Procesos de Poisson. 21 de marzo, FaMAF 1 / 25

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Procesos de Poisson. 21 de marzo, FaMAF 1 / 25"

Transcripción

1 Procesos de Poisson FaMAF 21 de marzo, / 25

2 Distribución exponencial Definición Una v.a. X con función de densidad dada por f λ (x) = λ e λx, x > 0, para cierto λ > 0 se dice una v.a. exponencial con parámetro λ. E[X] = 1 λ Var(X) = 1 λ 2 2 / 25

3 Propiedades t F(t) = λ exp( λx)dx = λ exp( λx) t 0 0 λ = 1 exp( λt) P(X > t) = 1 [1 exp( λt)] = exp( λt) Una variable aleatoria con distribución exponencial tiene falta de memoria. P(X > s + t X > s) = P(X > t). P(X > s+t X > s) = t+s λ exp( λx)dx s λ exp( λx)dx = exp( λs + t) exp( λs) Son las únicas v.a. continuas con falta de memoria. El análogo en el caso discreto son las v.a. geométricas. Si X E(λ), entonces c X E( 1 c λ). = P(X > t). 3 / 25

4 Variable aleatoria Gamma Definición Una variable aleatoria con función de densidad de probabilidad λt (λt)n 1 f (t) = λe (n 1)! se dice una variable aleatoria gamma con parámetros (n, λ). 4 / 25

5 Variable aleatoria gamma (n, λ) Corolario La suma de n variables aleatorias exponenciales independientes, cada una de ellas de parámetro λ, es una variable aleatoria Gamma de parámetro (n, λ). Γ(2, 2) Γ(5, 2) Γ(1, 2) E(2) 5 / 25

6 Procesos estocásticos Definición Un proceso estocástico es una sucesión de variables aleatorias observadas sobre el mismo espacio muestral. Ejemplo Supongamos tener una pieza de material radioactivo, el experimento consiste en observar cuantas partículas se desintegran en un intervalo de tiempo, y el tiempo que tarda en desintegrarse cada partícula. El número de partículas que se desintegran en [0, t] es una variable aleatoria N(t) y el tiempo en que se desintegra la n-esima partícula D n también es una variable aleatoria. La colección de variables forman procesos estocásticos realcionados. Ejemplo Consideremos llamadas telefónicas que llegan a una central telefónica y sea D n el tiempo en que la n-esima llamada ingresa a la central y N(t) el número de llamadas que ingresa en un intervalo de tiempo [0, t]. 6 / 25

7 Proceso de Poisson homogéneo N(t), t 0, es un proceso de Poisson homogéneo de razón λ, λ > 0, si: Para cada t, N(t) es una variable aleatoria discreta que toma valores enteros positivos. N(0) = 0 proceso comienza en cero incrementos independientes Para cada n 1 y cada partición 0 t 0 < t 1 < < t n se tiene que N(t 0 ), N(t 1 ) N(t 0 ),..., N(t n ) N(t n 1 ) son variables aleatorias independientes. incrementos estacionarios Para cada t 0, s > 0, se cumple que la distribución de N(t + s) N(t) es igual a la de N(s). lim h 0 P(N(h) = 1) h lim h 0 P(N(h) 2) h = λ, = 0. 7 / 25

8 Incrementos independientes N(t 1 ) N(t n ) N(t n 1 ) t 2 t 3 t 1 t n 1 t n N(t 1 ): nro. de llegadas hasta t = t 1. N(t n ) N(t n 1 ): nro. de llegadas entre t n 1 y t n. En dos intervalos de tiempo disjuntos, las variables número de llegadas son independientes. 8 / 25

9 Incrementos estacionarios N(s) N(t + s) N(t) 0 s 01 t t + s La distribución del número de llegadas depende sólo de la longitud del intervalo. N(s) N(t + s) N(t), s < t. 9 / 25

10 Ocurrencia de 1 o más eventos La probabilidad de que ocurra un evento en un intervalo de tiempo pequeño es proporcional al tamaño del intervalo. Constante = λ. P(N(h) = 1) lim = λ, h 0 h La probabilidad de ocurrencia de dos o más eventos en un intervalo muy pequeño es cero. P(N(h) 2) lim = 0. h 0 h 10 / 25

11 Consecuencias Proposición Supongamos que N(t) es el número de llegadas en el intervalo de tiempo [0, t], que forma un proceso de Poisson de tasa λ. Entonces, la distribución de cada N(t) es Poisson de tasa λt 11 / 25

12 La variable aleatoria N(t) n intervalos t n 2t n t Para probarlo, dividamos el intervalo en n pedazos, cada uno de largo t n. En cada sub-intervalo, el número de llegadas es una v.a. Bernoulli, con p = λ t n El número total de llamadas en [0, t] es el número de sub-intervalos que contienen una llegada. La independencia de los sub-intervalos implica que el número total de llegadas N(t) es binomial de parámetro p = λ t n. 12 / 25

13 La variable aleatoria N(t) Cuando n tiende a infinito, tenemos ( ) ( ) k ( n λt p N(t) (k) lim 1 λt n k n n ( ) k ( n(n 1)... (n k + 1) λt = lim 1 λt n k! n n (λt) k ( = lim 1 λt ) n n(n 1)... (n k + 1) n k! n n k = (λt)k k! lim n ( 1 λt n ) n ( 1 λt n ) k ( 1 1 n ) n k ) n k ( 1 λt n ) ( 1 2 n ) k )... ( 1 k 1 ) n 13 / 25

14 Poisson Observando que ( lim 1 λt ) n = e λt n n y que los otros términos a la derecha del límite tienen límite 1, se obtiene p N(t) (k) = (λt)k e λt k! donde λt, esa constante que supusimos existe, es la tasa de llegadas en el intervalo [0, t]. N(t) es una variable con distribución Poisson de tasa λt. 14 / 25

15 Tiempos entre llegadas D 1 D 2 D 3 D n 1 D n X 2 X 1 X 3 X n D n : tiempo en que ocurre el evento n-esimo. X 1 : tiempo transcurrido hasta el primer evento. X j = D j D j 1 : tiempo transcurrido entre el (j 1)-ésimo evento y el j-ésimo, para j > 1. {X j } es la sucesión de tiempos entre llegadas 15 / 25

16 Distribución de los tiempos entre llegadas Proposición Las variables aleatorias X 1, X 2,..., son v.a. independientes, igualmente distribuidas, con distribución exponencial con parámetro λ. X i E(λ), i = 1, 2, / 25

17 Tiempo entre llegadas Para probar esto veamos que X 1 es una variable aleatoria exponencial de parámetro λ. P(X 1 > t) = P(N(t) = 0) = e λt P(X 2 > t X 1 = s) = P(0 eventos en (s, s + t] X 1 = s) = P(0 eventos en (s, s + t]) = e λ t X 2 E(λ), y es independiente de X / 25

18 Tiempo entre llegadas Sea s = s s j 1 : tiempo hasta el evento j 1. P(0 eventos en (s, s + t] X 1 = s 1,..., X j 1 = s j 1 ) (incrementos independientes) = P(0 eventos en (s, s + t]) (incrementos estacionarios) = e λt por lo cual la distribución de cada una de las X k es exponencial, y son independientes. 18 / 25

19 S n El tiempo hasta el n-esimo evento es D n = n X j, una suma de exponenciales independientes por lo cual tiene densidad Gamma de parámetros (n, λ). j=1 λt (λt)n 1 f n (t) = λe (n 1)! 19 / 25

20 Conclusion N es un proceso de Poisson con tasa λ entonces para cada t, 1. N(t), el número de eventos registrados, es una variable Poisson con tasa λt, 2. X n el tiempo entre el registro del n-esima evento y el anterior, es exponencial de tasa λ 3. D n el tiempo hasta el registro del n-esimo evento es Gamma de parámetros (n, λ). 20 / 25

21 El proceso de Poisson no homogéneo N(t), t 0 es un proceso de Poisson no homogéneo con función de intensidad λ(t), t 0, si: 1. N(0) = 0 2. para cada n 1 y cada partición 0 t 0 < t 1 < < t n se tiene que N(t 0 ), N(t 1 ) N(t 0 ),..., N(t n ) N(t n 1 ) son variables aleatorias independientes. P(exactamente 1 evento entre t y t + h) 3. lim h 0 h P([N(t + h) N(t)] = 1) lim h 0 = λ(t), h P(dos o mas eventos entre t y t + h) 4. lim h 0 h P([N(t + h) N(t)] 2) lim h 0 = 0. h = = 21 / 25

22 Valor medio del proceso m(t) = t 0 λ(s) ds Si λ(t) = λ, constante, entonces m(t) = λ t. 22 / 25

23 Número de eventos en (t, t + s] Proposición Para cada t 0 y s > 0 se tiene que N(t + s) N(t) es una variable aleatoria Poisson con media m(t + s) m(t) = t+s t λ(x) dx. Corolario Si λ(t) = λ (es constante), N(t + s) N(t) es una variable aleatoria Poisson con media λt. 23 / 25

24 Poisson homogéneo y Poisson no homogéneo Supongamos que observamos eventos del tipo A, y que ocasionalmente son marcados como evento del tipo AB. Independientemente de lo que ocurrió antes, un evento A se marca como AB con probabilidad p(t). N(t)= número de eventos del tipo A en [0, t] A(t)= número de eventos marcados AB en [0, t]. Proposición Si (N(t)) t 0 es un proceso de Poisson homogéneo con razón λ > 0, entonces (A(t)) t 0 es un proceso de Poisson no homogéneo con función de intensidad λ(t) = λ p(t), t > / 25

25 Poisson homogéneo y Poisson no homogéneo El proceso A(t) cumple con las condiciones de comenzar en el cero, tener incrementos independientes y probabilidad nula de observar instantáneamente mas de un evento. Para ver la tasa instantánea de observar un evento P(1 evento marcado AB en [t, t+h]) = P(un evento y es de tipo AB)+ +P(dos o mas eventos y exactamente uno es de tipo AB) λhp(t) 25 / 25

Método Polar para generación de variables normales Generación de eventos en Procesos de Poisson

Método Polar para generación de variables normales Generación de eventos en Procesos de Poisson Método Polar para generación de variables normales Generación de eventos en Procesos de Poisson Georgina Flesia FaMAF 25 de abril, 2013 Método polar Con este método se generan dos variables normales independientes.

Más detalles

Introducción a los Procesos de Poisson *

Introducción a los Procesos de Poisson * Introducción a los Procesos de Poisson * Victor M. Pérez Abreu C. Departamento de Probabilidad y Estadística, CIMAT David Reynoso Valle Licenciatura en Matemáticas, DEMAT, Universidad de Guanajuato 22

Más detalles

Generación de eventos en Procesos de Poisson

Generación de eventos en Procesos de Poisson Generación de eventos en Procesos de Poisson Georgina Flesia FaMAF 26 de abril, 2012 Proceso de Poisson homogéneo N(t), t 0, es un proceso de Poisson homogéneo de razón λ, λ > 0, si: N(0) = 0 proceso comienza

Más detalles

U3: Procesos Poisson. Probabilidad e Introducción a los Procesos Estocásticos. Mgs. Nora Arnesi

U3: Procesos Poisson. Probabilidad e Introducción a los Procesos Estocásticos. Mgs. Nora Arnesi U3: Procesos Poisson Probabilidad e Introducción a los Procesos Estocásticos. Mgs. Nora Arnesi Analizar el siguiente proceso estocástico: Una fuente radioactiva emite partículas y sea X t : número de partículas

Más detalles

Validación de hipótesis de un proceso de Poisson no homogéneo

Validación de hipótesis de un proceso de Poisson no homogéneo Validación de hipótesis de un proceso de Poisson no homogéneo Georgina Flesia FaMAF 9 de junio, 2011 Proceso de Poisson no homogéneo H 0 ) Las llegadas diarias a un sistema ocurren de acuerdo a un Proceso

Más detalles

Procesos de Poisson. Fabián Mancilla. U. de Santiago de Chile. Fabián Mancilla (Usach) Modelos Estocásticos 1 / 44

Procesos de Poisson. Fabián Mancilla. U. de Santiago de Chile. Fabián Mancilla (Usach) Modelos Estocásticos 1 / 44 Procesos de Poisson Fabián Mancilla U. de Santiago de Chile fabian.mancillac@usach.cl Fabián Mancilla (Usach) Modelos Estocásticos 1 / 44 Introducción En este curso estudiaremos algunos modelos probabiĺısticos

Más detalles

1.1. Distribución exponencial. Definición y propiedades

1.1. Distribución exponencial. Definición y propiedades CONTENIDOS 1.1. Distribución exponencial. Definición y propiedades 1.2. Procesos de conteo 1.3. Procesos de Poisson - Tiempos de espera y entre llegadas - Partición y mezcla de un proceso de Poisson -

Más detalles

Tema 6: Modelos de probabilidad.

Tema 6: Modelos de probabilidad. Estadística 60 Tema 6: Modelos de probabilidad. 6.1 Modelos discretos. (a) Distribución uniforme discreta: La variable aleatoria X tiene una distribución uniforme discreta de parámetro n,que denoteramos

Más detalles

Distribuciones de probabilidad más usuales

Distribuciones de probabilidad más usuales Tema 5 Distribuciones de probabilidad más usuales En este tema se estudiarán algunas de las distribuciones discretas y continuas más comunes, que se pueden aplicar a una gran diversidad de problemas y

Más detalles

Modelos de distribuciones discretas y continuas

Modelos de distribuciones discretas y continuas Ignacio Cascos Fernández Departamento de Estadística Universidad Carlos III de Madrid Modelos de distribuciones discretas y continuas Estadística I curso 2008 2009 1. Distribuciones discretas Aquellas

Más detalles

Modelos Estocásticos I Tercer Examen Parcial Respuestas

Modelos Estocásticos I Tercer Examen Parcial Respuestas Modelos Estocásticos I Tercer Examen Parcial Respuestas. a Cuál es la diferencia entre un estado recurrente positivo y uno recurrente nulo? Cómo se define el período de un estado? Demuestre que si el estado

Más detalles

Variables aleatorias continuas y Teorema Central del Limite

Variables aleatorias continuas y Teorema Central del Limite Variables aleatorias continuas y Teorema Central del Limite FaMAF 17 de marzo, 2015 Variables aleatorias continuas Definición Una variable aleatoria X se dice (absolutamente continua) si existe f : R R

Más detalles

Funciones generadoras de probabilidad

Funciones generadoras de probabilidad Funciones generadoras de probabilidad por Ramón Espinosa Armenta En este artículo veremos cómo utilizar funciones generadoras en teoría de la probabilidad. Sea Ω un conjunto finito o numerable de resultados

Más detalles

Tema 4: Variables aleatorias. Tema 4: Variables Aleatorias. Tema 4: Variables aleatorias. Objetivos del tema:

Tema 4: Variables aleatorias. Tema 4: Variables Aleatorias. Tema 4: Variables aleatorias. Objetivos del tema: Tema 4: Variables aleatorias Tema 4: Variables Aleatorias Distribución de Bernouilli Distribución Binomial Distribución de Poisson Distribución Exponencial Objetivos del tema: Al final del tema el alumno

Más detalles

Procesos estocásticos

Procesos estocásticos Procesos estocásticos Enrique Miranda Universidad of Oviedo Máster Universitario en Análisis de Datos para la Inteligencia de Negocios Contenidos del curso 1. Introducción. 2. Procesos a tiempo discreto:

Más detalles

Cálculo de Probabilidades y Estadística. Segunda prueba. 1

Cálculo de Probabilidades y Estadística. Segunda prueba. 1 08231. Cálculo de Probabilidades y Estadística. Segunda prueba. 1 Problema 1. Se eligen tres puntos A, B y C, al azar e independientemente, sobre una circunferencia. Determinar la distribución del valor

Más detalles

Cálculo de probabilidad. Tema 3: Variables aleatorias continuas

Cálculo de probabilidad. Tema 3: Variables aleatorias continuas Cálculo de probabilidad Tema 3: Variables aleatorias continuas Guión Guión 3.1. La función de densidad de probabilidad Definición 3.1 Sea P una medida de probabilidad en un espacio muestral Ω. Se dice

Más detalles

Variables aleatorias continuas, TCL y Esperanza Condicional

Variables aleatorias continuas, TCL y Esperanza Condicional Variables aleatorias continuas, TCL y Esperanza Condicional FaMAF 17 de marzo, 2011 1 / 37 Poisson P(λ) Número de éxitos en una cantidad grande de ensayos independientes Rango: {0, 1, 2,... } = {0} N Función

Más detalles

Variables Aleatorias y Distribución de Probabilidades

Variables Aleatorias y Distribución de Probabilidades Variables Aleatorias y Distribución de Probabilidades Julio Deride Silva Área de Matemática Facultad de Ciencias Químicas y Farmcéuticas Universidad de Chile 27 de mayo de 2011 Tabla de Contenidos Variables

Más detalles

Part VI. Distribuciones notables. Estadística I. Mario Francisco. Principales distribuciones unidimensionales. discretas. Principales distribuciones

Part VI. Distribuciones notables. Estadística I. Mario Francisco. Principales distribuciones unidimensionales. discretas. Principales distribuciones Part VI notables El proceso de Bernoulli En cada observación se clasifica el elemento de la población en una de las dos posibles categorías, correspondientes a la ocurrencia o no de un suceso. Llamaremos

Más detalles

Resumen de Probabilidad

Resumen de Probabilidad Definiciones básicas * Probabilidad Resumen de Probabilidad Para calcular la probabilidad de un evento A: P (A) = N o decasosfavorables N o decasosposibles * Espacio muestral (Ω) Es el conjunto de TODOS

Más detalles

Percentiles. El percentil p de una variable aleatoria X es número más pequeño, que denominaremos x u que cumple:

Percentiles. El percentil p de una variable aleatoria X es número más pequeño, que denominaremos x u que cumple: Percentiles 130 El percentil p de una variable aleatoria X es número más pequeño, que denominaremos x u que cumple: el percentil es, por tanto, el valor de la variable aleatoria para el cual la función

Más detalles

Unidad 3. Probabilidad

Unidad 3. Probabilidad Unidad 3. Probabilidad Javier Santibáñez 17 de agosto de 2018 1. Introducción Definición 1. La probabilidad es una medida subjetiva del grado de creencia que se tiene acerca de que algo desconocido sea

Más detalles

Modelos Básicos de Distribuciones Discretas y Continuas

Modelos Básicos de Distribuciones Discretas y Continuas Modelos de Distribuciones Discretas y Continuas 1/27 Modelos Básicos de Distribuciones Discretas y Continuas Departamento de Estadística e Investigación Operativa Universidad de Sevilla Contenidos Modelos

Más detalles

Generación de variables aleatorias continuas Método de la transformada inversa

Generación de variables aleatorias continuas Método de la transformada inversa Generación de variables aleatorias continuas Método de la transformada inversa Georgina Flesia FaMAF 17 de abril, 2012 Generación de v.a. discretas Existen diversos métodos para generar v.a. discretas:

Más detalles

Introducción al Diseño de Experimentos.

Introducción al Diseño de Experimentos. Introducción al Diseño de Experimentos www.academia.utp.ac.pa/humberto-alvarez Introducción Una población o universo es una colección o totalidad de posibles individuos, especímenes, objetos o medidas

Más detalles

Esperanza Condicional

Esperanza Condicional Esperanza Condicional Podemos obtener la esperanza de una distribución condicional de la misma manera que para el caso unidimensional: 129 Caso 2 v.a. discretas X e Y: Caso 2 v.a. continuas X e Y: Percentiles

Más detalles

Generación de variables aleatorias continuas Método de la transformada inversa

Generación de variables aleatorias continuas Método de la transformada inversa Generación de variables aleatorias continuas Método de la transformada inversa Patricia Kisbye FaMAF 15 de abril, 2010 Generación de variables aleatorias continuas Decimos que X es una v.a. continua si

Más detalles

Definición. P(X t+s = j X s = i, X sn = i n,..., X s0 = i 0 ) = P(X t+s = j X s = i)

Definición. P(X t+s = j X s = i, X sn = i n,..., X s0 = i 0 ) = P(X t+s = j X s = i) Definición Cadenas de Markov a tiempo continuo Para extender la propiedad de Markov a tiempo continuo se requiere definir la probabilidad condicional dado que conocemos el proceso en un intervalo continuo

Más detalles

UNIDAD III VARIABLEA ALEATORIAS Y DISTRIBUCIONES DE PROBABILIDADES

UNIDAD III VARIABLEA ALEATORIAS Y DISTRIBUCIONES DE PROBABILIDADES UNIDAD III VARIABLEA ALEATORIAS Y DISTRIBUCIONES DE PROBABILIDADES VARIABLE ALEATORIA DISCRETA. Definición. Se dice que una v.a es discreta si el conjunto de todos los valores que puede tomar es un conjunto,

Más detalles

Modelos de probabilidad. Modelos de probabilidad. Modelos de probabilidad. Proceso de Bernoulli. Objetivos del tema:

Modelos de probabilidad. Modelos de probabilidad. Modelos de probabilidad. Proceso de Bernoulli. Objetivos del tema: Modelos de probabilidad Modelos de probabilidad Distribución de Bernoulli Distribución Binomial Distribución de Poisson Distribución Exponencial Objetivos del tema: Al final del tema el alumno será capaz

Más detalles

Proceso de llegadas de Poisson

Proceso de llegadas de Poisson Gestión y Planificación de Redes y Servicios Proceso de llegadas de Poisson Area de Ingeniería Telemática http://www.tlm.unavarra.es Grado en Ingeniería en Tecnologías de Telecomunicación, 4º Proceso de

Más detalles

Probabilidad II Algunas distribuciones notables. Antonio Cuevas Departamento de Matemáticas Universidad Autónoma de Madrid

Probabilidad II Algunas distribuciones notables. Antonio Cuevas Departamento de Matemáticas Universidad Autónoma de Madrid Probabilidad II Algunas distribuciones notables Antonio Cuevas Departamento de Matemáticas Universidad Autónoma de Madrid La distribución normal f (x; µ, σ) = 1 σ 2π e 1 2( x µ σ ) 2, x R, µ R, σ > 0 E(X

Más detalles

CI 41C HIDROLOGÍA HIDROLOGÍA PROBABILÍSTICA

CI 41C HIDROLOGÍA HIDROLOGÍA PROBABILÍSTICA CI 41C HIDROLOGÍA HIDROLOGÍA PROBABILÍSTICA alcantarilla Puente? Badén http://www.disasternews.net/multimedia/files/drought5_9412.jpg Fenómenos en Ingeniería (según certeza de ocurrencia) determinísticos

Más detalles

Distribuciones de probabilidad

Distribuciones de probabilidad Distribuciones de probabilidad Distribución Binomial La distribución binomial es una de las distribuciones utilizadas más ampliamente en estadística aplicada. La distribución se deriva del procedimiento

Más detalles

Generación de variables aleatorias continuas Método de la transformada inversa

Generación de variables aleatorias continuas Método de la transformada inversa Generación de variables aleatorias continuas Método de la transformada inversa Georgina Flesia FaMAF 16 de abril, 2013 Generación de v.a. discretas Existen diversos métodos para generar v.a. discretas:

Más detalles

Caracterización del tráfico

Caracterización del tráfico ARQUIECURA DE REDES, SISEMAS Y SERVICIOS Área Ingeniería elemática Caracterización l tráfico Area Ingeniería elemática http://www.tlm.unavarra.es Arquitectura Res, Sistemas y Servicios Grado en Ingeniería

Más detalles

Tema 6 Algunas distribuciones importantes Hugo S. Salinas

Tema 6 Algunas distribuciones importantes Hugo S. Salinas Algunas distribuciones importantes Hugo S. Salinas 1 Distribución binomial Se han estudiado numerosas distribuciones de probabilidad que modelan características asociadas a fenómenos que se presentan frecuentemente

Más detalles

Tema 5 Algunas distribuciones importantes

Tema 5 Algunas distribuciones importantes Algunas distribuciones importantes 1 Modelo Bernoulli Distribución Bernoulli Se llama experimento de Bernoulli a un experimento con las siguientes características: 1. Se realiza un experimento con dos

Más detalles

Proceso de llegadas de Poisson

Proceso de llegadas de Poisson Gestión y Planificación de Redes y Servicios Proceso de llegadas de Poisson Area de Ingeniería Telemática http://www.tlm.unavarra.es Grado en Ingeniería en Tecnologías de Telecomunicación, 4º Proceso de

Más detalles

Estadística Clase 2. Maestría en Finanzas Universidad del CEMA. Profesor: Alberto Landro Asistente: Julián R. Siri

Estadística Clase 2. Maestría en Finanzas Universidad del CEMA. Profesor: Alberto Landro Asistente: Julián R. Siri Estadística 010 Clase Maestría en Finanzas Universidad del CEMA Profesor: Alberto Landro Asistente: Julián R. Siri Clase 1. La distribución de Bernoulli. La distribución binomial 3. La distribución de

Más detalles

Estadística Clase 2. Maestría en Finanzas Universidad del CEMA. Profesor: Alberto Landro Asistente: Julián R. Siri

Estadística Clase 2. Maestría en Finanzas Universidad del CEMA. Profesor: Alberto Landro Asistente: Julián R. Siri Estadística 011 Clase Maestría en Finanzas Universidad del CEMA Profesor: Alberto Landro Asistente: Julián R. Siri Clase 1. La distribución de Bernoulli. La distribución binomial 3. La distribución de

Más detalles

El momento de orden n de una variable aleatoria X es el valor esperado de X elevado a la n, es decir,

El momento de orden n de una variable aleatoria X es el valor esperado de X elevado a la n, es decir, 1 CLASES DE ESTADÍSTICA II CLASE 4) MOMENTOS. FUNCIÓN GENERATRIZ DE MOMENTOS CONJUNTA. El concepto de Momentos ya se conocía en el análisis de una variable aleatoria y es bueno recordarlo ahora para generalizarlo

Más detalles

TEMA 2.- VARIABLES ALEATORIAS UNIDIMENSIONALES.- CURSO 17/18

TEMA 2.- VARIABLES ALEATORIAS UNIDIMENSIONALES.- CURSO 17/18 TEMA 2.- VARIABLES ALEATORIAS UNIDIMENSIONALES.- CURSO 17/18 2.1. Concepto de variable aleatoria. Tipos de variables aleatorias: discretas y continuas. 2.2. Variables aleatorias discretas. Diagrama de

Más detalles

Folleto de Estadísticas. Teoría del 1er Parcial

Folleto de Estadísticas. Teoría del 1er Parcial Folleto de Estadísticas Teoría del 1er Parcial 2012 Población objetivo: Es un conjunto bien definido de elementos sobre los que se desea hacer algún tipo de investigación o medida. Unidades de investigación:

Más detalles

6.3. Distribuciones continuas

6.3. Distribuciones continuas 144 Bioestadística: Métodos y Aplicaciones Solución: Si consideramos la v.a. X que contabiliza el número de personas que padecen la enfermedad, es claro que sigue un modelo binomial, pero que puede ser

Más detalles

Curso de Probabilidad y Estadística

Curso de Probabilidad y Estadística Curso de Probabilidad y Estadística Distribuciones de Probabilidad Dr. José Antonio Camarena Ibarrola camarena@umich.mx Universidad Michoacana de San Nicolás de Hidalgo Facultad de Ingeniería Eléctrica

Más detalles

Tráfico y modelado de usuarios

Tráfico y modelado de usuarios Tráfico y modelado de usuarios Area de Ingeniería Telemática http://www.tlm.unavarra.es Arquitectura de Redes, Sistemas y Servicios 3º Ingeniería de Telecomunicación Temario Introducción Arquitecturas,

Más detalles

Método de Box Muller. Método Polar Generación de eventos en Procesos de Poisson. Método de Box-Muller. Métodos de generación de v. a.

Método de Box Muller. Método Polar Generación de eventos en Procesos de Poisson. Método de Box-Muller. Métodos de generación de v. a. Método de Box Muller Método Polar Generación de eventos en Procesos de Poisson Si X e Y son normales estándar indepientes, entonces R 2 = X 2 + Y 2, tan(θ) = Y X determinan variables R 2 y Θ indepientes.

Más detalles

PROBABILIDAD E INFERENCIA ESTADÍSTICA TEMA 3: DISTRUBUCIONES DE PROBABILIDAD CONTINUA

PROBABILIDAD E INFERENCIA ESTADÍSTICA TEMA 3: DISTRUBUCIONES DE PROBABILIDAD CONTINUA UNIDAD 1 PROBABILIDAD E INFERENCIA ESTADÍSTICA TEMA 3: DISTRUBUCIONES DE PROBABILIDAD CONTINUA Variables aleatorias continuas = función de densidad de probabilidad 1 Variables aleatorias continuas = función

Más detalles

TEMA 3.- MODELOS DISCRETOS

TEMA 3.- MODELOS DISCRETOS TEMA 3.- MODELOS DISCRETOS 3.1. Introducción. 3.2. Distribución uniforme discreta de parámetro n. 3.3.Distribución Bernoulli de parámetro p. 3.4.Distribución Binomial de parámetros n y p. Notación: X Bn,

Más detalles

PROBABILIDADES Y ESTADÍSTICA (C) Práctica 3 P (X > 0) P ( 0,5 < X < 0,5) P ( X > 0,25) 1 si 2 x P (X 1) P (0,5 X 1) P (0,5 < X 1 X < 1)

PROBABILIDADES Y ESTADÍSTICA (C) Práctica 3 P (X > 0) P ( 0,5 < X < 0,5) P ( X > 0,25) 1 si 2 x P (X 1) P (0,5 X 1) P (0,5 < X 1 X < 1) PROBABILIDADES Y ESTADÍSTICA (C) Práctica 3 1. Sea X una v.a. con función de densidad { 0,75 (1 x f X (x) = 2 ) 1 x 1 0 en otro caso. a) Verificar que f X es realmente una función de densidad. b) Calcular:

Más detalles

Probabilidad Condicional

Probabilidad Condicional Probabilidad Condicional Independencia condicional Como hemos dicho, las probabilidades condicionales tienen las mismas propiedades que las probabilidades no condicionales. Un ejemplo más es el siguiente:

Más detalles

Maestría en Bioinformática Probabilidad y Estadística: Clase 10

Maestría en Bioinformática Probabilidad y Estadística: Clase 10 Maestría en Bioinformática Probabilidad y Estadística: Clase 10 Gustavo Guerberoff gguerber@fing.edu.uy Facultad de Ingeniería Universidad de la República Mayo de 2010 Contenidos 1 Procesos aleatorios

Más detalles

Estadística. Tema 2. Variables Aleatorias Funciones de distribución y probabilidad Ejemplos distribuciones discretas y continuas

Estadística. Tema 2. Variables Aleatorias Funciones de distribución y probabilidad Ejemplos distribuciones discretas y continuas Estadística Tema 2 Variables Aleatorias 21 Funciones de distribución y probabilidad 22 Ejemplos distribuciones discretas y continuas 23 Distribuciones conjuntas y marginales 24 Ejemplos distribuciones

Más detalles

Generación de variables aleatorias continuas Método de rechazo

Generación de variables aleatorias continuas Método de rechazo Generación de variables aleatorias continuas Método de rechazo Georgina Flesia FaMAF 18 de abril, 2013 Método de Aceptación y Rechazo Repaso Se desea simular una v. a. X discreta, con probabilidad de masa

Más detalles

5. TEOREMA FUNDAMENTAL: Repaso Variables Aleatorias. Jorge Eduardo Ortiz Triviño

5. TEOREMA FUNDAMENTAL: Repaso Variables Aleatorias. Jorge Eduardo Ortiz Triviño 5. TEOREMA FUNDAMENTAL: Repaso Variables Aleatorias Jorge Eduardo Ortiz Triviño jeortizt@unal.edu.co http:/www.docentes.unal.edu.co/jeortizt/ CONTENIDO 1. INTRODUCCIÓN 2. VARIABLES ALEATORIAS 3. TEOREMA

Más detalles

Tema 4: Probabilidad y Teoría de Muestras

Tema 4: Probabilidad y Teoría de Muestras Tema 4: Probabilidad y Teoría de Muestras Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 4: Probabilidad y Teoría de Muestras Curso 2008-2009

Más detalles

Repaso de Teoría de la Probabilidad

Repaso de Teoría de la Probabilidad Repaso de Teoría de la Probabilidad Luis Mendo Tomás Escuela Politécnica Superior Universidad Autónoma de Madrid Febrero de 2008 1. Introducción Este documento contiene, de forma esquemática, los conceptos

Más detalles

Probabilidad para una V.A. Continua. P( a X b) = f ( x)

Probabilidad para una V.A. Continua. P( a X b) = f ( x) Tema 4: Variables Aleatorias Contínuas Prof. Heriberto Figueroa S. Capítulo 4 Variables Aleatorias Continuas y sus Distribuciones de Probabilidad 4.1. Variables Aleatorias Continuas Una variable aleatoria

Más detalles

SEÑALES Y SISTEMAS Clase 5

SEÑALES Y SISTEMAS Clase 5 SEÑALES Y SISTEMAS Clase 5 Carlos H. Muravchik 15 de Marzo de 2018 1 / 43 Habíamos visto: Repaso Probabilidades (sobrevuelo) Veremos: 1. Repaso Probabilidades 2. Repaso Variables aleatorias. Distribuciones.

Más detalles

Métodos Matemá6cos en la Ingeniería Tema 8. Distribuciones comunes

Métodos Matemá6cos en la Ingeniería Tema 8. Distribuciones comunes Métodos Matemá6cos en la Ingeniería Tema 8. Distribuciones comunes Jesús Fernández Fernández Carmen María Sordo García DEPARTAMENTO DE MATEMÁTICA APLICADA Y CIENCIAS DE LA COMPUTACIÓN UNIVERSIDAD DE CANTABRIA

Más detalles

Momentos de Funciones de Vectores Aleatorios

Momentos de Funciones de Vectores Aleatorios Capítulo 1 Momentos de Funciones de Vectores Aleatorios 1.1 Esperanza de Funciones de Vectores Aleatorios Definición 1.1 Sea X = (X 1,..., X n ) un vector aleatorio (absolutamente continuo o discreto)

Más detalles

Modelos de distribuciones discretas y continuas

Modelos de distribuciones discretas y continuas Tema 6 Modelos de distribuciones discretas y continuas 6.1. Modelos de distribuciones discretas 6.1.1. Distribución uniforme sobre n puntos Definición 6.1.2 Se dice que una v.a. X sigue una distribución

Más detalles

Distribuciones de probabilidad Discretas

Distribuciones de probabilidad Discretas Distribuciones de probabilidad Discretas Distribución Uniforme Discreta Definición Una variable aleatoria X, tiene una distribución uniforme discreta, si cada uno de los valores x 1, x 2,.. x n, tiene

Más detalles

Unidad Temática 3: Probabilidad y Variables Aleatorias

Unidad Temática 3: Probabilidad y Variables Aleatorias Unidad Temática 3: Probabilidad y Variables Aleatorias 1) Qué entiende por probabilidad? Cómo lo relaciona con los Sistemas de Comunicaciones? Probabilidad - Definiciones Experimento aleatorio: Un experimento

Más detalles

Juan Carlos Colonia DISTRIBUCIONES DISCRETAS IMPORTANTES

Juan Carlos Colonia DISTRIBUCIONES DISCRETAS IMPORTANTES Juan Carlos Colonia DISTRIBUCIONES DISCRETAS IMPORTANTES BIBLIOGRAFÍA Walpole, Ronal E., Myres, Raymond H., Myres, Sharon L.: Probabilidad y Estadística para Ingenieros. McGraw Hill-Interamericana. Canavos

Más detalles

Unidad 3. Probabilidad. Javier Santibáñez (IIMAS, UNAM) Inferencia Estadística Semestre / 22

Unidad 3. Probabilidad. Javier Santibáñez (IIMAS, UNAM) Inferencia Estadística Semestre / 22 Unidad 3. Probabilidad Javier Santibáñez (IIMAS, UNAM) Inferencia Estadística Semestre 2018-1 1 / 22 Espacios de probabilidad El modelo matemático para estudiar la probabilidad se conoce como espacio de

Más detalles

MODELOS DISCRETOS DE PROBABILIDAD

MODELOS DISCRETOS DE PROBABILIDAD MODELOS DISCRETOS DE PROBABILIDAD M. en C. Juan Carlos Gutiérrez Matus Instituto Politécnico Nacional 2004 IPN UPIICSA c 2004 Juan C. Gutiérrez Matus Modelo Uniforme Discreto Modelo Uniforme Discreto Sea

Más detalles

VARIABLES ALEATORIAS CONTINUAS

VARIABLES ALEATORIAS CONTINUAS VARIABLES ALEATORIAS CONTINUAS M. en C. Juan Carlos Gutiérrez Matus Instituto Politécnico Nacional Primavera 2004 IPN UPIICSA c 2004 Juan C. Gutiérrez Matus Definición de una V.A.C. Definición de una V.A.C.

Más detalles

Notas de clase. Prof. Nora Arnesi

Notas de clase. Prof. Nora Arnesi Notas de clase Este material está sujeto a correcciones, comentarios y demostraciones adicionales durante el dictado de las clases, no se recomienda su uso a aquellos alumnos que no concurran a las mismas

Más detalles

Estadís5ca. María Dolores Frías Domínguez Jesús Fernández Fernández Carmen María Sordo. Tema 4. Distribuciones comunes

Estadís5ca. María Dolores Frías Domínguez Jesús Fernández Fernández Carmen María Sordo. Tema 4. Distribuciones comunes Estadís5ca Tema 4. Distribuciones comunes María Dolores Frías Domínguez Jesús Fernández Fernández Carmen María Sordo Departamento de Matemá.ca Aplicada y Ciencias de la Computación Este tema se publica

Más detalles

Algunas Distribuciones Discretas de Probabilidad. UCR ECCI CI-1352 Investigación de Operaciones I Prof. M.Sc. Kryscia Daviana Ramírez Benavides

Algunas Distribuciones Discretas de Probabilidad. UCR ECCI CI-1352 Investigación de Operaciones I Prof. M.Sc. Kryscia Daviana Ramírez Benavides Algunas Distribuciones Discretas de Probabilidad UCR ECCI CI-1352 Investigación de Operaciones I Prof. M.Sc. Kryscia Daviana Ramírez Benavides Introducción El comportamiento de una variable aleatoria queda

Más detalles

Tema 3: VARIABLES ALEATORIAS

Tema 3: VARIABLES ALEATORIAS Tema 3: VARIABLES ALEATORIAS Introducción En el tema anterior hemos modelizado el comportamiento de los experimentos aleatorios. Los resultados de un experimento aleatorio pueden ser de cualquier naturaleza,

Más detalles

Variables Aleatorias y Principios de Simulación.

Variables Aleatorias y Principios de Simulación. Variables Aleatorias y Principios de Simulación http://humberto-r-alvarez-a.webs.com Conceptos de probabilidad La Teoría de Probabilidad trata fenómenos que pueden ser modelados por experimentos cuyos

Más detalles

0 en otro caso. P (X > 0) P ( 0.5 < X < 0.5) P ( X > 0.25) x 3 si 0 x < 2. 1 si 2 x P(X 1) P(0.5 X 1) P(0.5 < X 1 X < 1) f X (x) = (1+αx) 2

0 en otro caso. P (X > 0) P ( 0.5 < X < 0.5) P ( X > 0.25) x 3 si 0 x < 2. 1 si 2 x P(X 1) P(0.5 X 1) P(0.5 < X 1 X < 1) f X (x) = (1+αx) 2 PROBABILIDADES Y ESTADÍSTICA (C) Práctica 3 1. Sea X una v.a. con función de densidad { 0.75(1 x f X (x) = 2 ) 1 x 1 0 en otro caso. a) Verificar que f X es realmente una función de densidad. b) Calcular:

Más detalles

Técnicas Cuantitativas para el Management y los Negocios I

Técnicas Cuantitativas para el Management y los Negocios I Técnicas Cuantitativas para el Management y los Negocios I Licenciado en Administración Módulo II: ESTADÍSTICA INFERENCIAL Contenidos Módulo II Unidad 4. Probabilidad Conceptos básicos de probabilidad:

Más detalles

Estadística I Tema 5: Modelos probabiĺısticos

Estadística I Tema 5: Modelos probabiĺısticos Estadística I Tema 5: Modelos probabiĺısticos Tema 5. Modelos probabiĺısticos Contenidos Variables aleatorias: concepto. Variables aleatorias discretas: Función de probabilidad y función de distribución.

Más detalles

Algunas Distribuciones Continuas de Probabilidad. UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides

Algunas Distribuciones Continuas de Probabilidad. UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides Algunas Distribuciones Continuas de Probabilidad UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides Introducción El comportamiento de una variable aleatoria queda

Más detalles

Procesos estocásticos Sesión 9. Cadenas de Markov a tiempo continuo

Procesos estocásticos Sesión 9. Cadenas de Markov a tiempo continuo Procesos estocásticos Sesión 9. Cadenas de Markov a tiempo continuo Enrique Miranda Universidad of Oviedo Máster Universitario en Análisis de Datos para la Inteligencia de Negocios Contenidos 1. Cadenas

Más detalles

Tema 7: Modelos de variables aleatorias discretas y absolutamente continuas

Tema 7: Modelos de variables aleatorias discretas y absolutamente continuas Tema 7: Modelos de variables aleatorias discretas y absolutamente continuas. Introdución En este tema estudiaremos algunas distribuciones asociadas a variables aleatorias discretas y absolutamente continuas,

Más detalles

Relación de Problemas. Tema 5

Relación de Problemas. Tema 5 Relación de Problemas. Tema 5. Supongamos que tenemos una muestra aleatoria simple de tamaño n de una v.a. X que sigue una distribución geométrica con función de probabilidad P (X = k) = p( p) k Calcular

Más detalles

Curso Propedéutico de Cálculo Sesión 6: Aplicaciones de la Integración

Curso Propedéutico de Cálculo Sesión 6: Aplicaciones de la Integración por Curso Propedéutico de Cálculo Sesión 6: de la Joaquín Ortega Sánchez Centro de Investigación en Matemáticas, CIMAT Guanajuato, Gto., Mexico Esquema por 1 por 2 Esquema por 1 por 2 por Al contrario

Más detalles

La Función de Disponibilidad en Procesos de Renovación y aproximaciones útiles de ella.

La Función de Disponibilidad en Procesos de Renovación y aproximaciones útiles de ella. SEMINARIO INSTITUCIONAL DE ESTADÍSTICA Escuela de Estadística Universidad Nacional de Colombia - Sede Medellín La en Procesos de Renovación y aproximaciones útiles de ella. Álvaro Calvache Archila Universidad

Más detalles

Selección de distribuciones de probabilidad

Selección de distribuciones de probabilidad Selección de distribuciones de probabilidad Georgina Flesia FaMAF 3 de mayo, 2012 Análisis estadístico de datos simulados Los sistemas reales tienen fuentes de aleatoriedad: Tipo de sistema Fabricación

Más detalles

Instituto de Matemática Aplicada del Litoral

Instituto de Matemática Aplicada del Litoral PROBLEMAS DE BARRERA EN PROCESOS ESTOCÁSTICOS Ernesto Mordecki http://www.cmat.edu.uy/ mordecki mordecki@cmat.edu.uy Facultad de Ciencias Montevideo, Uruguay. Instituto de Matemática Aplicada del Litoral

Más detalles

Modelado de la aleatoriedad: Distribuciones

Modelado de la aleatoriedad: Distribuciones Modelado de la aleatoriedad: Distribuciones Begoña Vitoriano Villanueva Bvitoriano@mat.ucm.es Facultad de CC. Matemáticas Universidad Complutense de Madrid I. Distribuciones Discretas Bernoulli (p) Aplicaciones:

Más detalles

Distribuciones Paramétricas

Distribuciones Paramétricas Distribuciones Paramétricas Objetivo: Estudiar el uso de formas matemáticas particulares, llamadas distribuciones paramétricas, para representar las variaciones en los datos. Una distribución paramétrica

Más detalles

TEOREMA DE BERNOULLI

TEOREMA DE BERNOULLI TEOREMA DE BERNOULLI Introducción. En este escrito exponemos de forma detallada el Teorema de Bernoulli. Inroducimos primero el modelo de distribución Bernoulli parámetro p, ofreciendo una discusión sobre

Más detalles

Tema 3. Probabilidad y variables aleatorias

Tema 3. Probabilidad y variables aleatorias 1 Tema 3. Probabilidad y variables aleatorias En este tema: Probabilidad: Experimentos aleatorios, espacio muestral, sucesos. Interpretaciones de la probabilidad. Propiedades de la probabilidad. Probabilidad

Más detalles

2 Modelos de probabilidad discretos sobre R

2 Modelos de probabilidad discretos sobre R UN CATÁLOGO DE MODELOS DE POBABILIDAD Julián de la Horra Departamento de Matemáticas U.A.M. Introducción En este capítulo vamos a dar un catálogo de algunos de los modelos de probabilidad más utilizados,

Más detalles

PROCESO DE BERNOULLI Rosario Romera Febrero 2009

PROCESO DE BERNOULLI Rosario Romera Febrero 2009 PROCESO DE BERNOULLI Rosario Romera Febrero 2009 1. Sumas de Variables Aleatorias Independientes De nición Se considera el experimento aleatorio consistente en la repetición de juegos binarios independientes.

Más detalles

Métodos Estadísticos de la Ingeniería Práctica 5: Distribuciones de Probabilidad y el Teorema Central del

Métodos Estadísticos de la Ingeniería Práctica 5: Distribuciones de Probabilidad y el Teorema Central del Métodos Estadísticos de la Ingeniería Práctica 5: Distribuciones de Probabilidad y el Teorema Central del Límite Área de Estadística e Investigación Operativa Mariano Amo Salas y Licesio J. Rodríguez-Aragón

Más detalles

VARIABLES ALEATORIAS Variable: Característica de los individuos u objetos

VARIABLES ALEATORIAS Variable: Característica de los individuos u objetos 1 Definiciones VARIABLES ALEATORIAS Variable: Característica de los individuos u objetos Aleatoria: Azar 1. Una variable aleatoria ( v.a.) es una función que asigna un número real a cada resultado en el

Más detalles

El primer momento centrado en el origen (k=1) es la esperanza matemática de X

El primer momento centrado en el origen (k=1) es la esperanza matemática de X MOMENTO K-ÉSIMO PARA UNA VARIABLE ALEATORIA DISCRETA RESPECTO DEL ORIGEN E(x) n i 1 k x i.p x i El primer momento centrado en el origen (k=1) es la esperanza matemática de X También se definen momentos

Más detalles