de los siete problemas propuestos. Frecuencia absoluta (f i ) UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉICO FACULTAD DE INGENIERÍA DIVISIÓN DE CIENCIAS BÁSICAS COORDINACIÓN DE CIENCIAS APLICADAS DEPARTAMENTO DE PROBABILIDAD Y ESTADÍSTICA PRIMER EAMEN FINAL RESOLUCIÓN SEMESTRE

Más detalles

2 Dos tipos de parámetros estadísticos

2 Dos tipos de parámetros estadísticos Dos tpos de parámetros estadístcos Págna 198 1. Calcula la meda, la medana y la moda de cada una de estas dstrbucones estadístcas: a) 4, 5, 6, 6, 6, 6, 7, 11, 1, 17 b), 1, 6, 9,, 8, 9,, 14, c), 3, 3, 3,

Más detalles

Población 1. Población 1. Población 2. Población 2. Población 1. Población 1. Población 2. Población 2. Frecuencia. Frecuencia

Población 1. Población 1. Población 2. Población 2. Población 1. Población 1. Población 2. Población 2. Frecuencia. Frecuencia MAT-3 Estadístca I Tema : Meddas de Dspersón Facltador: Félx Rondón, MS Insttuto Especalzado de Estudos Superores Loyola Introduccón Las meddas de tendenca central son ndcadores estadístcos que resumen

Más detalles

Tema 1:Descripción de una variable. Tema 1:Descripción de una variable. 1.1 El método estadístico. 1.1 El método estadístico. Describir el problema

Tema 1:Descripción de una variable. Tema 1:Descripción de una variable. 1.1 El método estadístico. 1.1 El método estadístico. Describir el problema Tema :Descrpcón de una varable Tema :Descrpcón de una varable. El método estadístco. Descrpcón de conjuntos de datos Dstrbucones de frecuencas. Representacón gráfca Dagrama de barras Hstograma. Meddas

Más detalles

Ejemplo: Consumo - Ingreso. Ingreso. Consumo. Población 60 familias

Ejemplo: Consumo - Ingreso. Ingreso. Consumo. Población 60 familias Ejemplo: Consumo - Ingreso Ingreso Consumo Poblacón 60 famlas ( YX ) P = x [ YX ] E = x Línea de regresón poblaconal 80 60 Meda Condconal 40 20 00 [ X = 200] EY o o o o [ X = 200] EY 80 o o o 60 o 40 8

Más detalles

Escuela de Economía Universidad de Carabobo Profesor: Exaú Navarro Pérez.

Escuela de Economía Universidad de Carabobo Profesor: Exaú Navarro Pérez. Escuela de Economía Universidad de Carabobo Profesor: Exaú Navarro Pérez. Econometría Regresión Múltiple: Municipio Ocupados Población Analfabeta Mayor de 10 años Total de Viviendas Bejuma 18.874 1.835

Más detalles

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Unversdad de Cádz Departamento de Matemátcas MATEMÁTICAS para estudantes de prmer curso de facultades y escuelas técncas Tema 13 Dstrbucones bdmensonales. Regresón y correlacón lneal Elaborado por la Profesora

Más detalles

FE DE ERRATAS Y AÑADIDOS AL LIBRO FUNDAMENTOS DE LAS TÉCNICAS MULTIVARIANTES (Ximénez & San Martín, 2004)

FE DE ERRATAS Y AÑADIDOS AL LIBRO FUNDAMENTOS DE LAS TÉCNICAS MULTIVARIANTES (Ximénez & San Martín, 2004) FE DE ERRATAS Y AÑADIDOS AL LIBRO FUNDAMENTOS DE LAS TÉCNICAS MULTIVARIANTES (Xménez & San Martín, 004) Capítulo. Nocones báscas de álgebra de matrces Fe de erratas.. Cálculo de la transpuesta de una matrz

Más detalles

T. 9 El modelo de regresión lineal

T. 9 El modelo de regresión lineal 1 T. 9 El modelo de regresón lneal 1. Conceptos báscos sobre el análss de regresón lneal. Ajuste de la recta de regresón 3. Bondad de ajuste del modelo de regresón Modelos predctvos o de regresón: la representacón

Más detalles

Height (altura) Extraction (extracción)

Height (altura) Extraction (extracción) Regresón Posson Resumen El procedmento Regresón Posson está dseñado para ajustar un modelo de regresón en el cual la varable dependente Y consste de conteos. El modelo de regresón ajustado relacona Y con

Más detalles

9Soluciones a los ejercicios y problemas

9Soluciones a los ejercicios y problemas 38 S a todos los datos de una dstrbucón le sumamos un msmo número, qué le ocurre a la meda? Y a la desvacón típca? Y s multplcamos todos los datos por un msmo número? Llamamos a al valor sumado a cada

Más detalles

Lección 4. Ejercicios complementarios.

Lección 4. Ejercicios complementarios. Introduccón a la Estadístca Grado en Tursmo Leccón 4. Ejerccos complementaros. Ejercco 1 (juno 06). La nformacón relatva al mes de enero sobre los ngresos (X) y los gastos (Y), expresados en mles de euros,

Más detalles

Resolución. Instrucciones: Leer detenidamente los siete enunciados y resolver seis de los siete problemas propuestos.

Resolución. Instrucciones: Leer detenidamente los siete enunciados y resolver seis de los siete problemas propuestos. UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉICO FACULTAD DE INGENIERÍA DIVISIÓN DE CIENCIAS BÁSICAS COORDINACIÓN DE CIENCIAS APLICADAS DEPARTAMENTO DE PROBABILIDAD Y ESTADÍSTICA SEGUNDO EAMEN FINAL SEMESTRE 04

Más detalles

Estadística II Examen final enero 19/1/17 Curso 2016/17 Soluciones Duración del examen: 2 h y 15 min

Estadística II Examen final enero 19/1/17 Curso 2016/17 Soluciones Duración del examen: 2 h y 15 min Estadística II Examen final enero 19/1/17 Curso 016/17 Soluciones Duración del examen: h y 15 min 1. 3 puntos El Instituto para la Diversificación y Ahorro de la Energía IDAE ha publicado un estudio sobre

Más detalles

Regresión y correlación simple 113

Regresión y correlación simple 113 Regresón y correlacón smple 113 Captulo X ANALISIS DE REGRESION Y CORRELACION El análss de regresón consste en emplear métodos que permtan determnar la mejor relacón funconal entre dos o más varables concomtantes

Más detalles

Un estimado de intervalo o intervalo de confianza ( IC

Un estimado de intervalo o intervalo de confianza ( IC Un estmado puntual, por ser un sólo número, no proporcona por sí msmo nformacón alguna sobre la precsón y confabldad de la estmacón. Debdo a la varabldad que pueda exstr en la muestra, nunca se tendrá

Más detalles

MEDIDAS DESCRIPTIVAS

MEDIDAS DESCRIPTIVAS Tema 2: MEDIDAS DESCRIPTIVAS DE LOS DATOS 1. MEDIDAS DE CETRALIZACIÓ: Meda Medana Moda Cuantles Otras 2. MEDIDAS DE DISPERSIÓ: Desvacón típca Varanza Rango Otras 3. MEDIDAS DE FORMA: Asmetría Apuntamento

Más detalles

Regresión y Correlación

Regresión y Correlación Regresón Correlacón.- El número de turstas (en mllones) entrados en España mensualmente durante los años 00 00 se epone en la sguente estadístca. Nº Turstas 00,76,6,9 3,8 4,4 4,8 8,93 9,98 5,9 4,34,6 3,65

Más detalles

CAPÍTULO IV. MEDICIÓN. De acuerdo con Székely (2005), existe dentro del período información

CAPÍTULO IV. MEDICIÓN. De acuerdo con Székely (2005), existe dentro del período información IV. Base de Datos CAPÍTULO IV. MEDICIÓN De acuerdo con Székely (2005), exste dentro del período 950-2004 nformacón representatva a nvel naconal que en algún momento se ha utlzado para medr la pobreza.

Más detalles

I.E.S. Historiador Chabás -1- Juan Bragado Rodríguez

I.E.S. Historiador Chabás -1- Juan Bragado Rodríguez Problema La sguente tabla epresa la estatura en cm. de soldados: Talla 5 56 60 6 68 6 80 8 88 Soldados 6 86 50 8 95 860 85 6 9 a) Haz un hstograma que represente la estatura en metros de los soldados.

Más detalles

Tema 11: Estadística.

Tema 11: Estadística. Tema 11: Estadístca. Ejercco 1. Un fabrcante de tornllos desea hacer un control de caldad. Para ello, recoge 1 de cada 100 tornllos producdos y lo analza. a) Cuál es la poblacón? b) Cuál es la muestra?

Más detalles

A. Una pregunta muy particular que se puede hacer a una distribución de datos es de qué magnitud es es la heterogeneidad que se observa.

A. Una pregunta muy particular que se puede hacer a una distribución de datos es de qué magnitud es es la heterogeneidad que se observa. MEDIDA DE DIPERIÓ A. Una pregunta muy partcular que se puede hacer a una dstrbucón de datos es de qué magntud es es la heterogenedad que se observa. FICHA º 18 Las meddas de dspersón generalmente acompañan

Más detalles

6 Heteroscedasticidad

6 Heteroscedasticidad 6 Heteroscedastcdad Defncón casas de heteroscedastcdad Defncón: la varanza de la pertrbacón no es constante. Casas: a natraleza de la relacón entre las varables Ejemplo : relacón gasto-renta; Hogares con

Más detalles

INTRODUCCIÓN AL ANÁLISIS DE DATOS SEPTIEMBRE 2014 Código asignatura: EXAMEN TIPO TEST MODELO B DURACION: 2 HORAS.

INTRODUCCIÓN AL ANÁLISIS DE DATOS SEPTIEMBRE 2014 Código asignatura: EXAMEN TIPO TEST MODELO B DURACION: 2 HORAS. eptembre 04 EAMEN MODELO B ág. INTRODUCCIÓN AL ANÁLII DE DATO ETIEMBRE 04 Códgo asgnatura: 60037 EAMEN TIO TET MODELO B DURACION: HORA olucones 0 4 40 30 0 0 0 44 4 39 6 4 36 37 3 8 00 0 0 03 04 Nº de

Más detalles

Correlación y regresión lineal simple

Correlación y regresión lineal simple . Regresón lneal smple Correlacón y regresón lneal smple. Introduccón La correlacón entre dos varables ( e Y) se refere a la relacón exstente entre ellas de tal manera que a determnados valores de se asocan

Más detalles

Medidas de Variabilidad

Medidas de Variabilidad Meddas de Varabldad Una medda de varabldad es un ndcador del grado de dspersón de un conjunto de observacones de una varable, en torno a la meda o centro físco de la msma. S la dspersón es poca, entonces

Más detalles

CyRCE: Un modelo de Riesgo de Crédito para Mercados Emergentes.

CyRCE: Un modelo de Riesgo de Crédito para Mercados Emergentes. CyRCE: Un modelo de Resgo de Crédto para Mercados Emergentes. Javer Márquez Dez-Canedo. DICIEMBRE 2004 Índce I. Introduccó cón II. CyRCE 1. El Modelo General 2. Segmentacón del Portafolo 3. Índce de Concentracón

Más detalles

Riesgos Proporcionales de Cox

Riesgos Proporcionales de Cox Resgos Proporconales de Cox Resumen El procedmento Resgos Proporconales de Cox esta dseñado para ajustar un modelo estadístco sem-parámetrco a los tempos de falla de una o mas varables predctoras. Los

Más detalles

Variables Dummy (parte I)

Variables Dummy (parte I) Varables Dummy (parte I) Fortno Vela Peón Unversdad Autónoma Metropoltana fvela@correo.xoc.uam.mx Octubre, 2010 19/10/2010 Méxco, D. F. 1 Introduccón Algunas de las varables son por su naturaleza propa

Más detalles

El Impacto de las Remesas en el PIB y el Consumo en México, 2015

El Impacto de las Remesas en el PIB y el Consumo en México, 2015 El Impacto de las Remesas en el y el Consumo en Méxco, 2015 Ilana Zárate Gutérrez y Javer González Rosas Cudad de Méxco Juno 23 de 2016 1 O B J E T I V O Durante muchos años la mgracón ha sdo vsta como

Más detalles

Efectos fijos o aleatorios: test de especificación

Efectos fijos o aleatorios: test de especificación Cómo car?: Montero. R (2011): Efectos fjos o aleatoros: test de especfcacón. Documentos de Trabajo en Economía Aplcada. Unversdad de Granada. España Efectos fjos o aleatoros: test de especfcacón Roberto

Más detalles