Trabajo Práctico N 9: APLICACIONES A LA GEOMETRÍA

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Trabajo Práctico N 9: APLICACIONES A LA GEOMETRÍA"

Transcripción

1 Fultd Regionl Mendoz. UTN Álger Geometrí Anlíti Trjo Prátio N 9: APLICACIONES A LA GEOMETRÍA Ejeriio : Hlle l euión norml generl de l irunfereni que tiene entro en (- ; 3) que ps por el punto ( ; -). Grfique. Ejeriio : Anlie l deduión de ls epresiones que figurn en el udro prtir de l gráfi dd. L ECUACIÓN CANÓNICA p ( h ) ( k)² DIRECTRIZ p/ V h k p/ F R EJE FOCAL EJE FOCAL // VÉRTICE V( h; k) FOCO F(h+p/; k) Euión de l EJE X DIRECTRIZ h p/ LADO RECTO LR p. EJE FOCAL L DIRECTRIZ h F p/ V p/ k R ECUACIÓN CANÓNICA EJE FOCAL // VÉRTICE V( h; k) FOCO F(h; k+p/) p ( k ) ( h)² Euión de l EJE Y DIRECTRIZ k p/ LADO RECTO LR p.

2 Ejeriio 3: Fultd Regionl Mendoz. UTN Álger Geometrí Anlíti Hlle l euión norml generl de l práol uo vértie es el puntov( -, 3) su foo es F (- ; 3). Represente gráfimente. Ejeriio : Ls torres de un líne de lt tensión están seprds m tienen un ltur de 6 m. Los les de l líne no deen estr menos de 6 m sore el nivel del suelo. Hlle l euión de l práol que determinn los les. Indique l ltur de un punto que está situd m del vértie. [Oservión: Un le que uelg entre dos postes desrie un urv llmd tenri, pero en l práti puede lulrse proimdmente omo un práol.] Ejeriio : Anlie l deduión de ls epresiones que figurn en el udro prtir de l gráfi dd. A` L F` h R B A` C k B` EJE FOCAL A F EJE FOCAL // EJE X ECUACIÓN CANÓNICA CENTRO C( h, k) VÉRTICES SEMIEJES SEMIDISTANCIA FOCAL EXCENTRICIDAD MAYOR: MENOR : FOCOS: ( h) ( k ) + A( h + ; k ) A`( h ; k ) B( h; k + ) B`( h; k ) F( h + ; k ) F`( h ; k ) FÓRMULA DE CÁLCULO ²+ ² e LADO RECTO LR

3 Fultd Regionl Mendoz. UTN Álger Geometrí Anlíti A F B` h k L F` R EJE FOCAL B EJE FOCAL // EJE Y ECUACIÓN CANÓNICA CENTRO C( h, k) VÉRTICES SEMIEJES MAYOR: MENOR : FOCOS: ( h) ( k ) + A( h; k + ) A`( h; k ) B( h + ; k ) B`( h ; k ) F( h; k + ) F`( h; k ) A` SEMIDISTANCIA FOCAL EXCENTRICIDAD FÓRMULA DE CÁLCULO ²+ ² e LADO RECTO LR Ejeriio 6: Hlle l euión norml de l elipse on eje fol prlelo l eje, on entro C (, ), que tiene uno de sus vérties en A (, 6 ) u eentriidd es 3/. Represente gráfimente. Ejeriio 7: Un río es ruzdo por un rreter por medio de un puente uo ro entrl tiene l form de medi elipse. En el entro del ro l ltur es de m. El nho totl del ro elíptio es de m. ) Determine l euión de l elipse que desrie diho puente. ) A un distni de m de d uno de los pilres, se enuentrn estruturs de proteión pr los mismos. Cuál es l ltur del ro del puente en orrespondeni on estos elementos?

4 Ejeriio 8: Fultd Regionl Mendoz. UTN Álger Geometrí Anlíti Anlie l deduión de ls epresiones que figurn en el udro prtir de l gráfi dd. L A F` R h B B k EJE FOCAL A F EJE FOCAL // EJE X ECUACIÓN CANÓNICA CENTRO C( h, k) VÉRTICES SEMIEJES SEMIDISTANCIA FOCAL EXCENTRICIDAD REAL: IMAGINARIO: FOCOS: ( h) ( k) A( h + ; k ) A`( h ; k ) B( h; k + ) B`( h; k ) F( h + ; k ) F`( h ; k ) FÓRMULA DE CÁLCULO ²+ ² e LADO LR RECTO ECUACIÓN ASÍNTOTAS ± ( h) + k L B h F A A k F` EJE FOCAL B R EJE FOCAL // EJE Y ECUACIÓN CANÓNICA CENTRO C( h, k) VÉRTICES SEMIEJES SEMIDISTANCIA FOCAL EXCENTRICIDAD REAL: IMAGINARIO: FOCOS: ( k) ( h) A( h; k + ) A`( h; k ) B( h + ; k ) B`( h ; k ) F( h; k + ) F`( h; k ) FÓRMULA DE ²+ ² CÁLCULO LADO e LR RECTO ECUACIÓN ASÍNTOTAS ± ( h) + k Ejeriio 9: Hlle l euión de l hipérol on entro en C(;), on uno de sus foos en F( - 6; ) on eentriidd e /. Represente gráfimente.

5 Ejeriio : Fultd Regionl Mendoz. UTN Álger Geometrí Anlíti Un ro enví un señl de uilio en el momento en el que se enuentr mills de l ost. Dos estiones gurdosts Q R, uids mills de distni entre sí, reien l señl. A prtir de l difereni entre los tiempos de reepión de l señl, se determin que l nve se enuentr 6 mills más er de l estión R que de l estión Q. Elij un sistem de refereni propido e indique ls oordends orrespondientes l uiión de l emrión. Represente gráfimente. Ejeriio : Dds ls euiones de ls siguientes ónis, enuentre su euión norml, determine sus elementos priniples grfique. Esri l euión trsldd respeto de ls oordends del nuevo sistem. ) ) ) + + d) Ejeriio : Dds ls siguientes euiones: i) ii) 3 + ½ iii) - + iv) ) Eprese l euión en form mtriil ) Identifique l óni prtir de los vlores propios ) Enuentre l mtriz que digonliz ortogonlmente l mtriz de l form udráti

6 Fultd Regionl Mendoz. UTN Álger Geometrí Anlíti d) Verifique que l mtriz hlld represent un rotión e) Eprese l euión referid l nuevo sistem rotdo o rototrslddo f) Hlle el ángulo de rotión g) Grfique ii) 3 + ½ ) Form mtriil [ ] [ ] [ ] / 3 + +, siendo A ) Vlores vetores propios de A λ λ λ λ λ Pr λ - + v Pr λ + - v 3) L mtriz P pr l digonlizión ortogonl es : P L mtriz digonl semejnte l mtriz de l form udráti es: D P - A P ) Considerndo que X P X, l nuev euión mtriil es: [ ] [ ] [ ] / SOLUCIÓN:

7 + + [ ] [ 3 ] [ / ] + / ( ) ( ) ½ ( + ¼ - ¼ ) ( + ) / ( ½ ) ½ ( ) + ½ ( ½ ) ( ) - - ( ½ ) + ( ) Fultd Regionl Mendoz. UTN Álger Geometrí Anlíti ( ) ( ) ) L euión norml de l óni es: + / / Tipo de óni: Hipérol Centro: C ( ½; ) [ C (h; k) ] Semiejes: / Semidistni fol: [ + ] Vérties: A ( ½ ; + / ) A ( ½ ; - / ) [ A ( h; k ± ) ] B ( ½ + / ; ) B ( ½ - / ; ) [ B ( h ± ; k ) ] Foos: F ( ½ ; ) F( ½ ; ) [ F ( h; k ± )] Ldo reto: LR [ LR / ]

8 Fultd Regionl Mendoz. UTN Álger Geometrí Anlíti Ejeriio 3: Anlie ls reliones que eisten entre ls gráfis dds ls euiones indids. Hiperoloide de un hoj Hiperoloide de dos hojs Elipsoide Superfiie óni Proloide elíptio Proloide hiperólio

9 Fultd Regionl Mendoz. UTN Álger Geometrí Anlíti Cilindro elíptio + Cilindro hiperólio Cilindro prólio Cilindro irulr + Ejeriio : Hlle los elementos de l siguiente uádri e identifique el nomre: SOLUCIÓN:

10 Fultd Regionl Mendoz. UTN Álger Geometrí Anlíti Ejeriio : Dd l siguiente euión: z 6 z 7 z ) Eprese l euión en form mtriil. ) Enuentre l mtriz que digonliz ortogonlmente l mtriz de l form udráti. ) Eprese l euión referid l nuevo sistem rotdo o rototrslddo. Dd l euión de l uádri: + + z + d + e z + f z + g + h + i z + j epresmos dih euión en form mtriil: Siendo: ) SOLUCIÓN: A d / e / 8 X T A X + K X + [ j ] O d f / / e / f / K [ g h i ] [ z ] + [ 7 ] 8 8 z X z z Con A K [ 7] ) Busmos los vlores propios: A λ I λ 8 λ 8 8 λ ( - λ ) ( - λ ) ( 8 - λ ) 8. ( - λ ) ( - λ ) ( λ² - λ ) ( - λ ) ( λ² - λ) λ λ λ 3

11 Fultd Regionl Mendoz. UTN Álger Geometrí Anlíti λ / ; ; v 3 ; / 3 / ˆ v λ ; IR; v ; ˆ v λ /3 ; ; v 3 3 ; 3/ / ˆ3 v P 3 / / / 3 / P - 3/ / / 3/ ) Reemplzndo X por P X [ ] [ ] + / 3 / / / 3 7 z z z 9 + z z PARABOLOIDE ELÍPTICO 9 z +

12 Fultd Regionl Mendoz. UTN Álger Geometrí Anlíti

Trabajo Práctico N 9: APLICACIONES A LA GEOMETRÍA

Trabajo Práctico N 9: APLICACIONES A LA GEOMETRÍA Fultd Regionl Mendo. UTN Álger Geometrí Anlíti Trjo Prátio N 9: APLICACIONES A LA GEOMETRÍA Ejeriio : Hlle l euión norml generl de l irunfereni que tiene entro en (- ; 3) que ps por el punto ( ; -). Grfique.

Más detalles

Trabajo Práctico N 9: APLICACIONES A LA GEOMETRÍA

Trabajo Práctico N 9: APLICACIONES A LA GEOMETRÍA Fultd Regionl Mendoz. UTN Álger Geometrí Anlíti 13 Trjo Prátio N 9: APLICACIONES A LA GEOMETRÍA Ejeriio 1: Hlle l euión norml generl de l irunfereni que tiene por diámetro el segmento de etremos ( - 1,

Más detalles

Trabajo Práctico N 9: APLICACIONES A LA GEOMETRÍA

Trabajo Práctico N 9: APLICACIONES A LA GEOMETRÍA Fultd Regionl Mendo. UTN Álger Geometrí Anlíti 6 Trjo Prátio N 9: APLICACIONES A LA GEOMETRÍA Ejeriio : Hlle l euión norml generl de l irunfereni siendo que el segmento de etremos (- ; 3) (4; -) es diámetro

Más detalles

Superficies Cuadráticas

Superficies Cuadráticas Álger Geometrí Anlíti Superfiies Cuádris Ing. Vivin CAPPELLO Fultd Regionl L Plt Definiión: Superfiies Cudrátis Un superfiie udráti (ó uádri) es l gráfi de un euión de segundo grdo on tres vriles,,. L

Más detalles

Matemática básica para ingeniería (MA105) Clase Práctica Dada la siguiente ecuación, identifique la cónica, grafique y encuentre todos sus

Matemática básica para ingeniería (MA105) Clase Práctica Dada la siguiente ecuación, identifique la cónica, grafique y encuentre todos sus Mtemáti ási pr ingenierí (MA05) Clse Práti 4.. Dd l siguiente euión, identifique l óni, grfique enuentre todos sus elementos. 6 9 64 54 6 0 Completndo udrdos: ( ) ( 3) 3 4 Centro= C(; 3) 3 4 Como Entones

Más detalles

INGENIERÍA TÉCNICA INDUSTRIAL CÁLCULO INFINITESIMAL COMPLEMENTOS 6: SUPERFICIES CUÁDRICAS

INGENIERÍA TÉCNICA INDUSTRIAL CÁLCULO INFINITESIMAL COMPLEMENTOS 6: SUPERFICIES CUÁDRICAS INGENIERÍA TÉCNICA INDUSTRIAL CÁLCULO INFINITESIMAL COMPLEMENTOS 6: SUPERFICIES CUÁDRICAS * Se denominn superfiies uádris tods quells superfiies que pueden ser definids medinte un euión de segundo orden.

Más detalles

UNIDAD 14 LA ELIPSE Y LA HIPÉRBOLA

UNIDAD 14 LA ELIPSE Y LA HIPÉRBOLA UNIDAD LA ELIPSE Y LA HIPÉRBOLA EJERCICIOS RESUELTOS Ojetivo generl. Al terminr est Unidd plirás ls definiiones los elementos que rterizn l elipse l hipérol en ls soluiones de ejeriios prolems. Ojetivo.

Más detalles

SUPERFICIES-SUPERFICIES CUÁDRICAS CUÁDRICAS SIN CENTRO

SUPERFICIES-SUPERFICIES CUÁDRICAS CUÁDRICAS SIN CENTRO : L euión generl es de l form M N Pz donde todos los oefiientes son no nulos M N P Se puede esriir l euión nterior en l form: ± ± on Llmd form nóni de un uádri sin entro. Álger B Fultd de Ingenierí UNMdP

Más detalles

UNIVERSIDAD LIBRE FACULTAD DE INGENIERÌA DEPARTAMENTO DE CIENCIAS BÁSICAS TALLER N

UNIVERSIDAD LIBRE FACULTAD DE INGENIERÌA DEPARTAMENTO DE CIENCIAS BÁSICAS TALLER N UNIVERSIDAD LIBRE FACULTAD DE INGENIERÌA DEPARTAMENTO DE CIENCIAS BÁSICAS TALLER N NOMBRE DE LA ASIGNATURA: CALCULO MULTIVARIADO Y VECTORIAL TÍTULO: SUPERFICIES DURACIÓN: DOS CLASES CUATRO HORAS BIBLIOGRAFÍA

Más detalles

En el espacio una superficie cuádrica es la gráfica de una ecuación de segundo grado en las variables x, y, z. la forma general de esta ecuación es:

En el espacio una superficie cuádrica es la gráfica de una ecuación de segundo grado en las variables x, y, z. la forma general de esta ecuación es: UNIVERSIDAD FRANCISCO DE PAULA SANTANDER FACULTAD DE CIENCIAS BÁSICAS DEPARTAMENTO DE CIENCIAS BASICAS. SUPERFICIES CUADRICAS 1 SUPERFICIES CUADRICAS En el espio un superfiie uádri es l gráfi de un euión

Más detalles

UNIDAD 14 LA ELIPSE Y LA HIPÉRBOLA

UNIDAD 14 LA ELIPSE Y LA HIPÉRBOLA UNIDAD 1 LA ELIPSE Y LA HIPÉRBOLA Ojetivo generl. Al terminr est Unidd plirás ls definiiones los elementos que rterizn l elipse l hipérol en ls soluiones de ejeriios prolems. Ojetivos espeífios: 1. Reordrás

Más detalles

UNIDAD VI LA ELIPSE 6.1. ECUACIÓN EN FORMA COMÚN O CANÓNICA DE LA ELIPSE

UNIDAD VI LA ELIPSE 6.1. ECUACIÓN EN FORMA COMÚN O CANÓNICA DE LA ELIPSE UNIDAD VI LA ELIPSE OBJETIVO PARTIULAR Al onluir l unidd, el lumno onoerá plirá ls propieddes relionds on el lugr geométrio llmdo elipse, determinndo los distintos prámetros, su euión respetiv vievers.

Más detalles

3.1 Circunferencia 3.2 Parábola 3.3 Elipse 3.4 Hiperbola

3.1 Circunferencia 3.2 Parábola 3.3 Elipse 3.4 Hiperbola Moisés Villen Muñoz Cónis. Cirunfereni. Práol. Elise. Hierol Ojetivos. Se ersigue que el estudinte: Identifique, grfique determine los elementos de un óni onoiendo su euión generl. Ddo elementos de un

Más detalles

Eje normal. P(x,y) LLR Eje focal

Eje normal. P(x,y) LLR Eje focal . L Hipérol...1 L Hipérol omo lugr geométrio. L hipérol es el lugr geométrio de todos los puntos tles que el vlor soluto de l difereni de sus distnis dos puntos fijos es un onstnte. Los puntos fijos se

Más detalles

AA = Eje menor La elipse.

AA = Eje menor La elipse. 3.. L elipse. 3... L elipse omo lugr geométrio. L elipse es el lugr geométrio del onjunto de puntos P(, ) u sum de ls distnis dos puntos fijos llmdos foos equivlen l dole de un onstnte (), l ul represent

Más detalles

Elipse: Ecuación de la elipse dados ciertos elementos

Elipse: Ecuación de la elipse dados ciertos elementos Elipse: Euión de l elipse ddos iertos elementos Tinoo, G. (013). Euión de l elipse ddos iertos elementos. [Mnusrito no publido]. Méxio: UAEM. Espio de Formión Multimodl Elipse vertil Si l elipse tiene

Más detalles

La elipse. coordenadas de los vértices, y la longitud del eje mayor que es #+Þ. coordenadas de los extremos del eje menor, cuya longitud es #,Þ

La elipse. coordenadas de los vértices, y la longitud del eje mayor que es #+Þ. coordenadas de los extremos del eje menor, cuya longitud es #,Þ Definiión. L elipse Est Guí tiene..todas...ls respuests MALAS Se llm elipse, l lugr geométrio de los puntos de un plno u sum de distnis dos puntos fijos del mismo plno es onstnte. Los puntos fijos se ostumrn

Más detalles

z b 2 = z b y a + c 2 = y a z b + c

z b 2 = z b y a + c 2 = y a z b + c 47 ESTUDIO DEL CONO ELIPTICO Not: Lo diujos orrespondientes ls interseiones de este estudio tienen el mismo speto l estudio del ono irulr. Sin emrgo l interseión on plnos prlelos l plno son en este so

Más detalles

Departamento: Física Aplicada III

Departamento: Física Aplicada III Fund mentos Físi os de l Ingenierí. (Ind ustri les) Prlelogrmo insrito en trpezoide Ddo un trpezoide (udrilátero irregulr que no tiene ningún ldo prlelo otro), demuestre, usndo el álger vetoril, que los

Más detalles

Calcular los parámetros y los vértices de las siguientes hipérbola equilátera: La hipérbola equilátera es aquella cuyos ejes son iguales a = b

Calcular los parámetros y los vértices de las siguientes hipérbola equilátera: La hipérbola equilátera es aquella cuyos ejes son iguales a = b Problem relizdo por Elen Abd Felip Enunido: Clulr los prámetros y los vérties de ls siguientes hipérbol equiláter: y = 6 ) Según sus síntots b) Según sus ejes Bses teóris: L hipérbol equiláter es quell

Más detalles

B 1. d 1 d 2 B 2 ECUACIÓN ORDINARIA DE LA HIPÉRBOLA HORIZONTAL CON CENTRO EN EL ORIGEN

B 1. d 1 d 2 B 2 ECUACIÓN ORDINARIA DE LA HIPÉRBOLA HORIZONTAL CON CENTRO EN EL ORIGEN Fultd de Contdurí Administrión. UNAM Hipérol Autor: Dr. José Mnuel Beerr Espinos MATEMÁTICAS BÁSICAS HIPÉRBOLA DEFINICIÓN DE HIPÉRBOLA Un hipérol es el lugr geométrio de todos los puntos P del plno, tles

Más detalles

Matemática Diseño Industrial Cónicas Ing. Avila Ing. Moll CÓNICAS. Directriz. Generatriz

Matemática Diseño Industrial Cónicas Ing. Avila Ing. Moll CÓNICAS. Directriz. Generatriz Mtemáti Diseño Industril Cónis Ing. Avil Ing. Moll CÓNICAS Diretriz Genertriz Un superfiie óni está generd por un ret (genertriz) que se mueve poyándose en un urv fij (diretriz) y que ps por un punto fijo

Más detalles

6.2 DISTANCIA ENTRE DOS PUNTOS Consideremos la siguiente figura: Según el teorema de Pitágoras se tiene que: d x. y 2

6.2 DISTANCIA ENTRE DOS PUNTOS Consideremos la siguiente figura: Según el teorema de Pitágoras se tiene que: d x. y 2 UNIDAD 6: GEOMETRIA ANALÍTICA 6. SISTEMA DE COORDENADAS RECTANGULARES Un sistem de coordends rectngulres divide l plno en cutro cudrntes por medio de dos rects perpendiculres que se cortn en el punto O.

Más detalles

X. LA ELIPSE DEFINICIÓN DE ELIPSE COMO LUGAR GEOMÉTRICO. La recta que pasa por el punto medio del segmento el, se llama EJE MENOR de la elipse.

X. LA ELIPSE DEFINICIÓN DE ELIPSE COMO LUGAR GEOMÉTRICO. La recta que pasa por el punto medio del segmento el, se llama EJE MENOR de la elipse. X. LA ELIPSE 10.1. DEFINICIÓN DE ELIPSE COMO LUGAR GEOMÉTRICO Definiión Se llm elipse l lugr geométrio de un punto P que se mueve en el plno, de tl modo que l sum de ls distnis del punto P dos puntos fijos

Más detalles

Trabajo Práctico Nº 9: APLICACIONES A LA GEOMETRÍA

Trabajo Práctico Nº 9: APLICACIONES A LA GEOMETRÍA Trabajo Práctico Nº 9: APLICACIONES A LA GEOMETRÍA Ejercicio 1: Halle la ecuación normal y general de la circunferencia sabiendo que el segmento en los puntos (- 2; 3) y (4; -5) es diámetro de la misma.

Más detalles

B 1. d 1 d 2 B 2 XI.2 ECUACIÓN ORDINARIA DE LA HIPÉRBOLA HORIZONTAL CON CENTRO EN EL ORIGEN

B 1. d 1 d 2 B 2 XI.2 ECUACIÓN ORDINARIA DE LA HIPÉRBOLA HORIZONTAL CON CENTRO EN EL ORIGEN Págin del Colegio de Mtemátis de l ENP-UNAM Hipérol Autor: Dr. José Mnuel Beerr Espinos HIPÉRBOLA UNIDAD XI XI.1 DEFINICIÓN DE HIPÉRBOLA Un hipérol es el lugr geométrio de todos los puntos P del plno,

Más detalles

REPASO PARA EXAMEN SEMESTRAL DE MATEMÁTICAS III C D

REPASO PARA EXAMEN SEMESTRAL DE MATEMÁTICAS III C D REPASO PARA EXAMEN SEMESTRAL DE MATEMÁTCAS PRMER PARCAL PARTE A) LUGARES GEOMÉTRCOS ) Grfi ls siguientes funiones (tulr e - ): ) Enuentr tres prejs orens e funión (No grfir): B) DSTANCA ENTRE DOS PUNTOS

Más detalles

CAPÍTULO 3: ALGUNAS PROPIEDADES DEL TRIÁNGULO (III)

CAPÍTULO 3: ALGUNAS PROPIEDADES DEL TRIÁNGULO (III) PÍTULO 3: LGUNS PROPIEDDES DEL TRIÁNGULO (III) Dnte Guerrero-hnduví Piur, 2015 FULTD DE INGENIERÍ Áre Deprtmentl de Ingenierí Industril y de Sistems PÍTULO 3: LGUNS PROPIEDDES DEL TRIÁNGULO (III) Est or

Más detalles

Trabajo Práctico Nº 9: APLICACIONES A LA GEOMETRÍA

Trabajo Práctico Nº 9: APLICACIONES A LA GEOMETRÍA Trabajo Práctico Nº 9: APLICACIONES A LA GEOMETRÍA Ejercicio 1: Halle la ecuación normal y general de la circunferencia sabiendo que el segmento de extremos (- 2; 3) y (4; -5) es diámetro de la misma.

Más detalles

CIRCUNFERENCIA: Definición: Es el lugar geométrico de los puntos que equidistan de un punto llamado Centro y esa distancia es el radio.

CIRCUNFERENCIA: Definición: Es el lugar geométrico de los puntos que equidistan de un punto llamado Centro y esa distancia es el radio. Ls cónics responden l ecución generl del tipo F, ) 0 L ecución generl de un cónic es: A B C D E F 0 I) tér min oc cudráti cos tér min os lineles tér min o independiente B término rectngulr, cundo prece

Más detalles

c c a c a b b a c a A estas razones numéricas se les da el nombre: Si en cambio consideramos γ, resulta: Comparando (1), (2), (3), (4) obtenemos:

c c a c a b b a c a A estas razones numéricas se les da el nombre: Si en cambio consideramos γ, resulta: Comparando (1), (2), (3), (4) obtenemos: TRIGONOMETRIA NOCIONES PREVIAS Si onsidermos tres vrills,, tles que puede onstruirse on ells un triángulo (siempre que se umpl que l medid de d vrill se menor que l sum de ls otrs dos mor que l difereni)

Más detalles

INSTRUCTIVO PARA TUTORÍAS

INSTRUCTIVO PARA TUTORÍAS INSTRUCTIVO PARA TUTORÍAS Ls tutorís corresponden los espcios cdémicos en los que el estudinte del Politécnico Los Alpes puede profundizr y reforzr sus conocimientos en diferentes tems de cr l exmen de

Más detalles

Departamento de Matemática

Departamento de Matemática Deprtmento de Mtemáti Trjo Prátio N 2: PROPORCIONALIDAD Y SEMEJANZA TEOREMA DE PITÁGORAS RAZONES TRIGONOMÉTRICAS EN EL TRIÁNGULO RECTÁNGULO Segundo Año 1) Clulen x en los siguientes gráfios si te informn

Más detalles

La Parábola A. Definición B. Construcción de la parábola C. Elementos de la parábola. Und. 11 Geometría Analítica

La Parábola A. Definición B. Construcción de la parábola C. Elementos de la parábola. Und. 11 Geometría Analítica Cundo ls orgniziones de vuelos espiles desen poner en órit un stélite deen lnzrlos on un veloidd proimd de 8 km/s. Pero undo quieren que slg de l órit terrestre deen lnzrlo on un veloidd 8 km/s l tretori

Más detalles

2.3.2 VÉRTICE, MÁXIMOS Y MÍNIMOS DE UNA FUNCIÓN CUADRÁTICA EL VÉRTICE.

2.3.2 VÉRTICE, MÁXIMOS Y MÍNIMOS DE UNA FUNCIÓN CUADRÁTICA EL VÉRTICE. .3. VÉRTICE, MÁXIMOS Y MÍNIMOS DE UNA FUNCIÓN CUADRÁTICA..3.. EL VÉRTICE. El vértie es un punto que form prte de l prábol, el ul tiene omo ordend el vlor mínimo o máimo de l funión. En ese punto se puede

Más detalles

Respuestas ejercicios edición 2007 Sección 3.3: Transformación de coordenadas Ejercicio 3-1

Respuestas ejercicios edición 2007 Sección 3.3: Transformación de coordenadas Ejercicio 3-1 Editorial Mc Graw Hill. Edición 007 Respuestas ejercicios edición 007 Sección 3.3: Transformación de coordenadas Ejercicio 3-1 a) Simetría respecto de ambos ejes y respecto del origen. b) Simetría respecto

Más detalles

GEOMETRÍA ANALÍTICA DEL ESPACIO

GEOMETRÍA ANALÍTICA DEL ESPACIO CAPITULO Espero que l posteridd me jugue on enevoleni no solo por ls oss que he eplido sino tmién por quells que he omitido inteniondmente pr dejr los demás el pler de desurirls René Desrtes. GEOMETRÍA

Más detalles

Ecuaciones Cuadráticas (por lo menos una variable elevada al cuadrado)

Ecuaciones Cuadráticas (por lo menos una variable elevada al cuadrado) Breve Reso de Geometrí en el Plno Euión Linel (tods ls vriles están elevds l 1ª) Ret Euión Generl de l Ret: A B C = 0 = f ( ) Euión Segmentri de l Ret: = 1 Euiones Cudrátis (or lo menos un vrile elevd

Más detalles

3.1 Circunferencia 3.2 Parábola 3.3 Elipse 3.4 Hiperbola

3.1 Circunferencia 3.2 Parábola 3.3 Elipse 3.4 Hiperbola Moisés Villen Muñoz Cónis. Cirunfereni. Prábol. Elipse. Hiperbol Objetivos. Se persigue que el estudinte: Identifique, grfique determine los elementos de un óni onoiendo su euión generl. Ddo elementos

Más detalles

Una condición necesaria y suficiente para que el triangulo PBP sea equilátero es que el ángulo HBP sea 30º. b que es la relación buscada.

Una condición necesaria y suficiente para que el triangulo PBP sea equilátero es que el ángulo HBP sea 30º. b que es la relación buscada. Hoj de Prolems Geometrí III 49. Dd l elipse, si tommos el etremo B de ordend positiv del eje menor omo entro, se desrie un irunfereni de rdio igul diho eje menor, ortr l elipse en dos punto P P. Determinr

Más detalles

Preparatoria Abierta On Line Guía de Estudio Matemáticas V. 1.- La pendiente de la recta que pasa por los puntos P(5, 7) y Q(6, 10) es: a) 13

Preparatoria Abierta On Line Guía de Estudio Matemáticas V. 1.- La pendiente de la recta que pasa por los puntos P(5, 7) y Q(6, 10) es: a) 13 Preparatoria Abierta On Line Guía de Estudio Matemáticas V 1.- La pendiente de la recta que pasa por los puntos P(5, 7) y Q(6, 10) es: a) 3 b) 1/3 c) -1/3 d)-3 2.- El á n g u l o de inclinación de u n

Más detalles

La hipérbola es el lugar geométrico de todos los puntos cuya diferencia de distancias a dos puntos fijos, llamados focos, es constante e igual a 2a.

La hipérbola es el lugar geométrico de todos los puntos cuya diferencia de distancias a dos puntos fijos, llamados focos, es constante e igual a 2a. INSTITUTO VALLADOLID PREPARATORIA Págin 11 7 LA HIPÉRBOLA 7.1 DEFINICIONES L hipérol es el lugr geométrico de todos los puntos cuy diferenci de distncis dos puntos fijos, llmdos focos, es constnte e igul.

Más detalles

ASIGNATURA: CÁLCULO MULTIVARIABLE

ASIGNATURA: CÁLCULO MULTIVARIABLE APUNTES DOCENTES ASIGNATURA: CÁLCULO MULTIVARIABLE PROFESOR: LUZ LILIANA ARDILA RECTAS Y PLANOS EN EL ESPACIO Pr definir l euión de un ret en el espio st onoer un punto de l ret un vetor prlelo l ret,

Más detalles

Geometría Analítica. Ecuación de una recta que pasa por un punto y tiene una pendiente dada:

Geometría Analítica. Ecuación de una recta que pasa por un punto y tiene una pendiente dada: Geometría Analítica Definición de línea recta: Llamamos línea recta al lugar geométrico de los puntos tales que tomados dos puntos diferentes cualesquiera y del lugar, el valor de la pendiente m calculado

Más detalles

INDICADORES DE DESEMPEÑO

INDICADORES DE DESEMPEÑO INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMÁTICAS ASIGNATURA: GEOMETRÍA DOCENTE: JOSÉ IGNACIO DE JESÚS FRANCO RESTREPO TIPO DE GUIA: CONCEPTUAL - EJERCITACION PERIODO GRADO FECHA

Más detalles

Si P es el punto de coordenadas (x,y) de los datos del enunciado obtenemos: La pendiente de la recta que une P con A es:

Si P es el punto de coordenadas (x,y) de los datos del enunciado obtenemos: La pendiente de la recta que une P con A es: Halla el lugar geométrio de los puntos P(, ) tales que el produto de las pendientes de las retas trazadas desde P a los puntos: A (, 1) B (, 1) sea igual a 1. Qué figura obtienes? Represéntala. Si P es

Más detalles

Es el lugar geométrico de los puntos del plano cuya suma de distancias a dos puntos fijos llamados focos es constante.

Es el lugar geométrico de los puntos del plano cuya suma de distancias a dos puntos fijos llamados focos es constante. REPARTIDO IV - CÓNICAS Elipse Es el lugar geométrico de los puntos del plano cuya suma de distancias a dos puntos fijos llamados focos es constante. Elementos de la elipse Focos Son los puntos fijos F

Más detalles

SECRETARÍA ACADÉMICA ÁREA DE INGRESO MATEMÁTICA

SECRETARÍA ACADÉMICA ÁREA DE INGRESO MATEMÁTICA Ministerio de Eduión Universidd Tenológi Nionl Fultd Regionl Rosrio SECRETARÍA ACADÉMICA ÁREA DE INGRESO MATEMÁTICA - Septiemre de 03 - Ministerio de Eduión Universidd Tenológi Nionl Fultd Regionl Rosrio

Más detalles

LA ELIPSE EJERCICIOS RESUELTOS. Colegio Sor Juana Inés de la Cruz Sección Preparatoria Matemáticas III Bloque VII Ing. Jonathan Quiroga Tinoco

LA ELIPSE EJERCICIOS RESUELTOS. Colegio Sor Juana Inés de la Cruz Sección Preparatoria Matemáticas III Bloque VII Ing. Jonathan Quiroga Tinoco LA ELIPSE EJERCICIOS RESUELTOS Colegio Sor Jun Inés de l Cruz Sección Preprtori Mtemátics III Bloque VII Ing. Jonthn Quirog Tinoco 1. Pr encontrr l ecución de l elipse con centro en el origen, un foco

Más detalles

Ejercicios de las Cónicas

Ejercicios de las Cónicas Ejercicios de ls Cónics Ejemplo 1 Ejemplo Otener l ecución crtesin generl de l circunferenci que coincide con el punto (, 3) cuo centro coincide con el origen. Prtiendo de l ecución ordinri ( - h) + (

Más detalles

funciones de DERIVE permiten calcular algunos invariantes y expresiones asociados a la ecuación de dicha cónica necesarios para su estudio:

funciones de DERIVE permiten calcular algunos invariantes y expresiones asociados a la ecuación de dicha cónica necesarios para su estudio: CÓNICS - - Indiiones Llmndo l mriz soid un óni en un deermindo sisem de refereni l mriz de su form udrái, iers funiones de DERIVE permien lulr lgunos invrines epresiones soidos l euión de dih óni neesrios

Más detalles

INDICADORES DE DESEMPEÑO

INDICADORES DE DESEMPEÑO INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMÁTICAS ASIGNATURA: GEOMETRÍA DOCENTE: JOSÉ IGNACIO DE JESÚS FRANCO RESTREPO TIPO DE GUIA: CONCEPTUAL - EJERCITACION PERIODO GRADO N 0 FECHA

Más detalles

Colegio de Bachilleres Plantel No. 15 Contreras Guía de Estudio para presentar Examen de Evaluación de Recuperación 2015B

Colegio de Bachilleres Plantel No. 15 Contreras Guía de Estudio para presentar Examen de Evaluación de Recuperación 2015B Colegio de Bhilleres Plntel No. 5 Contrers Guí de Estudio pr presentr Emen de Evluión de Reuperión 05B Elborr en hojs blns mno solo los ejeriios propuestos, indindo pr d serie l págin de los mismos. Entregr

Más detalles

4. Trigonometría II. c) c 2 b 2 a 2 2ba cos C c 11,17 cm a A 61,84. B 38,11 se n B sen C d) A B C 180 A 70 a b 5,32. l 40 sen.

4. Trigonometría II. c) c 2 b 2 a 2 2ba cos C c 11,17 cm a A 61,84. B 38,11 se n B sen C d) A B C 180 A 70 a b 5,32. l 40 sen. 9 ) os 11,17 m se n 61,84 38,11 se n d) 180 70 se n 5,3 se n 10,48 lul un ulquier de ls lturs de los triángulos resueltos en el ejeriio nterior y utilízl después pr lulr su áre. Pr resolver este ejeriio

Más detalles

XI. LA HIPÉRBOLA LA HIPÉRBOLA COMO LUGAR GEOMÉTRICO

XI. LA HIPÉRBOLA LA HIPÉRBOLA COMO LUGAR GEOMÉTRICO XI. LA HIPÉRBOLA 11.1. LA HIPÉRBOLA COMO LUGAR GEOMÉTRICO Definición L hipérol es el lugr geométrico descrito por un punto P que se mueve en el plno de tl modo que el vlor soluto de l diferenci de sus

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE ZARAGOZA SEPTIEMBRE (RESUELTOS por Antonio Menguiano)

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE ZARAGOZA SEPTIEMBRE (RESUELTOS por Antonio Menguiano) ES CSTELR DJOZ Menguino PRUE DE CCESO (LOGSE) UNVERSDD DE ZRGOZ SEPTEMRE (RESUELTOS por ntonio Menguino) MTEMÁTCS Tiempo máimo: hors Se vlorrá el uso del voulrio l notión ientíi Los errores ortográios,

Más detalles

LAS CÓNICAS COMO LUGARES GEOMÉTRICOS

LAS CÓNICAS COMO LUGARES GEOMÉTRICOS LAS CÓNICAS COMO LUGARES GEOMÉTRICOS Elipse: lugar geométrico de los puntos del plano cuya suma de distancias a dos puntos fijos llamados focos es constante. d(x,f) + d(x,f ) = k LAS CÓNICAS COMO LUGARES

Más detalles

Antes de iniciar el tema se deben de tener los siguientes conocimientos básicos:

Antes de iniciar el tema se deben de tener los siguientes conocimientos básicos: 1 CONOCIMIENTOS PREVIOS. 1 Cónicas. 1. Conocimientos previos. ntes de iniciar el tema se deben de tener los siguientes conocimientos básicos: Ecuaciones. Sistemas de ecuaciones. Sería conveniente realizar

Más detalles

= α G. TRIGONOMETRÍA Sistemas de Medición de Ángulos Equivalencia entre los tres Sistemas. Funciones Trigonométricas

= α G. TRIGONOMETRÍA Sistemas de Medición de Ángulos Equivalencia entre los tres Sistemas. Funciones Trigonométricas TRIGONOMETRÍA Sistems de Medición de Ángulos Equivlenci entre los tres Sistems Áre del Circulo = π. r 360º = πrd = 400 G α º = α R = α G 360º π 400 G C = π. rdio Longitud de l Circunferenci Áre de Anillo

Más detalles

TRIGONOMETRÍA Sistemas de Medición de Ángulos Equivalencia entre los tres Sistemas

TRIGONOMETRÍA Sistemas de Medición de Ángulos Equivalencia entre los tres Sistemas TRIGONOMETRÍA Sistems de Medición de Ángulos Equivlenci entre los tres Sistems Áre del Circulo =. r 360º = Rd = 400 G º = R = G 360º 400 G Longitud de l Circunferenci C =. rdio Áre de Anillo o Coron Circulr

Más detalles

LA ELIPSE DEFINICIÓN ELEMENTOS DE LA ELIPSE

LA ELIPSE DEFINICIÓN ELEMENTOS DE LA ELIPSE 1 LA ELIPSE DEFINICIÓN L elipse es el lugr geométrico de todos los puntos P del plno cuy sum de distncis dos puntos fijos, F 1 y F, llmdos focos es un constnte positiv. Es decir: L elipse es l curv cerrd

Más detalles

, y el plano Π forma un ángulo β con el eje del cono, se pueden presentar los siguientes casos:

, y el plano Π forma un ángulo β con el eje del cono, se pueden presentar los siguientes casos: Águed Mt Miguel Rees, Dpto. de Mtemátic Aplicd, FI-UPM 9 Cónics 9. Cónics Se llm cónic culquier de ls secciones plns que se producen l cortr en el espcio un doble cono recto por un plno. Si el doble cono

Más detalles

UNIVERSIDAD DE ATACAMA

UNIVERSIDAD DE ATACAMA UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA ALGEBRA I GUÍA N o 2 DE GEOMETRÍA ANALÍTICA Profesor: David Elal Olivero Primer año Plan Común de Ingeniería Primer Semestre 2009

Más detalles

NIVEL : 1er. AÑO PROF. L. ALTIMIRAS R. CARRERA : DISEÑO AYUD. C. RAMIREZ N. AÑO : 2007 LA HIPERBOLA

NIVEL : 1er. AÑO PROF. L. ALTIMIRAS R. CARRERA : DISEÑO AYUD. C. RAMIREZ N. AÑO : 2007 LA HIPERBOLA ASIGNATURA : MATEMATICAS MATERIAL DE APOYO NIVEL : er. AÑO PROF. L. ALTIMIRAS R. CARRERA : DISEÑO AYUD. C. RAMIREZ N. AÑO : 007 LA HIPERBOLA Definición : Un Hipérol es el lugr geométrico de un punto en

Más detalles

Sesión No. 13. Elipse. Objetivo

Sesión No. 13. Elipse. Objetivo Sesión No. 13 Elipse Objetivo Identificar la ecuación de una Elipse, con eje focal paralelo a los ejes coordenados, y reconocer sus características esenciales, en los casos de Elipse con vértice fuera

Más detalles

Unidad 2 Apunte Superficies en 3D Links del curso Matemática Aplicada de la Cátedra de Matemática ECC, FAU (UNLP).

Unidad 2 Apunte Superficies en 3D Links del curso Matemática Aplicada de la Cátedra de Matemática ECC, FAU (UNLP). CM ENRICH CREUS CARNICERO Nivel Unidd Apunte Superfiies en 3D 015 Links del urso Mtemáti Aplid de l Cátedr de Mtemáti ECC, FAU (UNLP). Soliitr unirse l grupo 015 Nivel Mtemáti ECC. https://mtemtie.wordpress.om/segundo-no/

Más detalles

Apuntes citados en este material y que, seguramente, necesitarás consultar:

Apuntes citados en este material y que, seguramente, necesitarás consultar: 01 Apuntes itdos en este mteril que, segurmente, neesitrás onsultr: Conoimientos previos Superfiies3D. Aneos Superfiies 3D. 1. Introduión Comenemos lrndo qué epión de l plr superfiie se refiere el tem

Más detalles

Cónicas. = 0 son rectas que pasan por su centro y tienen de pendiente m tal que: a) m = a

Cónicas. = 0 son rectas que pasan por su centro y tienen de pendiente m tal que: a) m = a .- Las asíntotas de la hipérbola a x + a y + axy + a 0x + a 0y + a 00 = 0 son retas que pasan por su entro y tienen de pendiente m tal que: a a) m = a b) m es raíz de m + a m + a 0 a = a + am + a m = )

Más detalles

UNIDAD 14 LA ELIPSE Y LA HIPÉRBOLA

UNIDAD 14 LA ELIPSE Y LA HIPÉRBOLA UNIDAD 14 LA ELIPSE Y LA HIPÉRBOLA PROBLEMAS PROPUESTOS Objetivo general. Al terminar esta Unidad aplicarás las definiciones los elementos que caracterizan a la elipse a la hipérbola en las soluciones

Más detalles

8. La elipse. 9/ Las cónicas.

8. La elipse. 9/ Las cónicas. 9/ Ls ónis. 8. L elipse. Definiión: Ddos dos puntos un distni 2 mor que l distni, se llm elipse de foos prámetro 2, l lugr geométrio de los puntos del plno u sum de distnis es 2. Dee umplirse pues que,

Más detalles

MATEMÁTICAS BÁSICAS ELIPSE. B 2B 1 del eje mayor es el eje menor. Cada extremo del eje mayor V 1 y V 2 se llama vértice. El punto DEFINICIÓN DE ELIPSE

MATEMÁTICAS BÁSICAS ELIPSE. B 2B 1 del eje mayor es el eje menor. Cada extremo del eje mayor V 1 y V 2 se llama vértice. El punto DEFINICIÓN DE ELIPSE Fultd de ontdurí dministrión. UN lipse utor: r. José nuel Beerr spinos TÁTIS BÁSIS LIPS FINIIÓN LIPS Un elipse es el lugr geométrio de todos los puntos P del plno, tles que l sum de sus distnis dos puntos

Más detalles

Ejercicios 16/17 Lección 5. Geometría. 1. como combinación lineal de u = (2,5), expresa uno de ellos como combinación lineal de los otros dos.

Ejercicios 16/17 Lección 5. Geometría. 1. como combinación lineal de u = (2,5), expresa uno de ellos como combinación lineal de los otros dos. Ejercicios 16/17 Lección 5. Geometría. 1 1. Expresa el vector u = ( 3, 1) como combinación lineal de los vectores v = ( 3, ) w = ( 4, 1). y. Expresa w = (4, 6) como combinación lineal de u = (,5) y v =

Más detalles

7.1 Ecuación en forma común o canónica de la hipérbola. En la gráfica dada a continuación (Fig. 1) es posible encontrar los elementos siguientes:

7.1 Ecuación en forma común o canónica de la hipérbola. En la gráfica dada a continuación (Fig. 1) es posible encontrar los elementos siguientes: UNIDAD VII. LA HIPÉRBOLA. DEFINICIÓN: L Hipérol es el onjunto de puntos en el plno u difereni de sus distnis dos puntos fijos en el mismo plno, llmdos foos, es onstnte e igul. 7.1 Euión en form omún o

Más detalles

CAPÍTULO 4: RELACIÓN ENTRE ÁNGULOS Y ARCOS DE CIRCUNFERENCIA (III)

CAPÍTULO 4: RELACIÓN ENTRE ÁNGULOS Y ARCOS DE CIRCUNFERENCIA (III) PÍTULO 4: RELIÓN ENTRE ÁNGULOS Y ROS DE IRUNFERENI (III) Dnte Guerrero-hnduví Piur, 2015 FULTD DE INGENIERÍ Áre Deprtmentl de Ingenierí Industril y de Sistems PÍTULO 4: RELIÓN ENTRE ÁNGULOS Y ROS DE IRUNFERENI

Más detalles

7 Semejanza. y trigonometría. 1. Teorema de Thales

7 Semejanza. y trigonometría. 1. Teorema de Thales 7 Semejnz y trigonometrí 1. Teorem de Tles Si un person que mide 1,70 m proyet un sombr de,40 m y el mismo dí, l mism or y en el mismo lugr l sombr de un árbol mide 15 m, uánto mide de lto el árbol? Se

Más detalles

Introducción La Circunferencia Parábola Elipse Hiperbola. Conicas. Hermes Pantoja Carhuavilca

Introducción La Circunferencia Parábola Elipse Hiperbola. Conicas. Hermes Pantoja Carhuavilca Facultad de Ingeniería Industrial Universidad Nacional Mayor de San Marcos Matematica I Contenido 1 Introducción 2 La Circunferencia 3 Parábola 4 Elipse 5 Hiperbola Objetivos Se persigue que el estudiante:

Más detalles

y a z b 2 = y a z b + c

y a z b 2 = y a z b + c 65 ESTUDIO DEL HIPERBOLOIDE DE UNA HOJA - Estudi de l Simetrí Simetrí respet ls plns rdends Simetrí respet l pln l euión de l superfiie n se lter si mims el sign de l vrile, nluims que l superfiie es simétri

Más detalles

MATEMÁTICAS II Cónicas en coordenadas polares Curso 07-08

MATEMÁTICAS II Cónicas en coordenadas polares Curso 07-08 MATEMÁTICAS II Cónis en oordends olres Curso 07-08 1. El omet Hlley desribe un orbit elíti de exentriidd e 0.97. l longitud del eje myor de l órbit es, roximdmente, 6,18 uniddes stronómis (un u.., distni

Más detalles

GEOMETRÍA DEL ESPACIO

GEOMETRÍA DEL ESPACIO Mtemáti Diseño Industril Poliedros Ing. Gustvo Moll GEOMETRÍA DEL ESPACIO L geometrí pln estudi el onjunto de todos los puntos del plno, l geometrí del espio se refiere l onjunto de puntos del espio, es

Más detalles

Bloque 2. Geometría. 4. Iniciación a las Cónicas

Bloque 2. Geometría. 4. Iniciación a las Cónicas Bloque 2. Geometría 4. Iniciación a las Cónicas 1. La circunferencia Se llama circunferencia al lugar geométrico de los puntos del plano que equidistan de un punto fijo llamado centro. Elevando al cuadrado

Más detalles

TEMA 6: INTEGRAL DEFINIDA. APLICACIONES.

TEMA 6: INTEGRAL DEFINIDA. APLICACIONES. TEMA 6: INTEGRAL DEFINIDA. APLICACIONES.. Áre jo un urv El prolem que pretendemos resolver es el álulo del áre limitd por l gráfi de un funión f() ontinu y positiv, el eje X y ls siss = y =. Si l gráfi

Más detalles

AlGEBRA LINEAL Y GEOMETRIA ANALITICA (0250) PARCIAL IV SEMESTRE Nombre y Apellido: C.I:

AlGEBRA LINEAL Y GEOMETRIA ANALITICA (0250) PARCIAL IV SEMESTRE Nombre y Apellido: C.I: AlGEBRA LINEAL Y GEOMERIA ANALIICA 5 SEMESRE -6 --7 DEPARAMENO DE MAEMÁICA APLICADA Nomre Aellido: C.I:. Dd l trnsformión, u regl de orresondeni está dd or: tos Hlle el ó los vlores de r ue l dimensión

Más detalles

GUÍA DE ESTUDIO PARA EL EXAMEN EXTRAORDINARIO DE GEOMETRÍA ANALÍTICA

GUÍA DE ESTUDIO PARA EL EXAMEN EXTRAORDINARIO DE GEOMETRÍA ANALÍTICA ESCUELA PREPARATORIA OFICIAL No. 268 GUÍA DE ESTUDIO PARA EL EXAMEN EXTRAORDINARIO DE GEOMETRÍA ANALÍTICA Profra: Citlalli Artemisa García García 1) Qué es la pendiente? 2) Cómo es la pendiente de rectas

Más detalles

Ejercicios 17/18 Lección 5. Geometría. 1. como combinación lineal de u = (2,5), expresa uno de ellos como combinación lineal de los otros dos.

Ejercicios 17/18 Lección 5. Geometría. 1. como combinación lineal de u = (2,5), expresa uno de ellos como combinación lineal de los otros dos. Ejercicios 17/18 Lección 5. Geometría. 1 1. Expresa el vector u = ( 3, 1) como combinación lineal de los vectores v = ( 3, ) w = ( 4, 1). y. Expresa w = (4, 6) como combinación lineal de u = (,5) y v =

Más detalles

FUNCIÓN CUADRÁTICA Y LA ECUACIÓN DE UNA PARÁBOLA HORIZONTAL

FUNCIÓN CUADRÁTICA Y LA ECUACIÓN DE UNA PARÁBOLA HORIZONTAL FUNCIÓN CUADRÁTICA Y LA ECUACIÓN DE UNA PARÁBOLA HORIZONTAL El prolem de l práol horizontl Qué relión h entre ls propieddes nlítis de l funión udráti ls propieddes geométris de l práol horizontl? Como

Más detalles

Problemas de trigonometría

Problemas de trigonometría Prolems de trigonometrí Reliones trigonométris de un ángulo. Clulr ls rzones trigonométris de un ángulo α, que pertenee l primer udrnte, y siendo que 8 sin α. 7 sin α + os α 8 7 + os α os α 64 5 5 osα

Más detalles

INSTITUTO POLITECNICO NACIONAL CECYT MIGUEL BERNARD PERALES GUIA DE GEOMETRIA ANALITICA

INSTITUTO POLITECNICO NACIONAL CECYT MIGUEL BERNARD PERALES GUIA DE GEOMETRIA ANALITICA INSTITUTO POLITECNICO NACIONAL CECYT MIGUEL BERNARD PERALES GUIA DE GEOMETRIA ANALITICA I. LA RECTA. Ejercicios pr resolver. 1. Demuestr que los puntos A(-,8); B(-6,1) C(0,4) son los vértices de un tringulo

Más detalles

HIPÉRBOLA. Ecuación de la hipérbola

HIPÉRBOLA. Ecuación de la hipérbola Mtemátic 014 HIPÉRBOLA Definición: Se llm hipérol l conjunto de puntos del plno que cumplen con l condición de que l diferenci de ls distncis dos puntos fijos, llmdos focos, es constnte. pf p f ' = constnte

Más detalles

Estudio algebraico de las cónicas. CÓNICAS

Estudio algebraico de las cónicas. CÓNICAS Esudio lgerio de ls ónis Esudio lgerio de ls ónis Inroduión CÓNICAS En ese píulo se v efeur un esudio de ess urvs plns uilizndo ls herrmiens que nos hn proporiondo los ems neriores de Álger Linel y Geomerí

Más detalles

GUÍA DE EJERCICIOS GEOMETRÍA ANALÍTICA (CURVAS CÓNICAS)

GUÍA DE EJERCICIOS GEOMETRÍA ANALÍTICA (CURVAS CÓNICAS) U N E X P O INTRODUCCIÓN: UNIVERSIDAD NACIONAL EXPERIMENTAL POLITÉCNICA ANTONIO JOSÉ DE SUCRE VICE-RECTORADO PUERTO ORDAZ DEPARTAMENTO DE ESTUDIOS GENERALES SECCIÓN DE MATEMÁTICA GUÍA DE EJERCICIOS GEOMETRÍA

Más detalles

Ejercicios de Álgebra y Geometría Analítica

Ejercicios de Álgebra y Geometría Analítica Ejercicios de Álgebra y Geometría Analítica Profr. Fausto Cervantes Ortiz Recta Dibujar las rectas indicadas 1. y = x + 1 2. y = 2x + 5 2 3. y = x + 2 4. y = x + 2 5. y = 2x 3 2 6. y = 3 2 x + 1 2 7. y

Más detalles

GUÍA DE MATEMÁTICAS V. Ciclo escolar B determina:

GUÍA DE MATEMÁTICAS V. Ciclo escolar B determina: Elbor: Preprtori Págin 1 de 14 Ciclo escolr 014-015 Docente: Fernndo Vivr Mrtínez I) Producto Crtesino, Relciones y Funciones B determin: 1) Ddos los conjuntos A 0,1,,3 y 4,5,6,7 ) El Producto Crtesino

Más detalles

Tema 3. GEOMETRIA ANALITICA.

Tema 3. GEOMETRIA ANALITICA. Álgebra lineal. Curso 087-009. Tema. Hoja 1 Tema. GEOMETRIA ANALITICA. 1. Hallar la ecuación de la recta: a) que pase por ( 4, ) y tenga pendiente 1. b) que pase por (0, 5) y tenga pendiente. c) que pase

Más detalles

DETERMINACIÓN DE LOS PUNTOS NOTABLES DE UN TRIÁNGULO EN TÉRMINOS DE SUS LADOS HERNAN DARIO ORTIZ ALZATE

DETERMINACIÓN DE LOS PUNTOS NOTABLES DE UN TRIÁNGULO EN TÉRMINOS DE SUS LADOS HERNAN DARIO ORTIZ ALZATE DETERMINACIÓN DE LOS PUNTOS NOTABLES DE UN TRIÁNGULO EN TÉRMINOS DE SUS LADOS HERNAN DARIO ORTIZ ALZATE ESPECIALISTA EN LA ENSEÑANZA DE LAS MATEMÁTICAS U de A INTRODUCCIÓN En el desrrollo de l geometrí

Más detalles

Apellidos: Nombre: TEMA 6 - CÓNICAS - ()* & TEMA 7 - COMPLEJOS

Apellidos: Nombre: TEMA 6 - CÓNICAS - ()* & TEMA 7 - COMPLEJOS EXAMEN DE MATEMÁTICAS 3ª EVALUACIÓN Apellidos: Nombre: Curso: 1º Grupo: C Día: 4 - V- 15 CURSO 2015-16 TEMA 6 - CÓNICAS 1. Demuestra que la recta r de ecuación 3x+4y- 25 = 0 es tangente a la circunferencia

Más detalles

1) Clasifica las siguientes cónicas y expresa sus focos y su excentricidad: a)

1) Clasifica las siguientes cónicas y expresa sus focos y su excentricidad: a) Ejercicios de cónicas 1º bachillerato C 1) Clasifica las siguientes cónicas y expresa sus focos y su excentricidad: a) b) c) d) e) f) g) h) i) Soluciones: a) Circunferencia de centro ( y radio 3. Excentricidad

Más detalles

UNIVERSIDAD CENTROAMERICANA JOSÉ SIMEÓN CAÑAS ALGEBRA VECTORIAL Y MATRICES GUIA DE TRABAJO Secciones Cónicas Ciclo 02 de 2012

UNIVERSIDAD CENTROAMERICANA JOSÉ SIMEÓN CAÑAS ALGEBRA VECTORIAL Y MATRICES GUIA DE TRABAJO Secciones Cónicas Ciclo 02 de 2012 UNIVERSIDAD CENTROAMERICANA JOSÉ SIMEÓN CAÑAS ALGEBRA VECTORIAL Y MATRICES GUIA DE TRABAJO Secciones Cónicas Ciclo 0 de 0 PARTE I: Ejercicios cortos de selección Múltiple. En cada uno de los siguientes

Más detalles

1. L U G A R E S G E O M É T R I C O S E N E L P L A N O

1. L U G A R E S G E O M É T R I C O S E N E L P L A N O L U G A R E S G E O M É T R I C O S. C Ó N I C A S 1. L U G A R E S G E O M É T R I C O S E N E L P L A N O Se define un lugar geométrico como el conjunto de puntos del plano que cumplen una determinada

Más detalles

Fonaments Matemàtics

Fonaments Matemàtics Fonaments Matemàtics Grau en Engineria de la Construcció Cónicas. Denición Dadas una recta l un punto F no situado en l el conjunto de puntos P equidistantes de F de l se denomina parábola. La recta l

Más detalles

ELIPSE. Las componentes principales de la elipse se pueden obtener de la figura anterior, las cuales son: Focos: Vértices: Pág. 1

ELIPSE. Las componentes principales de la elipse se pueden obtener de la figura anterior, las cuales son: Focos: Vértices: Pág. 1 ELIPSE. Es el conjunto de todos los puntos con l propiedd de que l sum de ls distncis de los puntos del conjunto dos puntos fijos ddos es un constnte, myor que l distnci entre los dos puntos. L elipse

Más detalles