UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE M

Tamaño: px
Comenzar la demostración a partir de la página:

Download "UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE M"

Transcripción

1 UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE--4-M---7 CURSO: Matemática Básica SEMESTRE: Primero CÓDIGO DEL CURSO: TIPO DE EXAMEN: Eamen Final FECHA DE EXAMEN: 8 e mayo e 7 RESOLVIÓ EL EXAMEN: Juan Carlos Martini Palma DIGITALIZÓ EL EXAMEN: Juan Carlos Martini Palma COORDINADOR: Ing. José Alfreo González Díaz REVISÓ EL EXAMEN: Ing. Renato Ponciano

2 Matemática Básica Tema : ( puntos) Eamen Final Temario A Un epósito en forma e cono circular recto, con su vértice hacia arriba y su base sobre el suelo tiene un raio e metros y una altura e 6 metros. Si el epósito se encuentra lleno e agua, calcule el trabajo realizao al bombear toa el agua hasta una altura e 7 metros sobre el nivel el suelo. Tema : ( puntos) a. Calcule la erivaa y simplifique la respuesta: b. Calcule el límite: y 5sen 5 5 lim ln c. Calcule la longitu e arco para la curva aa en el intervalo, y 6 Tema : (5 puntos) La base e un sólio es un círculo cuya ecuación es y 4. Encuentre el volumen el sólio si toas las secciones transversales tienen forma e cuarao, con una e sus iagonales en la base el sólio y perpenicular al eje y. Tema 4: (5 puntos) Encuentre las ecuaciones e las os rectas que son tangentes comunes a las gráficas e las curvas cuyas ecuaciones son Tema 5: ( puntos) y y Un cilinro circular recto sin tapaera, será construio al pegar los os etremos opuestos AC y BD e una lámina rectangular que tiene una iagonal BC cuya longitu es 4 centímetros. Encuentre el volumen máimo el cilinro. y 4

3 Matemática Básica A B 4 cm y y C D Tema : ( puntos) Eamen Final Temario B Un epósito en forma e cono circular recto, con su vértice hacia arriba y su base sobre el suelo tiene un raio e metros y una altura e 4 metros. Si el epósito se encuentra lleno e agua, calcule el trabajo realizao al bombear toa el agua hasta una altura e 6 metros sobre el nivel el suelo. Tema : ( puntos) a. Calcule la erivaa y simplifique la respuesta: b. Calcule el límite: y 9sen 9 lim ln c. Calcule la longitu e arco para la curva aa en el intervalo, y 6 Tema : (5 puntos) La base e un sólio es un círculo cuya ecuación es y 9. Encuentre el volumen el sólio si toas las secciones transversales tienen forma e cuarao, con una e sus iagonales en la base el sólio y perpenicular al eje y. Tema 4: (5 puntos) Encuentre las ecuaciones e las os rectas que son tangentes comunes a las gráficas e las curvas cuyas ecuaciones son y y y 4

4 Matemática Básica Tema 5: ( puntos) Un cilinro circular recto sin tapaera, será construio al pegar los os etremos opuestos AC y BD e una lámina rectangular que tiene una iagonal BC cuya longitu es 4 centímetros. Encuentre el volumen máimo el cilinro. A B 4 cm y y C D

5 Matemática Básica SOLUCIÓN DEL EXAMEN TEMARIO A Tema : ( puntos) Un epósito en forma e cono circular recto, con su vértice hacia arriba y su base sobre el suelo tiene un raio e metros y una altura e 4 metros. Si el epósito se encuentra lleno e agua, calcule el trabajo realizao al bombear toa el agua hasta una altura e 6 metros sobre el nivel el suelo. No. Eplicación Operatoria. Primero se grafica la sección transversal el tanque y se establece un sistema e referencia. El cono está compuesto por iscos e raio.. Para calcular la fuerza se necesita conocer el peso el agua, que es el proucto e la masa por la gravea. La masa se puee calcular usano la ensia el agua. El volumen esta ao por el área e los iscos que componen el cono multiplicao por la altura el agua y, pero como esta cambia se escribe como un iferencial y. Como el agua se mueve en la irección y, se ebe escribir el raio en terminos e y por meio e triangulos semejantes. ρ = m = [kg V m ] m = V V = A c y = π y = 6 6 y = 6 y

6 Matemática Básica. Se calcula la fuerza necesaria para mover el agua fuera el tanque. 4. La istancia que se mueve el agua es la iferencia entre 7m sobre el suelo y el lugar one esta el agua y. F = a m F = ( π ( 6 y ) y)(9.8) = 7 y 5. Se sustituye la masa y la istancia encontraa en la ecuación e trabajo. W = (7 y) (98 π ( 6 y ) ) y 6. Se integran ambos laos e la ecuacion. Como la altura el agua es e 6m; y esta restringia a y 6. Por lo que los limites e la integral el lao erecho son y 6. W 6 W = (7 y) (98 π ( 6 y ) ) y 6 W = 45π (7 y)(6 y) y 7. Se opera lo que esta aentro e la integral y se separa la integral. 6 (7 y)(6 y) y 6 = y y 6 + 9y y 6 yy 6 + 5y 8. Se resuelve caa integral y se suman los resultaos. W = 45π( ) W = 97π J = J

7 Matemática Básica Tema : ( puntos) a. Calcule la erivaa y simplifique la respuesta: y 5sen 5 5 No. Eplicación Operatoria. Como es la erivaa e una suma, los terminos se pueen erivar por separao. Primero se eriva el primer termino usano la efinicion e la erivaa e sen () y la regla e la caena. sen () = 5sen ( 5 ) = Se opera aentro el raical y se simplifica = 5 = ^. Luego se eriva el seguno termino usano la regla e la erivaa e un proucto y la regla e la caena. 5 = 5 + ( (5 ) ( )) 4. Se simplifica la erivaa operano la frección. 5 = = = 5. Luego se restan la os erivaas y se simplifica. (5sen ( 5 ) 5 = 5 5 = (5sen ( 5 ) 5 = 5

8 Matemática Básica b. Calcule el límite: lim ln No. Eplicación Operatoria. Para resolver este limite primero se opera la función. lim ( + ln () ) = lim ln () ( + ln ()( ) ). Luego se evalúa el limite. lim ln () ln () ( ) = + ln ()( ) ln ()( ) = Forma Ineterminaa. Como el limite tiene forma ineterminaa se aplica L Hôpital al limite erivano el numeraor y enominaor inepenientemente y se vuelve a evaluar. lim ( + + ln ()) = Forma Ineterminaa = + ln () 4. Como el limite tiene forma ineterminaa se aplica L Hôpital al limite erivano el numeraor y enominaor inepenientemente y se vuelve a evaluar. lim ( ( ) ) = + ( ) ^ + + ^ + = lim + ( ln () ) =

9 Matemática Básica c. Calcule la longitu e arco para la curva aa en el intervalo, y 6 No EXPLICACION OPERATORIA. Para calcular la longitu e arco se utiliza la siguiente formula. b L = + ( y ) a. Primero se calcula la erivaa e la función y se simplifica. ( 6 + ) = = 4 4. Se sustituye la erivaa en la formula y se opera el cuarao. L = + ( 4 4 ) = Se opera la fracción y se simplifica operano y sacano factor comun 4 al numeraor. L = = Se factoriza el numeraor y se opera el raical. L = = (4 + ) 4 4 = 4 + = +

10 Matemática Básica 6. Se calculan las integrales y se suman. L = = 7 L = 7 u =.4 u Tema : (5 puntos) La base e un sólio es un círculo cuya ecuación es y 4. Encuentre el volumen el sólio si toas las secciones transversales tienen forma e cuarao, con una e sus iagonales en la base el sólio y perpenicular al eje y. No EXPLICACION OPERATORIA. Primero se calcula la longitu e la iagonal e las secciones transversales. l = 4 y l = 4 y

11 Matemática Básica. Se calculan los laos el cuarao usano pitagoras. Los laos al cuarao son iguales al area. a + a = 4(4 y ) a = 6 4y a = A = 8 y. El iferencial e volumen esta ao por el area multiplicao por un iferencial e longitu. Se integran ambos laos e la ecuación para encontrar el volumen. La base el sólio esta restringia e la siguiente manera: y V V = (8 y )y V = (8 y )y V = (8y y ) = 64 =. V = 64 u =. u

12 Matemática Básica Tema 4: (5 puntos) Encuentre las ecuaciones e las os rectas que son tangentes comunes a las gráficas e las curvas cuyas ecuaciones son y y y 4 No. Eplicación Operación. En la grafica se puee observar que las rectas tienen la misma peniente pero con signos opuestos. Esto se puee confirmar con la erivaa.. La erivaa e una función es la peniente e la recta tangente, por lo que al erivar las funciones obtenremos las penientes e la rectas. y = ( ) = y (a) = a y = ( + 4) = y (a) = a La peniente m tambien se puee calcular usano os puntos. Se usan los puntos e intersección (a, a ) y ( a, a + 4) para calcular la peniente y se simplifica. La peniente m tambien se puee calcular usano os puntos. Se usan los puntos e intersección ( a, a ) y (a, a + 4) para calcular la peniente y se simplifica. Se igualan las penientes encontraas para encontrar los puntos e intersección. m = y y = a + 4 ( a ) a a = a + 4 a m = y y = a + 4 ( a ) a ( a) = a + 4 a m = a = a + 4 a a 4 = m = a = a + 4 a a 4 = a = ±, m =, m =

13 Matemática Básica 6. Usano la ecuación punto-peniente se encuentran las ecuaciones e las os rectas. y() y = m( ) y () ( ) = ( ) y () ( ) = ( + ) y () = + y () = + Tema 5: ( puntos) Un cilinro circular recto sin tapaera, será construio al pegar los os etremos opuestos AC y BD e una lámina rectangular que tiene una iagonal BC cuya longitu es 4 centímetros. Encuentre el volumen máimo el cilinro. A B 4 cm y y C D No. Eplicación Operación Para calcular el volumen e un cilinro es necesario saber el raio y V c = πr h = πr. la altura el mismo. Al momento e construir el cilinro y = h se convierte en el perimetro e la base y y se convierte en la altura. V c = π ( π ) y. Se escribe en terminos e y utilizano el teorema e Pitagoras, para que el volumen epena e solo una variable. + y = 576 = 576 y

14 Matemática Básica. Se sustituye en la ecuación e volumen y se simplifica. 576 y V c = π ( ) π 576y y y = 4π 4. Para encontrar los valores críticos e la ecuación, se utiliza el críterio e la primera erivaa. Se utiliza la respuesta positiva y V c = 44 π y 4π = y = 576 y = ± 9 5. Para comprobar que el valor encontrao es un máimo se utiliza el criterio e la seguna erivaa. Como el resultao e la seguna erivaa es menor que, V c tiene un máimo relativo en y = 9. V c = (44 π y 4π ) = 6y 4π = y π V c ( 9) = 9 π = 6.6 V c ( 9) = < V c ( 9) = π = 4.4 u V c ma = 4.4 u

15 Matemática Básica SOLUCIÓN DEL EXAMEN TEMARIO B* *Solo se resolverán los problemas istintos al Temario A Tema : ( puntos) Un epósito en forma e cono circular recto, con su vértice hacia arriba y su base sobre el suelo tiene un raio e metros y una altura e 4 metros. Si el epósito se encuentra lleno e agua, calcule el trabajo realizao al bombear toa el agua hasta una altura e 6 metros sobre el nivel el suelo. No. Eplicación Operatoria. Primero se grafica la sección transversal el tanque y se establece un sistema e referencia. El cono está compuesto por iscos e raio.. Para calcular la fuerza se necesita conocer el peso el agua, que es el proucto e la masa por la gravea. La masa se puee calcular usano la ensia el agua. El volumen esta ao por el área e los iscos que componen el cono multiplicao por la altura el agua y, pero como esta cambia se escribe como un iferencial y.. Como el agua se mueve en la irección y, se ebe escribir el raio en terminos e y por meio e triángulos semejantes ρ = m = [kg V m ] m = V V = A c y = π y = 4 4 y = 4 y

16 Matemática Básica. Se calcula la fuerza necesaria para mover el agua fuera el tanque. 4. La istancia que se mueve el agua es la iferencia entre 6m sobre el suelo y el lugar one esta el agua y. F = a m F = ( π ( 4 y ) y)(9.8) = 6 y 5. Se sustituye la masa y la istancia encontraa en la ecuación e trabajo. W = (6 y) (98 π ( 4 y ) ) y 6. Se integran ambos laos e la ecuacion. Como la altura el agua es e 4m; y esta restringia a y 4. Por lo que los limites e la integral el lao erecho son y 4. W 4 W = (6 y) (98 π ( 4 y ) ) y 4 W = 45π (6 y)(4 y) y 7. Se opera lo que esta aentro e la integral y se separa la integral. 4 (6 y)(4 y) y 4 = y y 4 + 4y y 4 64yy + 96y 4 8. Se resuelve caa integral y se suman los resultaos. W = 45π( ) W = 784 π J = 8.88 J

17 Matemática Básica Tema : ( puntos) a. Calcule la erivaa y simplifique la respuesta: No. Eplicación Operatoria y 9sen 9. Como es la erivaa e una suma, los terminos se pueen erivar por separao. Primero se eriva el primer termino usano la efinicion e la erivaa e sen () y la regla e la caena. sen () = 9sen ( ) = 9 9. Se opera aentro el raical y se simplifica = 9 = ^. Luego se eriva el seguno termino usano la regla e la erivaa e un proucto y la regla e la caena. 9 = 9 + ( (9 ) ( )) 4. Se simplifica la erivaa operano la frección. 5 = = = 5. Luego se restan la os erivaas y se simplifica. (9sen ( ) 9 = = (9sen ( ) 9 = 9

18 Matemática Básica b. Calcule el límite: lim No. Eplicación Operatoria ln. Para resolver este limite primero se opera la función. lim ( + ln () ) = lim ( ) (ln() + ln ()( ) ). Luego se evalúa el limite. lim (ln() + + ln ()( ) ) = ln() + ln ()( ) = Forma Ineterminaa. Como el limite tiene forma ineterminaa se aplica L Hôpital al limite erivano el numeraor y enominaor inepenientemente y se vuelve a evaluar. lim ( + + ln ()) = Forma Ineterminaa = + ln () 4. Como el limite tiene forma ineterminaa se aplica L Hôpital al limite erivano el numeraor y enominaor inepenientemente y se vuelve a evaluar. lim ( + ( ) + ^ ) = + ^ + = lim + ( ln () ) =

19 Matemática Básica Tema : (5 puntos) La base e un sólio es un círculo cuya ecuación es y 9. Encuentre el volumen el sólio si toas las secciones transversales tienen forma e cuarao, con una e sus iagonales en la base el sólio y perpenicular al eje y. No EXPLICACION OPERATORIA. Primero se calcula la longitu e la iagonal e las secciones transversales. l = 9 y l = 9 y. Se calculan los laos el cuarao usano pitagoras. Los laos al cuarao son iguales al area. a + a = 4(9 y ) a = 6 4y a = A = 8 y

20 Matemática Básica. El iferencial e volumen esta ao por el area multiplicao por un iferencial e longitu. Se integran ambos laos e la ecuación para encontrar el volumen. La base el sólio esta restringia e la siguiente manera: y. V = (8 y )y V = (8 y )y V V = (8y y ) = 7 u V = 7 u

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE M

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE M UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE-13-5-M-1--17 CURSO: Matemática Básica SEMESTRE: Primero CÓDIGO DEL CURSO: 13 TIPO DE EXAMEN: Primera Retrasaa

Más detalles

1. Hallar la derivada por definición de f ( x) x x 1. Solución: para resolver la derivada aplicaremos la definición de la derivada: f '( x)

1. Hallar la derivada por definición de f ( x) x x 1. Solución: para resolver la derivada aplicaremos la definición de la derivada: f '( x) . Hallar la erivaa por efinición e f ( ) Solución: para resolver la erivaa aplicaremos la efinición e la erivaa: f '( ) lim 0 f ( ) f ( ) f ( ) f '( ) lim 0 ara allar la erivaa meiante efinición ebemos

Más detalles

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE M

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE M UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE-103-1-M--00-017 CURSO: Matemática Básica SEMESTRE: Seguno CÓDIGO DEL CURSO: 103 TIPO DE EXAMEN: Primer eamen

Más detalles

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE M

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE M UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE-103-6-M-2-00-2017 CURSO: SEMESTRE: Segundo CÓDIGO DEL CURSO: 103 TIPO DE EXAMEN: Segunda Retrasada FECHA DE

Más detalles

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA. CLAVE V sN

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA. CLAVE V sN UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE-101-1-V-1-00-017-sN CURSO: SEMESTRE: Primer CÓDIGO DEL CURSO: 101 TIPO DE EXAMEN: Primer Examen Parcial FECHA

Más detalles

MATEMÁTICAS II Valores extremos Curso de funciones de varias variables

MATEMÁTICAS II Valores extremos Curso de funciones de varias variables MATEMÁTICAS II Valores etremos Curso - e unciones e varias variables EJERCICIOS ) Calcular el volumen e la caja rectangular más grane situaa en el primer octante con tres e sus caras en los planos coorenaos

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICAS. S O L U C I Ó N y R Ú B R I C A

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICAS. S O L U C I Ó N y R Ú B R I C A ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICAS AÑO: 207 PERÍODO: PRIMER TÉRMINO MATERIA: Cálculo e una variable PROFESOR: EVALUACIÓN:

Más detalles

UNIDAD I CÁLCULO DIFERENCIAL

UNIDAD I CÁLCULO DIFERENCIAL Vicerrectorao Acaémico Faculta e Ciencias Aministrativas Licenciatura en Aministración Mención Gerencia y Mercaeo Unia Curricular: Matemática I UNIDAD I CÁLCULO DIFERENCIAL Elaborao por: Ing. Ronny Altuve

Más detalles

4.1 Antiderivadas o primitivas e integración indefinida

4.1 Antiderivadas o primitivas e integración indefinida 48 CAPÍTULO 4 Integración 4. Antierivaas o primitivas e integración inefinia Escribir la solución general e una ecuación iferencial. Usar la notación e la integral inefinia para las antierivaas o primitivas.

Más detalles

2.4 La regla de la cadena

2.4 La regla de la cadena 0 CAPÍTULO Derivación. La regla e la caena Encontrar la erivaa e una función compuesta por la regla e la caena. Encontrar la erivaa e una función por la regla general e la potencia. Simplificar la erivaa

Más detalles

4.1 Antiderivadas o primitivas e integración indefinida

4.1 Antiderivadas o primitivas e integración indefinida 48 CAPÍTULO 4 Integración 4. Antierivaas o primitivas e integración inefinia Escribir la solución general e una ecuación iferencial. Usar la notación e la integral inefinia para las antierivaas o primitivas.

Más detalles

Parcial de Cálculo C 0

Parcial de Cálculo C 0 Parcial e Cálculo C 0 0 0 Funamentos e Matemáticas Usar los polinomios e Talor para averiguar si la función g = 7 alcanza o no un etremo local en = 0 sen ln Solución: El polinomio e Talor en = 0 e un polinomio

Más detalles

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA. CLAVE V sN

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA. CLAVE V sN UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE-101-1-V-1-00-2018-sN CURSO: SEMESTRE: Primero CÓDIGO DEL CURSO: 101 TIPO DE EXAMEN: Primer Examen Parcial

Más detalles

La regla de la constante. La derivada de una función constante es 0. Es decir, si c es un número real, entonces d c 0. dx (Ver la figura 2.

La regla de la constante. La derivada de una función constante es 0. Es decir, si c es un número real, entonces d c 0. dx (Ver la figura 2. SECCIÓN. Reglas básicas e erivación razón e cambio 07. Reglas básicas e erivación razón e cambio Encontrar la erivaa e una función por la regla e la constante. Encontrar la erivaa e una función por la

Más detalles

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA. CLAVE V-S sN

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA. CLAVE V-S sN UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE-101-1-V-S-00-2017-sN CURSO: SEMESTRE: PRIMERO CÓDIGO DEL CURSO: 101 TIPO DE EXAMEN: Primer Examen Parcial

Más detalles

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE V

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE V UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE-0--V--00-08 CURSO: SEMESTRE: Primero CÓDIGO DEL CURSO: 0 TIPO DE EXAMEN: Segundo Parcial FECHA DE EXAMEN:

Más detalles

2.1. Derivada de una función en un punto

2.1. Derivada de una función en un punto Capítulo 2 Diferenciación 1 2.1. Derivaa e una función en un punto Ritmo (o razón, o tasa) e cambio e una función en un momento ao. Peniente e la recta tangente. Aproximación por la peniente e las rectas

Más detalles

DERIVADA. Interpretación Geométrica Encontrar la pendiente de la recta tangente a una curva en un punto dado de ella.

DERIVADA. Interpretación Geométrica Encontrar la pendiente de la recta tangente a una curva en un punto dado de ella. DERIVADA Interpretación Geométrica Objetivo: Encontrar la peniente e la recta tangente a una curva en un punto ao e ella. Para precisar correctamente la iea e tangente a una curva en un punto, se utilizará

Más detalles

Facultad de Ingeniería Matemática Básica 1 UNIVERSIDAD DE SAN CARLOS DE GUATEMALA

Facultad de Ingeniería Matemática Básica 1 UNIVERSIDAD DE SAN CARLOS DE GUATEMALA Universidad de San Carlos de Guatemala Departamento de Matemáticas Matemática Básica 1 UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE-101-6-M-2-00-2017 CURSO:

Más detalles

2.5 Derivación implícita

2.5 Derivación implícita SECCIÓN.5 Derivación implícita.5 Derivación implícita Distinguir entre funciones eplícitas e implícitas. Hallar la erivaa e una función por erivación implícita. EXPLORACIÓN Representación gráfica e una

Más detalles

Curso Introductorio a las Matemáticas Universitarias

Curso Introductorio a las Matemáticas Universitarias Curso Introuctorio a las Matemáticas Universitarias Tema 8: Derivación Víctor M. Almeia Lozano Jorge J. García Melián Licencia Creative Commons 2013 8. DERIVACIÓN En este tema veremos el concepto e erivaa

Más detalles

SISTEMAS DE COORDENADAS EN EL ESPACIO

SISTEMAS DE COORDENADAS EN EL ESPACIO Matemática Diseño Inustrial Coorenaas en el espacio Ing. vila Ing. Moll SISTEMS DE CRDENDS EN EL ESPCI De forma similar a la vista para el plano, se pueen efinir istintos sistemas e coorenaas. CRDENDS

Más detalles

Facultad de Ingeniería Matemática Básica 1 UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA

Facultad de Ingeniería Matemática Básica 1 UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE-101-M-CV-1-1S-017 CURSO: Matemática básica 1 SEMESTRE: Vacaciones de primer semestre CÓDIGO DEL CURSO: 101

Más detalles

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE-101-2-M-1-00-2018_sK UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CURSO: Matemática Básica 1 SEMESTRE: Primero CÓDIGO DEL CURSO: 101 TIPO DE EXAMEN: Segundo

Más detalles

Derivadas de orden superior e implícitas

Derivadas de orden superior e implícitas CDIN06_MAAL_Implícitas Versión: Septiembre 0 Revisor: Sanra Elvia Pérez Derivaas e oren superior e implícitas por Sanra Elvia Pérez Derivación implícita Las funciones que has estuiao hasta este momento

Más detalles

2.3 Reglas del producto, del cociente y derivadas de orden superior

2.3 Reglas del producto, del cociente y derivadas de orden superior SECCIÓN 2.3 Reglas el proucto, el cociente y erivaas e oren superior 119 2.3 Reglas el proucto, el cociente y erivaas e oren superior Encontrar la erivaa e una función por la regla el proucto. Encontrar

Más detalles

Tema 8: Derivación. José M. Salazar. Noviembre de 2016

Tema 8: Derivación. José M. Salazar. Noviembre de 2016 Tema 8: Derivación. José M. Salazar Noviembre e 2016 Tema 8: Derivación. Lección 9. Derivación: teoría funamental. Lección 10. Aplicaciones e la erivación. Ínice 1 Derivaas. Principales nociones y resultaos.

Más detalles

LA DERIVADA UNIDAD III III.1 INCREMENTOS. y, esto es:

LA DERIVADA UNIDAD III III.1 INCREMENTOS. y, esto es: Página el Colegio e Matemáticas e la ENP-UNAM La erivaa Autor: Dr. José Manuel Becerra Espinosa LA DERIVADA UNIDAD III III. INCREMENTOS Se eine como incremento e la variable al aumento o isminución que

Más detalles

Información importante

Información importante Universia Técnica Feerico Santa María Departamento e Matemática Coorinación e Matemática I (MAT021) 1 er Semestre e 2010 Semana 9: Lunes 17 viernes 21 e Mayo Información importante El control Q2A es el

Más detalles

Universidad de San Carlos de Guatemala

Universidad de San Carlos de Guatemala UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA clave-103-2-v-2-00-2017 CURSO: Matemática Básica 2 SEMESTRE: Segundo CÓDIGO DEL CURSO: 103 TIPO DE EXAMEN: Segundo

Más detalles

Universidad de San Carlos de Guatemala

Universidad de San Carlos de Guatemala Clave: 03-2-M-2-00-203 Universidad de San Carlos de Guatemala Facultad de Ingeniería Departamento de matemática Curso: Matemática Básica 2 Código del curso: 03 Semestre: Segundo semestre 203 Tipo de eamen:

Más detalles

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA. CLAVE V _sM

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA. CLAVE V _sM Universidad de San Carlos SEGUNDO PARCIAL Departamento de Matemática Facultad de Ingeniería MATEMATICA INTERMEDIA 3 UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA

Más detalles

EXAMEN DE FÍSICA. 24 DE JUNIO DE PROBLEMAS. GRUPOS 16(B) Y 17(C)

EXAMEN DE FÍSICA. 24 DE JUNIO DE PROBLEMAS. GRUPOS 16(B) Y 17(C) EXMEN DE FÍSIC. 4 DE JUNIO DE 999. TEORÍ. GRUPOS 6() Y 7(C) C. Tenemos una superficie cónica e raio r = 0.5 m y altura h = m (ver figura), entro e un campo eléctrico E uniforme y paralelo al eje el cono

Más detalles

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE M

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE M UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE-07-4-M--00-07 CURSO: SEMESTRE: Primero CÓDIGO DEL CURSO: 07 TIPO DE EXAMEN: Eamen Final FECHA DE EXAMEN: 8

Más detalles

Pre saberes: Despeje de ecuaciones. Concepto de línea recta.

Pre saberes: Despeje de ecuaciones. Concepto de línea recta. Colegio Javier III Triestre En el 07 Activa tu fe Presentación # Tea: La recta Elaborao por: profesor Héctor Luis Fernánez Pre saberes: Despeje e ecuaciones. Concepto e línea recta. OBJETIVOS DE CLASE:.

Más detalles

Unidad 1 Ecuaciones Diferenciales de Primer Orden. 1.1 Definiciones (Ecuación Diferencial, Orden, Grado, Linealidad)

Unidad 1 Ecuaciones Diferenciales de Primer Orden. 1.1 Definiciones (Ecuación Diferencial, Orden, Grado, Linealidad) . Definiciones (Ecuación Diferencial, Oren, Grao, Linealia) Unia Ecuaciones Diferenciales e Primer Oren. Definiciones (Ecuación Diferencial, Oren, Grao, Linealia) En iversas áreas como son la ingeniería,

Más detalles

Cálculo I. Índice Reglas Fundamentales para el Cálculo de Derivadas. Julio C. Carrillo E. * 1. Introducción 1. 2.

Cálculo I. Índice Reglas Fundamentales para el Cálculo de Derivadas. Julio C. Carrillo E. * 1. Introducción 1. 2. 3.2. Reglas Funamentales para el Cálculo e Derivaas Julio C. Carrillo E. * Ínice 1. Introucción 1 2. Reglas básicas 3 3. El Álgebra e funciones erivables 4 4. Regla e la caena 8 * Profesor Escuela e Matemáticas,

Más detalles

CLAVE DE EXAMEN Matemática Básica 2 código de curso: 103

CLAVE DE EXAMEN Matemática Básica 2 código de curso: 103 universidad de san carlos Facultad de Ingeniería Escuela de Ciencias Departamento de Matemática clave-103-4-v-2-00-2013 CLAVE DE EXAMEN Matemática Básica 2 código de curso: 103 Datos de la clave Elaborada

Más detalles

; deben llevarse las unidades de área a m 2 y distancia a m. V = 13215V = 13, 2kV

; deben llevarse las unidades de área a m 2 y distancia a m. V = 13215V = 13, 2kV Física II Guía e ejercicios 5 CAPACIDAD 5. Capacia 5.. Problema 5... Enunciao Las placas e un capacitor e placas paralelas están separaas por una istancia e, 8mm y caa una tiene un área e, cm. Caa placa

Más detalles

Facultad de Ingeniería Matemática básica 1 UNIVERSIDAD DE SAN CARLOS DE GUATEMALA

Facultad de Ingeniería Matemática básica 1 UNIVERSIDAD DE SAN CARLOS DE GUATEMALA Universidad de San Carlos de Guatemala Departamento de Matemáticas Matemática básica 1 UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE-101-5-M--00-017 CURSO:

Más detalles

Universidad de San Carlos de Guatemala

Universidad de San Carlos de Guatemala UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA clave-103-1-v--00-017 CURSO: Matemática Básica SEMESTRE: Segundo CÓDIGO DEL CURSO: 103 TIPO DE EXAMEN: Primer Eamen

Más detalles

Universidad de Costa Rica Instituto Tecnológico de Costa Rica SEGUNDO EXAMEN PARCIAL CÁLCULO I. , entonces se procede de la siguiente manera: ln( 1

Universidad de Costa Rica Instituto Tecnológico de Costa Rica SEGUNDO EXAMEN PARCIAL CÁLCULO I. , entonces se procede de la siguiente manera: ln( 1 Universidad de Costa Rica Instituto Tecnológico de Costa Rica SEGUNDO EXAMEN PARCIAL CÁLCULO I Valor: 58 puntos. Tiempo máimo: horas. Sábado de junio de 04 INSTRUCCIONES GENERALES Antes de contestar lea

Más detalles

3.1. DERIVADAS DE SEGUNDO ORDEN

3.1. DERIVADAS DE SEGUNDO ORDEN .. DERIVADAS DE SEGUNDO ORDEN La erivaa y ' f ' es la primera erivaa e y con respecto a, pero igualmente es posible realizar la erivaa e la erivaa, y y '' f ''. Lo que se conoce como la seguna erivaa e

Más detalles

EXAMEN DE LA UNIDAD 1: POLINOMIOS Y FRACCIONES ALGEBRAICAS

EXAMEN DE LA UNIDAD 1: POLINOMIOS Y FRACCIONES ALGEBRAICAS COLEGIO SAN ALBERTO MAGNO º BACHILLERATO EXAMEN DE LA UNIDAD : POLINOMIOS Y FRACCIONES ALGEBRAICAS. Factoriza los siguientes polinomios: a) b) 6 + 8. Indica si las siguientes afirmaciones son verdaderas

Más detalles

Información importante

Información importante Departamento e Matemática Coorinación e Matemática I (MAT01) 1 er Semestre e 010 Semana 1: Lunes 07 viernes 11 e Junio Información importante Durante esta semana se publicarán las notas el Certamen en

Más detalles

Universidad de San Carlos de Guatemala

Universidad de San Carlos de Guatemala UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA clave-103--m-1-00-018 CURSO: Matemática Básica SEMESTRE: Primero CÓDIGO DEL CURSO: 103 TIPO DE EXAMEN: Segundo Eamen

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2000 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2000 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 000 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio 1, Opción B Junio, Ejercicio, Opción B Reserva 1, Ejercicio, Opción A Reserva

Más detalles

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA DIVISIÓN DE CIENCIAS BÁSICAS COORDINACIÓN DE MATEMÁTICAS

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA DIVISIÓN DE CIENCIAS BÁSICAS COORDINACIÓN DE MATEMÁTICAS UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA DIVISIÓN DE CIENCIAS BÁSICAS COORDINACIÓN DE MATEMÁTICAS CÁLCULO INTEGRAL PRIMER EXAMEN EXTRAORDINARIO Sinodales: M.I. Mayverena Jurado Pineda

Más detalles

(f + g) (x) = f (x) + g (x) (α f) (x) = α f (x) (f g) (x) = f (x) g(x) + f(x) g (x) (x) = f (x) g(x) f(x) g (x) g. [g(x)] 2 (f g) (x) = f (g(x)) g (x)

(f + g) (x) = f (x) + g (x) (α f) (x) = α f (x) (f g) (x) = f (x) g(x) + f(x) g (x) (x) = f (x) g(x) f(x) g (x) g. [g(x)] 2 (f g) (x) = f (g(x)) g (x) Derivaa e una función en un punto: El concepto e erivaa e una función matemática se halla íntimamente relacionao con la noción e límite. Así, la erivaa se entiene como la variación que experimenta la función

Más detalles

Respuestas al desarrollo de la competencia del capítulo 3

Respuestas al desarrollo de la competencia del capítulo 3 Respuestas Respuestas al desarrollo de la competencia del capítulo ÁREA NETA CON SIGNO En los problemas del al, dibuja la región delimitada por la gráfica de la función dada en el intervalo indicado calcula

Más detalles

Explicación de la velocidad de rotación en galaxias espirales Interpretación Lagragiana (Yul Goncalves,

Explicación de la velocidad de rotación en galaxias espirales Interpretación Lagragiana (Yul Goncalves, Explicación e la velocia e rotación en galaxias espirales Interpretación Lagragiana (Yul Goncalves, yulalebran9@gmail.com) A continuación se presenta una emostración e la velocia e rotación en galaxias

Más detalles

2.5 Derivación implícita

2.5 Derivación implícita SECCIÓN.5 Derivación implícita 4.5 Derivación implícita Distinguir entre funciones eplícitas e implícitas. Hallar la erivaa e una función por erivación implícita. E X P L O R A C I Ó N Representación gráfica

Más detalles

4.1. DERIVADAS DE LAS FUNCIONES TRIGONOMETRICAS

4.1. DERIVADAS DE LAS FUNCIONES TRIGONOMETRICAS Escuela Colombiana e Ingeniería 4.. DERIVADAS DE LAS FUNCIONES TRIGONOMETRICAS Derivaa e y La erivaa e y se puee obtener como: y + Lim 0 Para calcular este límite se utilizan los siguientes conceptos previamente

Más detalles

Matemticas V: Cálculo diferencial

Matemticas V: Cálculo diferencial Matemticas V: Cálculo iferencial Soluciones Tarea 8. Para caa una e las siguientes ecuaciones encuentra la ecuación e la recta tangente a la curva en el punto ao p. (a) x y + xy, p (, ). Suponemos que

Más detalles

MATEMÁTICAS BÁSICAS DERIVADA INCREMENTOS x = x - x y2 = f(x2) y = y - y y = f(x )

MATEMÁTICAS BÁSICAS DERIVADA INCREMENTOS x = x - x y2 = f(x2) y = y - y y = f(x ) Faculta e Contauría Aministración. UNAM Derivaa Autor: Dr. José Manuel Becerra Espinosa MATEMÁTICAS BÁSICAS DERIVADA INCREMENTOS Se eine como incremento e la variable al aumento o isminución que eperimenta,

Más detalles

Derivación de funciones de una variable real

Derivación de funciones de una variable real Capítulo 4 Derivación e funciones e una variable real 4.1. Derivaa e una función 4.1.1. Introucción Definición 4.1.1. Sea f : (a, b) R R y x 0 (a, b). Se ice que la función f es erivable en el punto x

Más detalles

Seminario 12: Condensadores.

Seminario 12: Condensadores. Seminario 2: Conensaores. Fabián Anrés Torres Ruiz Departamento e Física, Universia e Concepción, Chile 30 e Mayo e 2007. Problemas. (Desarrollo) Deucción el tiempo e escarga e un conensaor 2. (Problema

Más detalles

RESOLUCIÓN DE ACTIVIDADES

RESOLUCIÓN DE ACTIVIDADES RESOLUCIÓN DE ACTIVIDADES Activiaes iniciales 1. Calcula las matrices inversas e las siguientes matrices: 1 1 2-3 1 2 1 1 1 1 0 1 2 2 5 1 1 1 1 0 0 1 1 1 1 1 Las matrices buscaas son: 1/4 1/4 1/4 1/4 1

Más detalles

3 DERIVADAS ALGEBRAICAS

3 DERIVADAS ALGEBRAICAS DERIVADAS ALGEBRAICAS DERIVADAS ALGEBRAICAS Entiénase la erivaa como la peniente e la recta tangente a la función en un punto ao, lo anterior implica que la función ebe eistir en ese punto para poer trazar

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 03 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

Regla de la cadena. f (x) 1 x 3. d dx x3 1 x 3. (3x 2 ) 3 x. f(x) 3 d dx ln x 3. 1 x. para x70, d dx ln x 1. para x60, d dx ln( x) 1x.

Regla de la cadena. f (x) 1 x 3. d dx x3 1 x 3. (3x 2 ) 3 x. f(x) 3 d dx ln x 3. 1 x. para x70, d dx ln x 1. para x60, d dx ln( x) 1x. 74 CAPÍTULO 3 La erivaa EJEMPLO 4 Diferencie f ()=ln 3. Regla e la caena Solución Debio a que 3 ebe ser positiva, se entiene que 70. Así, por (3), con u= 3, tenemos Solución alterna: Por iii) e las lees

Más detalles

08. Un cubo de lado 0,3 m está colocado con un vértice en el origen de coordenadas, como se muestra la figura. Se encuentra en el seno de un campo

08. Un cubo de lado 0,3 m está colocado con un vértice en el origen de coordenadas, como se muestra la figura. Se encuentra en el seno de un campo Campo Eléctrico U 01. Dos partículas e masa 10 g se encuentran suspenias ese un mismo punto por os hilos e 30 cm e longitu. Se suministra a ambas partículas la misma carga, separánose e moo ue los hilos

Más detalles

Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 2013 Problemas (Dos puntos por problema).

Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 2013 Problemas (Dos puntos por problema). Eamen e Física-1, 1 Ingeniería Química Eamen final. Septiembre e 2013 Problemas Dos puntos por problema). Problema 1 Primer parcial): Un cuerpo e masa m = 0, 5kg se lanza hacia abajo meiante un muelle

Más detalles

UNIVERSIDAD DIEGO PORTALES GUÍA N 11 CÁLCULO I. Profesor: Carlos Ruz Leiva DERIVADAS. Derivadas de orden superior. Ejemplos

UNIVERSIDAD DIEGO PORTALES GUÍA N 11 CÁLCULO I. Profesor: Carlos Ruz Leiva DERIVADAS. Derivadas de orden superior. Ejemplos UNIVERSIDAD DIEGO PORTALES FACULTAD DE CIENCIAS DE LA INGENIERÍA INSTITUTO DE CIENCIAS BÁSICAS Profesor: Carlos Ruz Leiva GUÍA N CÁLCULO I DERIVADAS Derivaas e oren superior Ejemplos Hallar las siguientes

Más detalles

I. Para cada una de las siguientes funciones calcular la derivada del orden pedido y simplificarlas. x 8(4 3 x ) x.. Sol. ). Sol.

I. Para cada una de las siguientes funciones calcular la derivada del orden pedido y simplificarlas. x 8(4 3 x ) x.. Sol. ). Sol. UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE FARMACIA CATEDRA DE MATEMATICA-FISICA GUÍA N 5 : Derivadas n-ésimas y aplicaciones de la derivada I. Para cada una de las siguientes funciones calcular la derivada

Más detalles

f(x) = xe para x -1 y x 0, MATEMÁTICAS II PROBLEMAS DE FUNCIONES. Ejercicio 1. (Reserva 1 Septiembre 2013 Opción A) Sea f la función definida por

f(x) = xe para x -1 y x 0, MATEMÁTICAS II PROBLEMAS DE FUNCIONES. Ejercicio 1. (Reserva 1 Septiembre 2013 Opción A) Sea f la función definida por MATEMÁTICAS II PROBLEMAS DE FUNCIONES. Ejercicio. (Reserva Septiembre 0 Opción A) f() = para > 0, (donde ln denota el logaritmo neperiano). ln() a) [ 5 puntos] Estudia y determina las asíntotas de la gráfica

Más detalles

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE M

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE M UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE-103-3-M-2-00-2013 CURSO: Matemática Básica 2 SEMESTRE: Primero CÓDIGO DEL CURSO: 103 TIPO DE EXAMEN: Tercer

Más detalles

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE M

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE M UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE-03-2-M-2-00-207 CURSO: SEMESTRE: Segundo CÓDIGO DEL CURSO: 03 TIPO DE EXAMEN: Primer examen parcial FECHA

Más detalles

Capítulo 30: Campos magnéticos y momento de torsión. Paul E. Tippens

Capítulo 30: Campos magnéticos y momento de torsión. Paul E. Tippens Capítulo 30: Campos magnéticos y momento e torsión Paul E. Tippens 017 Fuerza sobre una carga en movimient Recuere que el campo magnético en teslas (T) se efinió en términos e la fuerza sobre una carga

Más detalles

XXII OLIMPIADA NACIONAL DE FÍSICA Guadalajara, Jal de noviembre de 2011 Prueba teórica

XXII OLIMPIADA NACIONAL DE FÍSICA Guadalajara, Jal de noviembre de 2011 Prueba teórica XXII OLIMPI NIONL E FÍSI Guaalajara, Jal. 0-4 e noviembre e 011 Prueba teórica 1. PROLEM olisión e pieras (8 puntos) Una piera esférica se eja caer ese un eificio alto e altura h (ese la calle) al tiempo

Más detalles

mv 9, r 0,057 m 1, F F E q q v B E v B N C

mv 9, r 0,057 m 1, F F E q q v B E v B N C 1. Un electrón que se mueve a través e un tubo e rayos catóicos a 1 7 m/s, penetra perpenicularmente en un campo e 1-3 T que actúa sobre una zona e 4 cm a lo largo el tubo. Calcula: a) La esviación que

Más detalles

LA DERIVADA POR FÓRMULAS

LA DERIVADA POR FÓRMULAS CAPÍTULO LA DERIVADA POR FÓRMULAS. FÓRMULAS Obtener la erivaa e cualquier función por alguno e los os métoos vistos anteriormente, el e tabulaciones y el e incrementos, resulta una tarea muy engorrosa,

Más detalles

Cálculo I Derivadas de Funciones Trascendentes. Julio C. Carrillo E. * 1. Introducción Derivadas de funciones trigonométricas inversas 7

Cálculo I Derivadas de Funciones Trascendentes. Julio C. Carrillo E. * 1. Introducción Derivadas de funciones trigonométricas inversas 7 3.3. Derivaas e Funciones Trascenentes Julio C. Carrillo E. * Ínice. Introucción 2. Derivaas e funciones trigonométricas 3. Derivaas e funciones trigonométricas inversas 7 4. Derivaas e la función exponencial

Más detalles

Problemas de Campo Eléctrico. Boletín 1 Tema 1

Problemas de Campo Eléctrico. Boletín 1 Tema 1 1/17 Problemas e Campo Eléctrico Boletín 1 Tema 1 Fátima Masot Cone Ing. Inustrial 1/11 Problema 1 Dos partículas cargaas con cargas iguales y opuestas están separaas por una istancia. Sobre la recta que

Más detalles

f(x,y) = e x+y cos(xy)

f(x,y) = e x+y cos(xy) Universia e los Anes Departamento e Matemáticas MATE1207 Cálculo Vectorial Tarea 1 Iniviual Entregue en clase a su profesor e la MAGISTRAL la semana 6 (Lu. 3 Sep. Vi. 7 Sep.) 1. Consiere la función f efinia

Más detalles

Ejercicio Práctico 1 Enunciado

Ejercicio Práctico 1 Enunciado Funamentos e Programación Grupo 5 Samuel Martín Ejercicio Práctico Enunciao Instrucciones generales El alumno eberá presentar los ejercicios planteaos en este ocumento. Aicionalmente, se han facilitao

Más detalles

=, perpendicular al eje.

=, perpendicular al eje. E1: Una esfera e raio R cargaa con ensia e carga volumétrica uniforme, se encuentra centraa en el origen e coorenaas. emás, se tiene una barra elgaa e longitu R situaa en el semieje x positivo, cargaa

Más detalles

Pruebas. x = x. 7(2x + 1) x 2 + x 6. x 2

Pruebas. x = x. 7(2x + 1) x 2 + x 6. x 2 CAPÍTULO 10 Pruebas Prueba N o 1 - Tema: Capitulo 1 y 2 1. 1 punto. Se espera que del total de alumnos inscritos en la asignatura, el 20 % obtendrá una nota no menor a 6,0; el 65 % obtendrá una nota no

Más detalles

IES ATENEA. EXAMEN GLOBAL/RECUP. MATEMÁTICAS B. 4º ESO. GRUPO: BC. Nombre: Evaluación: Segunda. Fecha: 9 de abril de 2010

IES ATENEA. EXAMEN GLOBAL/RECUP. MATEMÁTICAS B. 4º ESO. GRUPO: BC. Nombre: Evaluación: Segunda. Fecha: 9 de abril de 2010 IES ATENEA. EXAMEN GLOBAL/RECUP. MATEMÁTICAS B. 4º ESO. GRUPO: BC Nombre: Evaluación: Segunda. Fecha: 9 de abril de 010 Ejercicio nº 1.- Representa la siguiente función: y ( ) NOTA a) Halla las coordenadas

Más detalles

A G R. Diédrico 18. Cuerpos 5. Cubo básico A 1

A G R. Diédrico 18. Cuerpos 5. Cubo básico A 1 1 1 ibujar los s, e igual longitu e arista, en las cuatro posiciones siguientes: 1. poyao por la cara en el P (la posición e la izquiera).. on la iagonal vertical; se a la posición e la recta one está

Más detalles

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE M

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE M UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE -101-1-M-1-00-015 TEMARIO A Curso: Matemática Básica 1 Código del curso: 101 Semestre: do semestre 015 Tipo

Más detalles

Opción A ( ) ( x) ( ) ( ) Examen. 1ª evaluación 4/12/ en su punto de A 1 A 2. 1 x. x El área total será una función en x : A( x) = A1 + A2

Opción A ( ) ( x) ( ) ( ) Examen. 1ª evaluación 4/12/ en su punto de A 1 A 2. 1 x. x El área total será una función en x : A( x) = A1 + A2 Eamen 1ª evaluación /1/7 Opción A Ejercicio 1 (Puntuación máima: puntos Obtener la ecuación de la recta tangente a la gráfica infleión 6 + 6 1 1 1 ; 1 1 1 1 ( 1 1, ( 1, ( 1 ( 1, y 6( 1 y 6 + 6 Calculamos

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2007 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2007 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 007 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio 1, Opción A Junio, Ejercicio 1, Opción B Reserva 1, Ejercicio 1, Opción A Reserva 1, Ejercicio 1, Opción

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 04 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

INSTRUCTIVO PARA TUTORÍAS

INSTRUCTIVO PARA TUTORÍAS INSTRUCTIVO PARA TUTORÍAS Las tutorías corresponen a los espacios acaémicos en los que el estuiante el Politécnico Los Alpes puee profunizar y reforzar sus conocimientos en iferentes temas e cara al eamen

Más detalles

Regla de la cadena. Ejemplo 1. y = f (g(x)) Como las funciones son diferenciables son suaves.

Regla de la cadena. Ejemplo 1. y = f (g(x)) Como las funciones son diferenciables son suaves. 1 Regla e la caena Hasta aquí hemos erivao funciones que no son compuestas. El problema surge cuano tenemos una función que es compuesta, por ejemplo, igamos que el precio e la gasolina epene el precio

Más detalles

mv 9, r 0,057 m 1, F F E q q v B E v B N C

mv 9, r 0,057 m 1, F F E q q v B E v B N C . Un electrón que se mueve a través e un tubo e rayos catóicos a 7 m/s, penetra perpenicularmente en un campo e -3 T que actúa sobre una zona e 4 cm a lo largo el tubo. Calcula: a) La esviación que ha

Más detalles

aletos ELECTRICIDAD POTENCIAL ELÉCTRICO

aletos ELECTRICIDAD POTENCIAL ELÉCTRICO 1 4.04 01 a) El campo eléctrico asociao a la función potencial V = xy+3x 3 z+2x 2, en elpunto (1,1,2). b) El trabajo realizao para llevar una unia e carga positiva, a velocia cosntante, ese el punto (1,2,0)

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 0 MATEMÁTICAS II TEMA : FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

Derivadas algebraicas

Derivadas algebraicas CDIN0_M1AAL1_Algebraicas Versión: Septiembre 01 Revisor: Sanra Elvia Pérez Derivaas algebraicas por Sanra Elvia Pérez Derivaa e una función El concepto e erivaa, base el cálculo iferencial, ha permitio

Más detalles

APLICACIONES DE LAS DERIVADAS 2º Bachillerato

APLICACIONES DE LAS DERIVADAS 2º Bachillerato APLICACIONES DE LAS DERIVADAS º Bachillerato RECTA TANGENTE A UNA CURVA EN UN PUNTO. Si f es derivable en el punto, la ecuación de la recta tangente a f en el punto es: y = f + f ' Si f es derivable en

Más detalles

UNIVERSIDAD DE SAN CARLOS DE GUATEMAALA FACTULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE DE EXAMEN

UNIVERSIDAD DE SAN CARLOS DE GUATEMAALA FACTULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE DE EXAMEN UNIVERSIDAD DE SAN CARLOS DE GUATEMAALA FACTULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE DE EXAMEN CURSO: Matemática Básica 1 CODIGO DE CURSO: 101 TIPO DE EXAMEN : NOMBRE AUXILIAR: Primera Retrasada

Más detalles

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE V

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE V UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE-112-4-V-1--217 CURSO: SEMESTRE: Primero CÓDIGO DEL CURSO: 112 TIPO DE EXAMEN: Examen Final Parcial FECHA DE

Más detalles

INTEGRAL INDEFINIDA. Una pregunta inicial para hacerse. Cuál es una función F(x), que al haber sido derivada se obtuvo f ( x) B?.

INTEGRAL INDEFINIDA. Una pregunta inicial para hacerse. Cuál es una función F(x), que al haber sido derivada se obtuvo f ( x) B?. es INTEGRAL INDEFINIDA UConcepto e antierivaau: Una pregunta inicial para hacerse. Cuál es una función F(), que al haber sio erivaa se obtuvo f ( ) =?. La repuesta es: F ( ) =. Una nueva pregunta. Es la

Más detalles

( ) 2. Pendiente de una Recta Tangente. Sea f una función que es continua en x. 1. Para definir la pendiente de la recta tangente ( )

( ) 2. Pendiente de una Recta Tangente. Sea f una función que es continua en x. 1. Para definir la pendiente de la recta tangente ( ) Derivaa e una Función Ínice.. Introucción.. Peniente e una recta tangente.. Derivaa e una función. 4. Derivaas laterales. 5. Derivaa e una función compuesta (Regla e la Caena). 6. Tabla e erivaas usuales.

Más detalles

FÓRMULAS DE DERIVACIÓN

FÓRMULAS DE DERIVACIÓN SESIÓN Nº 1 Derivaas e Funciones Trigonométricas, Eponenciales y Logarítmicas Ahora correspone revisar las fórmulas principales e erivación y algunos ejemplos e aplicación. FÓRMULAS DE DERIVACIÓN 1) (

Más detalles