SOLUCIONES SEGUNDA HOJA EJERCICIOS 1º BACHILLER CIENCIAS. Ejercicio nº 1.- a) Calcula, utilizando la definición de logaritmo:

Tamaño: px
Comenzar la demostración a partir de la página:

Download "SOLUCIONES SEGUNDA HOJA EJERCICIOS 1º BACHILLER CIENCIAS. Ejercicio nº 1.- a) Calcula, utilizando la definición de logaritmo:"

Transcripción

1 SOLUCIONES SEGUNDA HOJA EJERCICIOS º BACHILLER CIENCIAS Ejercco º.- a) Calcula, utlado la decó de logartmo: log log log Halla el valor de, aplcado las propedades de los logartmos: log log log Solucó: a) 8 log log log log log log log log Ejercco º.- Ecuetra el térmo geeral de cada ua de estas sucesoes: a),, 8,,, ;,8;,; -,; -,8; Solucó: a) a Es ua progresó artmétca co a ( ) (, ) a y d,.,,,, Por tato: a,, Ejercco º.- Resuelve:

2 a) y y y ( ) > Solucó: ( ) ( ) a) 8, y ( ) ( ) > ( ) > > < Itervalo, Ejercco º.- Calcula Aˆ, Bˆ y Cˆ e el sguete trágulo: Solucó: Aplcamos el teorema del coseo para hallar uo de los águlos: a b c bccosaˆ 8 cosa ˆ 89 8cosA ˆ 8 cosaˆ cosa ˆ, Aˆ 8 Hallamos el águlo Bˆ 8 ' " aplcado de uevo el teorema del coseo :

3 b a c accosbˆ cosbˆ ˆ, ˆ cosb B 9 El águlo Así: Ĉ lo obteemos así : ( Aˆ ˆ ) 8 ˆ 8 B C ' 8" Aˆ Bˆ Cˆ 8 9 ' 8" 8 ' " 7' 9" Ejercco º.- a) Demuestra que: cos tg se Resuelve la ecuacó: tg ( se ) cos Solucó: ( cos ) cos tg se a) tg tg cos se se cos tg se se tg cos cos ( cos ) ( cos ) ( se ) cos ( cos ) cos cos cos cos cos cos π 9 k π k co k π 7 k π k Z Ejercco º.-

4 Escrbe e orma bómca a) Halla su opuesto y su cojugado e orma bómca y polar.. y, Represeta ) c Solucó: ( ) se cos a) : Opuesto : Cojugado c) Z Z Z Ejercco º 7.- Halla: ( ) 8 a) 7 Solucó: ( ) ( ) ( ) ( ) ( ) ( ) ( ) a) 8 ( ) 8 9 8,, para Las tres raíces so:

5 7 ( ) Ejercco º 8.- Halla el valor de k para que los putos A (, ), B(, ) y C(, k) esté aleados. Solucó: Para que esté aleados, las coordeadas de AB y de AC ha de ser proporcoales : AB AC (, 7) ( 7, k ) k 7 9 ( k ) 9 k k 7 Ejercco º 9.- Halla el área del trágulo de vértces A (, ), B(, ) y C(, ). Solucó: Y C A b h B 8 X Vamos a tomar como base del trágulo el lado AC y, como altura, la correspodete al vértce B. La logtud de la base, b, será la dstaca etre A y C: b AC ( ) ( ) 9 La altura, h, es la dstaca del vértce B a la recta que pasa por A y C: m y y Dstaca de B a r: ( ) y r:

6 ( B, ) h dst r 7 ( ) Por tato, el área es: Área b h 7 7, u Ejercco º.- Halla la ecuacó de la crcuereca cuyo cetro es el puto P (, ), y que es tagete a la recta r : y. Solucó: El rado, R, de la crcuereca es gual a la dstaca del cetro, P (, ), a la recta tagete, r : y : 9 R dst ( P, r ) 9 La ecuacó de la crcuereca será: ( ) ( y ) ; es decr: ( ) ( y ) y y y y Ejercco º.- Calcula los límtes sguetes y represeta grácamete los resultados que obtegas:

7 a) lm lm c) lm Solucó: a) lm lm c) lm lm ( ) ( ) ( ) ( ) ( ) Hallamos los límtes laterales: lm ; lm Represetacó: lm Ejercco º.- Calcula ' ( ) e cada caso: a) ( ) 8 ( ) ( ) e c) ( ) se

8 Solucó: ( ) ' a) ( ) ( ) ( ) ( ) ( ) e e e e ' ( ) ( ) ' c) cos ( ) ( ) cos cos Ejercco º.- Dada la ucó : ( ) a) Escrbe la ecuacó de la recta tagete a la ucó e. Halla los tramos e los que la ucó crece y e los que decrece. Solucó: ( ) ' a) ( ). ' pedete de la recta es La., Cuado y La recta será: ( ) y Estudamos el sgo de la dervada: > > > < < <. y tee u mímo e,, y crecete e, decrecete e Es Ejercco º.- Dada la ucó:

9 ( ) a) Estuda su cotudad. Represétala grácamete. s s > Solucó: a) S S, : es ua ucó cotua. lm ( ) lm No este lm lm ( ) lm ( ) S S >,, La gráca es: es u troo de parábola. es u troo de recta. ( ); luego es dscotua e. Y 8 X Ejercco º.- a) Dbuja la gráca de la ucó: ( ) Ayúdate de la gráca para estudar los sguetes aspectos de de crecmeto y de decrecmeto. ( ) : domo, cotudad e tervalos Solucó: a) lm ; lm Putos de corte co los ejes: Co el eje X 9

10 ( 9) ± 9,8,8 Co el eje Y Putos Putos sgulares: (, ) ; (,8; ) y (,8; ). y Puto (, ) ( ) ± ± Puto, Puto (, 9) Gráca: Y X 8 Domo R Es ua ucó cotua. Crecete e, ( ) (, ) y decrecete e (, ). Ejercco º.- a) Represeta la gráca de la ucó: ( ) Ayúdate de la gráca para estudar la cotudad y los tervalos de crecmeto y de decrecmeto de ( ). Solucó:

11 { } a) Domo R, Putos de corte co los ejes: ( ). No corta al eje X, pues No corta al eje Y, pues o está e el domo. Asítotas vertcales: y lm lm ( ) ; lm ( ) ( ) ; lm ( ) Asítota horotal : y lm ( ) ; lm ( ) Putos sgulares: ( ) ( ) ' ( ) Puto, Gráca: Y 8 X Cotudad: S y E y e, es cotua. es dscotua, pues tee dos ramas tas (asítotas vertcales). (, ) (, ) y decrecete e (,) ( ) Es crecete e,

b) Encuentra el criterio de formación de la siguiente sucesión recurrente:

b) Encuentra el criterio de formación de la siguiente sucesión recurrente: Ejercco nº.- Calcula, utlzando la dencón de logartmo: log log log b) Halla el valor de, aplcando las propedades de los logartmos: log log log Solucón: b) log log log 9 log log log log log 9 9 Ejercco nº.-

Más detalles

b) Encuentra el criterio de formación de la siguiente sucesión recurrente:

b) Encuentra el criterio de formación de la siguiente sucesión recurrente: Ejercco nº.- Calcula, utlzando la dencón de logartmo: log log log b) Halla el valor de, aplcando las propedades de los logartmos: log log log Ejercco nº.- Avergua el térmno general de la sucesón: ; 0,;

Más detalles

LOS NÚMEROS COMPLEJOS

LOS NÚMEROS COMPLEJOS LOS NÚMEROS COMPLEJOS por Jorge José Osés Reco Departameto de Matemátcas - Uversdad de los Ades Bogotá Colomba - 00 Cuado se estudó la solucó de la ecuacó de segudo grado ax bx c 0 se aaló el sgo del dscrmate

Más detalles

TEMA 2: LOS NÚMEROS COMPLEJOS

TEMA 2: LOS NÚMEROS COMPLEJOS Matemátcas º Bachllerato. Profesora: María José Sáche Quevedo TEMA : LOS NÚMEROS COMPLEJOS. LOS NÚMEROS COMPLEJOS Relacó etre los úmeros complejos y los putos del plao. Afjo de u úmero complejo. Cojugado

Más detalles

ANTES DE COMENZAR RECUERDA

ANTES DE COMENZAR RECUERDA ANTES DE COMENZAR RECUERDA 00 Po tres ejemplos de úmeros reales que o sea racoales, y otros tres ejemplos de úmeros reales que o sea rracoales. Respuesta aberta. Tres úmeros reales que o sea racoales:,

Más detalles

2.5. Área de una superficie.

2.5. Área de una superficie. .5. Área de ua superfce. Sea g ua fucó co prmeras dervadas parcales cotuas, tal que z g( x y), 0 e toda la regó D del plao xy. Sea S la parte de la gráfca de g cuya proyeccó e el plao xy es como se lustra

Más detalles

1.3. Longitud de arco.

1.3. Longitud de arco. .. Logtud de arco. Defcó. Sea C ua curva suave defda paramétrcamete por la fucó vectoral f : R R / f () t = ( f() t, f() t,, f ( t) ) e el espaco R, co t [ a, b], que se recorre exactamete ua vez cuado

Más detalles

. Si vamos calculando así las potencias n-ésimas de la unidad imaginaria, descubriremos que son cíclicas y que cada 4 términos se repiten: ( )

. Si vamos calculando así las potencias n-ésimas de la unidad imaginaria, descubriremos que son cíclicas y que cada 4 términos se repiten: ( ) Los úmeros complejos surje a ra de ecuacoes de la forma x + 0 Exste u certo paralelsmo etre este cuerpo el plao, cocretamete, lo que ha es ua correspodeca buívoca, es decr, ua relacó bectva etre C R R

Más detalles

SOLUCIONES A LOS EJERCICIOS

SOLUCIONES A LOS EJERCICIOS SOLUCIONES A LOS EJERCICIOS Ejercicio nº.- a) Calcula utilizando la definición de logaritmo: log log log Sabiendo que log k calcula log ( k ). a) 5 5 5 7 log log log ( ) log k log logk log logk ( ) Ejercicio

Más detalles

ENUNCIADOS DE LOS EJERCICIOS PROPUESTOS EN 2010 EN MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES.

ENUNCIADOS DE LOS EJERCICIOS PROPUESTOS EN 2010 EN MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES. ENUNCIADOS DE LOS EJERCICIOS PROPUESTOS EN EN MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES. EJERCICIO a) ( putos) Racoalce smplfque la fraccó. 8 8 b) ( putos) Determe los coefcetes de la ecuacó 3 a b

Más detalles

b) Obtén el criterio de formación de la siguiente sucesión recurrente:

b) Obtén el criterio de formación de la siguiente sucesión recurrente: Ejercicio nº.- a) Calcula, utilizando la definición de logaritmo: log log log 9 b) Calcula el valor de, aplicando las propiedades de los logaritmos: 8 log log log a) log log log b) log log Ejercicio nº.-

Más detalles

b) Calcula el valor de x, aplicando las propiedades de los logaritmos: b) Obtén el criterio de formación de la siguiente sucesión recurrente:

b) Calcula el valor de x, aplicando las propiedades de los logaritmos: b) Obtén el criterio de formación de la siguiente sucesión recurrente: Ejercicio nº.- a) Calcula, utilizando la definición de logaritmo: log log log 9 b) Calcula el valor de, aplicando las propiedades de los logaritmos: 8 log log log4 Ejercicio nº.- a) Halla el término general

Más detalles

1 DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL

1 DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL Estadístca y probabldad 1 DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL 1.1 DISTRIBUCIONES ESTADÍSTICAS Se usa dagramas de barras, dode la altura de éstas represeta la recueca de cada

Más detalles

Números complejos. Números complejos. Las tribulaciones del estudiante Törless LITERATURA Y MATEMÁTICAS

Números complejos. Números complejos. Las tribulaciones del estudiante Törless LITERATURA Y MATEMÁTICAS Números complejos SOLUCIONARIO Números complejos LITERATURA Y MATEMÁTICAS Las trbulacoes del estudate Törless Dme, etedste be todo esto? Qué? Ese asuto de los úmeros magaros. Sí, o es ta dfícl. Lo úco

Más detalles

Análisis Numérico y Programación. Unidad III. -Interpolación mediante trazadores: Lineales, cuadráticos y cúbicos

Análisis Numérico y Programación. Unidad III. -Interpolación mediante trazadores: Lineales, cuadráticos y cúbicos Aálss Numérco y Programacó Udad III -Iterpolacó medate trazadores: Leales, cuadrátcos y cúbcos Prmavera 9 Aálss Numérco y Programacó Coceptos geerales Problema geeral: Se tee u cojuto dscreto de valores

Más detalles

APROXIMACIÓN NUMÉRICA AL CÁLCULO DEL ÁREA BAJO LA GRÁFICA DE UNA FUNCIÓN MEDIANTE RECTÁNGULOS INSCRITOS

APROXIMACIÓN NUMÉRICA AL CÁLCULO DEL ÁREA BAJO LA GRÁFICA DE UNA FUNCIÓN MEDIANTE RECTÁNGULOS INSCRITOS APROXIMACIÓN NUMÉRICA AL CÁLCULO DEL ÁREA BAJO LA GRÁFICA DE UNA FUNCIÓN MEDIANTE RECTÁNGULOS INSCRITOS Sugerecas para que mparte el curso Ha llegado el mometo e que es coveete resolver ejerccos aplcado

Más detalles

Ejercicio nº 1.- a) Calcula, utilizando la definición de logaritmo: 1. k 100. Solución: k 100. log. Ejercicio nº 2.-

Ejercicio nº 1.- a) Calcula, utilizando la definición de logaritmo: 1. k 100. Solución: k 100. log. Ejercicio nº 2.- Ejercicio nº.- a) Calcula, utilizando la definición de logaritmo: log 7 log log 8 b) Si,7 calcula k log k log. ) 7 7 a log log log k b) log log k log logk log logk log,7,,77 Ejercicio nº.- Obtén el término

Más detalles

CALCULO DIFERENCIAL E INTEGRAL II. Figura 1

CALCULO DIFERENCIAL E INTEGRAL II. Figura 1 TEMA (Últma modcacó 8-7-5 CALCULO DIFERENCIAL E INTEGRAL II DERIVABILIDAD Recordemos el cocepto de dervadas para ucoes de ua varable depedete = (. Para lo cual ormamos el cremeto de la ucó = ( + - ( El

Más detalles

Números Complejos PREGUNTAS MÁS FRECUENTES

Números Complejos PREGUNTAS MÁS FRECUENTES Repaso de º de Bachllerato Números Complejos PREGUNTAS MÁS FRECUENTES. Qué es la udad magara? Es u elemeto del que coocemos úcamete su cuadrado:.obvamete, o se trata de u úmero real.. Qué es u úmero complejo?

Más detalles

X = d representa la métrica (distancia) euclideana en R n, dada por: d T(X,Y) = X Y = 1.3 TOPOLOGÍA BÁSICA EN

X = d representa la métrica (distancia) euclideana en R n, dada por: d T(X,Y) = X Y = 1.3 TOPOLOGÍA BÁSICA EN 0.3. Cojutos abertos y cerrados.3 TOPOLOGÍA BÁSICA EN R El espaco eucldeao dmesoal se defe como: E ( R,,, d ) Dode (asumedo que X, Y R, co X = (x,..., x ), Y = (y,..., y )): El símbolo represeta el producto

Más detalles

Escrito. 1) Transforma a las bases indicadas:

Escrito. 1) Transforma a las bases indicadas: Escrto ) Trasforma a las bases dcadas: a. 765 base (0) b. AB base 7 0 (6) base ) Halla los dígtos a y b sabedo que: aam 6 ( 5 ) mam( 6 ) 3) Trasforma a la base dcada usado ua tabla de correspodeca.. 00

Más detalles

Soluciones de los problemas de la HOJA 2B

Soluciones de los problemas de la HOJA 2B ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA APLICADA TITULACIONES Igeiería Idustrial (GITI/GITI+ADE) Igeiería de Telecomuicació (GITT/GITT+ADE) CÁLCULO Curso 5-6 Solucioes de los

Más detalles

Matemáticas 1 1 EJERCICIOS RESUELTOS: Números Complejos. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación. Universidad de Cantabria

Matemáticas 1 1 EJERCICIOS RESUELTOS: Números Complejos. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación. Universidad de Cantabria Matemátcas EJERCICIOS RESUELTOS: Números Complejos Elea Álvare Sá Dpto. Matemátca Aplcada y C. Computacó Uversdad de Catabra Igeería de Telecomucacó Fudametos Matemátcos I Ejerccos: Números Complejos Iterpretacó

Más detalles

CÁLCULO NUMÉRICO (0258)

CÁLCULO NUMÉRICO (0258) CÁLCULO NUÉRICO (58) Tema 4. Apromacó de Fucoes Juo. Ecuetre los polomos de meor grado que terpola a los sguetes cojutos de datos plateado y resolvedo u sstema de ecuacoes leales: 7 y 5-4 7 y 4 9 6.5.7.

Más detalles

PARÁMETROS ESTADÍSTICOS ... N

PARÁMETROS ESTADÍSTICOS ... N el blog de mate de ada: ESTADÍSTICA pág. 6 PARÁMETROS ESTADÍSTICOS MEDIDAS DE CENTRALIZACIÓN Las tablas estadístcas y las represetacoes grácas da ua dea del comportameto de ua dstrbucó, pero ese cojuto

Más detalles

x x x x x Y se seguía operando

x x x x x Y se seguía operando . INTRODUCCIÓN. DEFINICIONES UNIDAD : Números complejos Cuado se teta resolver ecuacoes de segudo grado como por ejemplo x 4x 0, se observa que o 4 6 5 4 6 tee solucoes reales x x, pues o exste raíces

Más detalles

MATEMÁTICA MÓDULO 4 Eje temático: Estadística y Probabilidades

MATEMÁTICA MÓDULO 4 Eje temático: Estadística y Probabilidades MATEMÁTICA MÓDULO 4 Eje temátco: Estadístca y Probabldades Empezaremos este breve estudo de estadístca correspodete al cuarto año de Eseñaza Meda revsado los dferetes tpos de gráfcos.. GRÁFICOS ESTADÍSTICOS

Más detalles

La inferencia estadística es primordialmente de naturaleza

La inferencia estadística es primordialmente de naturaleza VI. Ifereca estadístca Ifereca Estadístca La fereca estadístca es prmordalmete de aturaleza ductva y llega a geeralzar respecto de las característcas de ua poblacó valédose de observacoes empírcas de la

Más detalles

8 Derivadas. Página 239. Página 247. Función derivada

8 Derivadas. Página 239. Página 247. Función derivada 8 Derivadas Págia 9 Fució derivada E el itervalo (a, b ), f () es decreciete. Por tato, su derivada es egativa. Es lo que le pasa a g () e (a, b ). La derivada de f e b es 0: f ' (b ) 0. tambié es g (b

Más detalles

CAPÍTULO IV NÚMEROS COMPLEJOS E INDUCCIÓN MATEMÁTICA

CAPÍTULO IV NÚMEROS COMPLEJOS E INDUCCIÓN MATEMÁTICA NÚMEROS COMPLEJOS E INDUCCIÓN MATEMATICA 55 CAPÍTULO IV NÚMEROS COMPLEJOS E INDUCCIÓN MATEMÁTICA 4. INTRODUCCIÓN Los úmeros Complejos costtuye el mímo cojuto C, e el que se puede resolver la ecuacó x a

Más detalles

Los Histogramas. Histograma simple

Los Histogramas. Histograma simple Los Hstogramas El Hstograma es ua forma de represetacó de datos que permte aalzar fáclmete el comportameto de ua poblacó, ya sea per se, o por medo de ua muestra. U Hstograma se defe como u cojuto de barras

Más detalles

ERRORES EN LAS MEDIDAS (Conceptos elementales)

ERRORES EN LAS MEDIDAS (Conceptos elementales) ERRORES E LAS MEDIDAS (Coceptos elemetales). Medda y tpos de errores ormalmete, al realzar varas meddas de ua magtud físca, se obtee e ellas valores dferetes. E muchas ocasoes, esta dfereca se debe a causas

Más detalles

TEMAS 4 Y 5 TRIGONOMETRÍA

TEMAS 4 Y 5 TRIGONOMETRÍA Temas 4 y 5 Trigonometría Matemáticas I º Bachillerato TEMAS 4 Y 5 TRIGONOMETRÍA UNIDADES DE MEDIDAS DE ÁNGULOS EJERCICIO a Pasa a radianes los siguientes ángulos: y 7 b) Pasa a grados los ángulos: 7 rad

Más detalles

Espacios con producto interior

Espacios con producto interior Espacos co producto teror [Versó prelmar] Prof. Isabel Arrata Z. Algebra Leal E esta udad, todos los espacos ectorales será reales Sea V u espaco ectoral sobre. U producto teror (p..) e V es ua fucó

Más detalles

Estadística. Tema 2: Medidas de Tendencia Central.. Estadística. UNITEC Tema 2: Medidas de Tendencia Central Prof. L. Lugo

Estadística. Tema 2: Medidas de Tendencia Central.. Estadística. UNITEC Tema 2: Medidas de Tendencia Central Prof. L. Lugo Estadístca Tema : Meddas de Tedeca Cetral. Estadístca. UNITEC Tema : Meddas de Tedeca Cetral 1 Parámetros y Estadístcos Parámetro: Es ua catdad umérca calculada sobre ua poblacó La altura meda de los dvduos

Más detalles

MEDIDAS DE CENTRALIZACIÓN

MEDIDAS DE CENTRALIZACIÓN Educagua.com MEDIDAS DE CETRALIZACIÓ Las meddas de cetralzacó so estadístcos que releja algú valor global de la sere estadístca. Las prcpales meddas de cetralzacó so: Meda artmétca smple. Meda artmétca

Más detalles

SISTEMAS DE ECUACIONES NO LINEALES

SISTEMAS DE ECUACIONES NO LINEALES SISTEMAS DE ECUACIONES NO INEAES Capítulo 7 Sstemas de ecuacoes o leales c Elzabeth Vargas 7 INTRODUCCIÓN os métodos teratvos para resolver ua ecuacó o leal se puede eteder para ecotrar la solucó de u

Más detalles

Lím f(x) Lím f(x) = f(a).

Lím f(x) Lím f(x) = f(a). CÁLCULO DE LÍMITES Y CONTINUIDAD 1. TEOREMA SOBRE LÍMITES Defiició: El límite de ua fució f(), cuado tiede a o es L si y sólo si para todo ε > 0 eiste u δ(ε) > 0 tal que para todo úmero real que perteece

Más detalles

Estadística Descriptiva

Estadística Descriptiva Estadístca Descrptva Poblacoes y muestras Varables. Tablas de frecuecas Meddas de: tedeca cetral-dspersó ESTADÍSTICA DESCRIPTIVA: Tee por objetvo recoplar, orgazar y aalzar formacó referda a datos de u

Más detalles

TRABAJO 2: Variables Estadísticas Bidimensionales (Tema 2).

TRABAJO 2: Variables Estadísticas Bidimensionales (Tema 2). TRABAJO : Varables Estadístcas Bdmesoales (Tema ). Téccas Cuattatvas I. Curso 07/08. APELLIDOS: NOMBRE: GRADO: GRUPO: DNI (o NIE): A: B: C: D: E los eucados de los ejerccos que sgue aparece los valores

Más detalles

CÁLCULO DIFERENCIAL. 1.- Estudia la continuidad de las siguientes funciones:

CÁLCULO DIFERENCIAL. 1.- Estudia la continuidad de las siguientes funciones: ejerciciosyeamees.com CÁLCULO DIFERENCIAL.- Estudia la cotiuidad de las guietes fucioes: - + f() = ; g()= ; h()= + - ( - )(+) + - - - - - < < 0 i()= e j()= - k()= - > cos 0 = 0 + se l()= m()= = 0 = 0 Sol:

Más detalles

Unidad 10: LÍMITES DE FUNCIONES

Unidad 10: LÍMITES DE FUNCIONES Uidad 1: LÍMITES DE FUNCIONES LÍMITES 1. LÍMITE DE UNA FUNCIÓN EN UN PUNTO Ua sucesió de úmeros reales es u cojuto ordeado de iiitos úmeros reales. Los úmeros reales a1, a,..., a,... se llama térmios,

Más detalles

4º MEDIO: MEDIDAS DE POSICIÓN

4º MEDIO: MEDIDAS DE POSICIÓN 4º MEDIO: MEDIDAS DE POSICIÓN També llamadas de cetralzacó o de tedeca cetral. Srve para estudar las característcas de los valores cetrales de la dstrbucó atededo a dsttos crteros. Veamos su sgfcado co

Más detalles

CENTRO DE MASA centro de masas centro de masas

CENTRO DE MASA centro de masas centro de masas CENTRO DE ASA El cetro de masas de u sstema dscreto o cotuo es el puto geométrco que dámcamete se comporta como s e él estuvera aplcada la resultate de las fuerzas exteras al sstema. De maera aáloga, se

Más detalles

MEDIA ARITMÉTICA. Normalmente se suele distinguir entre media aritmética simple y media aritmética ponderada.

MEDIA ARITMÉTICA. Normalmente se suele distinguir entre media aritmética simple y media aritmética ponderada. MEDIDAS DE POSICIÓN També llamadas de cetralzacó o de tedeca cetral. Srve para estudar las característcas de los valores cetrales de la dstrbucó atededo a dsttos crteros. Veamos su sgfcado co u ejemplo:

Más detalles

MEDIDAS DE FORMA Y CONCENTRACIÓN

MEDIDAS DE FORMA Y CONCENTRACIÓN MEDIDAS DE FORMA Y CONCENTRACIÓN 4..- Asmetría: coefcetes de asmetría de Fsher y Pearso. Otros Coefcetes de asmetría. 4.2.- La ley ormal. 4..- Curtoss o aplastameto: coefcete de Fsher. 4.4.- Meddas de

Más detalles

Práctica 11. Calcula de manera simbólica la integral indefinida de una función. Ejemplo:

Práctica 11. Calcula de manera simbólica la integral indefinida de una función. Ejemplo: PRÁCTICA SUMAS DE RIEMAN Práctcas Matlab Práctca Objetvos Calcular tegrales defdas de forma aproxmada, utlzado sumas de Rema. Profudzar e la compresó del cocepto de tegracó. Comados de Matlab t Calcula

Más detalles

Dinámica compleja. Conjuntos de Julia y Mandelbrot Método de Newton

Dinámica compleja. Conjuntos de Julia y Mandelbrot Método de Newton Estalmat Madrid Miguel Reyes Diámica compleja Cojutos de Julia y Madelbrot Método de Newto Los úmeros complejos Los úmeros complejos so los úmeros de la forma a dode a y b so úmeros reales e i es la uidad

Más detalles

Transformada Z. Definición y Propiedades Transformada Inversa Función de Transferencia Discreta Análisis de Sistemas

Transformada Z. Definición y Propiedades Transformada Inversa Función de Transferencia Discreta Análisis de Sistemas 5º Curso-Tratameto Dgtal de Señal Trasformada Z Defcó y Propedades Trasformada Iversa Fucó de Trasfereca Dscreta Aálss de Sstemas 7//99 Capítulo 7: Trasformada Z Defcó y Propedades 5º Curso-Tratameto Dgtal

Más detalles

Matemáticas I - Anaya

Matemáticas I - Anaya ! 0 "# Representa gráfcamente los resultados que obtengas al hallar y calcula el lado del trángulo formado al unr esos tres puntos. Para hallar las raíces prmero pasamos el número a forma polar : r ( )

Más detalles

L lim. lim. a n. 5n 1. 2n lim. lim. lim. 1 Calcula: Solución: a) 2

L lim. lim. a n. 5n 1. 2n lim. lim. lim. 1 Calcula: Solución: a) 2 Calcula: L L a Dada ua sucesió que tiede a idica a partir de qué térmio se cumple la codició que se idica: a a Si a a Si 7 Si a partir del térmio 9 Si Hallar: d) 7 a partir del térmio 97 d) Deduce los

Más detalles

que queremos ajustar a los datos. Supongamos que la función f( x ) describe la relación entre dos cantidades físicas: x e y = f( x)

que queremos ajustar a los datos. Supongamos que la función f( x ) describe la relación entre dos cantidades físicas: x e y = f( x) APROXIMACIÓN DISCRETA DE MÍNIMOS CUADRADOS Las leyes físcas que rge el feómeo que se estuda e forma expermetal os proporcoa formacó mportate que debemos cosderar para propoer la forma de la fucó φ ( x)

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO PARA MAYORES DE 25 AÑOS CONVOCATORIA DE 2010

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO PARA MAYORES DE 25 AÑOS CONVOCATORIA DE 2010 UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO PARA MAYORES DE AÑOS CONVOCATORIA DE MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES RESOLUCIÓN DE LOS EJERCICIOS PROPUESTOS Ejercco a) ( puto) Racoalce mplfque

Más detalles

PyE_ EF1_TIPO2_

PyE_ EF1_TIPO2_ SEMESTRE 9- TIPO DURACIÓN MÁIMA.5 HORAS JUNIO DE 9 NOMBRE. "Scram" es el térmo que utlza los geeros ucleares para descrbr u rápdo cerre de emergeca de u reactor uclear. La dustra uclear ha hecho esuerzos

Más detalles

GRADO EN PSICOLOGIA INTRODUCCIÓN AL ANÁLISIS DE DATOS Código Asignatura: FEBRERO 2010 EXAMEN MODELO A

GRADO EN PSICOLOGIA INTRODUCCIÓN AL ANÁLISIS DE DATOS Código Asignatura: FEBRERO 2010 EXAMEN MODELO A Febrero 20 EAMEN MODELO A Pág. 1 GRADO EN PICOLOGIA INTRODUCCIÓN AL ANÁLII DE DATO Códgo Asgatura: 620137 FEBRERO 20 EAMEN MODELO A Tabla 1: Para estudar la relacó etre las putuacoes e u test () y el redmeto

Más detalles

SOLUCIONARIO II Parcial Cálculo Proyecto MATEM UNIVERSIDAD DE COSTA RICA Miércoles 10 de agosto del Solucionario

SOLUCIONARIO II Parcial Cálculo Proyecto MATEM UNIVERSIDAD DE COSTA RICA Miércoles 10 de agosto del Solucionario SOLUCIONARIO II Parcial Cálculo Proyecto MATEM UNIVERSIDAD DE COSTA RICA Miércoles de agosto del ESCUELA DE MATEMÁTICA Segudo Eame Parcial Cálculo I PROYECTO MATEM Tiempo Probable: horas Solucioario. Use

Más detalles

ESTADÍSTICA poblaciones

ESTADÍSTICA poblaciones ESTADÍSTICA Es la parte de las Matemátcas que estuda el comportameto de las poblacoes utlzado datos umércos obtedos medate epermetos o ecuestas. ESTADÍSTICA La Estadístca tee dos ramas: La Estadístca descrptva:

Más detalles

Resoluciones de la autoevaluación del libro de texto. cos x. (x + 3) x = 1 x = 3

Resoluciones de la autoevaluación del libro de texto. cos x. (x + 3) x = 1 x = 3 BLOQUE IV Análisis Resoluciones de la autoevaluación del libro de teto Pág. de 7 Halla el dominio de definición de las funciones siguientes: a) y = log ( ) b) y = cos a) y = log ( ); > 0 8 < ; Dom = (

Más detalles

Definición: f(x) f(z) x z. x z. f(x) f(z) x z. x z. f(z+h) f(z) h 0. Interpretaciones de la derivada: f(x) f(z) f(x) f(z) - 1 -

Definición: f(x) f(z) x z. x z. f(x) f(z) x z. x z. f(z+h) f(z) h 0. Interpretaciones de la derivada: f(x) f(z) f(x) f(z) - 1 - LA DERIVADA Defiició: Sea f: [ a,b] R y z [ a,b]. U úero L es la derivada de f e z, si dado u ε > 0 eiste u δ( f, ε ) > 0 talque si z < δ etoces f() f(z) L < ε. Es decir, la fució f es z f() f(z) derivable

Más detalles

Tema 5: Equilibrio General Parte III OWC Economía para Matemáticos. Fernando Perera Tallo ttp://bit.ly/8l8ddu

Tema 5: Equilibrio General Parte III OWC Economía para Matemáticos. Fernando Perera Tallo ttp://bit.ly/8l8ddu y Tea 5: Equlbro Geeral Parte III OWC Ecooía para Mateátcos Ferado Perera Tallo ttp://bt.ly/8l8ddu Esteca de Equlbro Ferado Perera-Tallo A lo largo de esta presetacó os vaos a cocetrar e espacos Eucldos,

Más detalles

EJERCICIO S DE FUNCIO NES. i)f(x)= 3 2. k)f(x)= )

EJERCICIO S DE FUNCIO NES. i)f(x)= 3 2. k)f(x)= ) Dadas las guiet ucio: 6 a e b EJERCICIO S DE FUNCIO NES g c 9 d h i 9 j log k log l L9 Hallar su domiio. Hallar los putos de corte co los ej. Comprobar las ucio b, c,, g, y h so par o impar. E las ucio

Más detalles

FEM-OF: EDP Elíptica de 2 Orden

FEM-OF: EDP Elíptica de 2 Orden 9/02/2008 Capítulo 5: FM-OF: D líptca de 2 Orde Idce: 5..- Operador Dferecal líptco 5.2.- roblema Básco 5.3.- Fucoes Óptmas 5.4.- FM-OF Steklov-ocaré 5.5.- FM-OF Trefftz-Herrera 5.6.- FM-OF etrov-galerk

Más detalles

Área de Matemáticas. Curso 2015/2016 RELACIÓN DE EJERCICIOS RESUELTOS TEMA 8 Geometría Analítica en el Plano

Área de Matemáticas. Curso 2015/2016 RELACIÓN DE EJERCICIOS RESUELTOS TEMA 8 Geometría Analítica en el Plano Área de Mateáticas. Curso 05/06 TEMA 8 Geoetría Aalítica e el Plao Ejercicio º a Escribe la ecuació de la recta r que pasa por los putos. b Obté la ecuació de la recta s que pasa por tiee pediete. c Halla

Más detalles

2. CONCURSO DE PRIMAVERA DE MATEMÁTICAS NIVEL IV (BACHILLERATO)

2. CONCURSO DE PRIMAVERA DE MATEMÁTICAS NIVEL IV (BACHILLERATO) Portal Fueterrebollo Cocurso Primavera Matemáticas: NIVEL IV (BACHILLERATO). CONCURSO DE PRIMAVERA DE MATEMÁTICAS NIVEL IV (BACHILLERATO) 1. Co las letras de la palabra NADIE podemos formar 10 palabras

Más detalles

3. Volumen de un sólido.

3. Volumen de un sólido. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 00. Lecció. Itegrales y aplicacioes.. Volume de u sólido. E esta secció veremos cómo podemos utilizar la itegral defiida para calcular volúmees de distitos tipos

Más detalles

4. Fórmula de Lagrage El polomo de terpolacó de Hermte, p (x, de la fucó f e los putos dsttos x,,x admte la expresó: p( x f (x L (x + f '(x L (x, (Fór

4. Fórmula de Lagrage El polomo de terpolacó de Hermte, p (x, de la fucó f e los putos dsttos x,,x admte la expresó: p( x f (x L (x + f '(x L (x, (Fór Capítulo 4 Iterpolacó polomal de Hermte E determadas aplcacoes se precsa métodos de terpolacó que trabaje co datos prescrtos de la fucó y sus dervadas e ua sere de putos, co el objeto de aumetar la aproxmacó

Más detalles

Máximos y Mínimos de funciones de dos variables

Máximos y Mínimos de funciones de dos variables Mámos Mímos de fucoes de dos varables Aplcacoes a Modelacó Matemátca AJUTE DE CURVA Regresó leal Lealzacó: epoecal, potecas razoes Coceptos geerales f() Problema geeral: e tee u cojuto dscreto de valores

Más detalles

Límites en el infinito y límites infinitos de funciones.

Límites en el infinito y límites infinitos de funciones. Límites e el ifiito y límites ifiitos de fucioes. 1 Calcula 2 Límite e el ifiito Cuado se calcula el límite de ua fució e el ifiito se trata de determiar la tedecia que tedrá la fució (los valores que

Más detalles

Autoevaluación. Bloque IV. Análisis. BACHILLERATO Matemáticas I. Página Observa la gráfica de la función y = f (x) y a partir de ella responde:

Autoevaluación. Bloque IV. Análisis. BACHILLERATO Matemáticas I. Página Observa la gráfica de la función y = f (x) y a partir de ella responde: Autoevaluación Página Observa la gráfica de la función y = f () y a partir de ella responde: a) Cuál es su dominio de definición? su recorrido? b) Representa gráficamente: y = f ( + ); y = f () + ; y =

Más detalles

E.T.S.I. Industriales y Telecomunicación Curso Grados E.T.S.I. Industriales y Telecomunicación. Tema 1: Números complejos

E.T.S.I. Industriales y Telecomunicación Curso Grados E.T.S.I. Industriales y Telecomunicación. Tema 1: Números complejos Grados E.T.S.I. Idustriales y Telecomuicació Asigatura: Cálculo I Coocimietos previos Para poder seguir adecuadamete este tema, se requiere que el alumo repase y poga al día sus coocimietos e los siguietes

Más detalles

1. Los postulados de la Mecánica Cuántica. 2. Estados Estacionarios. 3. Relación de Incertidumbre de Heisenberg. 4. Teorema de compatibilidad.

1. Los postulados de la Mecánica Cuántica. 2. Estados Estacionarios. 3. Relación de Incertidumbre de Heisenberg. 4. Teorema de compatibilidad. Parte : MECÁNICA CUÁNTICA 1. Los postulados de la Mecáca Cuátca.. Estados Estacoaros. 3. Relacó de Icertdumbre de Heseberg. 4. Teorema de compatbldad. 1 U breve repaso de Mecáca Clásca 1. Partícula clásca:

Más detalles

Modelos de Regresión Simple

Modelos de Regresión Simple Itroduccó a la Ifereca Estadístca Dept. of Mare cece ad Appled Bology Jose Jacobo Zubcoff Modelos de Regresó mple Que tpo de relacó exste etre varables Predccó de valores a partr de ua de ellas Varable

Más detalles

Orden de la tirada. Figura 1: Frecuencia relativa de cara para una sucesión de 400 tiradas.

Orden de la tirada. Figura 1: Frecuencia relativa de cara para una sucesión de 400 tiradas. Estadístca (Q) Dra. Daa M. Kelmasky 99. Teoremas límte Frecueca Relatva 0.5 0.6 0.7 0.8 0.9.0 0 00 00 300 400 Orde de la trada Fgura : Frecueca relatva de cara para ua sucesó de 400 tradas. La fgura muestra

Más detalles

Tema 2: Distribuciones bidimensionales

Tema 2: Distribuciones bidimensionales Tema : Dstrbucoes bdmesoales Varable Bdmesoal (X,Y) Sobre ua poblacó se observa smultáeamete dos varables X e Y. La dstrbucó de frecuecas bdmesoal de (X,Y) es el cojuto de valores {(x, y j ); j } 1,, p;

Más detalles

Transparencias de clase

Transparencias de clase Trasparecas de clase Dada ua tabla de datos se ha de ecotrar ua ucó que tome los valores requerdos e los putos dados; e el caso que os ocupa la ucó buscada será de carácter polómco Teorema: El polomo de

Más detalles

ESTADÍSTICA. Tercera Prueba de Evaluación continua 30 de noviembre de 2015

ESTADÍSTICA. Tercera Prueba de Evaluación continua 30 de noviembre de 2015 Tercera Prueba de Evaluacó cotua 30 de ovembre de 05.- Se ha tomado valores de ua varable físca X, que se supoe ormal, resultado: 30,; 30,8; 9,3; 9; 30,9; 30,8; 9,7; 8,9; 30,5; 3,; 3,3; 8,5. a) Costrur

Más detalles

2 Representación gráfica de las series de frecuencias.

2 Representación gráfica de las series de frecuencias. Estadístca Tema. Geeracó de valores de ua varable aleatora. Pág. Represetacó gráfca de las seres de frecuecas.. Represetacó gráfca de caracteres cualtatvos... Dagramas dferecales... Dagramas tegrales..

Más detalles

FICHA BLOQUE 2. RESOLUCIÓN DE TRIÁNGULOS Y FÓRMULAS MATEMÁTICAS. 1. Resuelve las siguiente ecuaciones:

FICHA BLOQUE 2. RESOLUCIÓN DE TRIÁNGULOS Y FÓRMULAS MATEMÁTICAS. 1. Resuelve las siguiente ecuaciones: FICHA BLOQUE. RESOLUCIÓN DE TRIÁNGULOS Y FÓRMULAS MATEMÁTICAS. Resuelve las siguiente ecuaciones: a) sen 6sen b) sen sen 0 5 8 8 5 6 6 69 6 60 9 k k k k 60 80 siendo 60 56" 0' 08 60 " 9' 5 8 5 Z c) 0 d)

Más detalles

INTEGRAL DE LÍNEA EN EL CAMPO COMPLEJO

INTEGRAL DE LÍNEA EN EL CAMPO COMPLEJO INTEGRAL DE LÍNEA EN EL AMPO OMPLEJO ARRERA: Igeería Electromecáca ASIGNATURA: DOENTES: Ig. Norberto laudo MAGGI Ig. Horaco Raúl DUARTE INGENIERÍA ELETROMEÁNIA INTEGRAL DE LÍNEA EN EL AMPO OMPLEJO ONEPTOS

Más detalles

Los números complejos

Los números complejos Los úmeros complejos Los úmeros complejos Forma biómica Defiició z = a + bi, o bie, z = (a, b) siedo a la parte real y b la parte imagiaria. a = r cos α b = r se α Opuesto z = a bi Cojugado z = a bi Represetació

Más detalles

ENUNCIADOS DE LOS EJERCICIOS PROPUESTOS EN 2013 EN MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES.

ENUNCIADOS DE LOS EJERCICIOS PROPUESTOS EN 2013 EN MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES. ENUNCIADOS DE LOS EJERCICIOS PROPUESTOS EN 01 EN MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES EJERCICIO 1 a) (5 puto) Racoalce la epreoe 5 8 b) (5 puto) Halle el cojuto de olucoe de la ecuacó 5 8 EJERCICIO

Más detalles

EJERCICIOS RESUELTOS. t +

EJERCICIOS RESUELTOS. t + BXX5744_07 /6/09 4: Págia 49 EJERCICIOS RESUELTOS Calcula la tasa de variació media de la fució f() = + e los itervalos [, 0] y [0, ], aalizado el resultado obteido y la relació co la fució. La fució f()

Más detalles

Tema 60. PARÁMETROS ESTADÍSTICOS: CÁLCULO, PROPIEDADES Y SIGNIFICADO.

Tema 60. PARÁMETROS ESTADÍSTICOS: CÁLCULO, PROPIEDADES Y SIGNIFICADO. Tema 60.Parámetros estadístcos. Calculo propedades y sgfcado Tema 60. PARÁMETROS ESTADÍSTICOS: CÁLCULO, PROPIEDADES Y SIGIFICADO.. Itroduccó. Defcó de estadístca. Estadístca descrptva y estadístca ferecal.

Más detalles

Estadística Contenidos NM 4

Estadística Contenidos NM 4 Cetro Educacoal Sa Carlos de Aragó. Sector: Matemátca. Prof.: Xmea Gallegos H. 1 Estadístca Cotedos NM 4 Udad: Estadístca y Probabldades. Apredzajes Esperados: * Recooce dferetes formas de orgazar formacó:

Más detalles

LOS NÚMEROS COMPLEJOS

LOS NÚMEROS COMPLEJOS LOS NÚMEROS COMPLEJOS por Jorge José Osés Reco Departameto de Matemátcas - Uversdad de los Ades Bogotá Colomba - 00 Cuado se estudó la solucó de la ecuacó de segudo grado ax + bx + c = 0 se aalzó el sgo

Más detalles

MATEMÁTICA LIC. Y PROF. EN CS. BIOLÓGICAS

MATEMÁTICA LIC. Y PROF. EN CS. BIOLÓGICAS Defiició de límite de ua fució (segú Heie) Sea f : D R ua fució y a R (D R) Diremos que se cumple que f() L R a f( ) L si para cualquier sucesió { } D { a} tal que a Ejemplos: ) Probar que Demostració:

Más detalles

MÉTODOS ESTADÍSTICOS PARA EL CONTROL DE CALIDAD

MÉTODOS ESTADÍSTICOS PARA EL CONTROL DE CALIDAD UNIVERSIDAD DE LOS ANDES. FACULTAD DE CIENCIAS ECONÓMICAS Y SOCIALES DEPARTAMENTO DE CIENCIAS ADMINISTRATIVAS MÉRIDA ESTADO MÉRIDA Admstracó de la Produccó y las Operacoes II Prof. Mguel Olveros MÉTODOS

Más detalles

Entonces el volumen del k-ésimo cilindro es. n n) πar2 k 2. k 2 = πar2 k 2 n(n + 1)(2n + 1) 6

Entonces el volumen del k-ésimo cilindro es. n n) πar2 k 2. k 2 = πar2 k 2 n(n + 1)(2n + 1) 6 Uidad 1 Itegrales Múltiples 1.2 Itegral de ua fució de dos variables como volume Volumees Cuado deimos volume aceptaremos el hecho de que si se trata de u cubo de lado a etoces V cubo) = a 3 y si se trata

Más detalles

Introducción al Algebra Lineal en Contexto Autor José Arturo Barreto M.A. Web:

Introducción al Algebra Lineal en Contexto Autor José Arturo Barreto M.A. Web: Itroduccó al Algebra Leal e Cotexto Autor José Arturo Barreto M.A. Web: www.abaco.com.e www.mprofe.com.e josearturobarreto@yahoo.com Descomposcó e Valor Sgular (SVD: Sgular Value Decomposto) El sguete

Más detalles

Comportamiento Mecánico de Sólidos Capítulo II. Introducción al análisis tensorial. Tensores. x 3 A 3. Figura 1. Componentes de un vector.

Comportamiento Mecánico de Sólidos Capítulo II. Introducción al análisis tensorial. Tensores. x 3 A 3. Figura 1. Componentes de un vector. Comportameto Mecáco de Sóldos Capítulo II. Itroduccó al aálss tesoral. Itroduccó al aálss tesoral esores Es aquella catdad físca que después de ua trasformacó de coordeadas (que obedezca certas reglas),

Más detalles

= 2n 4 n distancia a 2 es menor que 0,1. = 4n 1 n distancia a 4 es menor que 0,001. 4n 1 = 3 4 0,01. 4 la sucesión son menores que un millón.

= 2n 4 n distancia a 2 es menor que 0,1. = 4n 1 n distancia a 4 es menor que 0,001. 4n 1 = 3 4 0,01. 4 la sucesión son menores que un millón. IES IGNACIO ALDECOA AMPLIACIÓN DE MATEMÁTICAS 4º ESO ALUMNO: TRABAJO PARA PREPARAR EL EXAMEN DE SEPTIEMBRE: La mayoría de estos ejercicios está hechos e clase o e los aputes. Estúdiate primero los aputes

Más detalles

MEDIDAS DE CENTRALIZACIÓN. i = N Cuando los datos vienen dados por una tabla de frecuencias:

MEDIDAS DE CENTRALIZACIÓN. i = N Cuando los datos vienen dados por una tabla de frecuencias: PARÁMETROS ESTADÍSTICOS Puesto que las represetacoes grácas o sempre cosgue orecer ua ormacó completa de ua sere de datos, es ecesaro aalzar procedmetos umércos que permta resumr toda la ormacó del eómeo

Más detalles

Ejercicios Matemáticas I Pendientes 1 BCT

Ejercicios Matemáticas I Pendientes 1 BCT Ejercicios Matemáticas I Pedietes BCT ª Parte Uidad 7 Álgebra. Dado el poliomio P( ) = + k 5, calcula el valor de k para que el valor umérico del poliomio e = sea.. Halla u poliomio de tercer grado cuyo

Más detalles

Ejemplo: 0+0i y -3+0i representan los números reales 0 y 3 respectivamente. Si a=0 se considera un número imaginario puro a 0+bi

Ejemplo: 0+0i y -3+0i representan los números reales 0 y 3 respectivamente. Si a=0 se considera un número imaginario puro a 0+bi u_miii.doc EL SISTEMA DE LOS NÚMEROS COMPLEJOS: No eiste u úmero real que satisfaga la ecuació +0 Para resolver este tipo de ecuacioes es ecesario itroducir el cocepto de úmero complejo. U úmero complejo

Más detalles

I. ANÁLISIS DESCRIPTIVO DE UN CONJUNTO DE DATOS

I. ANÁLISIS DESCRIPTIVO DE UN CONJUNTO DE DATOS Estadístca Tema. Seres Estadístcas. Dstrbucoes de frecuecas. Pág. I. ANÁLISIS DESCIPTIVO DE UN CONJUNTO DE DATOS Seres Estadístcas. Dstrbucoes de frecuecas.. Defcó de Estadístca... Coceptos geerales...2

Más detalles

Tema 1. La medida en Física. Estadística de la medida Cifras significativas e incertidumbre

Tema 1. La medida en Física. Estadística de la medida Cifras significativas e incertidumbre Tema. La medda e Físca Estadístca de la medda Cfras sgfcatvas e certdumbre Cotedos Herrameta para represetar los valores de las magtudes físcas: los úmeros Sstemas de udades Notacó cetífca Estadístca de

Más detalles

Cálculo Diferencial e Integral II INGENIERÍA CÁLCULO DE ÁREAS

Cálculo Diferencial e Integral II INGENIERÍA CÁLCULO DE ÁREAS Cálculo Dferecal e Itegral II I E la actvdad III de la Udad de Repaso, se te pdó calcular el área del rectágulo tal como se muestra e la Fgura 1 sí S x Ahora uestro problema es calcular el área de la regó

Más detalles

FUNCIONES DE VARIAS VARIABLES: DOMINIO, RANGO, CURVAS DE NIVEL 1 FUNCIONES DE VARIAS VARIABLES.

FUNCIONES DE VARIAS VARIABLES: DOMINIO, RANGO, CURVAS DE NIVEL 1 FUNCIONES DE VARIAS VARIABLES. FUNCIONES DE VARIAS VARIABLES: DOMINIO, RANGO, CURVAS DE NIVEL FUNCIONES DE VARIAS VARIABLES. DEFINICIONES DE FUNCIONES EN VARIAS VARIABLES. Ua fució de variable es u cojuto de pares ordeados de la forma

Más detalles