Dinámica macroeconómica con metas de inflación y déficit fiscal.
|
|
- Luis Miguel Álvarez Martínez
- hace 3 años
- Vistas:
Transcripción
1 Dinámica macroconómica con mtas d inflación y déficit fiscal. Waldo Mndoza Bllido Dpartamnto d Economía-PUCP XXVII Encuntro d Economistas BCRP Lima, 13 d novimbr d 2009
2 Contnido. 1. Antcdnts y objtivos. 2. Modlo. 3. Dinámica macroconómica d una política montaria contractiva. 4. Conclusions implicancias. 2 2
3 1. Antcdnts y objtivos.
4 Antcdnts y objtivos. Est s un modlo d conomía crrada qu s inscrib dntro d la corrint nokynsiana marcada por l trabajo d Clarida, Galí y Grtlr (1999) iniciada por Taylor (1993). S prsnta n l squma más tradicional d la Macroconomía (IS-RPM-CPH), para la nsñanza d la Macro n l bachillrato, n l stilo d Romr (2000), Walsh (2002) y Carlin y Soskic (2005). 4
5 Antcdnts y objtivos. En l modlo: La política macroconómica s aproxima al caso dl Prú: La política montaria s basa n un sistma d mtas xplícitas d inflación, con la tasa d rfrncia para los mrcados intrbancarios como instrumnto d política y la cantidad d dinro ndógna. La política fiscal opra con un límit sobr l déficit fiscal como porcntaj dl PBI, sindo l gasto público ndógno. En la rgla d política montaria, l parámtro d suavizaminto qu vincula la tasa d intrés d rfrncia con la tasa d intrés rzagada, s dsprnd d la conducta optimizadora dl banco cntral. 5
6 Antcdnts y objtivos. El modlo mustra la dinámica macroconómica qu s produc n dos scnarios xtrmos, d crdibilidad complta n la mta d inflación dl banco cntral, y d crdibilidad nula, y s ncuntra qu: Pud habr convrgncia hacia l quilibrio stacionario, incluso si no s cumpl l Principio d Taylor. Si hay crdibilidad complta n l banco cntral, una política montaria contractiva pud producir un undrshooting d la inflación. 6
7 2. Modlo.
8 Modlo. El subsistma d corto plazo El banco cntral minimiza una función d pérdida qu dpnd no solo dl difrncial ntr la inflación obsrvada y la inflación mta, sino también dl difrncial ntr la tasa d intrés d rfrncia y su valor rzagado. Ω = 2 ( π π ) + ( i it 1 ) 2 (1) La producción dpnd dl consumo, la invrsión y l gasto público. = D = C + I + G 8
9 Modlo. El consumo dpnd dirctamnt dl ingrso disponibl y la invrsión ngativamnt d la tasa d intrés ral. C = Co + c( 1 t) I = I o φ( i π ) La rgla fiscal supon qu l déficit fiscal no pud g suprar un porcntaj dl PBI ( G + ib t = α ). Por lo tanto, l gasto público s ndógno: G = ( t + α) ib g 9
10 Modlo. Entoncs, l quilibrio n l mrcado d bins vin dado por: = D = Ao + c( 1 t) φ( i π ) + ( t + α) ib g Dond A s l gasto autónomo. La xprsión antrior pud o también rscribirs como: = κ [ ( )] g A ib φ i π 0 t (2) Dond: k = 1 (1 c)(1 t) α s l multiplicador kynsiano con gasto público ndógno. 10
11 Modlo. La ofrta agrgada s la curva d Phillips: π = π + π ( ) (3) La política montaria óptima s obtin minimizando la función d pérdida dl banco cntral, sujta a la curva d Phillips y l quilibrio n l mrcado d bins. Min s.a. : = κ [ ( )] g A ib φ i π 0 π = π + π ( ) t t Ω = π π + i i 2 ( ) ( t 1 ) 2 t 11
12 D st procdiminto d optimización, s driva la Rgla d Política Montaria Óptima( RPM): Dond la tasa d intrés natural vin dada por: Modlo ) ( + + = t i M M i M i π π (4) + + = π φ φ k A B i o g 1
13 : Modlo. 13 [ ] [ ] ) ( 1 ) ( g g B k B k M = φ π φ π [ ] 2 1 ) ( 1 ) )(1 ( g g B k k B k M = φ π φ π φ π [ ] 2 2 ) ( 1 1 g B k M + + = φ π 1 1;0 0 2 < < < < M M o
14 Modlo. En la RPM d st modlo: El parámtro qu vincula la tasa d intrés d corto plazo con su nivl natural, ( M o ), tin l valor usual, ntr 0 y 1. El parámtro d suavizaminto d la tasa d intrés, l qu vincula la tasa d intrés con su rzago ( M, tin también l valor usual, ntr 0 y 1. Est parámtro, ) 2 como s obtuvo a partir d la conducta optimizadora dl banco cntral, stá n función a los parámtros dl modlo. 14
15 Modlo. En la RPM d st modlo: Sgún l Principio d Taylor, l parámtro qu rlaciona la tasa d intrés con la brcha d inflación ( M ) 1 db sr mayor qu 1. La razón s qu los bancos cntrals prsigun altrar la tasa d intrés ral (la tasa d intrés nominal mnos la inflación sprada), para afctar al gasto privado. Cuando la inflación sprada s lva n un punto porcntual, la autoridad montaria db lvar la tasa d intrés nominal n más d un punto porcntual. En st modlo, no s ncsario qu l Principio d Taylor s cumpla dbido a qu l alza d la tasa d intrés no solo afcta al gasto privado sino también al gasto público, porqu afcta al pago d intrss d la duda pública y n conscuncia al gasto público no financiro. Podría sr posibl, ntoncs, qu ant un alza d la inflación sprada, la tasa d intrés ral no s lv y aún así l banco cntral consiga su objtivo d bajar la dmanda agrgada. 15
16 Modlo. El modlo vin dado por l siguint sistma d cuacions. = κ g [ A ib φ( i π )] 0 t (2) i = M 0 i + M 1( π t π ) + M 2it 1 (4) π = π + π t ( ) (3) 16
17 Modlo. El rol d las xpctativas. Como n Birch y Jorgn (2005), las xpctativas dl público son n part státicas spran qu la inflación srá igual a su valor prvio-, y n part racionals- spran qu la inflación s igual a la mta anunciada por l banco cntral-. Cuanto mayor sa la pondración d la inflación mta ( ε 0), más anclada" stará la xpctativa d inflación alrddor d la inflación mta. π επ + (1 ε ) π t = 1 (5) 17
18 Modlo. Por lo tanto, l sistma dinámico complto, ndognizando las xpctativas d inflación, vin dado por: [ A φ + B ) + φεπ + φ(1 ε π ] g i κ ) = 0 ( t 1 (2.1) i = M 0 i + M 1ε ( π t 1 π ) + M 2it 1 (4.1) π = επ + (1 ε ) π + π t ( 1 ) 18
19 Modlo. El subsistma dl quilibrio stacionario. En l quilibrio stacionario, la inflación sprada db igualar a su valor fctivo y la tasa d intrés db stabilizars. Imponindo stas condicions n l subsistma dond la inflación sprada stá dada, compusto por las cuacions (2.1), (10) y (5), obtnmos l sistma dl quilibrio stacionario: = 1 i A + φ φ + B k π g o π = π = (7) (8) (9) 19
20 Modlo. Figura 1: El modlo. i i = i 0 RPM ( t, α, A0, π,, i t 1 ) IS ( 1 t, α, A0, π t, π ) π = 0 CP( t 1, π, ) π π = π 0 = 0 20
21 3. Dinámica d una política montaria contractiva.
22 Política montaria contractiva. En sta scción, s simulan los fctos d una política montaria contractiva (l banco cntral rduc la mta d inflación) sobr l nivl d actividad conómica, la tasa d intrés y la inflación, n l priodo d impacto, n l tránsito al quilibrio stacionario y n l quilibrio stacionario. Rspcto a las xpctativas d inflación, nos situarmos n dos casos xtrmos: crdibilidad nula (la inflación sprada s igual a la inflación rzagada) y crdibilidad total (la inflación sprada s igual a la inflación mta dl banco cntral). 22
23 Crdibilidad nula sobr mta d inflación. ε = 1 23
24 Crdibilidad nula sobr mta d inflación. 24
25 Crdibilidad nula sobr mta d inflación. 25
26 Política montaria contractiva: crdibilidad nula. Figura 2: Política montaria contractiva ( ε =1 ) i i 0 i z i 1 B A Z RPM 1( π 1, π t 1, it 1) RPM 0 ( π 0, π t 1, it 1) π π 0 π 1 π z B 1 = 0 A Z IS z IS ( ) 0 π t 1 ( z π ) CP0 ( π t 1) CP π ) ( z z 1 = 0 26
27 Crdibilidad complta sobr mta d inflación. ε = 0 27
28 Crdibilidad complta sobr mta d inflación. 28
29 Crdibilidad complta sobr mta d inflación. 29
30 Política montaria contractiva: crdibilidad complta. Figura 3: Política montaria contractiva i ( ε = 0) π i 0 i 1 i z π 0 1 B Z A = 0 A Z IS z IS π ( π ) z IS 0 ( 0 1 ( 1 ) RPM π ) 0 ( 0 0 π, π ) RPM 1( π 1, π 0, it 1) RPM CP 0 ( π 0 ) CP ( π ) z z ( π 1, π z, i t z ) z CP π ) 1 ( 1 π z π 1 B 1 = 0 30
31 4. Conclusions implicancias.
32 Conclusions implicancias. Cuando la política fiscal s basa sobr una mta d déficit como porcntaj dl PBI, la política montaria pud cumplir con su función stabilizadora, aun cuando no s cumpla l Principio d Taylor. Cuando las xpctativas d inflación stán ancladas n la mta d inflación dl banco cntral, una política montaria produc un undrshooting (inflación ca por dbajo d su nivl d quilibrio stacionario). 32
33 Conclusions implicancias En conscuncia: Cuando l banco cntral muva la tasa d intrés d rfrncia, tin qu tomar n considración tanto l impacto sobr la tasa d intrés ral y su fcto sobr la invrsión privada, así como l fcto d dicha tasa d intrés sobr l gasto público. Una mustra d la crdibilidad d la política montaria pud sr un sobrajust d la inflación, como producto d una política montaria contractiva. 33
DINÁMICA MACROECONÓMICA CON METAS DE INFLACIÓN Y DÉFICIT FISCAL*
EL TRIMESTRE ECONÓMICO, vol. LXXVIII (2), núm. 310, abril-junio d 2011, pp. 469-486 DINÁMICA MACROECONÓMICA CON METAS DE INFLACIÓN DÉFICIT FISCAL* Waldo Mndoza Bllido** RESUMEN En st modlo la política
CAPÍTULO 14: LAS EXPECTATIVAS: LOS INSTRUMENTOS BÁSICOS
CAPÍTULO 14: LAS EXPECTATIVAS: LOS INSTRUMENTOS BÁSICOS 14-1 Los tipos d intrés nominals y rals Slid 14.2 Los tipos d intrés xprsados n unidads d la monda nacional s dnominan tipos d intrés nominals. Los
Model de precios rígidos Profesor: J. Marcelo Ochoa Otoño 2007
. Ba dl modlo Modl d prcio rígido Profor: J. Marclo Ochoa Otoño 2007.. Dmanda Agrgada y Política Montaria El lado d la dmanda dl modlo rum n la iguint cuacion: Curva IS: Y = A0 PMG Ir+Xǫǫr PMG r Rgla d
XXXII Encuentro de Economistas del BCRP
XXXII ncuntro d conomistas dl BP Novimbr 04-05 204 os ncas como hrraminta macro-prudncial y las tasas d intrés dl mrcado n una conomía con dolarización parcial Misaico BP ontnido Política montaria inflación
Tema 7 El modelo IS-LM / O.A.-D.A: análisis macroeconómico
Tma 7 El modlo IS-LM / O.A.-D.A: un marco gnral para l análisis macroconómico (Curva IS La rcta IS, rcog los pars d puntos, tipos d intrés y producción r )los cuals l mrcado d bins stá n quilibrio.,, para
TEMA 4: LA OFERTA AGREGADA
TEMA 4: LA OFERTA AGREGADA Análisis d los ciclos conómicos INTRODUCCIÓN Abandono supusto rigidz n prcios Con prcios flxibls l modlo IS-LM sirv para drivar la curva d Dmanda Agrgada Ncsidad d analizar la
Tema 4. Equilibrio con precios rígidos: el modelo keynesiano
Tma 4. Equilibrio con prcios rígidos: l modlo kynsiano 1* (AB numérico 9.3) Una conomía tin un nivl d producción d plno mplo d 1.000. El consumo y la invrsión dsados son C d = 200+0,8(Y-T)-500r; I d =
10.1 Demanda agregada y oferta agregada: aspectos introductorios
Capítulo 10 Expctativas, contratos laborals y ofrta agrgada d corto plazo En las parts dos y trs nos ddicamos a studiar l modlo IS-LM, qu s l modlo d dtrminación d la dmanda agrgada y la ofrta agrgada
Macroeconomía II ADE, Tema 4. Curso Qué estudiamos en este tema? Tema 4: DINERO Y POLÍTICA MONETARIA
Qué studiamos n st tma? acroconomía II ADE Curso 2004-2005 Tma 4: DINERO Y POLÍTICA ONETARIA Los dtrminants d la ofrta d dinro y los instrumntos d la política montaria La bas montaria El multiplicador
LECCIÓN N 06 POLITICA MONETARIA Y FISCAL EN EL MODELO IS-LM
LECCIÓN N 06 POLITICA MONETARIA Y FISCAL EN EL MODELO IS-LM Est capitulo xamina l fcto qu tin sobr l ingrso d quilibrio un cambio n la ofrta d dinro, n l gasto gubrnamntal y/o n los ingrsos ntos por impustos.
DE ECONOMÍA DEPARTAMENTO. Félix Jiménez
DEPARTAMENTO DE ECONOMÍA PONTIFICIA UNIVERSIDAD CATÓLICA DEL PERÚ DEPARTAMENTO DE ECONOMÍA PONTIFICIA UNIVERSIDAD CATÓLICA DEL PERÚ DOCUMENTO DE TRABAJO N 298 ELEMENTOS DE TEORÍA POLÍTICA MACROECONÓMICA
Alfredo Masó Macroeconomía Intermedia Grado de ADE y DADE-Curso Práctica 2 (Tema 1: modelo Mundell-Fleming : Políticas de DA)
Alrdo Masó Macroconomía Intrmdia Grado d ADE y DADE-Curso 2012 roblmas: ráctica 2 (Tma 1: modlo Mundll-Flming : olíticas d DA) 1º) Obtnga la xprsión d la Dmanda Agrgada, la rnta d quilibrio, l tipo d intrés
EXAMEN DE MACROECONOMÍA AVANZADA ITINERARIOS DE ANÁLISIS ECONÓMICO
EXAMEN DE MACROECONOMÍA AVANZADA ITINERARIOS DE ANÁLISIS ECONÓMICO, ECONOMÍA MONETARIA Y FINANCIERA Y ECONOMÍA MUNDIAL DE JUNIO DE 13 Prof: Luis Puch y Jsús Ruiz El xamn consta d dos arts. La rimra s un
Tema 2 La oferta, la demanda y el mercado
Ejrcicios rsultos d ntroducción a la Toría Económica Carmn olors Álvarz Alblo Migul Bcrra omínguz Rosa María Cácrs Alvarado María dl Pilar Osorno dl Rosal Olga María Rodríguz Rodríguz Tma 2 La ofrta, la
Reporte Nº: 05 Fecha: JULIO 2012. ANÁLISIS DE SITUACIÓN MIGRATORIA DE EXTRANJEROS DE NACIONALIDAD HAITIANA 1. DESCRIPCIÓN DEL REPORTE
Rport Nº: 05 Fcha: JULIO 2012. ANÁLISIS DE SITUACIÓN MIGRATORIA DE EXTRANJEROS DE NACIONALIDAD HAITIANA 1. DESCRIPCIÓN DEL REPORTE El prsnt inform tin como objtivo spcífico stablcr los movimintos migratorios
APUNTES DE CLASE MACROECONOMÍA CAPÍTULO Nº 5 TEORIA DE LA OFERTA AGREGADA CON EXPECTATIVAS DE INFLACIÓN AGOSTO 2008 LIMA PERÚ
AUTES DE CLASE MACROECOOMÍA CAÍTULO º 5 TEORIA DE LA OFERTA AGREGADA CO EXECTATIVAS DE IFLACIÓ AGOSTO 2008 LIMA ERÚ TEORIA DELA OFERTA AGREGADA CO EXECTATIVAS En l capítulo º 4 dond xplicamos l concpto
INSTITUTO DE CIENCIAS MATEMÁTICAS CÁLCULO DIFERENCIAL. TERCERA EVALUACIÓN Septiembre 17 de Nombre:
INSTITUTO DE CIENCIAS MATEMÁTICAS CÁLCULO DIFERENCIAL TERCERA EVALUACIÓN Sptimbr 7 d Nombr: Parallo: Firma: TEMA ( puntos) Justificando su rspusta, califiqu como vrdadra o falsa, cada proposición: a) La
Practica 9: Tipo de cambio y paridad de poder adquisitivo
Practica 9: Tipo d cambio y paridad d podr adquisitivo 1 Practica 9.1: Ejrcicio 1, capitulo 13, pag. 355 En Munich un bocadillo d salchicha custa 2, n l parqu Fnway d Boston un prrito calint val 1$. Con
MÉTODOS DE INTEGRACIÓN. x x x. x x. dx dx x. dx x 2)( Lnx. x dx x. x x
http://www.damasorojas.com.v/ damasorojas8@gmail.com damasorojas8@hotmail.com, damasorojas8@galon.com MÉTODOS DE INTEGRACIÓN.-Sustitución Simpl. d d d d d d d d d d d d d d d d d d d d d d d d a d d d
TARIFARIO RAIZ LIMA Y PROVINCIA CONSTITUCIONAL DEL CALLAO
Esta información s proporciona n cumpliminto d la Ly N 28587 y al Rglamnto d Transparncia d Información y Contratación con Usuarios dl Sistma Financiro, aprobado mdiant Rsolución SBS N 8181-2012. TARIFARIO
TEMA 5. Límites y continuidad de funciones Problemas Resueltos
Matmáticas Aplicadas a las Cincias Socials II Solucions d los problmas propustos Tma 7 Cálculo d its TEMA Límits y continuidad d funcions Problmas Rsultos Para la función rprsntada n la figura adjunta,
Tema 3 La elasticidad y sus aplicaciones
Ejrcicios rsultos d Introducción a la Toría Económica Carmn olors Álvarz Alblo Migul Bcrra omínguz Rosa María Cácrs Alvarado María dl Pilar Osorno dl Rosal Olga María Rodríguz Rodríguz Tma 3 La lasticidad
APUNTES DE CLASE MACROECONOMÍA CAPÍTULO Nº 8 LA RENTABILIDAD EN MONEDA NACIONAL DE UNA INVERSIÓN EN MONEDA EXTRANJERA AGOSTO 2008 LIMA PERÚ
Capítulo Nº 8: La rntabilidad n monda nacional d una invrsión n monda xtranjra Marco Antonio Plaza Vidaurr APUNTES DE CLASE MACROECONOMÍA CAPÍTULO Nº 8 LA RENTABILIDAD EN MONEDA NACIONAL DE UNA INVERSIÓN
Dpto. de Ingeniería Eléctrica Daniel Moríñigo Sotelo. MÁQUINAS ELÉCTRICAS, 3º Ingenieros Industriales Examen Ordinario 14 de Febrero de 2004
MÁQUNAS LÉCTRCAS, º ngniros ndustrials xamn Ordinario 14 d Fbrro d 004 Problma 1. Un motor drivación consum una corrint d 0 A cuando gira a 1000 r.p.m., sindo la tnsión d alimntación d 00 V. La rsistncia
PRÁCTICA 8 ESTUDIO DE ENGRANAJES 3º INGENIERÍA INDUSTRIAL
PRÁCTICA 8 ESTUDIO DE ENGRANAJES 3º INGENIERÍA INDUSTRIAL 1.- INTRODUCCIÓN. La prsnt práctica tin por objto introduir al alumno n l cálculo d trns d ngranajs, tanto simpls d js parallos, compustos y trns
AT07 PORCENTAJE DE POBLACIÓN EN LA ESCUELA CON UN AVANCE REGULAR POR EDAD. A gn inf. A gn sup PPR = P e PPR
AT07 PORCENTAJE DE POBLACIÓN EN LA ESCUELA CON UN AVANCE REGULAR POR EDAD FÓRMULA AT07 NOMBREdlINDICADOR Porcntaj d población n la scula con un avanc rgular por dad. FÓRMULAdCÁLCULO PPR = PPR A + inf A
CARACTERÍSTICAS EXTERNAS y REGULACIÓN de TRANSFORMADORES
CARACTERÍSTCAS EXTERNAS y REGLACÓN d TRANSFORMADORES Norbrto A. Lmozy 1 CARACTERÍSTCAS EXTERNAS S dnomina variabl ntr a una magnitud qu stá dtrminada ntr dos puntos, tal como una difrncia d potncial o
+ ( + ) ( ) + ( + ) ( ) ( )
latrals n. iguals. f. La función CONTINUIDAD f () Es continua n l punto?. Calcular los límits ³ ² 5 Para qu la función sa continua n s db cumplir: f f Calculamos por sparado cada mimbro d la igualdad f
Implementación de un Regulador PID
Tma 3 Implmntación d un Rgulador PID Gijón - Marzo 22 .4 Accions d Control Clásicas.2 x(t).8.6 x(t) (t) _ P I D 2 3 u(t) Sistma.4.8.6.4.2-5 5 5 2 25 3 (t) -.2 -.4-5 5 5 2 25 3 2.8 - Proporcional ( t) =
TÉRMINOS DE REFERENCIA CONCURSO PÚBLICO PARA LA CONTRATACIÓN DE CAPACITACIONES BASES ADMINISTRATIVAS Y TÉCNICAS
TÉRMINOS DE REFERENCIA CONCURSO PÚBLICO PARA LA CONTRATACIÓN DE CAPACITACIONES A. BASES ADMINISTRATIVAS BASES ADMINISTRATIVAS Y TÉCNICAS 1. Gnralidads: Estas bass técnicas stán rfridas a la contratación
= 6 ; -s -4 s = 6 ; s= - 1,2 m. La imagen es real, invertida respecto del objeto y de mayor tamaño.
F F a) La lnt s convrgnt l objto stá situado ants dl foco objto: β = = = 4 ; = 4 s ; s + = 6 ; -s -4 s = 6 ; s= -, m s, 4,8 ; ; = = = s f 4,8. f, 4,8 f f =0,96 m. La imagn s ral, invrtida rspcto dl objto
El área del rectángulo será A = p q, donde p 0,2 es variable y q depende de p. ( ) ( ) ( )
Cálculo difrncial. Matmáticas II Curso 03/4 Opción A Ejrcicio. Sa la parábola (Puntuación máima: puntos) y 4 4 y un punto ( p, q ) sobr lla con 0 p. Formamos un rctángulo d lados parallos a los js con
RADIO CRÍTICO DE AISLACIÓN
DIO CÍTICO DE ISCIÓN En sta clas s studiará la transfrncia d calor n una tubría d radio xtrno (0,0 ft), rcubirta con un aislant d spsor (0,039 ft), qu transporta un vapor saturado a (80 F). El sistma cañría
Como ejemplo se realizará la verificación de las columnas C9 y C11.
1/14 TRABAJO PRÁCTICO Nº 9 - DIMENSIONAMIENTO DE COLUMNAS Efctuar l análisis d cargas d una columna cntrada y otra d bord y dimnsionar ambas columnas n l nivl d PB. Como jmplo s ralizará la vrificación
2x 1. (x+ 1) e + 1 2x. 3.- Derivabilidad de una función. 6x 5, si2 x 4
º BACHILLERATO MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II FICHA TEMA 7.- FUNCIONES. DERIVADAS Y APLICACIONES (PROFESOR: RAFAEL NÚÑEZ) -----------------------------------------------------------------------------------------------------------------------------------------------------------------.-
7.6 SEÑOREAJE E HIPERINFLACIÓN
Ecuacions qu componn l modlo: a) Equilibrio n l mrcado d dinro: M P aπ () = +, dond π π. b) Expcaivas adapaivas: c M P d + + c) Crcimino monario: i + b + b b i i= 0 () π π = ( π π ) π = ( ) π. M (3) +
Modelos Matemáticos para la optimización y reposición de maquinarias: Caso la Empresa Eléctrica de Milagro
Modlos Matmáticos para la optimización y rposición d maquinarias: Caso la Emprsa Eléctrica d Milagro Edwin Lón Plúas, Csar Gurrro Loor 2 Ingniro n Estadística Informática, 2003 2 Dirctor d Tsis, Matmático,
Relaciones importantes para la entropía.
rmodinámica II 2I Rlacions importants para la ntropía. Entropía Formalmnt la ntropía s d n a partir d la dsigualdad d Clausius I 0 () n dond:! H indica qu la intgral s va a ralizar n todas las parts d
Primer Examen Parcial Tema A Cálculo Vectorial Septiembre 26 de 2017
Primr Examn Parcial Tma A Cálculo Vctorial Sptimbr 6 d 17 Est s un xamn individual, no s prmit l uso d libros, apunts, calculadoras o cualquir otro mdio lctrónico Rcurd apagar y guardar su tléfono clular
PRÁCTICA 10 (TEMA 11: LA OFERTA Y DEMANDA AGREGADAS (Makiw, 4ª ed., Cap. 33)
INTRODUCCIÓN A LA ECONOMÍA CURSO 2009-2010 PRÁCTICA 10 (TEMA 11: LA OFERTA DEMANDA AGREGADAS (Makiw, 4ª d., Ca. 33) 1. Objtivo El objtivo d ta ráctica analizar l comortaminto d la conomía n l corto lazo
Una onda es una perturbación que se propaga y transporta energía.
Onda Una onda s una prturbación qu s propaga y transporta nrgía. La onda qu transmit un látigo llva una nrgía qu s dscarga n su punta al golpar. TIPOS DE ONDAS Si las partículas dl mdio n l qu s propaga
APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS QUE INVOLUCRAN A LA RECTA TANGENTE Y LA RECTA NORMAL
APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS QUE INVOLUCRAN A LA RECTA TANGENTE Y LA RECTA NORMAL 74 Cuando un problma gométrico stá nunciado n términos d la rcta
FUNCIONES DE DOS VARIABLES DOMINIOS, DERIVADAS PARCIALES Y DIRECCIONALES. Preguntas de dominios y curvas de nivel
FUNCIONES DE DOS VARIABLES DOMINIOS, DERIVADAS PARCIALES Y DIRECCIONALES Prguntas d dominios curvas d nivl Dtrmina l dominio d las uncions: a) (, ) b) (, sin + + En cada caso indica dos puntos qu no san
Informe semanal del mercado de valores de El Salvador Del 8 al 12 de agosto de 2011
Contnido Inform smanal dl mrcado d valors d El Salvador Dl 8 al 12 d agosto d 2011 A. Opracions n la bolsa d valors B. Estadísticas d las opracions ralizadas n la bolsa d valors C. Estadísticas d las opracions
Solución a la práctica 6 con Eviews
Solución a la práctica 6 con Eviws El siguint modlo d rgrsión rlaciona la nota mdia qu obtinn los alumnos n matmáticas (nota) n un cntro, con l númro d profsors disponibls n l cntro (profsors), l porcntaj
CENTRO DE EXCELENCIA MEDICA EN ALTURA Vigente a partir de 16/03/2016. PROCEDIMIENTO NORMALIZADO DE OPERACIÓN PARA REGISTRO DE HUMEDAD Y TEMPERATURA
días. Página 1 d 8 PROCEDIMIENTO NORMALIZADO DE OPERACIÓN PARA REGISTRO DE HUMEDAD Y TEMPERATURA Contnido 1. Objtivo 2. Alcanc 3. Rsponsabilidads 4. Dsarrollo dl procso 5. Rfrncias Bibliográficas 6. Anxos
TEMAS 3-6: EJERCICIOS ADICIONALES
TEMAS 3-6: EJERCICIOS ADICIONALES Asignatura: Economía y Mdio Ambint Titulación: Grado n cincias ambintals Curso: 2º Smstr: 1º Curso 2010-2011 Profsora: Inmaculada C. Álvarz Ayuso Inmaculada.alvarz@uam.s
4 M. a) La(s) ecuación(es) diferencial(es) del movimiento del sistema a partir de las ecuaciones de movimiento lineal y angular.
Un si-disco unifor d radio asa, ruda sin dslizar sor una suprfici orizontal. Una partícula d asa s ncuntra conctada al disco n su iso plano, por dos varillas rígidas, d asa dprcial, coo s ustra n la figura.
ρ = γ = Z Y Problema PTC
Probla PTC-18 Dibujar l spctro d aplitud d un cabl con pérdidas n circuito abirto, dtrinando los valors y frcuncias d los valors áxios y ínios. Solución PTC-18 Sabos qu la función d transfrncia d un cabl
EL MERCADO DE DIVISAS Y EL TIPO DE CAMBIO: EL ENFOQUE FLUJO. Richard Roca
L MRCADO D DIVISAS Y L TIPO D CAMBIO: L NFOQU FLUJO Richard Roca rhoca@yahoo.com www.gocitis.com/rhroca Univrsidad Nacional Mayor d San Marcos Pontificia Univrsidad Católica dl Prú Richard Roca: l mrcado
TEMA 7 APLICACIONES DE LA DERIVADA
Tma Aplicacions d la drivada Matmáticas CCSSII º Bachillrato 1 TEMA APLICACIONES DE LA DERIVADA RECTA TANGENTE 1 Escrib 0 EJERCICIO 1 : la cuación d la rcta tangnt a la curva f n 0. Ordnada dl punto: f
El Modelo de Oferta y Demanda Agregada como núcleo práctico de la Macroeconomía
El Modlo d Ofrta y Dmanda Agrgada como núclo práctico d la Macroconomía El propósito d stas notas, s sugrir qu l modlo d Ofrta Dmanda Agrgada - conocido también como la síntsis noclásica proporciona un
Tema 4 La política económica: impuestos y subvenciones por unidad vendida y controles de precios
Ejrcicios rsultos d Introducción a la Toría Económica Carmn olors Álvarz Alblo Migul Bcrra omínguz Rosa María Cácrs Alvarado María dl ilar Osorno dl Rosal Olga María Rodríguz Rodríguz http://bit.ly/8l8u
Solución: Para que sea continua deben coincidir los límites laterales con su valor de definición en dicho punto x = 2. b 1 + b
Matmáticas Emprsarials I PREGUNTAS DE TIPO TEST DERIVADAS Y APLICACIONES Drivabilidad ( ) b si S09. La función f ( ) s continua y drivabl n = : a( ) si a) Si a = y b = b) Si a = y b = 5 c) Nunca pud sr
III. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS
III. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS.. FUNCIÓN EXPONENCIAL n Hmos stado manjando n st trabajo prsions dl tipo n dond s una variabl llamada bas n una constant llamada ponnt, si intrcambiamos d lugar
Unidad 11 Derivadas 4
Unidad 11 rivadas SOLUCIONES 1. La solución n cada caso s:. Las drivadas son: f ( ) f () a) [ f () f () lím f (6 ) f (6) 9 b) f (6) lím lím 5 f (0 ) f (0) c) [ f (0) f (0) lím. En cada caso: a) f() no
Problemas Resueltos. el radio de la órbita circular, y la energía tiene el valor GMm 2 = a GM. 0. Es decir, 2 T 4π. GMm
Problmas sultos.0 Un satélit dscrib una órbita circular n torno a la Tirra. Si s cambia d rpnt la dircción d su vlocidad, pro no su módulo, studiar l cambio n su órbita y n su príodo. Al cambiar sólo la
CASO DE ESTUDIO N 3. Aplicaciones de los conceptos de interferencia y termoelasticidad para encajar un eje a un núcleo
CAPITULO 3 TENSIONES Y DEFORMACIONES. REVISIÓN DE PRINCIPIOS FÍSICOS CASO DE ESTUDIO N 3 Aplicacions d los concptos d intrfrncia y trmolasticidad para ncajar un j a un núclo 1. Introducción En la Figura
Microeconomía I. Doctorado en Economía, y Maestría en T. y P. Económica Avanzada FACES, UCV. Prof. Angel García Banchs
Doctorado n Economía y Mastría n T. y P. Económica Avanzada FACES UCV Microconomía I Prof. Angl García Banchs contact@anglgarciabanchs.com Clas/Smana Toría dl uilibrio dl mrcado d bins Balancar l ingrso
Cálculo de fuerzas y pares de fuerza mediante el principio de los desplazamientos virtuales.
c Rafal R. Boix y Francisco Mdina 1 Cálculo d furzas y pars d furza mdiant l principio d los dsplazamintos virtuals. Considrmos un conjunto d N conductors cargados con cargas Q i (i = 1,...,N). San V i
Modelos Box-Jenkins. El paseo aleatorio X t = c + X t 1 + a t no es estacionario. Sin embargo, el proceso diferenciado regularmente
Modlos Box-Jnkins Sris d Timpo Grmán Aniros Pérz stacionals: Slcción dl El paso alatorio X t = c + X t 1 + a t no s stacionario. Sin mbargo, l procso difrnciado rgularmnt s stacionario. X t X t 1 = c +
a. Calcula la potencia que debe tener la fuente de radiación. n I 10 A Js m s C 2.
Tara. Rsulta 1. Una art d un instrumnto lctrónico incluy un disositivo qu db sr caaz d roorcionar una corrint léctrica d 10 - A or mdio d fcto fotoléctrico. Si la funt d radiación usada tin una λ =.5 10-7
CONTROL PID DEL ÁNGULO DE CABECEO DE UN HELICÓPTERO
CONROL EL ÁNGULO E CABECEO E UN HELCÓERO F. Morilla SEÑO OR EAAS Canclación d la dinámica subamortiguada impo d asntaminto d la rspusta tmporal Rstriccions n la sñal d control Estructura d control y filtro
Definición de derivada
Dfinición d drivada. Halla, utilizando la dfinición, la drivada d la función f ( ) n l punto =. Compruba aplicando las rglas d drivación qu tu rsultado s corrcto. f ( ) f () La drivada pdida val: f ()
DEPARTAMENTO DE FUNDAMENTOS DE ECONOMÍA E HISTORIA ECONÓMICA Matemáticas II EXAMEN FINAL Junio 2011 APELLIDOS: NOMBRE: D.N.I.
DEPARTAMENTO DE FUNDAMENTOS DE ECONOMÍA E HISTORIA ECONÓMICA Matmáticas II EXAMEN FINAL Junio APELLIDOS: NOMBRE: D.N.I. CUESTIONARIO DE RESPUESTA MÚLTIPLE % Las rspustas rrónas rstan puntos. Dbn rljars
Considere la antena Yagi de la figura, formada por un dipolo doblado y un dipolo parásito, ambos de longitud λ/2, y separados una distancia d = λ/4.
Problmas capitulo 5 Antna Yagi Considr la antna Yagi d la figura, formada por un dipolo doblado un dipolo parásito, ambos d longitud λ/, sparados una distancia d = λ/4. a) Calcul la impdancia d ntrada
2º Bachillerato: ejercicios modelo para el examen de las lecciones 11, 12 y 13
º Bachillrato: jrcicios modlo para l amn d las lccions, y 3 Sa la unción F ( ) t dt a) Calcular F (), studiar l crciminto d F() y hallar sus máimos y mínimos. b) Calcular F () y studiar la concavidad y
INTEGRACIÓN POR PARTES
UNIVERSIDAD FRANCISCO DE PAULA SANTANDER FACULTAD DE INGENIERA DEPARTAMENTO DE MATEMÁTICA Y ESTADISTICA INTEGRACION INTEGRACIÓN Algunas intgrals qu s nos prsntan nos rsultan un poco compljas, ya por lo
Macroeconomía I ADE, Tema 4. Curso La dinámica macroeconómica. Tema 4: LA OFERTA AGREGADA. Largo plazo: es aquella situación en la que los
La dinámica macroconómica Macroconomía I ADE Curso 2009-2010 Largo plazo: s aqulla situación n la qu los mrcados funcionan como hmos studiado n microconomía: los prcios rspondn a variacions d la ofrta
CINEMÁTICA (TRAYECTORIA CONOCIDA)
1º Bachillrato: Cinmática (trayctoria conocida CINEMÁTICA (TRAYECTORIA CONOCIDA (Todos los datos y cuacions, n unidads dl S.I. 1. Un objto tin un moviminto uniform d rapidz 4 m/s. En l instant t=0 s ncuntra
Capítulo 6 Teoría del crecimiento dirigido por la demanda
Capítulo 6 Toría dl crciminto diriido por la dmanda «La toría dl crciminto iniciada por Harrod (939), rconoc la importancia d la dmanda arada. Sin mbaro, la subscunt rintrprtación noclásica dl modlo d
e 2/x +1 3) (1p) Halla las asíntotas de la siguiente función, estudia su posición relativa y expresa ésta gráficamente: ln f(x)= x+1
CURSO 7-8. Primra part. d mayo d 8. ) (p) Estudia las discontinuidads d la función: f() / - / + ) (p) Dada la siguint función, s pid: a) La drivada simplificada. b) La cuación d la tangnt d inflión: +
f (x)dx = f (x) dx. Si la respuesta es afirmativa justifíquese, si es negativa,
CALCULO INTEGRAL.(97).- Sa f() una función tal qu, para cualquira qu sa > s cumpl qu = Pruébs qu, ntoncs, s vrifica qu f( ) = f(), para todo >. f f..(97).- Sa la función f() = -. S pid: a) Hacr un dibujo
SEPTIEMBRE Opción A
Slctividad Sptimbr (Pruba Espcífica) SEPTIEMBRE Opción A ( + ).- Dada la función f () s pid dtrminar: a) El dominio, los puntos d cort con los js y las asíntotas. b) Los intrvalos d crciminto y dcrciminto,
1 ut 202 NUEVO PAÍS. PAZ EQUIDAD EDUCACIÓN. Industria y Comercio SUPERINTENDENCIA TODOS POR UN CIRCULAR EXTERNA N. 0. Bogotá, D.C.
NUEVO PAÍS. PAZ EQUIDAD EDUCACIÓN CIRCULAR EXTERNA N. 0 Bogotá, D.C. 01 1 ut 202 Fi Para: RESPONSABLES DEL TRATAMIENTO DE DATOS PERSONALES Asunto: Modificar los numrals 2.2, 2.3, 2.6 y 2.7 dl Capítulo
Valuación por comparables. Dr. Marcelo A. Delfino
Valuación por comparabls Dr. Marclo A. Dlfino Múltiplos Estima l valor d una mprsa a partir dl valor conocido d otra mprsa d caractrísticas similars. El supusto básico s qu, sindo compañías similars l
Apéndice: Propagación de ondas electromagnéticas
Apéndic: Propagación d ondas lctroagnéticas Propagación d ondas lctroagnéticas n l studio d la propagación d las ondas lctroagnéticas, las lys d Maxwll ocupan un lugar priordial para ustificar dicha propagación.
Mercados Financieros y Expectativas Profesor: Carlos R. Pitta CAPÍTULO 8. Macroeconomía General
Univrsidad Austral d Chil Escula d Ingniría Comrcial Macroconomía Gnral CAPÍTULO 8 Mrcados Financiros y Expctativas Profsor: Carlos R. Pitta Macroconomía Gnral, Prof. Carlos R. Pitta, Univrsidad Austral
lm í d x = lm í ln x + x 1 H = lm í x + e x 2
Autovaluación Página 8 Calcula los siguints límits: a) lm í c m b) lm í ccotg m c) lm í sn d) lm í ( ) / 8 ln 8 8 ln ( cos ) 8 a) lm í 8 c ln ln H ( / ) lm í ( )ln 8 ln m lm í 8 H lm í / 8 b) lm í 8 dcotg
a) f (x) = 1+Mg (x) <1 2-1<1+mg (x)<1-2<mg (x)<0 <M<0 como como para que f sea Lipschitziana de [0,1] [0,1] con constante de
Hoja d Problmas Álgbra VII 55. Supongamos qu la función g stá dfinida y s drivabl n [0,]. Supongamos qu g(0)
Integrales indefinidas. 2Bach.
Intgrals indfinidas. Bach..- FUNCIÓN PRIMITIVA. INTEGRAL INDEFINIDA. La intgración s la opración invrsa d la drivación. Dada una función f(), dirmos qu F() s una primitiva suya si F ()f(). Nota: La primitiva
MEDICAMENTOS Y DEMAS INSUMOS PARA LA SALUD
Clav: CEMA-PR-FC-MCMI-16 Vrsión: 0001 Sustituy a: Ninguno Próxima rvisión: cada 30 días. Página 1 d 9 Contnido 1. Objtivo 2. Alcanc 3. Rsponsabilidads 4. Dsarrollo dl procso 5. Rfrncias Bibliográficas
5. Elementos tipo barra
Univrsidad Simón Bolívar 5. Elmntos tipo barra En st capítulo s xpon l dsarrollo dl método dl lmnto finito para rsolvr l problma d una barra d scción transvrsal A, módulo d lasticidad E, dnsidad ρ y longitud
Ecuación para cirquitones en líneas de transmisión con carga eléctrica discreta. K. J. Candía
Ecuación para cirquitons n ínas d transmisión con carga éctrica discrta. K. J. Candía Dpartamnto d Ectrónica, Univrsidad d Tarapacá, Arica, Chi Emai: kchandia@uta.c Rsumn En sta Chara s mustra un mcanismo
Representación esquemática de un sistema con tres fases
6 APLICACIONES 6.1 Sistma con varias fass Una vz consguido l modlo para simular una mmbrana, s planta su uso para simular procsos con más d una. Uno d stos procsos podría sr un sistma con varias fass.
TEORÍA TTC-004: FUNCIÓN DE TRANSFERENCIA DE UN CABLE
TEORÍA TTC-4: FUNCIÓN DE TRANSFERENCIA DE UN CABE.- Modlo con parámtros distribuidos Dada la longitud d los cabls utilizados habitualmnt n comunicacions, dbmos ralizar su studio mdiant modlos d parámtros
5) dx. 9) x. dx 11) 4x dx. x e 27)
.. Antidrrivadas: Evalú las intgrals siguints: Wilfrdo Saravia Maradiaga UNIVERSIDAD NACIONAL AUTÓNOMA DE HONDURAS FACULTAD DE CIENCIAS ECONÓMICAS DET-8, MÉTODODOS CUANTITATIVOS III GUÍA DE EJERCICIOS,
ESTUDIO DE UNA FUNCIÓN CON AYUDA DE LA DERIVADA. 1. a) Halla los valores de los coeficientes b, c y d para que la gráfica de la función
ESTUDIO DE UNA FUNCIÓN CON AYUDA DE LA DERIVADA CMS05. a) Halla los valors d los coficints b, c y d para qu la gráfica d la función y b c d cort al j OY n l punto (0, ), pas por l punto (, ) y, n s punto,
SOLUCIONARIO. UNIDAD 13: Introducción a las derivadas ACTIVIDADES-PÁG Las soluciones aparecen en la tabla.
UNIA : Introducción a las drivadas ACTIVIAES-PÁG. 0. Las solucions aparcn n la tabla. [0, ] [, 6] a) f () = b) f () = + c) f () = 9 d) f () = 7, 6 8, 67. El valor d los límits s: f ( h) f () a) lím 6 h
Energía. Reactivos. Productos. Coordenada de reacción
CINÉTICA QUÍMICA 1 - Razon: a) Si pud dducirs, a partir d las figuras corrspondints, si las raccions rprsntadas n (I) y (II) son d igual vlocidad y si, prvisiblmnt, srán spontánas. b) En la figura (III)
DEPARTAMENTO DE INGENIERIA MECÁNICA INGENIERÍA INDUSTRIAL DISEÑO MECÁNICO PRÁCTICA Nº 3
DEPARAMENO DE INGENIERIA MECÁNICA INGENIERÍA INDUSRIAL DISEÑO MECÁNICO PRÁCICA Nº 3 DEERMINACIÓN DEL COEFICIENE DE ROZAMIENO ENRE CORREAS Y POLEAS Dtrminación dl coficint d rozaminto ntr corras y polas
Tema 3 La economía de la información
jrcicios rsultos d Microconomía. quilibrio gnral y conomía d la información rnando Prra Tallo Olga María odríguz odríguz Tma La conomía d la información http://bit.ly/8l8u jrcicio : na mprsa d frtilizants
INTERVALOS ENTORNOS FUNCIONES
FUNCIONES TRIGONOMÉTRICAS D acurdo a la dfinición d razons trigonométricas, los valors d sn α, cos α, tg α, sc α, cosc αy cotg α dpndn dl valor α, sindo α s una variabl ral n l sistma circular o radial.
7 L ímites de funciones. Continuidad
7 L ímits d funcions. Continuidad Página 05 f () = + Pinsa y ncuntra límits a) + ; + ; + + ; ; ; ; 9 0; 0; 0 ) 0; 0; 0 f ) + ; + ; 0 g) + ; + h) ; f () = a) 0 0, Página 0 a) a) f () = ; f () = ; f () =
LÍMITES Y CONTINUIDAD DE FUNCIONES CONTINUIDAD DE FUNCIONES REALES DE UNA VARIABLE REAL
LÍMITES Y CONTINUIDAD DE FUNCIONES CONTINUIDAD DE FUNCIONES EALES DE UNA VAIABLE EAL.- Estudiar la continuidad, n los puntos y d la función: f ( ) L( ) si / si Solución: f continua n y El dominio d la
TEMA 11. La integral definida Problemas Resueltos
Matmáticas II (Bachillrato d Cincias) Solucions d los problmas propustos Tma 9 Intgrals dfinidas TEMA La intgral dfinida Problmas Rsultos Halla l valor d: 7 a) ( + ) d b) 5 + d c) + d d) Para hallar una
No importa la cantidad de dinero?: Inflation Targeting y la teoría cuantitativa
No importa la cantidad d dinro?: Inflation Targting y la toría cuantitativa Carlos Estban Posada P. Andrés Flip García S. Rsumn La litratura rfrnt a los modlos d inflación y política montaria anti-inflacionaria
La inflación y la política monetaria colombianas del período : una interpretación
La inflación y la política montaria colombianas dl príodo 996-6: una intrprtación Carlos Estban Posada P. y Camilo Morals J. Rsumn Entr los años y 6 la inflación colombiana mostró una dclinación gradual
2. En el punto x = 0, f ( x) a) Un mínimo local. b) Un máximo local. c) Ninguna de las anteriores. Solución:
Análisis Matmático (Matmáticas Emprsarials II) PROBLEMAS DE FUNCIONES DE UNA VARIABLE. Pguntas d tipo tst. (J). La función f ( ) ln: a) Tin puntos stacionarios (o críticos, s dcir, puntos cuya primra drivada