Errores en medidas experimentales

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Errores en medidas experimentales"

Transcripción

1 Errores en medidas experimentales 1. Introducción Las magnitudes físicas son propiedades de la materia o de los procesos naturales que se pueden medir. Medir una cantidad de una magnitud es compararla con otra de la misma magnitud escogida como unidad. De esta forma se obtiene una medida directa. A partir de medidas directas pueden obtenerse valores de magnitudes que se relacionan entre ellas mediante expresiones matemáticas. Así se obtiene una medida indirecta de la magnitud. Por ejemplo, la velocidad a la que se mueve un objeto se puede obtener midiendo el espacio que recorre en un tiempo dado y aplicando la expresión, v = e/t. El espacio y el tiempo se medirían directamente y la velocidad indirectamente. Los instrumentos de medida se caracterizan por: sensibilidad, precisión y exactitud. Un instrumento es tanto más sensible cuanto menor es la variación mínima que permite apreciar. Un instrumento es preciso si, al hacer un conjunto de medidas de la misma cantidad de una magnitud en las mismas condiciones, dispersa poco sus valores. Un instrumento es exacto si, al realizar un conjunto de medidas de la misma cantidad de una magnitud en las mismas condiciones, el valor medio del conjunto se desvía poco del valor verdadero. En la figura de la página 2 se ilustran estos conceptos de precisión y exactitud con varios ejemplos. Cifras significativas Al realizar una medida directa los dígitos que leemos, salvo los ceros a la izquierda, se llaman cifras significativas. Para saber cuántas cifras significativas tiene un número aplicamos las siguientes reglas: cualquier cero final después de la coma es significativo, p. ej., 57. tiene cuatro cifras significativas. los ceros al final de un número entero pueden ser o no significativos. Para evitar ambigüedades es mejor utilizar la notación científica que se explica en el siguiente apartado. Por ejemplo, si escribimos 41 normalmente se considera que sólo tiene dos cifras significativas. En cambio, 41. se considera que tiene cuatro. los ceros a la izquierda de la primera cifra no nula no son significativos, p. ej.,.271 tiene tres cifras lo mismo que las constantes fundamentales (la velocidad de la luz, c,...) así como las constantes matemáticas (π, e, 2,...) se puede considerar que son exactas o que tienen un número infinito de cifras significativas. 1

2 (a) preciso y exacto (b) exacto pero no preciso (c) preciso pero no exacto (d) ni preciso ni exacto Figura 1: Representación de datos experimentales con diferentes situaciones posibles de precisión y exactitud (la línea roja vertical señala el valor verdadero). Notación científica El manejo de números muy grandes o muy pequeños se facilita con el empleo de la notación científica. También es útil para evitar ambigüedades en el número de cifras significativas. En esta notación un número se escribe con la forma: ± } D.ddd {{ d } mantisa 1 exponente donde D es un dígito en el rango 1 9, cada d es un dígito cualquiera entre y 9 y el exponente es un número entero positivo o negativo. El número de cifras significativas se obtiene contando los dígitos de la mantisa. Por ejemplo, tiene cuatro cifras significativas. 2

3 Redondeo Cuando tenemos un número con más cifras que las cifras significativas, no signific. ± } D.ddd {{ d } nnn n significativas hay que mirar el dígito tras el último significativo para expresar el número: si el primer n es < 5 se desprecian todos los dígitos no significativos. si el primer n es 5 se desprecian todos los dígitos no significativos pero se aumenta en uno el último d. Por ejemplo, si tenemos el número : Número de cifras significativas Orden de magnitud Número inicial }{{} signif. Redondeado no signif no signif }{{} signif no signif }{{} signif. El orden de magnitud permite hacer cálculos y comparar de una manera sencilla cantidades. Se obtiene por redondeo a la potencia de diez más próxima al número. A este número redondeado se le denomina orden de magnitud. El número 2374 es de un orden de magnitud de 1 3 y es de un orden de magnitud de 1 2. Si queremos comparar las masas de un coche y una persona (1276 kg y 75 kg, respectivamente) podemos decir que la masa del coche es de unos 1 kg y la de la persona 1 kg. O que el coche tiene una masa un orden de magnitud mayor que la persona. Cifras significativas del resultado de una operación Cuando se opera con números de precisión limitada el resultado también tendrá precisión limitada. Aunque la determinación rigurosa de las cifras significativas del resultado de un conjunto de operaciones no es una tarea trivial, en la mayoría de las ocasiones podemos recurrir a esta serie de reglas simples. Al llevar a cabo una multiplicación o división el resultado tendrá tantas cifras significativas como tenga el más impreciso de los factores. Así, por ejemplo, al multiplicar por el resultado tendrá cuatro cifras significativas, de modo que se redondeará a

4 Las potencias enteras son un caso particular de multiplicación en el que todos los factores tienen el mismo valor y precisión. Por tanto, al elevar un número a una potencia entera se mantiene el número de cifras significativas. Esta regla se puede generalizar a las potencias fraccionarias, = = 29.5, 5.43 = = 2.33, = = 16., = = En una suma o resta, por otra parte, la última cifra significativa del resultado ocupará la misma posición decimal que la correspondiente al sumando que menos decimales tenga. Por ejemplo, al sumar el resultado correcto es Cuando se lleva a cabo una secuencia de operaciones conviene realizar los cálculos intermedios con más precisión de la que corresponde a los resultados finales. De este modo, el procedimiento no produce un aumento de los errores inherentes a las cantidades de partida. El resultado final, por supuesto, se redondeará a las cifras significativas apropiadas. En cualquier caso estas recomendaciones no hay que tomarlas como verdades absolutas. Aplique siempre el sentido común antes de escribir un resultado. Supongamos que queremos evaluar podríamos proceder en etapas según: ( ) [43] = 68.67[11] = 25.63[89 ] = 5.63[49] = 5.63 donde hemos puesto entre corchetes las cifras no significativas que mantenemos al realizar las operaciones intermedias. Tipos de errores Todo procedimiento de medición conlleva errores. Algunos tipos de errores pueden ser evitados y otros no pero, en cualquier caso, las diferentes causas de error deben de ser examinadas y entendidas antes de que la medida pueda ser utilizada con confianza. Resulta útil clasificar las fuentes de error en tres categorías: (a) errores sistemáticos; (b) errores aleatorios; y (c) errores ilegítimos o espurios. Comenzaremos por la última categoría. Un error ilegítimo es aquél que no debería suceder si la medición se llevara a cabo siguiendo las técnicas correctas y reconocidas. La confusión de muestras, fallos catastróficos de los equipos, equivocaciones al transcribir resultados, uso de métodos totalmente inadecuados o la falsificación de datos son ejemplos de errores ilegítimos. La repetición de la medida, posiblemente tras elegir una muestra, equipo o experimentador diferente sirve para ponerlos de manifiesto. Los errores sistemáticos, por otra parte, afectan por igual a un conjunto de medidas. Así, un aparato puede tener un defecto de construcción, estar mal calibrado, carecer de un aislamiento apropiado, etc. En ocasiones, la teoría que da fundamento a la medida puede depender de una hipótesis que sólo se cumple aproximadamente. 4

5 Algunos errores sistemáticos se comprenden lo bastante como para desarrollar métodos de corrección estándar. Finalmente, los errores aleatorios producen una fluctuación característica de las mediciones. Si realizamos repetidamente una medida, manteniendo las mismas condiciones experimentales hasta el punto en que podemos controlarlas, obtenemos resultados diferentes en cada ocasión. Si los errores son realmente aleatorios, la secuencia de valores obtenidos no debe seguir ningún patrón predecible. Para expresar el error se utiliza: error absoluto es la diferencia sin signo entre el valor obtenido para la magnitud y un hipotético valor exacto de la misma. e a (x) = x x exacto (1) El error absoluto tiene las mismas unidades que la magnitud y se expresa con una sola cifra significativa, excepto si empieza por 1, en cuyo caso se pueden utilizar dos cifras. Por ejemplo, se mide el voltaje de una batería con un voltímetro y resulta V y sabemos que el valor verdadero es V. El error absoluto sería e a = =.24 = V y la medida se expresaría como (1.512 ±.2) V. El error absoluto no nos informa de la bondad de la medida. No es lo mismo cometer un error de 1 cm al medir la altura de un edificio que al medir la longitud de una hoja de papel. error relativo es el cociente entre el error absoluto y el valor exacto de la magnitud. e r (x) = e a(x) x exacto (2) En el ejemplo anterior tenemos e r = V V = Si se multiplica por 1 se obtiene el tanto por ciento ( %) de error. El error relativo no tiene unidades. Error en un conjunto de medidas En la práctica, cuando se realiza una colección de medidas independientes de una x, que dan como resultado el conjunto de valores {x 1, x 2,..., x N }, se utiliza el valor medio de este conjunto como estimación del valor exacto desconocido. x exacto x = N x i i=1 N (3) El error absoluto de una medida se define entonces como la diferencia con respecto al valor medio. e a (x) = x x (4) La diferencia entre el valor medido, x i, y el valor medio, x, se llama desviación, d i. d i = x i x 5

6 Otra magnitud importante cuando se hace una serie de medidas es la deviación típica o desviación estándar de la media. Se representa con la letra griega sigma, σ y se calcula: σ x = d 2 i (5) N(N 1) Este parámetro puede usarse para estimar el error absoluto de una serie de medidas. Dependiendo del nivel de exigencia el error absoluto se suele tomar como el doble o el triple de la desviación estándar de la media. Nosotros usaremos la última opción e a 3σ x. Ejemplo: Se ha medido el tiempo que tarda un niño en rodear un campo de fútbol obteniéndose los siguientes datos: i t i /s (t i t)/s (t i t) 2 /s [14] 1.28[1] [86] 4.3[45] [86].48[8] [86].7[85] [14].96[31] [14].26[5] [14].27[19] t i = s (t i t) 2 = 7.7[15]s 2 Para las desviaciones y sus cuadrados calculamos en cada caso el número de cifras significativas y añadimos un par de ellas más para evitar los errores de redondeo. El valor medio será: t = s/7 = [4]s. La desviación estándar de la media será σ t = 7.7[15]/(7 6) =.41[33]s. Con lo que el error absoluto será: e a = 3σ t = 1 s o e a = 3σ t = 1.2 s. Y el resultado se expresa de forma correcta como t = (225 ± 1) s o, de forma alternativa en este caso, como t = (224.8 ± 1.2) s. 6

Errores en medidas experimentales

Errores en medidas experimentales Errores en medidas experimentales 1. Objetivos Familiarizar al alumno con el procedimiento de asignación de errores en las medidas experimentales para poder expresar de forma correcta el valor de una propiedad.

Más detalles

MEDIDA DE MAGNITUDES

MEDIDA DE MAGNITUDES Tema 7-1 Errores - 1 - Tema 7 Tema 7-2 MEDIDA DE MAGNITUDES La Física, ciencia experimental, es un compendio de leyes basadas en la observación de la Naturaleza Todas las leyes de la Física han de ser

Más detalles

De vocabulario, cifras significativas, redondeos, mediciones y otras cosas. Elizabeth Hernández Marín Laboratorio de Física

De vocabulario, cifras significativas, redondeos, mediciones y otras cosas. Elizabeth Hernández Marín Laboratorio de Física De vocabulario, cifras significativas, redondeos, mediciones y otras cosas Elizabeth Hernández Marín Laboratorio de Física Cifras significativas El término cifras significativas se conoce también como

Más detalles

La Medida Científica

La Medida Científica > MAGNITUDES A) CONCEPTO DE MAGNITUD Una magnitud es cualquier propiedad de un cuerpo que puede ser medida, bien sea por métodos directos o indirectos, pudiéndose expresar mediante números. Ejemplos de

Más detalles

UNIVERSIDAD DE LA COSTA LABORATORIO DE FÍSICA MECÁNICA TEORÍA DE ERRORES

UNIVERSIDAD DE LA COSTA LABORATORIO DE FÍSICA MECÁNICA TEORÍA DE ERRORES UNIVERSIDAD DE LA COSTA LABORATORIO DE FÍSICA MECÁNICA TEORÍA DE ERRORES 1 MEDICIÓN Es una operación o procedimiento mediante el cual se determina el valor de una variable o cantidad física especificando

Más detalles

LA MEDIDA. Magnitud es todo aquello que puede ser medido. Por ejemplo una longitud, la masa, el tiempo, la temperatura...

LA MEDIDA. Magnitud es todo aquello que puede ser medido. Por ejemplo una longitud, la masa, el tiempo, la temperatura... LA MEDIDA IES La Magdalena Avilés. Asturias Magnitud es todo aquello que puede ser medido. Por ejemplo una longitud, la masa, el tiempo, la temperatura... etc. Medir una magnitud consiste en compararla

Más detalles

Teoría de errores. 4 Otro de estos ejemplos pueden ser el de la medición de la densidad de un compuesto sólido o la velocidad de la luz.

Teoría de errores. 4 Otro de estos ejemplos pueden ser el de la medición de la densidad de un compuesto sólido o la velocidad de la luz. 1. Preliminar Cuando se realizan mediciones siempre estamos sujetos a los errores, puesto que ninguna medida es perfecta. Es por ello, que nunca se podrá saber con certeza cual es la medida real de ningún

Más detalles

Introducción a la Teoría de Errores

Introducción a la Teoría de Errores Introducción a la Teoría de Errores March 21, 2012 Al medir experimentalmente una magnitud física (masa, tiempo, velocidad...) en un sistema físico, el valor obtenido de la medida no es el valor exacto.

Más detalles

- Magnitudes y unidades - El S.I. de unidades - Medida y error. Física Física y química 1º 1º Bachillerato

- Magnitudes y unidades - El S.I. de unidades - Medida y error. Física Física y química 1º 1º Bachillerato - Magnitudes y unidades - El S.I. de unidades - Medida y error Física Física y química 1º 1º Bachillerato Magnitud Es todo aquello que puede ser medido Medición Medir Conjunto Es comparar de actos una

Más detalles

Ejercicios: 1) Escribe el valor de cada potencia:

Ejercicios: 1) Escribe el valor de cada potencia: Potencias Potencia es una expresión matemática que permite expresar la multiplicación reiterada de un número por sí mismo. Una potencia está compuesta por: Base: número que se multiplica reiteradamente.

Más detalles

o Una aproximación lo es por defecto cuando resulta que es menor que el valor exacto al que sustituye y por exceso cuando es mayor.

o Una aproximación lo es por defecto cuando resulta que es menor que el valor exacto al que sustituye y por exceso cuando es mayor. Números reales 1 Al trabajar con cantidades, en la vida real y en la mayoría de las aplicaciones prácticas, se utilizan estimaciones y aproximaciones. Sería absurdo decir que la capacidad de un pantano

Más detalles

Magnitud: cualidad que se puede medir. Ej. Longitud y temperatura de una varilla

Magnitud: cualidad que se puede medir. Ej. Longitud y temperatura de una varilla Curso nivelación I Presentación Magnitudes y Medidas El método científico que se aplica en la Física requiere la observación de un fenómeno natural y después la experimentación es decir, reproducir ese

Más detalles

Errores en las medidas

Errores en las medidas Reglas para expresar una medida y su error Medidas directas Medidas indirectas Errores en las medidas Reglas para expresar una medida y su error Toda medida debe de ir seguida por la unidad, obligatoriamente

Más detalles

TEMA 1 LOS NÚMEROS REALES

TEMA 1 LOS NÚMEROS REALES TEMA 1 LOS NÚMEROS REALES 1.1 LOS NÚMEROS REALES.-LA RECTA REAL Los NÚMEROS RACIONALES: Se caracterizan porque pueden expresarse: En forma de fracción, es decir, como cociente b a de dos números enteros:

Más detalles

Unidad 3: Incertidumbre de una medida

Unidad 3: Incertidumbre de una medida Apoyo para la preparación de los estudios de Ingeniería y Arquitectura Física (Preparación a la Universidad) Unidad 3: Incertidumbre de una medida Universidad Politécnica de Madrid 12 de abril de 2010

Más detalles

TEMA 1 LOS NÚMEROS REALES

TEMA 1 LOS NÚMEROS REALES TEMA 1 LOS NÚMEROS REALES 1.1 LOS NÚMEROS REALES.-LA RECTA REAL Los NÚMEROS RACIONALES: Se caracterizan porque pueden expresarse: En forma de fracción, es decir, como cociente b a de dos números enteros:

Más detalles

El número real MATEMÁTICAS I 1 APROXIMACIÓN DECIMAL DE UN NÚMERO REAL

El número real MATEMÁTICAS I 1 APROXIMACIÓN DECIMAL DE UN NÚMERO REAL El número real MATEMÁTICAS I 1 1. APROXIMACIONES APROXIMACIÓN DECIMAL DE UN NÚMERO REAL Al expresar un número real con muchas o infinitas cifras decimales, utilizamos expresiones decimales aproximadas,

Más detalles

LABORATORIO No. 0. Cálculo de errores en las mediciones. 0.1 Introducción

LABORATORIO No. 0. Cálculo de errores en las mediciones. 0.1 Introducción LABORATORIO No. 0 Cálculo de errores en las mediciones 0.1 Introducción Es bien sabido que la especificación de una magnitud físicamente medible requiere cuando menos de dos elementos: Un número y una

Más detalles

ERRORES. Identificar las causas de errores en las medidas. Expresar matemáticamente el error de una medida cm cm cm 4 12.

ERRORES. Identificar las causas de errores en las medidas. Expresar matemáticamente el error de una medida cm cm cm 4 12. ERRORES OBJETIVOS Identificar las causas de errores en las medidas.. lasificar los errores según sus causas. Expresar matemáticamente el error de una medida. Determinar el error del resultado de una operación

Más detalles

Instrumentación Industrial

Instrumentación Industrial Instrumentación Industrial Tema 1 Magnitud es todo aquello que se puede medir, que se puede representar por un número y que puede ser estudiada en las ciencias experimentales (que observan, miden, representan...).

Más detalles

Cifras significativas

Cifras significativas Cifras significativas No es extraño que cuando un estudiante resuelve ejercicios numéricos haga la pregunta: Y con cuántos decimales dejo el resultado? No es extraño, tampoco, que alguien, sin justificación,

Más detalles

Números. Índice del libro. 1. Los números reales. 2. Operaciones con números enteros y racionales. 3. Números decimales

Números. Índice del libro. 1. Los números reales. 2. Operaciones con números enteros y racionales. 3. Números decimales 1. Los números reales 2. Operaciones con números enteros y racionales 3. decimales 4. Potencias de exponente entero 5. Radicales 6. Notación científica y unidades de medida 7. Errores Índice del libro

Más detalles

Planteo del problema, Hipótesis (Construcción y Análisis de modelos) Predicciones: alcance de las hipótesis. EXPERIMENTOS Selección del/los modelos

Planteo del problema, Hipótesis (Construcción y Análisis de modelos) Predicciones: alcance de las hipótesis. EXPERIMENTOS Selección del/los modelos Planteo del problema, Hipótesis (Construcción y Análisis de modelos) Predicciones: alcance de las hipótesis EXPERIMENTOS Selección del/los modelos Obtención de leyes Validación de/los modelos EXPERIMENTACIÓN

Más detalles

Errores en Las Mediciones

Errores en Las Mediciones 1 Objetivo: Estudiar los conceptos básicos sobre medidas y errores a través del cálculo de porcentajes al efectuar mediciones Teoría El conocimiento que cada uno de nosotros a adquiriendo y acumulando

Más detalles

Ing. Eduard del Corral Cesar Carpio

Ing. Eduard del Corral Cesar Carpio República Bolivariana de Venezuela Ministerio del Poder Popular para la Educación Superior Universidad Nacional Experimental Romúlo Gallegos Ingeniería Informática Área de Sistemas Cátedra: Métodos Numéricos.

Más detalles

Tema 4. Los números reales.

Tema 4. Los números reales. Tema 4. Los números reales. Números irracionales. En el tema anterior, has visto que los números racionales pueden escribirse en forma decimal, produciendo siempre un decimal exacto o periódico. También

Más detalles

Medidas y cifras significativas

Medidas y cifras significativas Física Experimental 1 Medidas y cifras significativas 1. Mediciones En lo que sigue se definirán conceptos referentes a la realización y presentación de medidas conforme a los estándares internacionales

Más detalles

Longitud (L) = 85,2 cm. No es esta la única manera de expresar el resultado, pues también puede ser: L = 0,852 m. L = 8,52 dm.

Longitud (L) = 85,2 cm. No es esta la única manera de expresar el resultado, pues también puede ser: L = 0,852 m. L = 8,52 dm. Cifras significativas. Definición. Las cifras significativas de un número son aquellas que tienen un significado real y, por tanto, aportan alguna información. Toda medición experimental es inexacta y

Más detalles

MEDICIÓN Y PROPAGACIÓN DE ERRORES. Comprender el proceso de medición y expresar correctamente el resultado de una medida realizada.

MEDICIÓN Y PROPAGACIÓN DE ERRORES. Comprender el proceso de medición y expresar correctamente el resultado de una medida realizada. LABORATORIO Nº 1 MEDICIÓN Y PROPAGACIÓN DE ERRORES I. LOGROS Comprender el proceso de medición y expresar correctamente el resultado de una medida realizada. Aprender a calcular el error propagado e incertidumbre

Más detalles

Unidad didáctica 1. Operaciones básicas con números enteros

Unidad didáctica 1. Operaciones básicas con números enteros Unidad didáctica 1 Operaciones básicas con números enteros 1.- Representación y ordenación de números enteros. Para representar números enteros en una recta hay que seguir estos pasos: a) Se dibuja una

Más detalles

Ejercicios y respuestas del apartado: Cálculo de errores. Error absoluto y error relativo. EDUCAMIX

Ejercicios y respuestas del apartado: Cálculo de errores. Error absoluto y error relativo. EDUCAMIX Ejercicios y respuestas del apartado: Cálculo de errores. Error absoluto y error relativo. Instrumentos de medida 1. Hemos realizado una medida de longitud con una cinta métrica y nos ha dado 2,34 m. De

Más detalles

Universidad de San Buenaventura - Facultad de Ingeniería

Universidad de San Buenaventura - Facultad de Ingeniería Aproximaciones Para trabajar con números decimales que tienen muchas cifras decimales, o infinitas, hacemos aproximaciones. Decimos que la aproximación de un número es por defecto cuando es menor que el

Más detalles

TEMA 1. Los números enteros. Matemáticas

TEMA 1. Los números enteros. Matemáticas 1 Introducción En esta unidad veremos propiedades de los números enteros, como se opera con ellos (con y sin calculadora), los números primos, máximo común divisor y mínimo común múltiplo y por últimos

Más detalles

PREFIJOS MEDIDAS CIFRAS SIGNIFICATIVAS. Prefijo Símbolo Factor de multiplicación

PREFIJOS MEDIDAS CIFRAS SIGNIFICATIVAS. Prefijo Símbolo Factor de multiplicación PREFIJOS MEDIDS CIFRS SIGNIFICTIVS 1- Prefijo de múltiplos y submúltiplos: Prefijo Símbolo Factor de multiplicación Tera T x10 12 Giga G x10 9 Mega M x10 6 Kilo K x10 3 Hecto h x10 2 Deca da x10 2 deci

Más detalles

NOTACIÓN CIENTÍFICA. CIFRAS SIGNIFICATIVAS

NOTACIÓN CIENTÍFICA. CIFRAS SIGNIFICATIVAS COLEGIO INTERNACIONAL - SEK - EL CASTILLO Departamento de Ciencias APG FÍSICA I - UNIDAD I: INTRODUCCIÓN A LA FÍSICA NOTACIÓN CIENTÍFICA. CIFRAS SIGNIFICATIVAS TEMPORALIZACIÓN: SEPTIEMBRE 1,5 MÓDULOS S

Más detalles

Mediciones II. Todas las mediciones tienen asociada una incertidumbre que puede deberse a los siguientes factores:

Mediciones II. Todas las mediciones tienen asociada una incertidumbre que puede deberse a los siguientes factores: Mediciones II Objetivos El alumno determinará la incertidumbre de las mediciones. El alumno determinará las incertidumbres a partir de los instrumentos de medición. El alumno determinará las incertidumbres

Más detalles

NÚMEROS REALES. Expresiones decimales infinitas no periódicas que presentan algún tipo de regularidad:

NÚMEROS REALES. Expresiones decimales infinitas no periódicas que presentan algún tipo de regularidad: NÚMEROS REALES NÚMEROS IRRACIONALES: Se caracterizan porque: 1. No pueden expresarse en forma de fracción. 2. Su expresión decimal tiene infinitas cifras y no es periódica. El conjunto de todos los números

Más detalles

Introducción al análisis numérico

Introducción al análisis numérico Introducción al análisis numérico Javier Segura Universidad de Cantabria Cálculo Numérico I. Tema 1 Javier Segura (Universidad de Cantabria) Introducción al análisis numérico CNI 1 / 22 Contenidos: 1 Sistemas

Más detalles

Introducción al análisis numérico

Introducción al análisis numérico Introducción al análisis numérico Javier Segura Universidad de Cantabria Cálculo Numérico I. Tema 1 Javier Segura (Universidad de Cantabria) Introducción al análisis numérico CNI 1 / 25 Contenidos: 1 Sistemas

Más detalles

NÚMEROS REALES. a de dos números enteros: a, y b Z con b 0. Con un número entero o con una expresión decimal exacta o no exacta y periódica.

NÚMEROS REALES. a de dos números enteros: a, y b Z con b 0. Con un número entero o con una expresión decimal exacta o no exacta y periódica. NÚMEROS REALES NÚMEROS RACIONALES: Se caracterizan porque pueden expresarse: En forma de fracción, es decir, como cociente b a de dos números enteros: a, y b Z con b 0 Con un número entero o con una expresión

Más detalles

Prueba evaluable de programación con Maxima

Prueba evaluable de programación con Maxima Prueba evaluable de programación con Maxima Criterios de evaluación Cada uno de los ejercicios que componen esta prueba evaluable sobre la primera parte de la asignatura Física Computacional 1 se evaluará,

Más detalles

Aplicar los conceptos básicos de metrología a través de la determinación del volumen y la densidad de un sólido.

Aplicar los conceptos básicos de metrología a través de la determinación del volumen y la densidad de un sólido. Metrología Básica 1.1. Objetivos 1.1.1. General Aplicar los conceptos básicos de metrología a través de la determinación del volumen y la densidad de un sólido. 1.1.2. Específicos Aplicar los procesos

Más detalles

1. APROXIMACIÓN AL CONOCIMIENTO CIENTÍFICO

1. APROXIMACIÓN AL CONOCIMIENTO CIENTÍFICO 1. APROXIMACIÓN AL CONOCIMIENTO CIENTÍFICO La física y la química son ciencias experimentales cuyo objetivo es conocer el mundo natural que nos rodea descubriendo sus propiedades y relacionándolas entre

Más detalles

N Ú M E R O S R E A L E S

N Ú M E R O S R E A L E S N Ú M E R O S R E A L E S 1. E L C O N J U N T O D E L O S N Ú M E R O S R E A L E S Al conjunto de todos los números que se pueden expresar mediante fracciones se le llama conjunto de los números racionales

Más detalles

Cuando se enumeran todos los elementos que componen el conjunto. A = { 1, 2, 3, 4, 5 }

Cuando se enumeran todos los elementos que componen el conjunto. A = { 1, 2, 3, 4, 5 } LOS NÚMEROS REALES TEMA 1 IDEAS SOBRE CONJUNTOS Partiremos de la idea natural de conjunto y del conocimiento de si un elemento pertenece (* ) o no pertenece (* ) a un conjunto. Los conjuntos se pueden

Más detalles

Práctica 2. Tratamiento de datos

Práctica 2. Tratamiento de datos Errores Todas las medidas que se realizan en el laboratorio están afectadas de errores experimentales, de manera que si se repiten dos experiencias en las mismas condiciones es probable que los resultados

Más detalles

Mediciones. Errores. Propagación de errores. Estadística. Prof. Arturo S. Vallespi

Mediciones. Errores. Propagación de errores. Estadística. Prof. Arturo S. Vallespi Mediciones. Errores. Propagación de errores. Estadística Prof. Arturo S. Vallespi Incertidumbre estadística: Qué ocurre si cada magnitud de interés en el experimento se mide más de una vez, por ejemplo

Más detalles

Formación básica de Física. Destinado a alumnos matriculados en estudios de ingenierías

Formación básica de Física. Destinado a alumnos matriculados en estudios de ingenierías CURSO PROPEDEÚTICO DE FÍSICAF Formación básica de Física Destinado a alumnos matriculados en estudios de ingenierías PRESENTACIÓN CURSO PROPEDEÚTICO DE FÍSICA Bloque 1: Magnitudes y vectores Bloque 2:

Más detalles

Teoria de Errores. Mg. Hermes Pantoja Carhuavilca. Métodos Computacionales. Universidad Nacional Mayor de San Marcos Facultad de Ingenieria Industrial

Teoria de Errores. Mg. Hermes Pantoja Carhuavilca. Métodos Computacionales. Universidad Nacional Mayor de San Marcos Facultad de Ingenieria Industrial Pantoja Carhuavilca Métodos Computacionales Agenda al estudio de métodos computacionales 3 Aproximación y Errores Los cálculos númericos inevitablemente conducen a errores Estos son de dos clases principales:

Más detalles

Errores e Incertidumbre. Presentación PowerPoint de Ana Lynch, Profesora de Física Unidad Educativa Monte Tabor Nazaret

Errores e Incertidumbre. Presentación PowerPoint de Ana Lynch, Profesora de Física Unidad Educativa Monte Tabor Nazaret Errores e Incertidumbre Presentación PowerPoint de Ana Lynch, Profesora de Física Unidad Educativa Monte Tabor Nazaret Notación Científica 0 1 2 (1,45 ± 0,05) cm Objetivos: Después de completar este tema,

Más detalles

Introducción al tratamiento de datos

Introducción al tratamiento de datos Introducción al tratamiento de datos MEDICIÓN? MEDICIÓN Conjunto de operaciones cuyo objetivo es determinar el valor de una magnitud o cantidad. Ej. Medir el tamaño de un objeto con una regla. MEDIR? MEDIR

Más detalles

Métodos Numéricos. Unidad 1. Teoría de Errores

Métodos Numéricos. Unidad 1. Teoría de Errores Métodos Numéricos Unidad 1. Teoría de Errores Contenido Introducción Error Aproximado y Error Relativo Error Redondeo y de Cifras Significativas Errores de Truncamiento Errores en la Computadora Otros

Más detalles

Teoria de Errores. Hermes Pantoja Carhuavilca. Facultad de Ingeniería Mecanica Universidad Nacional de Ingeniería. Hermes Pantoja Carhuavilca 1 de 31

Teoria de Errores. Hermes Pantoja Carhuavilca. Facultad de Ingeniería Mecanica Universidad Nacional de Ingeniería. Hermes Pantoja Carhuavilca 1 de 31 Hermes Pantoja Carhuavilca Facultad de Ingeniería Mecanica Universidad Nacional de Ingeniería Métodos Numérico Hermes Pantoja Carhuavilca 1 de 31 CONTENIDO Introducción Hermes Pantoja Carhuavilca 2 de

Más detalles

A) B) C) 5 D) 5 9 E) A) 0 B) 9 9 C) D) E) no está definido 6. ( ) : 4 ( ) 0 A) B) 5 C) 8 D) 9 E) 0 7. Si n Z, entonc

A) B) C) 5 D) 5 9 E) A) 0 B) 9 9 C) D) E) no está definido 6. ( ) : 4 ( ) 0 A) B) 5 C) 8 D) 9 E) 0 7. Si n Z, entonc GUÍA Nº 5 UNIDAD: NÚMEROS Y PROPORCIONALIDAD NÚMEROS REALES POTENCIAS EN Q DEFINICIONES a a a a a a a a a n, con a Q {0} y n Z n factores a 0, a 0 a -n a n, a Q {0} y n Z + OBSERVACIONES 0 n 0, si n >

Más detalles

GUÍA DE EJERCICIOS CIFRAS SIGNIFICATIVAS

GUÍA DE EJERCICIOS CIFRAS SIGNIFICATIVAS GUÍA DE EJERCICIOS CIFRAS SIGNIFICATIVAS Área Química Resultados de aprendizaje Conocer y aplicar las normas en la determinación de cifras significativas en el entrega de resultados. Contenidos 1. Conteo

Más detalles

C u r s o : Matemática. Material N 04 GUÍA TEÓRICO PRÁCTICA Nº 4 UNIDAD: NÚMEROS Y PROPORCIONALIDAD NÚMEROS REALES

C u r s o : Matemática. Material N 04 GUÍA TEÓRICO PRÁCTICA Nº 4 UNIDAD: NÚMEROS Y PROPORCIONALIDAD NÚMEROS REALES C u r s o : Matemática Material N 04 UNIDAD: NÚMEROS Y PROPORCIONALIDAD NÚMEROS REALES GUÍA TEÓRICO PRÁCTICA Nº 4 POTENCIAS EN DEFINICIONES a a a a a a a a = a n, con a {0} y n n factores a 0 =, a 0 a

Más detalles

Lección 6. Errores. MIGUEL ANGEL UH ZAPATA 1 Análisis Numérico I Facultad de Matemáticas, UADY. Agosto 2014

Lección 6. Errores. MIGUEL ANGEL UH ZAPATA 1 Análisis Numérico I Facultad de Matemáticas, UADY. Agosto 2014 Lección 6. Errores MIGUEL ANGEL UH ZAPATA 1 Análisis Numérico I Facultad de Matemáticas, UADY Agosto 2014 1 Centro de Investigación en Matemáticas, Unidad Mérida En esta lección conoceremos y analizaremos

Más detalles

Factores de conversión. Bibliografía: R. H. Petrucci, W. S. Harwood, F. G. Herring, Química General, 8 a edición, (Prentice Hall, Madrid, 2003).

Factores de conversión. Bibliografía: R. H. Petrucci, W. S. Harwood, F. G. Herring, Química General, 8 a edición, (Prentice Hall, Madrid, 2003). Cálculos básicos en química Medidas experimentales: La incertidumbre de la medida. Errores e incertidumbre: exactitud y precisión. Expresión correcta de los datos: cifras significativas. Operaciones. Factores

Más detalles

MEDIDAS. Error accidental. Error Sistemático. Cantidad de la magnitud A. Número, MEDIDA. Cantidad de la magnitud A tomada como referencia.

MEDIDAS. Error accidental. Error Sistemático. Cantidad de la magnitud A. Número, MEDIDA. Cantidad de la magnitud A tomada como referencia. MEDIDAS Cantidad de la magnitud A Número, MEDIDA Cantidad de la magnitud A tomada como referencia. UNIDAD Las mediciones no son perfectas. Llevan asociadas un determinado error, una incertidumbre. Los

Más detalles

INTRODUCCIÓN AL CÁLCULO DE INCERTIDUMBRES DE ENSAYO

INTRODUCCIÓN AL CÁLCULO DE INCERTIDUMBRES DE ENSAYO INTRODUCCIÓN AL CÁLCULO DE INCERTIDUMBRES DE ENSAYO 1. Introducción 2. Error e incertidumbre 3. Exactitud y precisión de medida 4. Tipos de medidas 5. Incertidumbre típica o de medida 6. Incertidumbre

Más detalles

Error en las mediciones

Error en las mediciones Error en las mediciones TEORIA DE ERROR-GRAFICOS Y APLICACIÓN Representar en un gráfico los datos obtenidos experimentalmente (encontrar relación funcional) Conocer, comprender y analizar algunos elementos

Más detalles

02) Mediciones. 0203) Cifras Significativas

02) Mediciones. 0203) Cifras Significativas Página 1 02) Mediciones 0203) Cifras Significativas Desarrollado por el Profesor Rodrigo Vergara Rojas Página 2 A) Cifras significativas y propagación de errores. Los números medidos representan magnitudes

Más detalles

Matemáticas B 4º E.S.O. Tema 1 Los números Reales 1. conjunto de todos ellos se les designa con la letra Q.

Matemáticas B 4º E.S.O. Tema 1 Los números Reales 1. conjunto de todos ellos se les designa con la letra Q. Matemáticas B º E.S.O. Tema 1 Los números Reales 1 TEMA 1 LOS NÚMEROS REALES 1.1 CLASIFICACIÓN DE LOS NÚMEROS REALES º 1.1.1 TIPOS DE NÚMEROS º Los números naturales son : 1, 2,,..., 10, 11,..., 102, 10,....

Más detalles

0A. LA MEDIDA Índice

0A. LA MEDIDA Índice Índice 1. Magnitudes 2. Unidades 3. Instrumentos de medida 4. Errores en la medida 5. Cifras significativas y redondeo 6. Representaciones gráficas 2 1 Magnitudes La Física y la Química son ciencias experimentales.

Más detalles

Aritmética del Computador

Aritmética del Computador Facultad de Ingeniería Mecánica Universidad Nacional de Ingeniería Métodos Numéricos Contenido 1 Introducción 2 Teoria de Errores 3 Aritmetica del computador Introducción al estudio de métodos computacionales

Más detalles

Operaciones básicas de laboratorio

Operaciones básicas de laboratorio Operaciones básicas de laboratorio Unidad 2 La medida: magnitudes, unidades y errores ÍNDICE 1. Magnitud y medida 2. La unidad 3. El Sistema Internacional de Magnitudes (SI) 4. El sistema de unidades 5.

Más detalles

No 0.1 LABORATORIO DE MECÁNICA TOMA DE DATOS E INTRODUCCIÓN AL ANÁLISIS DEL ERROR. Objetivos

No 0.1 LABORATORIO DE MECÁNICA TOMA DE DATOS E INTRODUCCIÓN AL ANÁLISIS DEL ERROR. Objetivos No 0.1 LABORATORIO DE MECÁNICA TOMA DE DATOS E INTRODUCCIÓN AL ANÁLISIS DEL ERROR DEPARTAMENTO DE FISICA Y GEOLOGIA UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS Objetivos 1. Entender y familiarizarse

Más detalles

CONJUNTO DE LOS NÚMEROS REALES

CONJUNTO DE LOS NÚMEROS REALES NÚMEROS REALES 1. EL CONJUNTO DE LOS NÚMEROS REALES Al conjunto de todos los números que se pueden expresar mediante fracciones se le llama conjunto de los números racionales y se representa por Q. Tanto

Más detalles

Tema 1: Conceptos generales del Análisis Numérico

Tema 1: Conceptos generales del Análisis Numérico Tema 1: Conceptos generales del Análisis Numérico Asignatura: Cálculo Numérico I 1er. curso Grado en Matemáticas Anna Doubova Dpto. EDAN, Universidad de Sevilla 5 de febrero de 2018 A. Doubova (Dpto. EDAN)

Más detalles

MATERIAL DOCENTE MATEMATICAS 8 BASICO: ESTRATEGIAS Y GUIAS DE TRABAJO

MATERIAL DOCENTE MATEMATICAS 8 BASICO: ESTRATEGIAS Y GUIAS DE TRABAJO Especificaciones MATERIAL DOCENTE MATEMATICAS 8 BASICO: ESTRATEGIAS Y GUIAS DE TRABAJO I. Estrategia: se destacan en cada paso II. Contenidos: Repaso contenidos del primer Semestre. III. Esta estrategia

Más detalles

El medir y las Cantidades Físicas escalares y vectores en física. Prof. R. Nitsche C. Física Medica UDO Bolívar

El medir y las Cantidades Físicas escalares y vectores en física. Prof. R. Nitsche C. Física Medica UDO Bolívar El medir y las Cantidades Físicas escalares y vectores en física Prof. R. Nitsche C. Física Medica UDO Bolívar Medir Medir es el requisito de toda ciencia empírica (experimental); medir significa simplemente

Más detalles

Potencias y raíces Matemáticas 1º ESO

Potencias y raíces Matemáticas 1º ESO Potencias y raíces Matemáticas 1º ESO ÍNDICE 1. Potencias 2. Propiedades de potencias 3. Cuadrados perfectos 4. Raíces cuadradas 1 1. POTENCIAS Una potencia es una multiplicación en la que todos los factores

Más detalles

TEMA 1: NÚMEROS REALES

TEMA 1: NÚMEROS REALES TEMA 1: NÚMEROS REALES 1. INTRODUCCIÓN El conjunto formado por los números racionales e irracionales es el conjunto de los números reales, se designa por Con los números reales podemos realizar todas las

Más detalles

TEMA 1 MATEMÁTICAS 1º E.S.O.

TEMA 1 MATEMÁTICAS 1º E.S.O. TEMA 1 MATEMÁTICAS 1º E.S.O. NÚMEROS NATURALES. SISTEMA DE NUMERACIÓN El conjunto de los números naturales es ilimitado y está formado por: N = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, El sistema de numeración decimal

Más detalles

UNIDAD III NÚMEROS FRACCIONARIOS

UNIDAD III NÚMEROS FRACCIONARIOS UNIDAD III NÚMEROS FRACCIONARIOS COMPETENCIAS E INDICADORES DE DESEMPEÑO Identifica los números fraccionarios y realiza operaciones con ellos. Identifica los porcentajes, decimales y fraccionarios y realiza

Más detalles

Qué es un número decimal?

Qué es un número decimal? Qué es un número decimal? Un numero decimal es un numero que se compone de: Parte entera: cifras situadas a la izquierda de la coma. Es la parte mayor que la unidad: unidades, decenas, centenas Parte decimales:

Más detalles

TEMA 2. FRACCIONES Y NÚMEROS DECIMALES

TEMA 2. FRACCIONES Y NÚMEROS DECIMALES TEMA 2. FRACCIONES Y NÚMEROS DECIMALES ÍNDICE 1. Operaciones con fracciones 2. Operaciones con números decimales 3. Fracciones y números decimales 4. Fracción generatriz Tema 2. Fracciones y números decimales

Más detalles

Enteros (Z):..., -3, -2, -1, 0, 1, 2, 3,... Números enteros (positivos o negativos), sin decimales. Incluye a los naturales.

Enteros (Z):..., -3, -2, -1, 0, 1, 2, 3,... Números enteros (positivos o negativos), sin decimales. Incluye a los naturales. Tema 1: Números Reales 1.1 Conjunto de los números Naturales (N): 0, 1, 2, 3. Números positivos sin decimales. Sirven para contar. Enteros (Z):..., -3, -2, -1, 0, 1, 2, 3,... Números enteros (positivos

Más detalles

Guía experimental Mediciones y precisión Profesor Gustavo Arriagada Bustamante OFT: Desarrollo del Pensamiento

Guía experimental Mediciones y precisión Profesor Gustavo Arriagada Bustamante OFT: Desarrollo del Pensamiento Guía experimental Mediciones y precisión Profesor Gustavo Arriagada Bustamante OFT: Desarrollo del Pensamiento Nombre: Curso: Fecha: Objetivos Fomentar las habilidades de razonamiento así como las de exposición

Más detalles

INTRODUCCIÓN, CANTIDADES FÍSICAS, MEDICIÓN Y VECTORES.

INTRODUCCIÓN, CANTIDADES FÍSICAS, MEDICIÓN Y VECTORES. INTRODUCCIÓN, CANTIDADES FÍSICAS, MEDICIÓN Y VECTORES. NOTACIÓN CIENTÍFICA Cómo escribir números grandes o números pequeños? Ejemplo: Cuántos átomos tiene el cuerpo humano? 7 mil cuatrillones de átomos

Más detalles

CONJUTOS NÚMERICOS NÚMEROS NATURALES

CONJUTOS NÚMERICOS NÚMEROS NATURALES CONJUTOS NÚMERICOS NÚMEROS NATURALES El conjunto de números naturales tiene gran importancia en la vida práctica ya que con sus elementos se pueden encontrar elementos u objetos de otros conjuntos. El

Más detalles

sumando sumando sumando sumandos sumandos = 38.6 Cualquier número que se suma.

sumando sumando sumando sumandos sumandos = 38.6 Cualquier número que se suma. sumando sumando 33 + 4.7 + 0.9 = 38.6 sumandos sumando 33 + 4.7 + 0.9 = 38.6 sumandos Cualquier número que se suma. algoritmo Ejemplo de producto parcial algoritmo 555 x 7 35 Paso 1: Multiplicar las unidades

Más detalles

Catedrático: I.S.C. Iván de J. Moscoso Navarro Contenido:

Catedrático: I.S.C. Iván de J. Moscoso Navarro Contenido: Materia: Matemáticas I Catedrático: I.S.C. Iván de J. Moscoso Navarro Contenido: UNIDAD TEMATICA II.- SISTEMAS NUMÉRICOS 2.1 Números Naturales ( N )... Introducción Propiedades de la adición de los números

Más detalles

MEDICIÓN OBJETIVOS. Fundamentos Teóricos. Medición. Cifras Significativas

MEDICIÓN OBJETIVOS. Fundamentos Teóricos. Medición. Cifras Significativas OBJETIVOS MEDICIÓN Declarar lo que es una medición, error de una medición, diferenciar precisión de exactitud. Reportar correctamente una medición, con las cifras significativas correspondientes utilizando,

Más detalles

Lección 5. Punto flotante

Lección 5. Punto flotante Lección 5. Punto flotante MIGUEL ANGEL UH ZAPATA 1 Análisis Numérico I Facultad de Matemáticas, UADY Agosto 2014 1 Centro de Investigación en Matemáticas, Unidad Mérida En esta lección aprenderemos lo

Más detalles

LOS NÚMEROS DECIMALES

LOS NÚMEROS DECIMALES 1 LOS NÚMEROS DECIMALES Al dividir el numerador entre el denominador de una fracción se obtiene un número decimal. 5 5 0,; 1,5;,15 10 4 8 C D U d c m dm, 1 5 Parte entera Parte decimal Tres unidades, ciento

Más detalles

Los números decimales ilimitados no periódicos se llaman números irracionales, que designaremos

Los números decimales ilimitados no periódicos se llaman números irracionales, que designaremos Unidad Didáctica NÚMEROS REALES. NÚMEROS IRRACIONALES: CARACTERIZACIÓN. En el tema correspondiente a números racionales hemos visto que estos números tienen una característica esencial: su expresión decimal

Más detalles

Tema 1: Conceptos generales del Análisis

Tema 1: Conceptos generales del Análisis Tema 1: Conceptos generales del Análisis Numérico Cálculo Numérico I Anna Doubova y Blanca Climent Ezquerra Dpto. EDAN, Universidad de Sevilla 11 de febrero de 2018 A.Doubova y B. Climent Conceptos generales

Más detalles

LAS MAGNITUDES FÍSICAS Y SUS UNIDADES

LAS MAGNITUDES FÍSICAS Y SUS UNIDADES LAS MAGNITUDES FÍSICAS Y SUS UNIDADES Magnitudes físicas son propiedades de los cuerpos que se pueden medir. Por ejemplo, el tiempo, la longitud, la superficie, la temperatura, la masa, etc. Para medir

Más detalles

Sistemas de unidades, análisis dimensional, medida y estimaciones. FyQ IES Carmen Martín Gaite

Sistemas de unidades, análisis dimensional, medida y estimaciones. FyQ IES Carmen Martín Gaite Sistemas de unidades, análisis dimensional, medida y estimaciones FyQ IES Carmen Martín Gaite Medidas y magnitudes La medida y las magnitudes Medir es comparar con una unidad arbitraria que se toma como

Más detalles

Las reglas básicas que se emplean en el redondeo de números son las siguientes:

Las reglas básicas que se emplean en el redondeo de números son las siguientes: CIFRAS SIGNIFICATIVAS Y REDONDEO Se considera que las cifras significativas de un número son aquellas que tienen significado real o aportan alguna información. Las cifras no significativas aparecen como

Más detalles

Topografía 1. II semestre, José Francisco Valverde Calderón Sitio web:

Topografía 1. II semestre, José Francisco Valverde Calderón   Sitio web: II semestre, 2013 alderón Email: geo2fran@gmail.com Sitio web: www.jfvc.wordpress.com Introducción Cualquier actividad técnica donde se requiera recopilar información espacial, requiere algún proceso de

Más detalles

Aritmética para 6.º grado (con QuickTables)

Aritmética para 6.º grado (con QuickTables) Aritmética para 6.º grado (con QuickTables) Este curso cubre los conceptos mostrados a continuación. El estudiante navega por trayectos de aprendizaje basados en su nivel de preparación. Usuarios institucionales

Más detalles

INCERTIDUMBRE Y ERROR EN LAS MEDICIONES EXPERIMENTALES. Profesor: Iván Torres Álvarez Física, Nivel Medio LOGO

INCERTIDUMBRE Y ERROR EN LAS MEDICIONES EXPERIMENTALES. Profesor: Iván Torres Álvarez Física, Nivel Medio LOGO INCERTIDUMBRE Y ERROR EN LAS MEDICIONES EXPERIMENTALES Profesor: Iván Torres Álvarez Física, Nivel Medio LOGO Contenidos Introducción a Errores Incertidumbre de los Resultados Incertidumbre en las Gráficas

Más detalles

X N USO DE LA ESTADÍSTICA

X N USO DE LA ESTADÍSTICA Química Analítica (93) USO DE LA ESTADÍSTICA ormalmente el experimentador hace uso de las herramientas estadísticas para establecer claramente el efecto del error indeterminado. En QUÍMICA AALÍTICA las

Más detalles

Guía N 8. Contenidos: Números Enteros, Potencias de diez y notación científica. Objetivos:

Guía N 8. Contenidos: Números Enteros, Potencias de diez y notación científica. Objetivos: Guía N 8 Nombre: Fecha: Contenidos: Números Enteros, Potencias de diez y notación científica. Objetivos: Conocer las potencias de 10. Aplicar las potencias de diez en la notación científica. Aplicar la

Más detalles