Estudio de ceros de ecuaciones funcionales

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Estudio de ceros de ecuaciones funcionales"

Transcripción

1 Capítulo 1 Estudio de ceros de ecuaciones funcionales Problema 1.1 Calcular el número de ceros de la ecuación arctang(x) = 4 x, dando un intervalo 5 donde se localicen. Solución: Denimos f(x) = arctan(x) 4 5x. Esta es una función continua y derivable en todo IR. Por tanto, podemos aplicar el Teorema de Rolle para conocer el número máximo de ceros de esta función, es decir, buscamos en primer lugar los ceros de la función derivada. f (x) = x Esta función tiene 2 ceros, en x = ±1/2, por tanto la función f(x) tiene a lo sumo tres ceros. Vamos hora a buscar en qué intervalos. Hay uno muy fácil que es f(0) = 0. Probamos algunos valores sencillos. f(1) = arctan(1) 4 5 = π > 0 f( ) = arctan( ) 4 5 = π > 0 por tanto en el intervalo [, 1] hay un cero. Como además f es antisimétrica, es decir, f( x) = f(x), si f tiene un cero en [, 1], también tiene uno en [ 1, ], con lo cual queda demostrado que f tiene tres ceros, x = 0 y uno en cada uno de los intervalos [ 1, [, 1]. 5 ] y

2 6 Índice general Problema 1.2 ¾En cuántos puntos se intersectan las curvas y = ln(x) e y = 1 9 x2?¾ Por qué? Solución: Denimos f(x) = ln(x) 1 9 x2. Esta es una función continua y derivable en (0, + ). Si derivamos resulta que f (x) = 1 x 2 9 x que tiene dos ceros en IR, x = ±/ 2, pero en el intervalo (0, + ) sólo tiene uno. Por tanto, en dicho intervalo la función f(x) a lo sumo puede tener dos ceros. Vamos a intentar localizarlos aplicando el Teorema de Bolzano. f(1) = 1 9 < 0 f(e) = 1 e2 9 > 0 f(e 2 ) = 2 e4 9 < 0 Por tanto, f tiene un cero en el intervalo (1, e) y otro en el intervalo (e, e 2 ). Problema 1. ¾En cuántos puntos se intersectan las curvas y = e x e y = x 2?¾ Por qué? Solución: Denimos f(x) = e x x 2 y vamos a analizar el número de ceros de esta función con la aplicación combinada de los teoremas de Rolle y Bolzano. Para ello derivamos la función. f (x) = e x 6x Pero nos encontramos con un problema, como no es una ecuación que podamos resolver analíticamente, no resulta inmediato conocer el número de ceros de esta función. Para solucionar este punto, previamente analizamos el número de ceros de f aplicando también los teoremas de Rolle y Bolzano. Calculamos f f (x) = e x 6 Esta función se anula en x = ln(6), por tanto f se anula en a lo sumo 2 puntos (puede anularse en uno, dos o ningun punto). Es decir, que f se anula en a lo sumo tres puntos. Vamos a intentar primero localizar los ceros de f para precisar un poco mejor el número máximo de ceros de f. Aplicando el Teorema de Bolzano, resulta: f (0) = 1 > 0 f (1) = e 6 < 0

3 Índice general 7 f () = e 18 > 0 es decir, que f se anula una vez en el intervalo (0, 1) y otra vez en (1, ). Vamos ahora con f(x), que ya sabemos que a lo sumo tiene ceros. f( 1) = e 1 < 0 f(0) = 1 > 0 f(1) = e < 0 f(0) = 1 > 0 = existe x 0 ( 1, 0) tal que f(x 0 ) = 0 = existe x 1 (0, 1) tal que f(x 1 ) = 0 f(1) = e < 0 f(4) = e 4 48 > 0 = existe x 2 (1, 4) tal que f(x 2 ) = 0 Por tanto f tiene al menos tres ceros. Como ya habíamos visto que como máximo tenía, ese es el número exacto de ceros que tiene y, por tanto, las curvas y = e x e y = x 2 se cortan en tres puntos. Problema 1.4 (i) Demostrar que la ecuación x = n ln(x) tiene a lo sumo dos raíces para todo n 1, x > 0. (ii) Demostrar que si n = 4 la ecuación tiene exactamente dos raíces. Solución: (i) Para demostrar que la ecuación x = n ln(x) tiene a lo sumo dos raíces para todo n 1, x > 0, basta aplicar el Teorema de Rolle. Para ello denimos en primer lugar la función f n : IR + IR, dada por: f n (x) = x n ln(x). Esta función es continua y derivable en IR + (teniendo en cuenta que IR + no contiene el cero), ya que es composición de funciones elementales. Por tanto, podemos aplicar el Teorema de Rolle. Calculamos f n y estudiamos sus ceros: f n(x) = 1 n = 0 x = n. x Como f n sólo se anula una vez, obtenemos que f n se anulará a lo sumo dos veces. (ii) Si n = 4, la función que consideramos es f(x) = x 4 ln x. Por el apartado anterior sabemos que se anula a lo sumo en dos puntos. Para demostrar que lo hace exactamente en dos puntos basta que apliquemos el Teorema de Bolzano para encontrar dos intervalos donde la función cambie de signo en los extremos. Probamos con [1, e], f(1) = 1 > 0 f(e) = e 4 < 0 = existe x 0 (1, e) tal que f(x 0 ) = 0.

4 8 Índice general Ahora en [e, e ], f(e) = e 4 < 0 f(e ) = e 12 > 0 = existe x 1 (e, e ) tal que f(x 1 ) = 0. Problema 1.5 Demostrar que la ecuación x = tan x tiene una única raíz en el intervalo [ π/4, π/4]. Solución: (i) Para demostrar que la ecuación x = tan(x) tiene una única raíz en el intervalo [ π/4, π/4], basta aplicar el Teorema de Rolle. Para ello denimos en primer lugar la función f : [ π/4, π/4] IR, dada por: f(x) = x tan(x). Esta función es continua y derivable en [ π/4, π/4], ya que es composición de funciones elementales. Por tanto, podemos aplicar el Teorema de Rolle. Calculamos f y estudiamos su signo y sus ceros: f (x) = 1 1 cos 2 x = (f = 0 x = 0) y f < 0. Como f sólo se anula una vez, obtenemos que f se anulará a lo sumo dos veces. Pero al ser f estrictamente decreciente y anularse en x = 0, sólo hay un cero de f, x = 0. Problema 1.6 (i) Demostrar que la ecuación x 4 4x 1 = 0 tiene exactamente dos raíces reales y dar un intervalo al que pertenece cada una de ellas. (ii) Hallar las rectas tangente y normal a la curva y(x) = x 4 4x 1 en el punto x = 1. Solución: (i) Aplicamos los Teoremas de Bolzano y Rolle conjuntamente. Para ello denimos en primer lugar la función f : IR IR, dada por f(x) = x 4 4x 1. Esta función es continua y derivable en IR ya que es una función polinómica. Por tanto, podemos aplicar el Teorema de Rolle. Calculamos f y estudiamos sus ceros: f (x) = 4x 4 = 0 x = 1. Por tanto como f se anula una sóla vez, f tendrá a lo sumo dos ceros. Para demostrar que efectivamente los tiene basta que apliquemos el Teorema de Bolzano para encontrar un intervalo donde la función cambie de signo en los extremos. Probamos con [ 1, 0], f( 1) = = 4 > 0 f(0) = 1 < 0 = existe x 0 ( 1, 0) tal que f(x 0 ) = 0.

5 Índice general 9 Ahora probamos con [0, 2], f(0) = 1 < 0 f(2) = = 7 > 0 = existe x 1 (0, 2) tal que f(x 1 ) = 0. (ii) Recordamos en primer lugar que la recta tangente a una curva y = f(x) en el punto x = a está dada por y f(a) = f (a)(x a). Por tanto, teniendo en cuenta que y = 4x 4, la recta tangente a y(x) = x 4 4x 1 en x = 1 es y 4 = 8(x + 1) = y = 8x 4. Por otro lado, la ecuación de la recta normal a una curva y = f(x) en el punto x = a está dada por y f(a) = 1 f (a) (x a). Por tanto, la recta normal a y(x) = x4 4x 1 en x = 1 es y 4 = 1 (x + 1) = 8y = x +. 8 Problema 1.7 (i) Demostrar que las curvas y = e x 2 e y = x se cortan exactamente en dos puntos y dar un intervalo al que pertenece cada uno de ellos. (ii) Hallar las rectas tangente y normal a la curva y = e x 2 + x 2 4 en el punto x = 2. Solución: (i) Aplicamos los Teoremas de Bolzano y Rolle conjuntamente. Para ello denimos en primer lugar la función f : IR IR, dada por f(x) = e x 2 + x 2 4. Esta función es continua y derivable en IR por ser suma de funciones elementales. Por tanto, podemos aplicar el Teorema de Rolle. Calculamos f y estudiamos sus ceros. f (x) = e x 2 + 2x = 0. Como no podemos hallar directamente los ceros de esta función calculamos su derivada y usamos los teoremas de Rolle y Bolzano. f (x) = e x > 0. Por tanto, f tiene a lo sumo un cero. Como lím f (x) = y lím f (x) = +, la x x + funciòn f se anula una vez en IR. Por tanto, f tendrá a lo sumo dos ceros. Para demostrar que efectivamente los tiene basta que apliquemos el Teorema de Bolzano para encontrar un intervalo donde la función cambie de signo en los extremos. Probamos con [ 2, 1], f( 2) = e 4 > 0 f( 1) = e < 0 = existe x 0 ( 2, 1) tal que f(x 0 ) = 0.

6 10 Índice general Ahora probamos con [0, 2], f(0) = e 2 4 < 0 f(2) = 1 > 0 = existe x 1 (0, 2) tal que f(x 1 ) = 0. (ii) Recordamos en primer lugar que la recta tangente a una curva y = f(x) en el punto x = a está dada por y f(a) = f (a)(x a). Por tanto, teniendo en cuenta que y = e x 2 + 2x, la recta tangente a y(x) = e x 2 + x 2 4 en x = 2 es y 1 = 5(x 2) = y = 5x 9. Por otro lado, la ecuación de la recta normal a una curva y = f(x) en el punto x = a está dada por y f(a) = 1 f (a) (x a). Por tanto, la recta normal a y(x) = ex 2 + x 2 4 en x = 2 es y 1 = 1 (x 2) = 5y = x 7. 5 Problema 1.8 (i) Demostrar que la ecuación x 4 +x +x 2 2 = 0 tiene exactamente dos raíces reales y dar un intervalo al que pertenece cada una de ellas. (ii) Hallar las rectas tangente y normal a la curva y(x) = x 4 + x + x 2 2 en el punto x = 1. Solución: (i) Para demostrar que la ecuación dada tiene exactamente dos raíces basta aplicar los Teoremas de Bolzano y Rolle. Para ello denimos en primer lugar la función f : IR IR, dada por: f(x) = x 4 + x + x 2 2. Esta función es continua y derivable en IR ya que es una función polinómica. Por tanto, podemos aplicar el Teorema de Rolle. Calculamos f y estudiamos sus ceros: f (x) = 4x + x 2 + 2x = x(4x 2 + x + 2) = 0 x = 0 o x = ± Por tanto como f se anula una sola vez en IR, f tendrá a lo sumo dos ceros. Para demostrar que efectivamente los tiene basta que apliquemos el Teorema de Bolzano para encontrar un intervalo donde la función cambie de signo en los extremos. Probamos con [ 2, 0], f( 2) = = 10 > 0 f(0) = 2 < 0 Ahora probamos con [0, 1], = existe x 0 ( 2, 0) tal que f(x 0 ) = 0. f(0) = 2 < 0 f(1) = = 1 > 0 = existe x 1 (0, 1) tal que f(x 1 ) = 0.

7 Índice general 11 (ii) Recordamos en primer lugar que la recta tangente a la curva y = f(x) en el punto x = a está dada por y f(a) = f (a)(x a). Por tanto, teniendo en cuenta que y = 4x + x 2 + 2x, la recta tangente a y(x) = x 4 + x + x 2 2 en x = 1 es y 1 = 9(x 1) = y = 9x 8. Por otro lado, la ecuación de la recta normal a la curva y = f(x) en el punto x = a está dada por y f(a) = 1 f (a) (x a). Por tanto, la recta normal a y(x) = x4 + x + x 2 2 en x = 1 es y 1 = 1 (x 1) = 9y = x Problema 1.9 (i) Demostrar que la ecuación 8 ln(x) x = 0 tiene exactamente dos raíces reales en (0, + ) y dar un intervalo al que pertenece cada una de ellas. (ii) Hallar las rectas tangente y normal a la curva y(x) = 8 ln(x) x en el punto x = 1. Solución: (i) Para demostrar que la ecuación dada tiene exactamente dos raíces basta aplicar los Teoremas de Bolzano y Rolle. Para ello denimos en primer lugar la función f : (0, + ) IR, dada por: f(x) = 8 ln(x) x Esta función es continua y derivable en (0, + ) ya que es la suma de una función polinómica y un logarítmo. Por tanto, podemos aplicar el Teorema de Rolle. Calculamos f y estudiamos sus ceros: f (x) = 8 2x = 0 x = 2 en (0, + ). x Por tanto como f se anula una sola vez en (0, + ), f tendrá a lo sumo dos ceros. Para demostrar que efectivamente los tiene basta que apliquemos el Teorema de Bolzano para encontrar un intervalo donde la función cambie de signo en los extremos. Probamos con [e 1, 1], f(e 1 ) = 8 e = 4 e 2 < 0 f(1) = > 0 = existe x 0 (e 1, 1) tal que f(x 0 ) = 0. Ahora probamos con [1, e 2 ], f(1) = > 0 f(e 2 ) = 16 e = 20 e 4 < 0 = existe x 1 (1, e 2 ) tal que f(x 1 ) = 0. (ii) Recordamos en primer lugar que la recta tangente a la curva y = f(x) en el punto x = a está dada por y f(a) = f (a)(x a). Por tanto, teniendo en cuenta que y = 8 2x, la recta x tangente a y(x) en x = 1 es y = 6(x 1) = y = 6x.

8 12 Índice general Por otro lado, la ecuación de la recta normal a la curva y = f(x) en el punto x = a está dada por y f(a) = (x a). Por tanto, la recta normal a y(x) en x = 1 es 1 f (a) y = 1 (x 1) = 6y = x Problema 1.10 (i) Demostrar que la ecuación x 5x 2 + x + 2 = 0 tiene exactamente tres raíces reales y dar un intervalo al que pertenece cada una de ellas. (ii) Hallar las rectas tangente y normal a la curva y(x) = x 5x 2 + x + 2 en el punto x = 0. Solución: (i) Una vez más vamos a aplicar combinadamente los teoremas de Rolle y Bolzano. Derivamos la función f(x) = x 5x 2 + x + 2: f (x) = x 2 10x + La función f es un polinomio de segundo grado, por tanto es fácil hallar sus raíces y vemos que tiene dos, que son y 1, por lo cual la función f tiene a lo sumo tres ceros. Vamos a intentar localizarlos mediante la aplicación del Teorema de Bolzano: f( 1) = 9 < 0 f(0) = 2 > 0 = existe x 1 ( 1, 0) tal que f(x 1 ) = 0 f(0) = 2 > 0 f(2) = 4 < 0 f(5) = 17 > 0 f(2) = 4 < 0 = existe x 2 (0, 2) tal que f(x 2 ) = 0 = existe x (2, 5) tal que f(x ) = 0 Por tanto f tiene al menos tres ceros según el Teorema de Bolzano y por lo visto anteriormente, f tiene exactamente tres ceros. (ii) La ecuación de la recta tangente a una curva y = f(x) en el punto x = a es y f(a) = f (a)(x a). Por tanto, en nuestro caso la ecuación será: y 2 = x La ecuación de la recta normal a una curva y = f(x) en el punto x = a es y f(a) = Por tanto, en nuestro caso la ecuación será: y 2 = 1 x 1 (x a). f (a)

1. Ecuaciones no lineales

1. Ecuaciones no lineales 1. Ecuaciones no lineales 1.1 Ejercicios resueltos Ejercicio 1.1 Dada la ecuación xe x 1 = 0, se pide: a) Estudiar gráficamente sus raíces reales y acotarlas. b) Aplicar el método de la bisección y acotar

Más detalles

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES INECUACIONES NOTA IMPORTANTE: El signo de desigualdad de una inecuación puede ser,, < o >. Para las cuestiones teóricas que se desarrollan en esta unidad únicamente se utilizará la desigualdad >, siendo

Más detalles

PROBLEMA 1. 1. [1.5 puntos] Obtener la ecuación de la recta tangente en el punto ( 2, 1) a la curva dada implícitamente por y 3 +3y 2 = x 4 3x 2.

PROBLEMA 1. 1. [1.5 puntos] Obtener la ecuación de la recta tangente en el punto ( 2, 1) a la curva dada implícitamente por y 3 +3y 2 = x 4 3x 2. PROBLEMA. ESCUELA UNIVERSITARIA POLITÉCNICA DE SEVILLA Ingeniería Técnica en Diseño Industrial Fundamentos Matemáticos de la Ingeniería Soluciones correspondientes a los problemas del Primer Parcial 7/8.

Más detalles

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Universidad de Cádiz Departamento de Matemáticas MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Tema Representación gráfica de funciones reales de una variable real Elaborado

Más detalles

b) Para encontrar los intervalos de crecimiento y decrecimiento, hay que derivar la función. Como que se trata de un cociente, aplicamos la fórmula:

b) Para encontrar los intervalos de crecimiento y decrecimiento, hay que derivar la función. Como que se trata de un cociente, aplicamos la fórmula: 1. Dada la función f(x) = : a) Encontrar el dominio, las AH y las AV. b) Intervalos de crecimiento, decrecimiento, máximos y mínimos relativos. c) Primitiva que cumpla que F(0) = 0. a) Para encontrar el

Más detalles

Para la oblicua hacemos lo mismo, calculamos el límite en el menos infinito : = lim. 1 ( ) = = lim

Para la oblicua hacemos lo mismo, calculamos el límite en el menos infinito : = lim. 1 ( ) = = lim ) Sea la función: f(x) = ln( x ): a) Dar su Dominio y encontrar sus asíntotas verticales, horizontales y oblicuas. b) Determinar los intervalos de crecimiento y decrecimiento, los máximos y mínimos, los

Más detalles

EJERCICIOS RESUELTOS DE LOS TEOREMAS DEL VALOR MEDIO

EJERCICIOS RESUELTOS DE LOS TEOREMAS DEL VALOR MEDIO MATEMÁTICAS EJERCICIOS RESUELTOS DE LOS TEOREMAS DEL VALOR MEDIO Juan Jesús Pascual TEOREMAS DEL VALOR MEDIO. Es aplicable el teorema de Rolle a la función f( x) = x 5x 6 en [ 0, 5 ]? El teorema de Rolle

Más detalles

Aproximación local. Plano tangente. Derivadas parciales.

Aproximación local. Plano tangente. Derivadas parciales. Univ. de Alcalá de Henares Ingeniería de Telecomunicación Cálculo. Segundo parcial. Curso 004-005 Aproximación local. Plano tangente. Derivadas parciales. 1. Plano tangente 1.1. El problema de la aproximación

Más detalles

f( x) = ( x)2 + 11 x + 5 = 0 = x2 + 11 = 0 = No hay solución y = 0 + 11 0 + 5 = 11

f( x) = ( x)2 + 11 x + 5 = 0 = x2 + 11 = 0 = No hay solución y = 0 + 11 0 + 5 = 11 1. y = x + 11 x + 5 a) ESTUDIO DE f: 1) Dominio: Como es un cociente del dominio habrá que excluir los valores que anulen el denominador. Por tanto: x + 5 = 0 x = 5 ) Simetría: A simple vista, como el

Más detalles

Tema 5. Aproximación funcional local: Polinomio de Taylor. 5.1 Polinomio de Taylor

Tema 5. Aproximación funcional local: Polinomio de Taylor. 5.1 Polinomio de Taylor Tema 5 Aproximación funcional local: Polinomio de Taylor Teoría Los polinomios son las funciones reales más fáciles de evaluar; por esta razón, cuando una función resulta difícil de evaluar con exactitud,

Más detalles

(A) Primer parcial. si 1 x 1; x 3 si x>1. (B) Segundo parcial

(A) Primer parcial. si 1 x 1; x 3 si x>1. (B) Segundo parcial CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN GLOBAL E700 1) x 5 > 1. A) Primer parcial ) Sean las funciones ft) t +,gy) y 4&hw) w. Encontrar f/h, g f, f g y sus dominios. ) Graficar la función x + six

Más detalles

Juan Antonio González Mota Profesor de Matemáticas del Colegio Juan XIII Zaidín de Granada

Juan Antonio González Mota Profesor de Matemáticas del Colegio Juan XIII Zaidín de Granada FUNCIONES CONTINUAS. La mayor parte de las funciones que manejamos, a nivel elemental, presentan en sus gráficas una propiedad característica que es la continuidad. La continuidad de una función definida

Más detalles

Ejemplo: Resolvemos Sin solución. O siempre es positiva o siempre es negativa. Damos un valor cualquiera Siempre + D(f) =

Ejemplo: Resolvemos Sin solución. O siempre es positiva o siempre es negativa. Damos un valor cualquiera Siempre + D(f) = T1 Dominios, Límites, Asíntotas, Derivadas y Representación Gráfica. 1.1 Dominios de funciones: Polinómicas: D( = La X puede tomar cualquier valor entre Ejemplos: D( = Función racional: es el cociente

Más detalles

1. Hallar los extremos de las funciones siguientes en las regiones especificadas:

1. Hallar los extremos de las funciones siguientes en las regiones especificadas: 1 1. DERIVACIÓN 1. Hallar los extremos de las funciones siguientes en las regiones especificadas: b) f(x) x (x 1) en el intervalo [, ] y en su dominio. DOMINIO. D R. CORTES CON LOS EJES. Cortes con el

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 01 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva 1, Ejercicio, Opción A Reserva

Más detalles

1. Dominio, simetría, puntos de corte y periodicidad

1. Dominio, simetría, puntos de corte y periodicidad Estudio y representación de funciones 1. Dominio, simetría, puntos de corte y periodicidad 1.1. Dominio Al conjunto de valores de x para los cuales está definida la función se le denomina dominio. Se suele

Más detalles

Matemáticas 1204, 2013 Semestre II Tarea 5 Soluciones

Matemáticas 1204, 2013 Semestre II Tarea 5 Soluciones Matemáticas 104, 01 Semestre II Tarea 5 Soluciones Problema 1: Una definición errónea de línea tangente a una curva es: La línea L es tangente a la curva C en el punto P si y sólamente si L pasa por C

Más detalles

La derivada. 5.2 La derivada de una función

La derivada. 5.2 La derivada de una función Capítulo 5 La derivada 5. La derivada de una función A continuación trataremos uno de los conceptos fundamentales del Cálculo, que es el de la derivada. Este concepto es un ite que está estrecamente ligado

Más detalles

1.- Encontrar los intervalos de crecimiento y decrecimiento de las funciones:

1.- Encontrar los intervalos de crecimiento y decrecimiento de las funciones: F. EJERCICIOS PROPUESTOS. 1.- Encontrar los intervalos de crecimiento y decrecimiento de las funciones: (a) f(x) =x 3 /3+3x 2 /2 10x. Resp.: Crece en (, 5) y en (2, ); decrece en ( 5, 2). (b) f(x) =x 3

Más detalles

Unidad 6 Estudio gráfico de funciones

Unidad 6 Estudio gráfico de funciones Unidad 6 Estudio gráfico de funciones PÁGINA 96 SOLUCIONES Representar puntos en un eje de coordenadas. 178 Evaluar un polinomio. a) b) c) d) e) Escribir intervalos. a) b) c) 179 PÁGINA 98 SOLUCIONES 1.a)

Más detalles

a < b y se lee "a es menor que b" (desigualdad estricta) a > b y se lee "a es mayor que b" (desigualdad estricta)

a < b y se lee a es menor que b (desigualdad estricta) a > b y se lee a es mayor que b (desigualdad estricta) Desigualdades Dadas dos rectas que se cortan, llamadas ejes (rectangulares si son perpendiculares, y oblicuos en caso contrario), un punto puede situarse conociendo las distancias del mismo a los ejes,

Más detalles

1. Definición 2. Operaciones con funciones

1. Definición 2. Operaciones con funciones 1. Definición 2. Operaciones con funciones 3. Estudio de una función: Suma y diferencia Producto Cociente Composición de funciones Función reciproca (inversa) Dominio Recorrido Puntos de corte Signo de

Más detalles

Observaciones del profesor:

Observaciones del profesor: Calificación total máxima: 10 puntos. Tiempo: 60 minutos. OPCIÓN A Ejercicio 1. (Puntuación máxima: 4 puntos) Se considera la matriz: A=( ) a) Determina la matriz B= A 2-2A 1,5 PUNTOS b) Determina los

Más detalles

Juan Antonio González Mota Profesor de Matemáticas del Colegio Juan XIII Zaidín de Granada

Juan Antonio González Mota Profesor de Matemáticas del Colegio Juan XIII Zaidín de Granada FUNCIONES CONOCIDAS. FUNCIONES LINEALES. Se llaman funciones lineales a aquellas que se representan mediante rectas. Su epresión en forma eplícita es y f ( ) a b. En sentido más estricto, se llaman funciones

Más detalles

48 Apuntes de Matemáticas II para preparar el examen de la PAU

48 Apuntes de Matemáticas II para preparar el examen de la PAU 48 Apuntes de Matemáticas II para preparar el eamen de la PAU Unidad. Funciones. Derivabilidad TEMA FUNCIONES.DERIVABILIDAD.. Tasa de variación media. Derivada en un punto. Interpretación.. Tasa de variación

Más detalles

a) PAR: Una función es simétrica con respecto al eje Y cuando se verifica:

a) PAR: Una función es simétrica con respecto al eje Y cuando se verifica: TEMA 10: REPRESENTACIÓN DE FUNCIONES. 10.1. DOMINIO. El dominio de definición de una función y = f{) (valores para los cuales eiste la función) es, en principio, todo ir, salvo que haya operaciones imposibles

Más detalles

Soluciones de los ejercicios de Selectividad sobre Funciones de Matemáticas Aplicadas a las Ciencias Sociales II

Soluciones de los ejercicios de Selectividad sobre Funciones de Matemáticas Aplicadas a las Ciencias Sociales II Soluciones de los ejercicios de Selectividad sobre Funciones de Antonio Francisco Roldán López de Hierro * Convocatoria de 200 Las siguientes páginas contienen las soluciones de los ejercicios propuestos

Más detalles

1.4.- D E S I G U A L D A D E S

1.4.- D E S I G U A L D A D E S 1.4.- D E S I G U A L D A D E S OBJETIVO: Que el alumno conozca y maneje las reglas empleadas en la resolución de desigualdades y las use para determinar el conjunto solución de una desigualdad dada y

Más detalles

Funciones de varias variables

Funciones de varias variables Funciones de varias variables Derivadas parciales. El concepto de función derivable no se puede extender de una forma sencilla para funciones de varias variables. Aquí se emplea el concepto de diferencial

Más detalles

Opción A Ejercicio 1 opción A, modelo Junio 2013 x cos(x) + b sen(x) [2 5 puntos] Sabiendo que lim

Opción A Ejercicio 1 opción A, modelo Junio 2013 x cos(x) + b sen(x) [2 5 puntos] Sabiendo que lim IES Fco Ayala de Granada Junio de 013 (Modelo ) Soluciones Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo Junio 013 x cos(x) + b sen(x) [ 5 puntos] Sabiendo que lim es finito, calcula b

Más detalles

LÍMITES Y CONTINUIDAD DE FUNCIONES

LÍMITES Y CONTINUIDAD DE FUNCIONES Capítulo 9 LÍMITES Y CONTINUIDAD DE FUNCIONES 9.. Introducción El concepto de ite en Matemáticas tiene el sentido de lugar hacia el que se dirige una función en un determinado punto o en el infinito. Veamos

Más detalles

TEMA 10 FUNCIONES ELEMENTALES MATEMÁTICAS I 1º Bach. 1

TEMA 10 FUNCIONES ELEMENTALES MATEMÁTICAS I 1º Bach. 1 TEMA 10 FUNCIONES ELEMENTALES MATEMÁTICAS I 1º Bach. 1 TEMA 10 - FUNCIONES ELEMENTALES 10.1 CONCEPTO DE FUNCIÓN DEFINICIÓN : f es una función de R en R si a cada número real, x Dom, le hace corresponder

Más detalles

a) Buscar dominio, crecimiento, decrecimiento y máximos absolutos. b) Buscar el área delimitada por la función y el eje '0X'.

a) Buscar dominio, crecimiento, decrecimiento y máximos absolutos. b) Buscar el área delimitada por la función y el eje '0X'. .- Dada la función: f(x) = x 9 x a) Buscar dominio, crecimiento, decrecimiento y máximos absolutos. b) Buscar el área delimitada por la función y el eje '0X'..a.- Lo primero que hacemos es buscar el dominio,

Más detalles

UNIDAD 4: PLANO CARTESIANO, RELACIONES Y FUNCIONES. OBJETIVO DE APRENDIZAJE: Representar gráficamente relaciones y funciones en el plano cartesiano.

UNIDAD 4: PLANO CARTESIANO, RELACIONES Y FUNCIONES. OBJETIVO DE APRENDIZAJE: Representar gráficamente relaciones y funciones en el plano cartesiano. UNIDAD 4: PLANO CARTESIANO, RELACIONES Y FUNCIONES OBJETIVO DE APRENDIZAJE: Representar gráficamente relaciones y funciones en el plano cartesiano. EL PLANO CARTESIANO. El plano cartesiano está formado

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 01 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva 1, Ejercicio, Opción A Reserva

Más detalles

Calculadora ClassPad

Calculadora ClassPad Calculadora ClassPad Tema: Ejercicios varios sobre Análisis de funciones y optimización. Nivel: 1º y º de Bachiller Comentario: La siguiente actividad que propongo es para la evaluación de los conceptos

Más detalles

Esta es la forma vectorial de la recta. Si desarrollamos las dos posibles ecuaciones, tendremos las ecuaciones paramétricas de la recta:

Esta es la forma vectorial de la recta. Si desarrollamos las dos posibles ecuaciones, tendremos las ecuaciones paramétricas de la recta: Todo el mundo sabe que dos puntos definen una recta, pero los matemáticos son un poco diferentes y, aún aceptando la máxima universal, ellos prefieren decir que un punto y un vector nos definen una recta.

Más detalles

EJERCICIOS RESUELTOS DE REPRESENTACIÓN GRÁFICA DE FUNCIONES REALES

EJERCICIOS RESUELTOS DE REPRESENTACIÓN GRÁFICA DE FUNCIONES REALES EJERCICIOS RESUELTOS DE REPRESENTACIÓN GRÁFICA DE FUNCIONES REALES. Estudiar el crecimiento, el decrecimiento y los etremos relativos de las siguientes funciones: a) f( ) 7 + + b) ln f( ) c) 5 si < f(

Más detalles

Qué son los monomios?

Qué son los monomios? Qué son los monomios? Recordemos qué es una expresión algebraica. Definición Una expresión algebraica es aquella en la que se utilizan letras, números y signos de operaciones. Si se observan las siguientes

Más detalles

5 Ecuaciones lineales y conceptos elementales de funciones

5 Ecuaciones lineales y conceptos elementales de funciones Programa Inmersión, Verano 206 Notas escritas por Dr. M Notas del cursos. Basadas en los prontuarios de MATE 300 y MATE 3023 Clase #6: martes, 7 de junio de 206. 5 Ecuaciones lineales y conceptos elementales

Más detalles

DERIVADAS. TÉCNICAS DE DERIVACIÓN. APLICACIONES

DERIVADAS. TÉCNICAS DE DERIVACIÓN. APLICACIONES UNIDAD 6 DERIVADAS. TÉCNICAS DE DERIVACIÓN. APLICACIONES Página 5 Problema y f () 5 5 9 Halla, mirando la gráfica y las rectas trazadas, f'(), f'(9) y f'(). f'() 0; f'(9) ; f'() Di otros tres puntos en

Más detalles

Ejercicios de Trigonometría

Ejercicios de Trigonometría Ejercicios de Trigonometría 1) Indica la medida de estos ángulos en radianes: a) 0º b) 45º c) 60º d) 120º Recuerda que 360º son 2π radianes, con lo que para hacer la conversión realizaremos una simple

Más detalles

TALLER DE MATEMÁTICAS NOTAS. Toda expresión algebraica del tipo. a n x n + a n 1 x n 1 +... + a 1 x + a 0. es un polinomio de grado n, si a n 0.

TALLER DE MATEMÁTICAS NOTAS. Toda expresión algebraica del tipo. a n x n + a n 1 x n 1 +... + a 1 x + a 0. es un polinomio de grado n, si a n 0. NOTAS Toda expresión algebraica del tipo es un polinomio de grado n, si a n 0. a n x n + a n 1 x n 1 +... + a 1 x + a 0 RELACIONES DE DIVISIBILIDAD 1) x n a n = (x a)(x n 1 + ax n 2 + a 2 x n 3 +... +

Más detalles

Unidad 5 Estudio gráfico de funciones

Unidad 5 Estudio gráfico de funciones Unidad 5 Estudio gráfico de funciones PÁGINA 84 SOLUCIONES Representar puntos en un eje de coordenadas. 43 Evaluar un polinomio. a) P(-1) = 1 + + 1 1 = 3 b) P(0) = -1 c) P(-) = 8 + 8 + 1 = 17 d) P(1) =

Más detalles

CAPÍTULO III. FUNCIONES

CAPÍTULO III. FUNCIONES CAPÍTULO III LÍMITES DE FUNCIONES SECCIONES A Definición de límite y propiedades básicas B Infinitésimos Infinitésimos equivalentes C Límites infinitos Asíntotas D Ejercicios propuestos 85 A DEFINICIÓN

Más detalles

Tema 2. Espacios Vectoriales. 2.1. Introducción

Tema 2. Espacios Vectoriales. 2.1. Introducción Tema 2 Espacios Vectoriales 2.1. Introducción Estamos habituados en diferentes cursos a trabajar con el concepto de vector. Concretamente sabemos que un vector es un segmento orientado caracterizado por

Más detalles

Pruebas de Acceso a las Universidades de Castilla y León

Pruebas de Acceso a las Universidades de Castilla y León Pruebas de Acceso a las Universidades de Castilla y León MATEMÁTICA APLICADA A LA CIENCIA OCIALE EJERCICIO Nº páginas 2 Tablas OPTATIVIDAD: EL ALUMNO DEBERÁ ECOGER UNA DE LA DO OPCIONE Y DEARROLLAR LA

Más detalles

x - Verticales. No tiene asíntotas verticales porque f(x) está definida en R y no cambia de criterio en ningún punto. - Oblicuas.

x - Verticales. No tiene asíntotas verticales porque f(x) está definida en R y no cambia de criterio en ningún punto. - Oblicuas. f ( ) + +. Dominio D (f ) R 4. Recorrido Im( f ) [, ). Puntos de corte - Con el eje y, donde 0 y + + y P (0,) - Con el eje, donde y 0 No hay punto de corte con el eje 4. Asíntotas - Horizontales lim +

Más detalles

REGLA DE RUFFINI. FACTORIZACIÓN DE POLINOMIOS

REGLA DE RUFFINI. FACTORIZACIÓN DE POLINOMIOS REGLA DE RUFFINI. FACTORIZACIÓN DE POLINOMIOS Si en una división de polinomios el divisor es de la forma (x - a) se puede aplicar la regla de Ruffini para obtener el cociente y el resto de la división.

Más detalles

Representación gráfica de funciones

Representación gráfica de funciones Gráfica de una fución Representación gráfica de funciones La gráfica de una función está formada por el conjunto de puntos (x, y) para todos los valores de x pertenecientes al Dominio de la función gráfica

Más detalles

Diferenciabilidad. Definición 1 (Función diferenciable). Cálculo. Segundo parcial. Curso 2004-2005

Diferenciabilidad. Definición 1 (Función diferenciable). Cálculo. Segundo parcial. Curso 2004-2005 Univ. de Alcalá de Henares Ingeniería de Telecomunicación Cálculo. Segundo parcial. Curso 2004-2005 Diferenciabilidad. 1. Definición de función diferenciable Después del estudio de los ites de funciones

Más detalles

Tema 2 Resolución de Ecuaciones No Lineales

Tema 2 Resolución de Ecuaciones No Lineales Tema 2 Resolución de Ecuaciones No Lineales Índice 1. Introducción 2. Método de Bisección 2.1 Algoritmo del Método de Bisección 2.2 Análisis de Método de Bisección 3. Método de Regula-Falsi 3.1 Algoritmo

Más detalles

4º ESO 1. ECUAC. 2º GRADO Y UNA INCÓGNITA

4º ESO 1. ECUAC. 2º GRADO Y UNA INCÓGNITA 4º ESO 1. ECUAC. 2º GRADO Y UNA INCÓGNITA Una ecuación con una incógnita es de segundo grado si el exponente de la incógnita es dos. Ecuaciones de segundo grado con una incógnita son: Esta última ecuación

Más detalles

TEMA 3: CONTINUIDAD DE FUNCIONES

TEMA 3: CONTINUIDAD DE FUNCIONES TEMA 3: CONTINUIDAD DE FUNCIONES. Valor Absoluto Trabajaremos en el campo de los números reales, R. Para el estudio de las propiedades de las funciones necesitamos el concepto de valor absoluto de un número

Más detalles

Descomposición factorial de polinomios

Descomposición factorial de polinomios Descomposición factorial de polinomios Contenidos del tema Introducción Sacar factor común Productos notables Fórmula de la ecuación de segundo grado Método de Ruffini y Teorema del Resto Combinación de

Más detalles

Cómo?: Resolviendo el sistema lineal homógeneo que satisfacen las componentes de cualquier vector de S. x4 = x 1 x 3 = x 2 x 1

Cómo?: Resolviendo el sistema lineal homógeneo que satisfacen las componentes de cualquier vector de S. x4 = x 1 x 3 = x 2 x 1 . ESPACIOS VECTORIALES Consideremos el siguiente subconjunto de R 4 : S = {(x, x 2, x 3, x 4 )/x x 4 = 0 x 2 x 4 = x 3 a. Comprobar que S es subespacio vectorial de R 4. Para demostrar que S es un subespacio

Más detalles

Ecuaciones de primer grado con dos incógnitas

Ecuaciones de primer grado con dos incógnitas Ecuaciones de primer grado con dos incógnitas Si decimos: "las edades de mis padres suman 120 años", podemos expresar esta frase algebraicamente de la siguiente forma: Entonces, Denominamos x a la edad

Más detalles

EL MÉTODO DE LA BISECCIÓN

EL MÉTODO DE LA BISECCIÓN EL MÉTODO DE LA BISECCIÓN Teorema de Bolzano Sea f : [a, b] IR IR una función continua en [a, b] tal que f(a) f(b) < 0, es decir, que tiene distinto signo en a y en b. Entonces, existe c (a, b) tal que

Más detalles

EJERCICIOS RESUELTOS DE NÚMEROS COMPLEJOS

EJERCICIOS RESUELTOS DE NÚMEROS COMPLEJOS EJERCICIOS RESUELTOS DE NÚMEROS COMPLEJOS 1. Dados = -+4i, z = 5-i, z = y z 4 =7i, calcular: a) ( - z ) z b) z 4 + z z 4 c) + z 4-5z d) + z -1 f) z g) ( + 1 ) 1 z z h) z 1 z i) z j) e) z -1 z + z 4 a)

Más detalles

Comparar las siguientes ecuaciones, y hallar sus soluciones:

Comparar las siguientes ecuaciones, y hallar sus soluciones: TEMA. Iteraciones. % Hemos aprendido que para resolver una ecuación en x, se despeja la x y se evalúa la expresión que resulta. El siguiente ejemplo nos hará revisar ese esquema. Ejemplo. Comparar las

Más detalles

Ejercicio 3: -Realiza las siguientes operaciones, y después, calcula el dominio resultante. Grupo F7

Ejercicio 3: -Realiza las siguientes operaciones, y después, calcula el dominio resultante. Grupo F7 Ejercicio 3: -Realiza las siguientes operaciones, y después, calcula el dominio resultante. Grupo F7 Apartado A Sabiendo que f(x)= 3x+3 y g(x)= x^2-7 la operación f(x)+g(x) consiste en sumar los miembros

Más detalles

5 Demostrar cada una de las siguientes afirmaciones empleando la definición de

5 Demostrar cada una de las siguientes afirmaciones empleando la definición de Hallar el dominio de las siguientes funciones: x 3 a) x +ln(x ) b) ln x + 6 x + c) x x d) ln x x + e) cos x + ln(x 5π) + 8π x Graficar la función sen(x π ). Hallar para que valores de x es 3 Hallar las

Más detalles

E 1 E 2 E 2 E 3 E 4 E 5 2E 4

E 1 E 2 E 2 E 3 E 4 E 5 2E 4 Problemas resueltos de Espacios Vectoriales: 1- Para cada uno de los conjuntos de vectores que se dan a continuación estudia si son linealmente independientes, sistema generador o base: a) (2, 1, 1, 1),

Más detalles

Descripción: dos. función. decreciente. Figura 1. Figura 2

Descripción: dos. función. decreciente. Figura 1. Figura 2 Descripción: En éste tema se utiliza la primera derivada para encontrar los valores máximo y mínimo de una función, así como para determinar los intervalos en donde la función es creciente o decreciente,

Más detalles

La Lección de Hoy es Distancia entre dos puntos. El cuál es la expectativa para el aprendizaje del estudiante CGT.5.G.1

La Lección de Hoy es Distancia entre dos puntos. El cuál es la expectativa para el aprendizaje del estudiante CGT.5.G.1 La Lección de Hoy es Distancia entre dos puntos El cuál es la expectativa para el aprendizaje del estudiante CGT.5.G.1 La formula de la distancia dada a dos pares es: d= (x 2 -x 1 ) 2 + (y 2 -y 1 ) 2 De

Más detalles

Parcial 1 DE CÁLCULO DIFERENCIAL Universidad de los Andes 31 de Agosto de 2010

Parcial 1 DE CÁLCULO DIFERENCIAL Universidad de los Andes 31 de Agosto de 2010 Parcial 1 DE CÁLCULO DIFERENCIAL Universidad de los Andes 31 de Agosto de 2010 Juro solemnemente abstenerme de copiar o de incurrir en actos que puedan conducir a la trampa o al fraude en las pruebas académicas

Más detalles

Matemáticas I: Hoja 3 Espacios vectoriales y subespacios vectoriales

Matemáticas I: Hoja 3 Espacios vectoriales y subespacios vectoriales Matemáticas I: Hoa 3 Espacios vectoriales y subespacios vectoriales Eercicio 1. Demostrar que los vectores v 1, v 2, v 3, v 4 expresados en la base canónica forman una base. Dar las coordenadas del vector

Más detalles

Polinomios de Taylor.

Polinomios de Taylor. Tema 7 Polinomios de Taylor. 7.1 Polinomios de Taylor. Definición 7.1 Recibe el nombre de polinomio de Taylor de grado n para la función f en el punto a, denotado por P n,a, el polinomio: P n,a (x) = f(a)

Más detalles

FUNCIONES DE UNA VARIABLE Julián de la Horra Departamento de Matemáticas U.A.M.

FUNCIONES DE UNA VARIABLE Julián de la Horra Departamento de Matemáticas U.A.M. FUNCIONES DE UNA VARIABLE Julián de la Horra Departamento de Matemáticas U.A.M. 1 Introducción Una de las primeras necesidades que surgen en las Ciencias Experimentales es la de poder expresar los valores

Más detalles

MATEMÁTICAS CCSS JUNIO 2010 (COMÚN MODELO5) SELECTIVIDAD ANDALUCÍA

MATEMÁTICAS CCSS JUNIO 2010 (COMÚN MODELO5) SELECTIVIDAD ANDALUCÍA IES Fco Ayala de Granada Junio de 010 (General Modelo 5) Soluciones Germán-Jesús Rubio Luna MATEMÁTICAS CCSS JUNIO 010 (COMÚN MODELO5) SELECTIVIDAD ANDALUCÍA OPCIÓN A EJERCICIO 1 Sea el recinto definido

Más detalles

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASES # 13 y #14

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASES # 13 y #14 MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASES # 3 y #4 Desigualdades Al inicio del Capítulo 3, estudiamos las relaciones de orden en los número reales y el signi cado de expresiones

Más detalles

1. SOLUCIONES A LOS EJERCICIOS PROPUESTOS

1. SOLUCIONES A LOS EJERCICIOS PROPUESTOS 1 1. SOLUCIONES A LOS EJERCICIOS PROPUESTOS 1.1. ESPACIOS VECTORIALES 1. Analizar cuáles de los siguientes subconjuntos de R 3 son subespacios vectoriales. a) A = {(2x, x, 7x)/x R} El conjunto A es una

Más detalles

Matrices equivalentes. El método de Gauss

Matrices equivalentes. El método de Gauss Matrices equivalentes. El método de Gauss Dada una matriz A cualquiera decimos que B es equivalente a A si podemos transformar A en B mediante una combinación de las siguientes operaciones: Multiplicar

Más detalles

2 año secundario. Función Lineal MINISTERIO DE EDUCACIÓN. Se llama función lineal porque la potencia de la x es 1. Su gráfico es una recta.

2 año secundario. Función Lineal MINISTERIO DE EDUCACIÓN. Se llama función lineal porque la potencia de la x es 1. Su gráfico es una recta. año secundario Función Lineal Se llama función lineal porque la potencia de la x es. Su gráfico es una recta. Y en general decimos que es de la forma : f(x)= a. x + b donde a y b son constantes, a recibe

Más detalles

La suma se realiza miembro a miembro. La suma de polinomios goza de las mismas propiedades que la suma de números. Ejemplo:

La suma se realiza miembro a miembro. La suma de polinomios goza de las mismas propiedades que la suma de números. Ejemplo: Tema 4. Polinomios 1. Definición Un polinomio es una expresión hecha con constantes, variables y exponentes, que están combinados. Los exponentes sólo pueden ser 0, 1, 2, 3,... etc. No puede tener un número

Más detalles

Una función f es derivable en un punto a de su dominio si existe el límite. f(x) f(a) Si f y g son derivables en a, entonces fg es derivable en a y

Una función f es derivable en un punto a de su dominio si existe el límite. f(x) f(a) Si f y g son derivables en a, entonces fg es derivable en a y 4. Derivabilidad 1 Una función f es derivable en un punto a de su dominio si existe el límite f (a) = lím x a f(x) f(a) x a f(a + h) f(a) = lím, h 0 h y es un número real. El número f (a) se denomina derivada

Más detalles

Se llama dominio de una función f(x) a todos los valores de x para los que f(x) existe. El dominio se denota como Dom(f)

Se llama dominio de una función f(x) a todos los valores de x para los que f(x) existe. El dominio se denota como Dom(f) MATEMÁTICAS EJERCICIOS RESUELTOS DE FUNCIONES FUNCIONES A. Introducción teórica A.1. Definición de función A.. Dominio y recorrido de una función, f() A.. Crecimiento y decrecimiento de una función en

Más detalles

Subespacios vectoriales en R n

Subespacios vectoriales en R n Subespacios vectoriales en R n Víctor Domínguez Octubre 2011 1. Introducción Con estas notas resumimos los conceptos fundamentales del tema 3 que, en pocas palabras, se puede resumir en técnicas de manejo

Más detalles

Selectividad Septiembre 2008 SEPTIEMBRE 2008

Selectividad Septiembre 2008 SEPTIEMBRE 2008 Bloque A SEPTIEMBRE 008.- Una ONG organiza un convoy de ayuda humanitaria con un máimo de 7 camiones, para llevar agua potable y medicinas a una zona devastada por unas inundaciones. Para agua potable

Más detalles

Límite de una función

Límite de una función Límite de una función Idea intuitiva de límite El límite de la función f(x) en el punto x 0, es el valor al que se acercan las imágenes (las y) cuando los originales (las x) se acercan al valor x 0. Es

Más detalles

Jesús Getán y Eva Boj. Marzo de 2014

Jesús Getán y Eva Boj. Marzo de 2014 Optimización sin restricciones Jesús Getán y Eva Boj Facultat d Economia i Empresa Universitat de Barcelona Marzo de 2014 Jesús Getán y Eva Boj Optimización sin restricciones 1 / 32 Formulación del problema

Más detalles

Tema 1: Preliminares

Tema 1: Preliminares Métodos Numéricos: Resumen y ejemplos Tema 1: Preliminares Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña Febrero 2008, versión 1.7 1. Desigualdades

Más detalles

FUNCIÓN POLINÓMICA DE GRADO TRES. FUNCIÓN CÚBICA.

FUNCIÓN POLINÓMICA DE GRADO TRES. FUNCIÓN CÚBICA. FUNCIÓN POLINÓMICA DE GRADO TRES. FUNCIÓN CÚBICA. La ecuación de dichas funciones es de la forma f(x) = y = ax 3 +bx 2 +cx +d, donde a,b,c y d PRIMERAS CARACTERÍSTICAS: 1.- DOMINIO: por ser polinómicas

Más detalles

AXIOMAS DE CUERPO (CAMPO) DE LOS NÚMEROS REALES

AXIOMAS DE CUERPO (CAMPO) DE LOS NÚMEROS REALES AXIOMASDECUERPO(CAMPO) DELOSNÚMEROSREALES Ejemplo: 6 INECUACIONES 15 VA11) x y x y. VA12) x y x y. Las demostraciones de muchas de estas propiedades son evidentes de la definición. Otras se demostrarán

Más detalles

IES Fco Ayala de Granada Junio de 2012 (Específico Modelo 1) Solución Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Junio de 2012 (Específico Modelo 1) Solución Germán-Jesús Rubio Luna IES Fco Ayala de Granada Junio de 01 (Específico Modelo 1) Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo Junio 01 específico Sea la función f: (0,+) R definida por f(x) 1/x + ln(x) donde

Más detalles

M a t e m á t i c a s I I 1

M a t e m á t i c a s I I 1 Matemáticas II Matemáticas II ANDALUCÍA CNVCATRIA JUNI 009 SLUCIÓN DE LA PRUEBA DE ACCES AUTR: José Luis Pérez Sanz pción A Ejercicio En este límite nos encontramos ante la indeterminación. Agrupemos la

Más detalles

Factorización de polinomios

Factorización de polinomios Factorización de polinomios Polinomios Un polinomio p en la variable x es una expresión de la forma: px a 0 a 1 x a x a n1 x n1 a n x n donde a 0, a 1, a,, a n1, a n son unos números, llamados coeficientes

Más detalles

MATEMÁTICAS BÁSICAS. Autora: Jeanneth Galeano Peñaloza Edición: Oscar Guillermo Riaño

MATEMÁTICAS BÁSICAS. Autora: Jeanneth Galeano Peñaloza Edición: Oscar Guillermo Riaño MATEMÁTICAS BÁSICAS Autora: Jeanneth Galeano Peñaloza Edición: Oscar Guillermo Riaño Universidad Nacional de Colombia Departamento de Matemáticas Sede Bogotá Enero de 2015 Universidad Nacional de Colombia

Más detalles

Universidad de Costa Rica Escuela de Matemática CONARE-PROYECTO RAMA. Funciones

Universidad de Costa Rica Escuela de Matemática CONARE-PROYECTO RAMA. Funciones Universidad de Costa Rica Escuela de Matemática CONARE-PROYECTO RAMA Funciones José R. Jiménez F. Temas de pre-cálculo I ciclo 007 Funciones 1 Índice 1. Funciones 3 1.1. Introducción...................................

Más detalles

Funciones polinomiales de grados 3 y 4

Funciones polinomiales de grados 3 y 4 Funciones polinomiales de grados 3 y 4 Ahora vamos a estudiar los casos de funciones polinomiales de grados tres y cuatro. Vamos a empezar con sus gráficas y después vamos a estudiar algunos resultados

Más detalles

1. Teorema del Valor Medio

1. Teorema del Valor Medio 1. l Valor Medio Uno de los teoremas más importantes del cálculo diferencial de funciones reales de una variable real es el l Valor Medio, del que se obtienen consecuencias como el Taylor y el estudio

Más detalles

Anexo 1: Demostraciones

Anexo 1: Demostraciones 75 Matemáticas I : Álgebra Lineal Anexo 1: Demostraciones Espacios vectoriales Demostración de: Propiedades 89 de la página 41 Propiedades 89- Algunas propiedades que se deducen de las anteriores son:

Más detalles

DOMINIO Y RANGO DE UNA FUNCIÓN I N D I C E. martilloatomico@gmail.com. Página. Titulo:

DOMINIO Y RANGO DE UNA FUNCIÓN I N D I C E. martilloatomico@gmail.com. Página. Titulo: Titulo: DOMINIO Y RANGO I N D I C E Página DE UNA FUNCIÓN Año escolar: 4to. Año de Bachillerato Autor: José Luis Albornoz Salazar Ocupación: Ing Civil. Docente Universitario País de residencia: Venezuela

Más detalles

Práctica 4: Aplicaciones de la derivada: representación gráfica de funciones y polinomio de Taylor.

Práctica 4: Aplicaciones de la derivada: representación gráfica de funciones y polinomio de Taylor. 1 de 12 08/07/2010 12:55 To print higher-resolution math symbols, click the Hi-Res Fonts for Printing button on the jsmath control panel. If the math symbols print as black boxes, turn off image alpha

Más detalles

UNIVERSIDADES DE ANDALUCIA PRUEBAS DE ACCESO A LA UNIVERSIDAD. Miguel A. Jorquera

UNIVERSIDADES DE ANDALUCIA PRUEBAS DE ACCESO A LA UNIVERSIDAD. Miguel A. Jorquera UNIVERSIDADES DE ANDALUCIA PRUEBAS DE ACCESO A LA UNIVERSIDAD Miguel A. Jorquera BACHILLERATO MATEMÁTICAS II JUNIO 2 ii Índice General 1 Examen Junio 2. Opción B 1 2 SOLUCIONES del examen de junio 2 Opción

Más detalles

Análisis Dinámico: Integración

Análisis Dinámico: Integración Análisis Dinámico: Integración Jesús Getán y Eva Boj Facultat d Economia i Empresa Universitat de Barcelona Marzo de 2014 Jesús Getán y Eva Boj Análisis Dinámico: Integración 1 / 57 Integración indefinida

Más detalles

Tema 07. LÍMITES Y CONTINUIDAD DE FUNCIONES

Tema 07. LÍMITES Y CONTINUIDAD DE FUNCIONES Tema 07 LÍMITES Y CONTINUIDAD DE FUNCIONES Límite de una función en un punto Vamos a estudiar el comportamiento de las funciones f ( ) g ( ) ENT[ ] h ( ) i ( ) en el punto Para ello, damos a valores próimos

Más detalles