Clasificación Supervisada

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Clasificación Supervisada"

Transcripción

1 Clasificación Supervisada Ricardo Fraiman 26 de abril de 2010

2 Resumen Reglas de Clasificación

3 Resumen Reglas de Clasificación

4 Descripción del problema Muestra de entrenamiento (X 1, Y 1 ),..., (X n, Y n ) E {1,..., m}. Típicamente E = R d. Los valores Y i son etiquetas que indican al grupo en que pertenece X i. características observadas (X i ) etiquetas indicando la naturaleza de las observaciones

5 Descripción del problema Muestra de entrenamiento (X 1, Y 1 ),..., (X n, Y n ) E {1,..., m}. Típicamente E = R d. Los valores Y i son etiquetas que indican al grupo en que pertenece X i. características observadas (X i ) etiquetas indicando la naturaleza de las observaciones Muestra de Clasificación características observadas (X ) etiquetas desconocidas

6 Descripción del problema Muestra de entrenamiento (X 1, Y 1 ),..., (X n, Y n ) E {1,..., m}. Típicamente E = R d. Los valores Y i son etiquetas que indican al grupo en que pertenece X i. características observadas (X i ) etiquetas indicando la naturaleza de las observaciones Muestra de Clasificación características observadas (X ) etiquetas desconocidas Problema: clasificar un nuevo dato X del cual no se conoce la etiqueta.

7 El clasificador Dado x E, queremos saber a que grupo y {1,..., m} pertenece. Para ello utilizaremos un Clasificador g : E {1,..., m}, o sea una función que a cada x asigne una etiqueta y.

8 Reglas de clasificación Análisis discriminante de Fisher

9 Reglas de clasificación Análisis discriminante de Fisher Vecinos más cercanos

10 Reglas de clasificación Análisis discriminante de Fisher Vecinos más cercanos CART

11 Error de Bayes Sea (X, Y ) E {1,..., m} un par aleatorio. Cometemos un Error cuando g(x ) Y.

12 Error de Bayes Sea (X, Y ) E {1,..., m} un par aleatorio. Cometemos un Error cuando g(x ) Y. La probabilidad de clasificar erróneamente usando g es L(g) = P[g(X ) Y ].

13 Error de Bayes Sea (X, Y ) E {1,..., m} un par aleatorio. Cometemos un Error cuando g(x ) Y. La probabilidad de clasificar erróneamente usando g es L(g) = P[g(X ) Y ]. El mejor clasificador posible es la función g que minimiza L(g).

14 Que implicancia tiene la ecuación anterior?

15 Que implicancia tiene la ecuación anterior? Hay problemas fáciles y otros difíciles. Para los difíciles por más grande que sea la muestra cometeremos muchos errores!!

16 Que implicancia tiene la ecuación anterior? Hay problemas fáciles y otros difíciles. Para los difíciles por más grande que sea la muestra cometeremos muchos errores!! Si L(g ) = 0,2, entonces...

17 Clasificadores basados en la muestra de entrenamiento Consideramos la muestra de entrenamiento de pares independientes {(X i, Y i ) : 1 i n}.

18 Clasificadores basados en la muestra de entrenamiento Consideramos la muestra de entrenamiento de pares independientes {(X i, Y i ) : 1 i n}. Un clasificador basado en la muestra de entrenamiento es g n ( ; X 1, Y 1,..., X n, Y n ) : E {1,..., m}

19 Clasificadores basados en la muestra de entrenamiento Consideramos la muestra de entrenamiento de pares independientes {(X i, Y i ) : 1 i n}. Un clasificador basado en la muestra de entrenamiento es g n ( ; X 1, Y 1,..., X n, Y n ) : E {1,..., m} El desempeño se mide por la probabilidad condicional de g n de cometer un error. L n (g n ) = P [g n (X ; X 1, Y 1,..., X n, Y n ) Y X 1, Y 1,..., X n, Y n ].

20 Consistencia Consideremos para cada n a la función g n : E (E {1,..., m}) n {1,..., m} que llamamos un clasificador. Una sucesión de clasificadores se denomina regla de clasificación {g n : n 1}. Una regla es consistente si ĺım n L n (g n ) = L.

21 El clasificador óptimo. Reglas Plug-in En lo que sigue consideraremos por simplicidad de notación m = 2. Por tanto supondremos que disponemos de información dada por la muestra de entrenamiento {(X i, Y i ), 1 i n}, donde X i, i = 1,..., n, son observaciones independientes de la variable X a valores en E y las Y i s son los valores correspondientes a las variables indicadoras Y que toman valores 0 o 1 de acuerdo a si el individuo pertenece a P 0 or P 1.

22 El clasificador óptimo. La regla de Bayes Luego el problema es encontrar una regla de clasificación que minimize el error de Bayes, (o riesgo de Bayes) o sea, g : E {0, 1} minimizando P (g(x ) Y ). No es dificil probar (ver por ejemplo Devroye et al. 1996, p. 11) que la regla óptima de clasificación (o regla de Bayes) esta dada por g (x) = 1 {η(x)>1/2}, (1) donde 1 A denota la función indicatriz del conjunto A y η(x) = E(Y X = x).

23 Como aproximar al clasificador óptimo Como la expresión exacta de η(x) es desconocida, (1) no se puede aplicar directamente. Usaremos la información provista por la muestra de entrenamiento, para construir clasificadores D n = (X i, Y i ), 1 i n) g n (x) = g n (x; D n ), con g n : E {0, 1} cuyo error condicional L n = P (g n (X ) Y D n ) este lo mas cerca posible del error de Bayes L = P(g (X ) Y ).

24 La expresión (1) sugiere claramente que un procedimiento plug-in para obtener clasificadores es reemplazar la función de regresión no paramétrica η(x) por un estimador de ella basada en los datos. Para ello debemos entonces estimar la función de regresión no paramétrica (la Esperanza Condicional) η(x). Como hacerlo? Tenemos un problema no paramétrico (infinito dimensional...

25 Estimación de la distribución condicional y la esperanza condicional Supongamos que tenemos pares D n = ((X i, Y i ), 1 i n) de vectores aleatorios, y queremos estimar E(Y X = x). Si la distribución de (X, Y ) es discreta, y toma un número finito de valores como estimaríamos P(Y = y X = x)? y P(Y y X = x)?

26 Estimación no paramétrica de la distribución condicional Tomaríamos la distribución empírica de las Y s cuyos X s fueran iguales a x. F n (Y y X = x) = n i=1 1 (,y](y i )1 {Xi =x} n i=1 1. {X i =x} E Pn (Y X = x) = n i=1 Y i1 {Xi =x} n i=1 1 {X i =x}, o sea el promedio de las Y s cuyas X s sean iguales a x.

27 Estimación no paramétrica de la distribución condicional: caso general Como hacemos la estimación cuando X no es una variable discreta?? Lo razonable será estimar la esperanza condicional como el promedio de las observaciones Y s cuyos X s estén cerca de x. Claro que debemos formalizar que quiere decir cerca de x. Este problema fué considerado por Stone en el año 1977 dando una respuesta muy completa al problema.

28 Una familia muy general de estimadores de la esperanza condicional Stone consideró una familia muy general de estimadores de la función de regresión (Esperanza condicional) de la forma n W ni (x)y i, (2) i=1 donde los pesos W ni (x) = W ni (x, X 1,..., X n ) se concentran en aquellos X i que están cerca de x. Más precisamente los pesos verifican las siguientes hipótesis.

29 Hipótesis sobre los pesos Supongamos que para cualquier distribución de X, los pesos W ni (x) verifican las siguientes tres condiciones: (i) Existe una constante c tal que, para toda función no negativa y medible f que verifica que E(f (X )) <, ( n ) E W ni (X )f (X i ) ce(f (X )). (ii) Para todo a > 0, ĺım E n i=1 ( n ) W ni (X )1 { Xi X >a} = 0. i=1 (iii) ( ) ĺım E máx W ni(x ) = 0. n 1 i n

30 A partir de este resultado, Stone (1977) probó la consistencia universal para una clase muy general de reglas de clasificación de la forma n 1 si W ni (x)i g n (x) = {Yi =1} > i=1 0 sino, n W ni (x)i {Yi =0} i=1 o equivalentemente, n 1 si W ni (x)y i > 1/2 g n (x) = i=1 0 sino, donde los pesos W ni (x) = W ni (x, X 1,..., X n ) verifican las hipótesis anteriores.

31 Theorem (Stone 1977) Bajo las hipótesis sobre los pesos enunciadas, la regla g n es universalmente consistente. O sea que cualquiera sea la distribución del par (X, Y ) la familia de reglas de clasificación g n convergen a la regla óptima de Bayes.

32 Otra forma de obtener clasificadores: Minimizando el riesgo empírico Otra forma de obtener clasificadores es definir el riesgo de Bayes empírico y proponer clasificadores que lo minimicen. En efecto, como la distribución de (X, Y ) es en general desconocida, el valor exacto del riesgo de un clasificador es desconocido, aunque puede estimarse por el riesgo empírico, ˆL n = ˆL n (g) = 1 n n 1 {gn(xi ) Y i } (3) Luego, otra forma de conseguir clasificadores es la de elegir primero una familia de reglas de clasificación C (con una estructura simple o otra propiedad interesante) y resolver el problema de minimización en dicha clase. i=1 g n = argmin g CˆLn (g) (4)

33 Veremos a continuación las reglas de clasificación mas conocidas. Los tres métodos más habituales son: La regla de Fisher Las reglas de vecinos más cercanos CART La mas clásica es la regla de clasificación de Fisher.

34 Regla de Fisher de clasificación lineal El clasificador lineal de Fisher es posiblemente la regla de clasificación más popular entre los usuarios. La regla de Fisher se aplica típicamente en el caso homocedástico en el cual las dos poblaciones P 0 y P 1 tienen la misma matriz de covarianza Σ pero diferentes vectores de medias µ 0 y µ 1. La regla está basada en una transformación lineal: x β t x de modo que x se asigna a la población P 0 siempre que β t x está más cerca de β t µ 0 que de β t µ 1.

35 La transformación lineal se elige maximizando (en β) la separación entre las medias proyectadas β t µ 0 y β t µ 1. Para que el problema anterior tenga solución, la maximización se hace sujeta a la restricción que la varianza común β t Σβ de β t X sea 1. Esto reduce el problema a maximizar en β el siguiente cociente entre varianza entre clases y la varianza dentro de clases, (β t µ 0 β t µ 1 ) 2 β t Σβ

36 Basta mirar la distancia de Mahalanobis a las medias El clasificador resultante es equivalente a asignar una nueva observación x minimizando la distancia de Mahalanobis a las medias µ 0 y µ 1, o sea, x se asigna a P 0 si (x µ 0 ) t Σ 1 (x µ 0 ) < (x µ 1 ) t Σ 1 (x µ 1 )

37 Ejemplos de la Regla de Fisher en clase 4

Clasificación Supervisada

Clasificación Supervisada Clasificación Supervisada Ricardo Fraiman 3 de abril de 2010 Resumen Reglas de Clasificación Resumen Reglas de Clasificación Descripción del problema Muestra de entrenamiento (X 1, Y 1 ),..., (X n, Y n

Más detalles

Sistemas de Reconocimiento de Patrones

Sistemas de Reconocimiento de Patrones Sistemas de Reconocimiento de Patrones p. 1/33 Sistemas de Reconocimiento de Patrones Luis Vázquez GTI - IIE Facultad de Ingeniería Universidad de la República Sistemas de Reconocimiento de Patrones p.

Más detalles

Part VII. Estadística I. Mario Francisco. Introducción a la inferencia. Estimación puntual. Propiedades deseables de los estimadores

Part VII. Estadística I. Mario Francisco. Introducción a la inferencia. Estimación puntual. Propiedades deseables de los estimadores Part VII La inferencia puede definirse como el conjunto de métodos mediante cuales podemos extraer información sobre distintas características de interés de cierta distribución de probabilidad de la cual

Más detalles

ECONOMETRÍA II Prof.: Begoña Álvarez TEMA 1 INTRODUCCIÓN. Estimación por máxima verosimilitud y conceptos de teoría asintótica

ECONOMETRÍA II Prof.: Begoña Álvarez TEMA 1 INTRODUCCIÓN. Estimación por máxima verosimilitud y conceptos de teoría asintótica ECONOMETRÍA II Prof.: Begoña Álvarez 2007-2008 TEMA 1 INTRODUCCIÓN Estimación por máxima verosimilitud y conceptos de teoría asintótica 1. ESTIMACIÓN POR MÁXIMA VEROSIMILITUD (MAXIMUM LIKELIHOOD) La estimación

Más detalles

MÉTODOS AVANZADOS EN APRENDIZAJE ARTIFICIAL: TEORÍA Y APLICACIONES A PROBLEMAS DE PREDICCIÓN

MÉTODOS AVANZADOS EN APRENDIZAJE ARTIFICIAL: TEORÍA Y APLICACIONES A PROBLEMAS DE PREDICCIÓN MÉTODOS AVANZADOS EN APRENDIZAJE ARTIFICIAL: TEORÍA Y APLICACIONES A PROBLEMAS DE PREDICCIÓN Manuel Sánchez-Montañés Luis Lago Ana González Escuela Politécnica Superior Universidad Autónoma de Madrid Teoría

Más detalles

ESTIMACIÓN Estas transparencias contienen material adaptado del curso de PATTERN RECOGNITION AND MACHINE LEARNING de Heikki Huttunen y del libro Duda.

ESTIMACIÓN Estas transparencias contienen material adaptado del curso de PATTERN RECOGNITION AND MACHINE LEARNING de Heikki Huttunen y del libro Duda. ESTIMACIÓN Estas transparencias contienen material adaptado del curso de PATTERN RECOGNITION AND MACHINE LEARNING de Heikki Huttunen y del libro Duda. APRENDIZAJE AUTOMÁTICO, ESTIMACIÓN Y DETECCIÓN Introducción

Más detalles

Tema 9. Análisis factorial discriminante

Tema 9. Análisis factorial discriminante Máster en Técnicas Estadísticas Análisis Multivariante. Año 2008 2009. Profesor: César Sánchez Sellero. 9.1. Introducción. Tema 9. Análisis factorial discriminante Supongamos que están denidos I grupos,

Más detalles

Clasificación. Aurea Grané. Análisis Discriminante

Clasificación. Aurea Grané. Análisis Discriminante Diplomatura en Estadística 1 Diplomatura en Estadística 2 Análisis discriminante Análisis Discriminante y Clasificación Aurea Grané Departamento de Estadística Universidad Carlos III de Madrid Supongamos

Más detalles

ESTADÍSTICA I Tema 2: Algunas ideas básicas sobre inferencia estadística. Muestreo aleatorio

ESTADÍSTICA I Tema 2: Algunas ideas básicas sobre inferencia estadística. Muestreo aleatorio ESTADÍSTICA I Tema 2: Algunas ideas básicas sobre inferencia estadística. Muestreo aleatorio Muestra aleatoria Conceptos probabiĺısticos básicos El problema de inferencia Estadísticos. Media y varianza

Más detalles

10.1 Enfoque Bayesiano del problema de la estimación

10.1 Enfoque Bayesiano del problema de la estimación Chapter 10 Estimadores de Bayes 10.1 Enfoque Bayesiano del problema de la estimación puntual Consideremos nuevamente un problema estadístico de estimación paramétrico. Se observa un vector X = X 1,...,

Más detalles

Tema 2: Análisis Discriminante

Tema 2: Análisis Discriminante Tema 2: Análisis Discriminante P 1 P 2 Problema de clasificación: Ténemos observaciones que corresponden a 2 grupos P_1, P_2. Si nos dan uno nuevo x_0 a que grupo pertenece? Guión 1. Motivación 2. Clasificación

Más detalles

Conceptos básicos de inferencia estadística (I): Inferencia estadística (repaso)

Conceptos básicos de inferencia estadística (I): Inferencia estadística (repaso) Conceptos básicos de inferencia estadística (I): Inferencia estadística (repaso) Tema 1 (I) Estadística 2 Curso 08/09 Tema 1 (I) (Estadística 2) Inferencia estadística Curso 08/09 1 / 24 Inferencia estadística

Más detalles

Tema 2. Heterocedasticidad. 1 El modelo de regresión lineal con errores heterocedásticos

Tema 2. Heterocedasticidad. 1 El modelo de regresión lineal con errores heterocedásticos ema 2. Heterocedasticidad. El modelo de regresión lineal con errores heterocedásticos En este tema vamos a analizar el modelo de regresión lineal Y t = X tβ + u t, donde X t = (X t, X 2t,.., X kt y β =

Más detalles

PRÁCTICA I. Ejercicios Teóricos

PRÁCTICA I. Ejercicios Teóricos PRÁCTICA I TEORÍA DE LA DECISIÓN BAYESIANA Ejercicios Teóricos Ejercicio. En el caso de dos categorías, en la regla de decisión de Bayes el error condicional está dado por la ecuación (7). Incluso si las

Más detalles

Tema 8. Fundamentos de Análisis discriminante

Tema 8. Fundamentos de Análisis discriminante Máster en Técnicas Estadísticas Análisis Multivariante. Año 2008 2009. Profesor: César Sánchez Sellero. Tema 8. Fundamentos de Análisis discriminante 8.1. Introducción. Empezamos deniendo el problema discriminante.

Más detalles

Teorema Central del Límite (1)

Teorema Central del Límite (1) Teorema Central del Límite (1) Definición. Cualquier cantidad calculada a partir de las observaciones de una muestra se llama estadístico. La distribución de los valores que puede tomar un estadístico

Más detalles

Variables Aleatorias y Distribución de Probabilidades

Variables Aleatorias y Distribución de Probabilidades Variables Aleatorias y Distribución de Probabilidades Julio Deride Silva Área de Matemática Facultad de Ciencias Químicas y Farmcéuticas Universidad de Chile 27 de mayo de 2011 Tabla de Contenidos Variables

Más detalles

Econometría 1. Karoll GOMEZ Segundo semestre 2017

Econometría 1. Karoll GOMEZ   Segundo semestre 2017 Econometría 1 Karoll GOMEZ kgomezp@unal.edu.co http://karollgomez.wordpress.com Segundo semestre 2017 II. El modelo de regresión lineal Esperanza condicional I Ejemplo: La distribución de los salarios

Más detalles

ESTIMACIÓN PUNTUAL Julián de la Horra Departamento de Matemáticas U.A.M.

ESTIMACIÓN PUNTUAL Julián de la Horra Departamento de Matemáticas U.A.M. 1 Introducción ESTIMACIÓN PUNTUAL Julián de la Horra Departamento de Matemáticas U.A.M. En este capítulo, vamos a abordar la Estimación Puntual, que es uno de los tres grandes conjuntos de técnicas que

Más detalles

Elementos de máquinas de vectores de soporte

Elementos de máquinas de vectores de soporte Elementos de máquinas de vectores de soporte Clasificación binaria y funciones kernel Julio Waissman Vilanova Departamento de Matemáticas Universidad de Sonora Seminario de Control y Sistemas Estocásticos

Más detalles

Econometría 1. Karoll GOMEZ Segundo semestre 2017

Econometría 1. Karoll GOMEZ   Segundo semestre 2017 Econometría 1 Karoll GOMEZ kgomezp@unal.edu.co http://karollgomez.wordpress.com Segundo semestre 2017 II. El modelo de regresión lineal Esperanza condicional I Ejemplo: La distribución de los salarios

Más detalles

Aprendizaje semi-supervisado.

Aprendizaje semi-supervisado. Aprendizaje semi-supervisado. Alejandro Cholaquidis CMAT-Facultad de Ciencias, UdelaR Montevideo Uruguay En conjunto con: R. Fraiman and M. Sued Seminario de Probabilidad y Estadística 1 2 Algoritmo Hipótesis

Más detalles

Tema 6. Estimación puntual

Tema 6. Estimación puntual 1 Tema 6. Estimación puntual En este tema: Planteamiento del problema. Criterios de comparación de estimadores: Insesgadez. Estimadores de mínima varianza. Error cuadrático medio. Consistencia. Métodos

Más detalles

Momentos de Funciones de Vectores Aleatorios

Momentos de Funciones de Vectores Aleatorios Capítulo 1 Momentos de Funciones de Vectores Aleatorios 1.1 Esperanza de Funciones de Vectores Aleatorios Definición 1.1 Sea X = (X 1,..., X n ) un vector aleatorio (absolutamente continuo o discreto)

Más detalles

Vectores Aleatorios. Vectores Aleatorios. Vectores Discretos. Vectores Aleatorios Continuos

Vectores Aleatorios. Vectores Aleatorios. Vectores Discretos. Vectores Aleatorios Continuos Definición Dado un espacio muestral S, diremos que X =(X 1, X 2,, X k ) es un vector aleatorio de dimension k si cada una de sus componentes es una variable aleatoria X i : S R, para i = 1, k. Notemos

Más detalles

PROBABILIDAD Y ESTADÍSTICA

PROBABILIDAD Y ESTADÍSTICA PROBABILIDAD Y ESTADÍSTICA Pablo Torres Facultad de Ciencias Exactas, Ingeniera y Agrimensura - Universidad Nacional de Rosario Unidad 2: Probabilidad INTRODUCCIÓN Al lanzar un dado muchas veces veremos

Más detalles

Tema 6. Análisis Factorial.

Tema 6. Análisis Factorial. Tema 6 Análisis Factorial El modelo Sea Y = (Y,, Y p ) t un vector aleatorio con vector de medias µ y matriz de covarianzas Σ Supondremos que existe un número entero m < p, una matriz L de orden p m de

Más detalles

Part I. Variables aleatorias unidimensionales. Estadística I. Mario Francisco. Definición de variable aleatoria. Variables aleatorias discretas

Part I. Variables aleatorias unidimensionales. Estadística I. Mario Francisco. Definición de variable aleatoria. Variables aleatorias discretas Part I unidimensionales de s de s Definición Dado un experimento aleatorio, con espacio muestral asociado Ω, una es cualquier función, X, X : Ω R que asocia a cada suceso elemental un número real, verificando

Más detalles

Resumen de Probabilidad

Resumen de Probabilidad Definiciones básicas * Probabilidad Resumen de Probabilidad Para calcular la probabilidad de un evento A: P (A) = N o decasosfavorables N o decasosposibles * Espacio muestral (Ω) Es el conjunto de TODOS

Más detalles

Técnicas Supervisadas Aproximación no paramétrica

Técnicas Supervisadas Aproximación no paramétrica Técnicas Supervisadas Aproximación no paramétrica 2016 Notas basadas en el curso Reconocimiento de Formas de F.Cortijo, Univ. de Granada Pattern Classification de Duda, Hart y Storck The Elements of Statistical

Más detalles

Estadística. Tema 3. Esperanzas Esperanza. Propiedades Varianza y covarianza. Correlación

Estadística. Tema 3. Esperanzas Esperanza. Propiedades Varianza y covarianza. Correlación Estadística Tema 3 Esperanzas 31 Esperanza Propiedades 32 Varianza y covarianza Correlación 33 Esperanza y varianza condicional Predicción Objetivos 1 Medidas características distribución de VA 2 Media

Más detalles

TEMA 2.- VARIABLES ALEATORIAS UNIDIMENSIONALES.- CURSO 17/18

TEMA 2.- VARIABLES ALEATORIAS UNIDIMENSIONALES.- CURSO 17/18 TEMA 2.- VARIABLES ALEATORIAS UNIDIMENSIONALES.- CURSO 17/18 2.1. Concepto de variable aleatoria. Tipos de variables aleatorias: discretas y continuas. 2.2. Variables aleatorias discretas. Diagrama de

Más detalles

Comportamiento asintótico de estimadores

Comportamiento asintótico de estimadores Comportamiento asintótico de estimadores Seguimos con variable X con función de densidad/masa f (x; θ). Queremos estimar θ. Dada una muestra aleatoria, definimos un estimador T = h(x 1,..., X n ) Esperamos/deseamos

Más detalles

EXÁMEN INFERENCIA ESTADÍSTICA I Diplomado en Estadística Convocatoria de Febrero 2006

EXÁMEN INFERENCIA ESTADÍSTICA I Diplomado en Estadística Convocatoria de Febrero 2006 EXÁMEN INFERENCIA ESTADÍSTICA I Diplomado en Estadística Convocatoria de Febrero 6 Problema ( ptos) Considera un experimento aleatorio con espacio muestral Ω. a) Definir una σ-álgebra A sobre Ω. b) Dar

Más detalles

Tema 6 Extensiones y aplicaciones (Máquinas de vectores soporte, SVM)

Tema 6 Extensiones y aplicaciones (Máquinas de vectores soporte, SVM) Tema 6 Extensiones y aplicaciones (Máquinas de vectores soporte, SVM) José R. Berrendero Departamento de Matemáticas Universidad Autónoma de Madrid Contenidos del tema 6 El problema de clasificación supervisada:

Más detalles

TEMA 3.- VECTORES ALEATORIOS.- CURSO

TEMA 3.- VECTORES ALEATORIOS.- CURSO TEMA 3.- VECTORES ALEATORIOS.- CURSO 017-018 3.1. VARIABLES ALEATORIAS BIDIMENSIONALES. FUNCIÓN DE DISTRIBUCIÓN CONJUNTA. 3.. VARIABLES BIDIMENSIONALES DISCRETAS. 3.3. VARIABLES BIDIMENSIONALES CONTINUAS.

Más detalles

Inferencia. Mauricio Olivares. 19 de junio de 2015 ITAM

Inferencia. Mauricio Olivares. 19 de junio de 2015 ITAM Inferencia Mauricio Olivares ITAM 19 de junio de 2015 Recuerda de nuestra clase anterior que m(x) = α + βx. Recuerda de nuestra clase anterior que m(x) = α + βx. Esta es una relación poblacional, no hay

Más detalles

EL PRINCIPIO DE MÁXIMA VEROSIMILITUD (LIKELIHOOD)

EL PRINCIPIO DE MÁXIMA VEROSIMILITUD (LIKELIHOOD) EL PRINCIPIO DE MÁXIMA VEROSIMILITUD (LIKELIHOOD) Fortino Vela Peón fvela@correo.xoc.uam.mx FVela-0 Objetivo Introducir las ideas básicas del principio de máxima verosimilitud. Problema Considere el experimento

Más detalles

Tema 8: Regresión y Correlación

Tema 8: Regresión y Correlación Tema 8: Regresión y Correlación Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 8: Regresión y Correlación Curso 2008-2009 1 / 12 Índice

Más detalles

Análisis de Datos. Clasificación Bayesiana para distribuciones normales. Profesor: Dr. Wilfrido Gómez Flores

Análisis de Datos. Clasificación Bayesiana para distribuciones normales. Profesor: Dr. Wilfrido Gómez Flores Análisis de Datos Clasificación Bayesiana para distribuciones normales Profesor: Dr. Wilfrido Gómez Flores 1 Funciones discriminantes Una forma útil de representar clasificadores de patrones es a través

Más detalles

Modelo Lineal Generalizado GAMMA. Distribución gamma: Otra parametrización mediante el parámetro de forma y la media:

Modelo Lineal Generalizado GAMMA. Distribución gamma: Otra parametrización mediante el parámetro de forma y la media: Modelo Lineal Generalizado GAMMA Distribución gamma: Otra parametrización mediante el parámetro de forma y la media: La distribución gamma es de tipo exponencial: 1 Supongamos que se dispone de r subpoblaciones

Más detalles

Estadística y sus aplicaciones en Ciencias Sociales 5. Estimación. Facultad de Ciencias Sociales, UdelaR

Estadística y sus aplicaciones en Ciencias Sociales 5. Estimación. Facultad de Ciencias Sociales, UdelaR Estadística y sus aplicaciones en Ciencias Sociales 5. Estimación Facultad de Ciencias Sociales, UdelaR Índice 1. Repaso: estimadores y estimaciones. Propiedades de los estimadores. 2. Estimación puntual.

Más detalles

Estadistica II Tema 0. Repaso de conceptos básicos. Curso 2009/10

Estadistica II Tema 0. Repaso de conceptos básicos. Curso 2009/10 Estadistica II Tema 0. Repaso de conceptos básicos Curso 2009/10 Tema 0. Repaso de conceptos básicos Contenidos Variables aleatorias y distribuciones de probabilidad La distribución normal Muestras aleatorias,

Más detalles

Least Squared Methods for System Identification. 1. Modelamiento de datos - Least Squared Estimator

Least Squared Methods for System Identification. 1. Modelamiento de datos - Least Squared Estimator 16/4/2011 UNIVERSIDAD TECNICA FEDERICO SANTA MARIA DEPARTAMENTO DE ELECTRONICA ELO325 SoftComputing y Aplicaciones Least Squared Methods for System Identification Tomás Arredondo Vidal - 1. Modelamiento

Más detalles

Tema 2. Fundamentos Teóricos de la. programación dinámica Teorema de Optimalidad de Mitten

Tema 2. Fundamentos Teóricos de la. programación dinámica Teorema de Optimalidad de Mitten Tema 2 Fundamentos Teóricos de la Programación Dinámica 2.1. Teorema de Optimalidad de Mitten El objetivo básico en la programación dinámica consiste en descomponer un problema de optimización en k variables

Más detalles

Representaciones gráficas de las distribuciones bidimensionales de frecuencias... 74

Representaciones gráficas de las distribuciones bidimensionales de frecuencias... 74 Índice 1. Introducción al R 15 1.1. Introducción............................. 15 1.2. El editor de objetos R....................... 18 1.3. Datos en R............................. 19 1.3.1. Vectores...........................

Más detalles

Tareas de la minería de datos: clasificación. CI-2352 Intr. a la minería de datos Prof. Braulio José Solano Rojas ECCI, UCR

Tareas de la minería de datos: clasificación. CI-2352 Intr. a la minería de datos Prof. Braulio José Solano Rojas ECCI, UCR Tareas de la minería de datos: clasificación CI-2352 Intr. a la minería de datos Prof. Braulio José Solano Rojas ECCI, UCR Tareas de la minería de datos: clasificación Clasificación (discriminación) Empareja

Más detalles

VECTORES ALEATORIOS Julián de la Horra Departamento de Matemáticas U.A.M.

VECTORES ALEATORIOS Julián de la Horra Departamento de Matemáticas U.A.M. 1 Introducción VECTORES ALEATORIOS Julián de la Horra Departamento de Matemáticas U.A.M. Desde un punto de vista formal, los vectores aleatorios son la herramienta matemática adecuada para transportar

Más detalles

Aprendizaje Automático

Aprendizaje Automático Regresión Lineal: Descenso de Gradiente Árboles de Regresión: M5 Ingeniería Informática Fernando Fernández Rebollo y Daniel Borrajo Millán Grupo de Planificación y Aprendizaje (PLG) Departamento de Informática

Más detalles

Econometría II. Hoja de Problemas 1

Econometría II. Hoja de Problemas 1 Econometría II. Hoja de Problemas 1 Nota: En todos los contrastes tome como nivel de significación 0.05. 1. SeanZ 1,...,Z T variables aleatorias independientes, cada una de ellas con distribución de Bernouilli

Más detalles

ECONOMETRÍA I. Tema 2: El Modelo de Regresión Lineal Simple. Patricia Moreno Juan Manuel Rodriguez Poo Alexandra Soberon Departamento de Economía

ECONOMETRÍA I. Tema 2: El Modelo de Regresión Lineal Simple. Patricia Moreno Juan Manuel Rodriguez Poo Alexandra Soberon Departamento de Economía ECONOMETRÍA I Tema 2: El Modelo de Regresión Lineal Simple Patricia Moreno Juan Manuel Rodriguez Poo Alexandra Soberon Departamento de Economía Alexandra Soberon (UC) ECONOMETRÍA I 1 / 42 Modelo de Regresión

Más detalles

Tema1. Modelo Lineal General.

Tema1. Modelo Lineal General. Tema1. Modelo Lineal General. 1. Si X = (X 1, X 2, X 3, X 4 ) t tiene distribución normal con vector de medias µ = (2, 1, 1, 3) t y matriz de covarianzas 1 0 1 1 V = 0 2 1 1 1 1 3 0 1 1 0 2 Halla: a) La

Más detalles

ANÁLISIS DE REGRESIÓN

ANÁLISIS DE REGRESIÓN ANÁLISIS DE REGRESIÓN INTRODUCCIÓN Francis Galtón DEFINICIÓN Análisis de Regresión Es una técnica estadística que se usa para investigar y modelar la relación entre variables. Respuesta Independiente Y

Más detalles

RESUMEN DE ALGUNOS CONCEPTOS ESTADÍSTICOS ELEMENTALES Y NOTACIÓN EMPLEADA EN EL CURSO

RESUMEN DE ALGUNOS CONCEPTOS ESTADÍSTICOS ELEMENTALES Y NOTACIÓN EMPLEADA EN EL CURSO RESUMEN DE ALGUNOS CONCEPTOS ESTADÍSTICOS ELEMENTALES Y NOTACIÓN EMPLEADA EN EL CURSO 1 rojo 1 2 3 4 5 6 Supongamos que tenemos dos dados, uno rojo y otro verde, cada uno de los cuales toma valores entre

Más detalles

3 ESTIMACION. 3.1 Introducción

3 ESTIMACION. 3.1 Introducción 3 ESTIMACION 3.1 Introducción En un problema estadístico, si los datos fueron generados a partir de una distribución de probabilidad F(x) desconocida, la Inferencia Estadística permite decir algo respecto

Más detalles

3. Variables aleatorias

3. Variables aleatorias 3. Variables aleatorias Estadística Ingeniería Informática Curso 2009-2010 Estadística (Aurora Torrente) 3. Variables aleatorias Curso 2009-2010 1 / 33 Contenidos 1 Variables aleatorias y su distribución

Más detalles

Agro 6998 Conferencia 2. Introducción a los modelos estadísticos mixtos

Agro 6998 Conferencia 2. Introducción a los modelos estadísticos mixtos Agro 6998 Conferencia Introducción a los modelos estadísticos mixtos Los modelos estadísticos permiten modelar la respuesta de un estudio experimental u observacional en función de factores (tratamientos,

Más detalles

Análisis de Datos. Análisis lineal discriminante. Profesor: Dr. Wilfrido Gómez Flores

Análisis de Datos. Análisis lineal discriminante. Profesor: Dr. Wilfrido Gómez Flores Análisis de Datos Análisis lineal discriminante Profesor: Dr. Wilfrido Gómez Flores 1 Introducción Para reducir el error de clasificación algunas veces es necesario identificar el subconjunto de características

Más detalles

Regresión Lineal Simple y Múltiple Regresión Logística

Regresión Lineal Simple y Múltiple Regresión Logística Regresión Lineal Simple y Múltiple Regresión Logística Miguel González Velasco Departamento de Matemáticas. Universidad de Extremadura MUI en Ciencias de la Salud MUI en Ciencias de la Salud (UEx) Regresión

Más detalles

Estadística Multivariada Computacional Introducción al Aprendizaje Automático (parte 1)

Estadística Multivariada Computacional Introducción al Aprendizaje Automático (parte 1) Estadística Multivariada Computacional Introducción al Aprendizaje Automático (parte 1) Mathias Bourel IMERL - Facultad de Ingeniería, Universidad de la República, Uruguay 24 de octubre de 2016 M.Bourel

Más detalles

TEMA 2: Estimadores y distribuciones en el muestreo. Alfredo García Hiernaux. Grupos 69 y 73 Estadística I. Curso 2006/07

TEMA 2: Estimadores y distribuciones en el muestreo. Alfredo García Hiernaux. Grupos 69 y 73 Estadística I. Curso 2006/07 TEMA 2: Estimadores y distribuciones en el muestreo 1) Introducción 2) Tipos de muestreos 3) Estadísticos INDICE 4) Estimadores y propiedades 5) Distribución muestral 6) Teorema Central del Límite 7) Distribuciones

Más detalles

Tema 1. El Modelo de Regresión Lineal con Regresores Aleatorios.

Tema 1. El Modelo de Regresión Lineal con Regresores Aleatorios. ema El Modelo de Regresión Lineal con Regresores Aleatorios Introducción En este tema vamos a analizar las propiedades del modelo de regresión lineal con regresores aleatorios Suponer que los regresores

Más detalles

Julio Deride Silva. 4 de junio de 2010

Julio Deride Silva. 4 de junio de 2010 Curvas ROC y Regresión Lineal Julio Deride Silva Área de Matemática Facultad de Ciencias Químicas y Farmcéuticas Universidad de Chile 4 de junio de 2010 Tabla de Contenidos Curvas ROC y Regresión Lineal

Más detalles

Introducción. Existen dos aproximaciones para resolver el problema de clasificación: Aproximación Generativa (vista en el Tema 3) Basada en:

Introducción. Existen dos aproximaciones para resolver el problema de clasificación: Aproximación Generativa (vista en el Tema 3) Basada en: Introducción Eisten dos aproimaciones para resolver el problema de clasificación: Aproimación Generativa (vista en el Tema 3) Basada en: Modelar p(,w)=p( w)p(w) p( w) es la distribución condicional de

Más detalles

Tema 4. Regresión lineal simple

Tema 4. Regresión lineal simple Tema 4. Regresión lineal simple Contenidos El objeto del análisis de regresión La especificación de un modelo de regresión lineal simple Estimadores de mínimos cuadrados: construcción y propiedades Inferencias

Más detalles

ESTADÍSTICA I Tema 3: Estimación puntual paramétrica

ESTADÍSTICA I Tema 3: Estimación puntual paramétrica ESTADÍSTICA I Tema 3: Estimación puntual paramétrica Planteamiento del problema Estimadores. Concepto, error cuadrático medio y propiedades deseables Construcción de estimadores: el método de máxima verosimilitud

Más detalles

Aplicación de la distribución empírica: Tests de bondad de ajuste

Aplicación de la distribución empírica: Tests de bondad de ajuste Aplicación de la distribución empírica: Tests de bondad de ajuste 4 de marzo de 2009 Test de bondad de ajuste Supongamos que se dispone de una m.a.s de tamaño n de una población X con distribución desconocida

Más detalles

Análisis de Datos. Introducción al aprendizaje supervisado. Profesor: Dr. Wilfrido Gómez Flores

Análisis de Datos. Introducción al aprendizaje supervisado. Profesor: Dr. Wilfrido Gómez Flores Análisis de Datos Introducción al aprendizaje supervisado Profesor: Dr. Wilfrido Gómez Flores 1 Conceptos básicos Reconocimiento de patrones (RP): clasificar objetos en un número de categorías o clases.

Más detalles

UNIVERSIDAD DE ATACAMA

UNIVERSIDAD DE ATACAMA UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA ESTADÍSTICA Y PROBABILIDADES PAUTA DE CORRECCIÓN PRUEBA N 3 Profesor: Hugo S. Salinas. Segundo Semestre 200. Se investiga el diámetro

Más detalles

Overfit, cross validation y bootstrap

Overfit, cross validation y bootstrap Universisad de San Andrés y CONICET Cueestiones preliminares Sea z n una sucesion de variables aleatorias escalares. Consideremos la siguiente sucesion z n = n i=1 z i n Ley de grandes numeros (Kolmogorov):

Más detalles

Universidad Autónoma de Sinaloa

Universidad Autónoma de Sinaloa Séptima Edición del Diplomado en Estadística Mc. José V. Jiménez Ramírez Director de la Escuela de Ciencias Fisico-Matemáticas Tel. : 7 16 11 54 vidaljr@uas.uasnet.mx Dr. René Castro Montoya Coordinador

Más detalles

Hoja 4 Variables aleatorias multidimensionales

Hoja 4 Variables aleatorias multidimensionales Hoja 4 Variables aleatorias multidimensionales 1.- Estudiar si F (x, y) = 1, si x + 2y 1, 0, si x + 2y < 1, es una función de distribución en IR 2. 2.- Dada la variable aleatoria 2-dimensional (X, Y )

Más detalles

Estimación. Introducción. Sea X la variable aleatoria poblacional con distribución de probabilidad f θ donde. es el parámetro poblacional desconocido

Estimación. Introducción. Sea X la variable aleatoria poblacional con distribución de probabilidad f θ donde. es el parámetro poblacional desconocido Tema : Introducción a la Teoría de la Estimación Introducción Sea X la variable aleatoria poblacional con distribución de probabilidad f θ (x), donde θ Θ es el parámetro poblacional desconocido Objetivo:

Más detalles

Econometría de series de tiempo aplicada a macroeconomía y finanzas

Econometría de series de tiempo aplicada a macroeconomía y finanzas Econometría de series de tiempo aplicada a macroeconomía y finanzas Series de Tiempo Estacionarias (Multivariadas) Carlos Capistrán Carmona ITAM 1 Principios de Pronóstico. 2 Pruebas de Hipótesis. 3 Estimación

Más detalles

Álgebra Lineal. Tema 12. Mínimos cuadrados II. Grado en Ingeniería Informática Doble Grado en Ingeniería Informática y Administración de Empresas

Álgebra Lineal. Tema 12. Mínimos cuadrados II. Grado en Ingeniería Informática Doble Grado en Ingeniería Informática y Administración de Empresas Álgebra Lineal Tema 2 Mínimos cuadrados II Grado en Ingeniería Informática Doble Grado en Ingeniería Informática y Administración de Empresas AUTORES: J S ALAS, A T ORRENTE Y EJS V ILLASEÑOR Índice general

Más detalles

Estadística Diplomado

Estadística Diplomado Diplomado HRB UNAM 1 / 25 1 Estimación Puntual Momentos Máxima Verosimiltud Propiedades 2 / 25 1 Estimación Puntual Momentos Máxima Verosimiltud Propiedades 2 Estimación por Intervalos Cantidades Pivotales

Más detalles

Curso Inferencia. Miguel Ángel Chong R. 1 de octubre del 2012

Curso Inferencia. Miguel Ángel Chong R. 1 de octubre del 2012 Curso Estadística Miguel Ángel Chong R. miguel@sigma.iimas.unam.mx 1 de octubre del 2012 Definición Estadístico suficiente Un estadístico es suficiente respecto al parámetro si la distribución de probabilidad

Más detalles

0pWRGRVGH(UURUGH3UHGLFFLyQ3(0

0pWRGRVGH(UURUGH3UHGLFFLyQ3(0 0pWRGRVGH(UURUGH3UHGLFFLyQ3(0 Se selecciona una estructura de modelo 0, con modelos particulares 0 parametrizados con un S vector de parámetros θ ' R 0 { 0 } 0 = θ ' 0 Se disponen para la estimación de

Más detalles

Capítulo 2. Medidas Estadísticas Básicas Medidas estadísticas poblacionales

Capítulo 2. Medidas Estadísticas Básicas Medidas estadísticas poblacionales Capítulo 2 Medidas Estadísticas Básicas 2.1. Medidas estadísticas poblacionales Sea X una variable aleatoria con función de probabilidad p(x) si es discreta, o función de densidad f(x) si es continua.

Más detalles

Por ejemplo, si se desea discriminar entre créditos que se devuelven o que presentan

Por ejemplo, si se desea discriminar entre créditos que se devuelven o que presentan Regresión Logística Introducción El problema de clasificación en dos grupos puede abordarse introduciendo una variable ficticia binaria para representar la pertenencia de una observación a uno de los dos

Más detalles

Estimación de Parámetros. Un problema inherente al uso de modelos es el de la selección del modelo.

Estimación de Parámetros. Un problema inherente al uso de modelos es el de la selección del modelo. Estimación de Parámetros Un problema inherente al uso de modelos es el de la selección del modelo. Este problema, cuando se recurre al empleo de familias paramétricas de modelos, se puede plantear en dos

Más detalles

Estadística para la Economía y la Gestión IN 3401

Estadística para la Economía y la Gestión IN 3401 Estadística para la Economía y la Gestión IN 3401 3 de junio de 2010 1 Modelo de Regresión con 2 Variables Método de Mínimos Cuadrados Ordinarios Supuestos detrás del método MCO Errores estándar de los

Más detalles

ECONOMETRIA. Tema 2: El Modelo de Regresión Lineal Simple. César Alonso UC3M. César Alonso (UC3M) ECONOMETRIA. Tema 2 1 / 62

ECONOMETRIA. Tema 2: El Modelo de Regresión Lineal Simple. César Alonso UC3M. César Alonso (UC3M) ECONOMETRIA. Tema 2 1 / 62 ECONOMETRIA Tema 2: El Modelo de Regresión Lineal Simple César Alonso UC3M César Alonso (UC3M) ECONOMETRIA. Tema 2 1 / 62 Relaciones empíricas y teóricas Como economistas, nos interesa la relación entre

Más detalles

Ejemplo Curvas Principales Definiciones Algoritmo. Ejemplo Tortugas. En este ejemplo se miden la dimensiones del caparazón de las tortugas siendo

Ejemplo Curvas Principales Definiciones Algoritmo. Ejemplo Tortugas. En este ejemplo se miden la dimensiones del caparazón de las tortugas siendo Ejemplo Tortugas En este ejemplo se miden la dimensiones del caparazón de las tortugas siendo x 1 = 10 log(longitud del caparazón), x 2 = 10 log(ancho del caparazón) Se estudiaron 24 machos y 24 hembras.

Más detalles

Curso: Métodos de Monte Carlo Unidad 3, Sesión 7: Problemas de conteo

Curso: Métodos de Monte Carlo Unidad 3, Sesión 7: Problemas de conteo Curso: Métodos de Monte Carlo Unidad 3, Sesión 7: Problemas de conteo Departamento de Investigación Operativa Instituto de Computación, Facultad de Ingeniería Universidad de la República, Montevideo, Uruguay

Más detalles

Clasificación Supervisada. Métodos jerárquicos. CART

Clasificación Supervisada. Métodos jerárquicos. CART Clasificación Supervisada. Métodos jerárquicos. CART Ricardo Fraiman 2 de abril de 2010 Descripción del problema Muestra de entrenamiento (X 1, Y 1 ),..., (X n, Y n ) E {1,..., m}. Típicamente E = R d.

Más detalles

TEMA 3 REGRESIÓN Y CORRELACIÓN

TEMA 3 REGRESIÓN Y CORRELACIÓN TEMA 3 REGRESIÓN Y CORRELACIÓN Regresión mínimo-cuadrática bidimensional Planteamiento del problema Dadas dos variables aleatorias X e Y definidas sobre un mismo espacio de probabilidad (asociadas a un

Más detalles

Mínimos Cuadrados Generalizados

Mínimos Cuadrados Generalizados Mínimos Cuadrados Generalizados Román Salmerón Gómez Los dos últimos temas de la asignatura han estado enfocados en estudiar por separado la relajación de las hipótesis de que las perturbaciones estén

Más detalles

Part I. Descripción estadística de dos variables. Estadística I. Mario Francisco. Variable. bidimensional. Distribuciones de frecuencias

Part I. Descripción estadística de dos variables. Estadística I. Mario Francisco. Variable. bidimensional. Distribuciones de frecuencias Part I Descripción de dos variables Introducción Si para un mismo individuo observamos simultáneamente k obtendremos como resultado una variable k-dimensional. Nos ocuparemos del estudio de las variables

Más detalles

Curso Inferencia. Miguel Ángel Chong R. 3 de septiembre del 2013

Curso Inferencia. Miguel Ángel Chong R. 3 de septiembre del 2013 Curso Estadística Miguel Ángel Chong R. miguel@sigma.iimas.unam.mx 3 de septiembre del 013 Definamos más formalmente que entenderémos por una muestra. Definción Sea X la v.a. correspondiente a una población

Más detalles

Estadística II Tema 4. Regresión lineal simple. Curso 2009/10

Estadística II Tema 4. Regresión lineal simple. Curso 2009/10 Estadística II Tema 4. Regresión lineal simple Curso 009/10 Tema 4. Regresión lineal simple Contenidos El objeto del análisis de regresión La especificación de un modelo de regresión lineal simple Estimadores

Más detalles

DISTRIBUCIONES MULTIDIMENSIONALES DE PROBABILIDAD

DISTRIBUCIONES MULTIDIMENSIONALES DE PROBABILIDAD DISTRIBUCIONES MULTIDIMENSIONALES DE PROBABILIDAD FUNCIÓN DE DISTRIBUCIÓN ( CONJUNTA ) DE UN VECTOR ALEATORIO FUNCIÓN DE CUANTÍA ( CONJUNTA) DE VECTORES ALETORIOS DISCRETOS FUNCIÓN DE DENSIDAD (CONJUNTA)

Más detalles

Vectores Aleatorios. Definición 1.1. Diremos que el par (X,Y) es un vector aleatorio si X e Y representan variables aleatorias

Vectores Aleatorios. Definición 1.1. Diremos que el par (X,Y) es un vector aleatorio si X e Y representan variables aleatorias Universidad de Chile Facultad De Ciencias Físicas y Matemáticas MA3403 - Probabilidades y Estadística Prof. Auxiliar: Alberto Vera Azócar. albvera@ing.uchile.cl Vectores Aleatorios 1. Vectores Aleatorios

Más detalles

Conjuntos de Clasificadores (Ensemble Learning)

Conjuntos de Clasificadores (Ensemble Learning) Aprendizaje Automático Segundo Cuatrimestre de 2016 Conjuntos de Clasificadores (Ensemble Learning) Gracias a Ramiro Gálvez por la ayuda y los materiales para esta clase. Bibliografía: S. Fortmann-Roe,

Más detalles

Tema 8: HETEROCEDASTICIDAD *

Tema 8: HETEROCEDASTICIDAD * Universidad Carlos III de Madrid César Alonso ECONOMETRIA Tema 8: HETEROCEDASTICIDAD * Índice 1. Introducción 1 1.1. Ejemplos.............................. 1 2. El modelo de regresión lineal con heterocedasticidad

Más detalles

Tema 4 - Introducción

Tema 4 - Introducción Tema 4 - Introducción 1 Tema 3. Estimación puntual Criterios de comparación de estimadores: Insesgadez. Estimadores de mínima varianza. Error cuadrático medio. Consistencia. Cómo obtener estimadores? Tema

Más detalles

Relación 3 de problemas

Relación 3 de problemas ESTADÍSTICA II Curso 2016/2017 Grado en Matemáticas Relación 3 de problemas 1. La Comunidad de Madrid evalúa anualmente a los alumnos de sexto de primaria de todos los colegios sobre varias materias. Con

Más detalles

Cálculo de Probabilidades II Preguntas Tema 2

Cálculo de Probabilidades II Preguntas Tema 2 Cálculo de Probabilidades II Preguntas Tema 2 1. Demuestre que la suma de n v.a. Bernuolli(p) independientes tiene una distribución Binomial con parametros (n, p). 2. Se dice que una v.a tiene una distribución

Más detalles

Estadística II Examen final enero 19/1/17 Curso 2016/17 Soluciones Duración del examen: 2 h y 15 min

Estadística II Examen final enero 19/1/17 Curso 2016/17 Soluciones Duración del examen: 2 h y 15 min Estadística II Examen final enero 19/1/17 Curso 016/17 Soluciones Duración del examen: h y 15 min 1. 3 puntos El Instituto para la Diversificación y Ahorro de la Energía IDAE ha publicado un estudio sobre

Más detalles