PROBABILIDAD Y ESTADÍSTICA

Tamaño: px
Comenzar la demostración a partir de la página:

Download "PROBABILIDAD Y ESTADÍSTICA"

Transcripción

1 FACULTAD DE INGENIERÍA U N A M PROBABILIDAD Y ESTADÍSTICA Irene Patrca Valdez y Alfaro Versón revsada: uno 08

2 T E M A S DEL CURSO. Análss Estadístco de datos muestrales.. Fundamentos de la Teoría de la probabldad. 3. Varables aleatoras. 4. Modelos probablístcos comunes. 5. Varables aleatoras conuntas. 6. Dstrbucones muestrales. Preparado por Irene Patrca Valdez y Alfaro

3 CONTENIDO TEMA 3 3. Varables aleatoras. Obetvo: El alumno conocerá el concepto de varable aleatora y podrá analzar el comportamento probablsta de la varable, a través de su dstrbucón y sus característcas numércas. 3. Concepto de varable aleatora como abstraccón de un evento aleatoro. 3. Varable aleatora dscreta: funcón de probabldad sus propedades y su representacón gráfca. Funcón de dstrbucón acumulatva, sus propedades y su representacón gráfca. 3.3 Varable aleatora contnua: funcón de densdad de probabldad sus propedades y su representacón gráfca. Funcón de dstrbucón acumulatva, sus propedades y su representacón gráfca. 3.4 Valor esperado o meda de la varable aleatora dscreta y de la contnua. Valor esperado como operador matemátco y sus propedades. Momentos con respecto al orgen y a la meda. 3.4 Parámetros de las dstrbucones de las varables aleatoras. Meddas de tendenca central, de dspersón y de asmetría. Preparado por Irene Patrca Valdez y Alfaro

4 INTRODUCCIÓN A LA PROBABILIDAD VARIABLES ALEATORIAS Preparado por Irene Patrca Valdez y Alfaro

5 VARIABLE * VARIABLE: Ad. que vara o puede varar. f. Mat. Magntud que puede tener un valor cualquera de los comprenddos en un conunto. Número que resulta de una medda u operacón. VARIABLE CONTINUA: La que consta de undades o partes que no están separadas unas de otras, como la longtud de una línea, el área de una superfce, el volumen de un sóldo, la cabda de un vaso, etc. VARIABLE DISCRETA: La que consta de undades o partes separadas unas de otras, como los árboles de un monte, los soldados de un eércto, los granos de una espga, etc. * Fuente: Real Academa de la Lengua Española Preparado por Irene Patrca Valdez y Alfaro

6 VARIABLE DETERMINÍSTICA Varable: f. Mat. Magntud que puede tener un valor de los comprenddos en un conunto, pero predecble con eacttud. Varable Determnístca: Contnua Dscreta Preparado por Irene Patrca Valdez y Alfaro

7 VARIABLE ALEATORIA Varable Aleatora: f. Mat. Magntud cuyos valores están determnados por las leyes de probabldad, como los puntos resultantes de la trada de un dado. Varable Aleatora: Contnua Dscreta Algunos valores de una varable aleatora pueden ser mas probables que otros, lo que da orgen al concepto de dstrbucón de probabldad de una VA. Preparado por Irene Patrca Valdez y Alfaro

8 VARIABLE ALEATORIA Una VA es una funcón sobre el espaco de los posbles resultados eventos de un epermento aleatoro, Por eemplo: a Al arroar una moneda y observar el lado que queda haca arrba: { águla, 0 sol } b Almentar de la msma manera a 0 anmales y obervar su peso después de 30 días c arroar dos dados y anotar la suma de los puntos que caen haca arrba. d el voltae de salda de 50 elmnadores de baterías. Algunos valores de una varable aleatora pueden ser mas probables que otros, lo que da orgen al concepto de dstrbucón de probabldad de una VA. Preparado por Irene Patrca Valdez y Alfaro

9 DISTRIBUCIÓN DE PROBABILIDAD DE UNA VARIABLE ALEATORIA Eemplo: Caso de una VA dscreta: Epermento: Arroar dos dados y observar la VA : la suma de los puntos de las caras que quedan haca arrba. Las formas en que puede ocurrr cada uno de los valores que toma la VA se muestran en la tabla. Observemos que hay posbldad en 36 de que, mentras que hay posbldades en 36 de que 3 Y Y Y +Y Y Y Y +Y Preparado por Irene Patrca Valdez y Alfaro

10 DISTRIBUCIÓN DE PROBABILIDAD DE UNA VARIABLE ALEATORIA Las probabldades para cada valor de la VA se muestran en la tabla. En este eemplo la tabla representa la funcón de dstrbucón de probabldad fdp de la VA. P /36 3 /36 4 3/36 5 4/36 6 5/36 7 6/36 8 5/36 9 4/36 0 3/36 /36 Representacón gráfca de la funcón de dstrbucón de probabldad de la VA P P /36 Preparado por Irene Patrca Valdez y Alfaro

11 DISTRIBUCIÓN DE PROBABILIDAD DE UNA VARIABLE ALEATORIA Dstrbucón de probabldad de una VA : f P En nuestro eemplo de la suma de dos dados: f3 P 3 ; f3 /36 Propedades de la dstrbucón de probabldad de una varable aleatora dscreta tambén conocda como funcón masa de probabldad, fmp : a f 0 Para toda que pertenece a b f Preparado por Irene Patrca Valdez y Alfaro

12 DISTRIBUCIÓN DE PROBABILIDAD ACUMULATIVA DE UNA VARIABLE ALEATORIA DISCRETA Las probabldades acumuladas para cada valor de la VA se muestran en la sguente tabla que representa la funcón de dstrbucón acumulatva FDA de la VA. P P< /36 3 3/36 4 6/36 5 0/36 6 5/36 7 /36 8 6/ / / F P 35/36 36/36 Esta es una funcón escalón, hay un salto en cada valor de y es plana entre ellos. En nuestro eemplo: F3 P <3 ; F3 /36 + /36 3/36 Preparado por Irene Patrca Valdez y Alfaro

13 Preparado por Irene Patrca Valdez y Alfaro DISTRIBUCIÓN DE PROBABILIDAD ACUMULATIVA DE UNA VARIABLE ALEATORIA DISCRETA P F La FDA es una funcón no decrecente de con las sguentes propedades. - P F F F F > Además, s pertenece al conunto de los números enteros: F F P F F 5. P 4. consultar: Canavos, Prob. y Estad., Aplcacones y Métodos., Mc Graw Hll., pag. 56

14 DISTRIBUCIÓN DE PROBABILIDAD DE UNA VARIABLE ALEATORIA Caso de una VA contnua Epermento: observar la VA : el tempo que dura una lámpara hasta que se funde. La probabldad de que una lámpara dure de 0 a,000 horas es más alta que la probabldad de que dure de,000 a,000 horas; es decr, que a medda que transcurre el tempo, la probabldad de que contnúe en operacón dsmnuye; este comportamento se puede representar medante una curva eponencal de la forma: λ f 0 fdp f λe 0 λ 0 cualquer otro caso Preparado por Irene Patrca Valdez y Alfaro

15 DISTRIBUCIÓN DE PROBABILIDAD DE UNA VARIABLE ALEATORIA Caso de una VA contnua Propedades de la dstrbucón de probabldad de una varable aleatora contnua tambén conocda como funcón de densdad de probabldad, fdp :.. 3. f 0, fd Pa b b a fd Preparado por Irene Patrca Valdez y Alfaro

16 DISTRIBUCIÓN DE PROBABILIDAD ACUMULATIVA DE UNA VARIABLE ALEATORIA CONTINUA Caso de una VA contnua Epermento: observar la VA : el tempo que dura una lámpara hasta que se funde. F La probabldad de que una lámpara dure al menos horas se obtene medante la funcón de dstrbucón acumulatva FDA. fdp FDA f λe 0 λ 0 cualquer otro caso 0 FDA F P f t dt F e 0 λ 0 cualquer otro caso Preparado por Irene Patrca Valdez y Alfaro

17 DISTRIBUCIÓN DE PROBABILIDAD ACUMULATIVA DE UNA VARIABLE ALEATORIA CONTINUA Caso de una VA contnua F P f t dt La FDA es una funcón no decrecente de con las sguentes característcas.. F 0. F + 3. Pa < < b Fb Fa df 4. f d además: 0 P f t dt y: P P < f t dt F Preparado por Irene Patrca Valdez y Alfaro

18 VALOR ESPERADO DE UNA VARIABLE ALEATORIA O ESPERANZA MATEMÁTICA Valor esperado de una varable aleatora : E [ ] f P d ; ; s s es dscreta es contnua Valor esperado de una funcón g de una varable aleatora : E [ g ] g P g f d ; ; s s es dscreta es contnua Preparado por Irene Patrca Valdez y Alfaro

19 PROPIEDADES DEL VALOR ESPERADO COMO OPERADOR MATEMÁTICO S es una varable aleatora con dstrbucón de probabldad f; a, b y c son constantes y g y h son funcones de, entonces:. E [ c] c. E [ a + b] ae[ ] + b 3. E [ g + h ] E[ g ] + E[ h ] Preparado por Irene Patrca Valdez y Alfaro

20 Preparado por Irene Patrca Valdez y Alfaro MOMENTOS DE UNA VARIABLE ALEATORIA es contnua. s ; es dscreta. s ; ] [ k k k k d f P E es contnua. s ; es dscreta. s ; ] [ k k K k d f P E El momento de orden k respecto al orgen de una varable aleatora se defne como: El momento de orden k respecto a la meda de una varable aleatora se defne como:

21 Preparado por Irene Patrca Valdez y Alfaro MEDIA, VARIANZA Y DESVIACIÓN ESTÁNDAR DE UNA VA es contnua. s ; es dscreta. s ; ] [ d f P E es contnua. ; s es dscreta. ; s ] [ d f P E σ σ σ Valor esperado o meda de una varable aleatora Varanza de una varable aleatora Desvacón estándar

22 Preparado por Irene Patrca Valdez y Alfaro MOMENTOS DE UNA VARIABLE ALEATORIA 0,,,... ; 0 k k k k k Los momentos de orden k respecto a la meda pueden epresarse en funcón de los momentos respecto al orgen medante la relacón: Eemplo: ] [ ] [ ] [ E E E σ Para k segundo momento respecto a la meda varanza y Notar que : 0

23 MOMENTOS DE UNA VARIABLE ALEATORIA Con un procedmento análogo al anteror encontramos que: Para k Para k Preparado por Irene Patrca Valdez y Alfaro

24 PROPIEDADES DE LA VARIANZA COMO OPERADOR MATEMÁTICO S es una varable aleatora con dstrbucón de probabldad f ; a, b y c son constantes, entonces:. V[ c] 0. V [ a + b] a V[ ] Además, s Y es una varable aleatora con dstrbucón de probabldad f Y y, y se cumple que y Y son INDEPENDIENTES entonces: 3. V [ + Y ] V[ ] + V[ Y ] Preparado por Irene Patrca Valdez y Alfaro

25 DESIGUALDAD DE CHEBYSHEV Teorema: S es una varable aleatora con dstrbucón de probabldad f con meda varanza σ ; y k es una constante postva, entonces: P k kσ Formas alternatvas, a veces útles, de la desgualdad de Chebyshev son: P k < kσ k y P kσ < < + kσ La desgualdad proporcona una probabldad límte de que la varable aleatora esté a lo más a k desvacones estándar de la meda sn que sea necesaro conocer la dstrbucón de probabldad de, aunque se consdera un resultado débl, ya que s se conoce con precsón f se pueden obtener meores resultados. Preparado por Irene Patrca Valdez y Alfaro

FACULTAD DE INGENIERÍA UNAM PROBABILIDAD Y ESTADÍSTICA Irene Patricia Valdez y Alfaro irenev@servidor.unam.m T E M A S DEL CURSO. Análisis Estadístico de datos muestrales.. Fundamentos de la Teoría de

Más detalles

1. Variable aleatoria. Clasificación

1. Variable aleatoria. Clasificación Tema 7: Varable Aleatora Undmensonal 1. Varable aleatora. Clasfcacón. Caracterzacón de una varable aleatora. Varable Aleatora dscreta. Varable Aleatora contnua 3. Característcas de una varable aleatora.

Más detalles

TEMA 2: MAGNITUDES ALEATORIAS

TEMA 2: MAGNITUDES ALEATORIAS MÉTODOS ESTADÍSTICOS PARA LA EMPRESA TEMA : MAGNITUDES ALEATORIAS..- Varable aleatora. Varables dscretas y contnuas..- Dstrbucón de probabldad de una varable aleatora.3.- Característcas de las varables

Más detalles

3. VARIABLES ALEATORIAS.

3. VARIABLES ALEATORIAS. 3. VARIABLES ALEATORIAS. Una varable aleatora es una varable que toma valores numércos determnados por el resultado de un epermento aleatoro (no hay que confundr la varable aleatora con sus posbles valores)

Más detalles

TEMA 3. VARIABLE ALEATORIA

TEMA 3. VARIABLE ALEATORIA TEMA 3. VARIABLE ALEATORIA 3.. Introduccón. 3... Dstrbucón de Probabldad de una varable aleatora 3... Funcón de Dstrbucón de una varable aleatora 3.. Varable aleatora dscreta 3... Funcón masa de probabldad

Más detalles

Variables Aleatorias

Variables Aleatorias Varables Aleatoras VARIABLES ALEATORIAS. Varable aleatora. Tpos.... Dstrbucón de probabldad asocada a una varable aleatora dscreta... 4. Funcón de dstrbucón. Propedades... 5 4. Funcón de densdad... 7 5.

Más detalles

Variables Aleatorias

Variables Aleatorias Varables Aleatoras VARIABLES ALEATORIAS. Varable aleatora. Tpos.... Dstrbucón de probabldad asocada a una varable aleatora dscreta... 4. Funcón de dstrbucón. Propedades... 5 4. Funcón de densdad... 7 5.

Más detalles

Probabilidad Grupo 23 Semestre Segundo examen parcial

Probabilidad Grupo 23 Semestre Segundo examen parcial Probabldad Grupo 3 Semestre 015- Segundo examen parcal La tabla sguente presenta 0 postulados, algunos de los cuales son verdaderos y otros son falsos. Analza detendamente cada postulado y elge tu respuesta

Más detalles

Nos interesa asignar probabilidades a valores numéricos obtenidos a partir de fenómenos aleatorios, es decir a variables aleatorias.

Nos interesa asignar probabilidades a valores numéricos obtenidos a partir de fenómenos aleatorios, es decir a variables aleatorias. Estadístca (Q) Dana M. Kelmansky 5 Varables Aleatoras Nos nteresa asgnar probabldades a valores numércos obtendos a partr de fenómenos aleatoros, es decr a varables aleatoras. Por ejemplo, calcular la

Más detalles

Tema 1.- Variable aleatoria discreta (V2.1)

Tema 1.- Variable aleatoria discreta (V2.1) Tema.- Varable aleatora dscreta (V2.).- Concepto de varable aleatora A cada posble resultado de un expermento lo llamamos suceso elemental, y lo denotamos con ω, ω 2, Llamamos espaco muestral al conjunto

Más detalles

Variables Aleatorias. Variables Aleatorias. Variables Aleatorias. Objetivos del tema: Al final del tema el alumno será capaz de:

Variables Aleatorias. Variables Aleatorias. Variables Aleatorias. Objetivos del tema: Al final del tema el alumno será capaz de: Varables Aleatoras Varables Aleatoras Objetvos del tema: Concepto de varable aleatora Al fnal del tema el alumno será capaz de: Varables aleatoras dscretas y contnuas Funcón de probabldad Funcón de dstrbucón

Más detalles

Tema 1: Estadística Descriptiva Unidimensional

Tema 1: Estadística Descriptiva Unidimensional Fenómeno determnsta: al repetrlo en déntcas condcones se obtene el msmo resultado. Fenómeno aleatoro: no es posble predecr el resultado. La estadístca se ocupa de aquellos fenómenos no determnstas donde

Más detalles

INTRODUCCIÓN. Técnicas estadísticas

INTRODUCCIÓN. Técnicas estadísticas Tema : Estadístca Descrptva Undmensonal ITRODUCCIÓ Fenómeno determnsta: al repetrlo en déntcas condcones se obtene el msmo resultado. (Ejemplo: lómetros recorrdos en un ntervalo de tempo a una velocdad

Más detalles

EJERCICIOS RESUELTOS VARIABLE ALEATORIA UNIDIMENSIONAL

EJERCICIOS RESUELTOS VARIABLE ALEATORIA UNIDIMENSIONAL Gestón Aeronáutca: Estadístca Teórca Facultad Cencas Económcas y Empresarales Departamento de Economía Aplcada Profesor: Santago de la Fuente Fernández EJERCICIOS RESUELTOS VARIABLE ALEATORIA UNIDIMENSIONAL

Más detalles

para cualquier a y b, entonces f(x) es la función de densidad de probabilidad de la variable aleatoria continua X.

para cualquier a y b, entonces f(x) es la función de densidad de probabilidad de la variable aleatoria continua X. Conceptos de Probabldad A contnuacón se presenta una revsón no ehaustva y a manera ntroductora de conceptos báscos de la teoría de probabldades. Un estudo proundo y ormal de estos se puede hacer en Mood

Más detalles

PyE_ EF1_TIPO1_

PyE_ EF1_TIPO1_ SEMESTRE 00- TIPO DURACIÓN MÁIMA.5 HORAS DICIEMBRE DE 00 NOMBRE. El índce de clardad se determnó en los celos de Morelos, para cada uno de los 365 días de un año, obtenéndose los sguentes datos. Límtes

Más detalles

, x es un suceso de S. Es decir, si :

, x es un suceso de S. Es decir, si : 1. Objetvos: a) Aprender a calcular probabldades de las dstrbucones Bnomal y Posson usando EXCEL. b) Estudo de la funcón puntual de probabldad de la dstrbucón Bnomal ~B(n;p) c) Estudo de la funcón puntual

Más detalles

VARIABLE ALEATORIA DISCRETA. DISTRIBUCIÓN BINOMIAL.

VARIABLE ALEATORIA DISCRETA. DISTRIBUCIÓN BINOMIAL. VARIABLE ALEATORIA DISCRETA. DISTRIBUCIÓN BINOMIAL. Concepto de varable aleatora. Se llama varable aleatora a toda aplcacón que asoca a cada elemento del espaco muestral de un epermento, un número real.

Más detalles

3 - VARIABLES ALEATORIAS

3 - VARIABLES ALEATORIAS arte Varables aleatoras rof. María B. ntarell - VARIABLES ALEATORIAS.- Generaldades En muchas stuacones epermentales se quere asgnar un número real a cada uno de los elementos del espaco muestral. Al descrbr

Más detalles

Modelos triangular y parabólico

Modelos triangular y parabólico Modelos trangular y parabólco ClassPad 0 Prof. Jean-Perre Marcallou INTRODUCCIÓN La calculadora CASIO ClassPad 0 dspone de la Aplcacón Prncpal para realzar los cálculos correspondentes a los modelos trangular

Más detalles

Ejemplo: Consumo - Ingreso. Ingreso. Consumo. Población 60 familias

Ejemplo: Consumo - Ingreso. Ingreso. Consumo. Población 60 familias Ejemplo: Consumo - Ingreso Ingreso Consumo Poblacón 60 famlas ( YX ) P = x [ YX ] E = x Línea de regresón poblaconal 80 60 Meda Condconal 40 20 00 [ X = 200] EY o o o o [ X = 200] EY 80 o o o 60 o 40 8

Más detalles

Variable aleatoria: definiciones básicas

Variable aleatoria: definiciones básicas Varable aleatora: defncones báscas Varable Aleatora Hasta ahora hemos dscutdo eventos elementales y sus probabldades asocadas [eventos dscretos] Consdere ahora la dea de asgnarle un valor al resultado

Más detalles

Población 1. Población 1. Población 2. Población 2. Población 1. Población 1. Población 2. Población 2. Frecuencia. Frecuencia

Población 1. Población 1. Población 2. Población 2. Población 1. Población 1. Población 2. Población 2. Frecuencia. Frecuencia MAT-3 Estadístca I Tema : Meddas de Dspersón Facltador: Félx Rondón, MS Insttuto Especalzado de Estudos Superores Loyola Introduccón Las meddas de tendenca central son ndcadores estadístcos que resumen

Más detalles

CURSO INTERNACIONAL: CONSTRUCCIÓN DE ESCENARIOS ECONÓMICOS Y ECONOMETRÍA AVANZADA. Instructor: Horacio Catalán Alonso

CURSO INTERNACIONAL: CONSTRUCCIÓN DE ESCENARIOS ECONÓMICOS Y ECONOMETRÍA AVANZADA. Instructor: Horacio Catalán Alonso CURSO ITERACIOAL: COSTRUCCIÓ DE ESCEARIOS ECOÓMICOS ECOOMETRÍA AVAZADA Instructor: Horaco Catalán Alonso Modelo de Regresón Lneal Smple El modelo de regresón lneal representa un marco metodológco, que

Más detalles

CAPÍTULO 4 MARCO TEÓRICO

CAPÍTULO 4 MARCO TEÓRICO CAPÍTULO 4 MARCO TEÓRICO Cabe menconar que durante el proceso de medcón, la precsón y la exacttud de cualquer magntud físca está lmtada. Esta lmtacón se debe a que las medcones físcas sempre contenen errores.

Más detalles

Tema 4: Variables aleatorias

Tema 4: Variables aleatorias Estadístca 46 Tema 4: Varables aleatoras El concepto de varable aleatora surge de la necesdad de hacer más manejables matemátcamente los resultados de los expermentos aleatoros, que en muchos casos son

Más detalles

Estadísticos muéstrales

Estadísticos muéstrales Estadístcos muéstrales Hemos estudado dferentes meddas numércas correspondentes a conjuntos de datos, entre otras, estudamos la meda, la desvacón estándar etc. Ahora vamos a dstngur entre meddas numércas

Más detalles

Métodos específicos de generación de diversas distribuciones discretas

Métodos específicos de generación de diversas distribuciones discretas Tema 3 Métodos específcos de generacón de dversas dstrbucones dscretas 3.1. Dstrbucón de Bernoull Sea X B(p). La funcón de probabldad puntual de X es: P (X = 1) = p P (X = 0) = 1 p Utlzando el método de

Más detalles

Análisis del caso promedio. Técnicas Avanzadas de Programación - Javier Campos 70

Análisis del caso promedio. Técnicas Avanzadas de Programación - Javier Campos 70 Análss del caso promedo Técncas Avanzadas de Programacón - Javer Campos 70 Análss del caso promedo El plan: Probabldad Análss probablsta Árboles bnaros de búsqueda construdos aleatoramente Tres, árboles

Más detalles

CAPÍTULO 1: VARIABLES ALEATORIAS Y SUS DISTRIBUCIONES

CAPÍTULO 1: VARIABLES ALEATORIAS Y SUS DISTRIBUCIONES CAÍTULO : VARIABLES ALEATORIAS SUS DISTRIBUCIONES En este capítulo el alumno debe abordar el conocmento de un mportante concepto el de VARIABLE ALEATORIA tpos de varables aleatoras cómo se dstrbue la funcón

Más detalles

CASO 1: Variable CONTINUA con idéntica probabilidad de ocurrencia para los infinitos valores comprendidos entre dos extremos (inferior y superior)

CASO 1: Variable CONTINUA con idéntica probabilidad de ocurrencia para los infinitos valores comprendidos entre dos extremos (inferior y superior) DIFERENTES TIOS DE DISTRIBUCIÓN UTILIZACIÓN DE FUNCIONES DE EXCEL EN MODELOS DE SIMULACIÓN Utlzacón ndvdual y conjunta de funcones para la representacón del comportamento de varables bajo las alternatvas

Más detalles

VARIABLES ALEATORIAS UNIDIMENSIONALES

VARIABLES ALEATORIAS UNIDIMENSIONALES Gestón Aeronáutca: Estadístca Teórca Facultad Cencas Económcas y Empresarales Departamento de Economía Aplcada Profesor: Santago de la Fuente Fernández VARIABLES ALEATORIAS UNIDIMENSIONALES Gestón Aeronáutca:

Más detalles

Instrucciones: Leer detenidamente los siete enunciados y resolver seis de los siete problemas propuestos. Frecuencia absoluta (f i )

Instrucciones: Leer detenidamente los siete enunciados y resolver seis de los siete problemas propuestos. Frecuencia absoluta (f i ) UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉICO FACULTAD DE INGENIERÍA DIVISIÓN DE CIENCIAS BÁSICAS COORDINACIÓN DE CIENCIAS APLICADAS DEPARTAMENTO DE PROBABILIDAD Y ESTADÍSTICA PRIMER EAMEN FINAL RESOLUCIÓN SEMESTRE

Más detalles

NOMBRE Apellido Paterno Apellido Materno Nombre(s) Porcentaje de defectos producidos Máquina Porcentaje de producción

NOMBRE Apellido Paterno Apellido Materno Nombre(s) Porcentaje de defectos producidos Máquina Porcentaje de producción UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉICO FACULTAD DE INGENIERÍA DIVISIÓN DE CIENCIAS BÁSICAS COORDINACIÓN DE CIENCIAS APLICADAS DEPARTAMENTO DE PROBABILIDAD Y ESTADÍSTICA PRIMER EAMEN FINAL RESOLUCIONES

Más detalles

ENUNCIADOS DE LOS EJERCICIOS PROPUESTOS EN 2011 EN MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES. 3 y

ENUNCIADOS DE LOS EJERCICIOS PROPUESTOS EN 2011 EN MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES. 3 y ENUNCADOS DE LOS EJERCCOS PROPUESTOS EN 011 EN MATEMÁTCAS APLCADAS A LAS CENCAS SOCALES. EJERCCO 1 a (5 puntos Raconalce las epresones y. 7 b (5 puntos Halle el conjunto de solucones de la necuacón EJERCCO

Más detalles

TEMA 14. ESCALAMIENTO CONJUNTO. INTRODUCCIÓN A LA TEORÍA DE LA RESPUESTA A LOS ITEMS (TRI)

TEMA 14. ESCALAMIENTO CONJUNTO. INTRODUCCIÓN A LA TEORÍA DE LA RESPUESTA A LOS ITEMS (TRI) TEMA 14. ESCALAMIENTO CONJUNTO. INTRODUCCIÓN A LA TEORÍA DE LA RESPUESTA A LOS ITEMS (TRI) 14.1. La Curva Característca de los ítems (CCI) 14.. Los errores típcos de medda 14.3. La Funcón de Informacón

Más detalles

TEMA 4 Variables aleatorias discretas Esperanza y varianza

TEMA 4 Variables aleatorias discretas Esperanza y varianza Métodos Estadístcos para la Ingenería Curso007/08 Felpe Ramírez Ingenería Técnca Químca Industral TEMA 4 Varables aleatoras dscretas Esperanza y varanza La Probabldad es la verdadera guía de la vda. Ccerón

Más detalles

Figura 1

Figura 1 5 Regresón Lneal Smple 5. Introduccón 90 En muchos problemas centífcos nteresa hallar la relacón entre una varable (Y), llamada varable de respuesta, ó varable de salda, ó varable dependente y un conjunto

Más detalles

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN PREPARATORIA No. 3

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN PREPARATORIA No. 3 UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN PREPARATORIA No. 3 PROBABILIDAD Y ESTADISTICA LABORATORIO PARA EXAMENES EXTRAORDINARIOS INSTRUCCIONES.- CONTESTE CADA UNO DE LOS SIGUIENTES PROBLEMAS COMPROBANDO SU RESPUESTA

Más detalles

Tema 6. Estadística descriptiva bivariable con variables numéricas

Tema 6. Estadística descriptiva bivariable con variables numéricas Clase 6 Tema 6. Estadístca descrptva bvarable con varables numércas Estadístca bvarable: tpos de relacón Relacón entre varables cuanttatvas Para dentfcar las característcas de una relacón entre dos varables

Más detalles

Variables aleatorias discretas

Variables aleatorias discretas UNIDAD 5 Varables aleatoras dscretas Objetvos Al fnalzar la undad, el alumno: utlzará el método de puntos muestrales asocado a varables aleatoras dstngurá una varable aleatora dscreta de una varable aleatora

Más detalles

AJUSTE DE LA CURVA DE PROBABILIDAD DEL ESCURRIMIENTO MEDIO HIPERANUAL ANUAL SEGÚN LA TEORÍA S B JOHNSON.

AJUSTE DE LA CURVA DE PROBABILIDAD DEL ESCURRIMIENTO MEDIO HIPERANUAL ANUAL SEGÚN LA TEORÍA S B JOHNSON. AJUSTE DE LA CURVA DE PROBABILIDAD DEL ESCURRIMIENTO MEDIO HIPERANUAL ANUAL SEGÚN LA TEORÍA S B JOHNSON. Revsta Voluntad Hdráulca No. 57, 98. Págnas 58-64 RESUMEN Se nforma sobre el desarrollo del método

Más detalles

( ) MUESTREO ALEATORIO SIMPLE SIN REEMPLAZO ( mas ) y Y. N n. S y. MUESTREO ALEATORIO SIMPLE SIN REEMPLAZO ( mas )

( ) MUESTREO ALEATORIO SIMPLE SIN REEMPLAZO ( mas ) y Y. N n. S y. MUESTREO ALEATORIO SIMPLE SIN REEMPLAZO ( mas ) MUETREO ALEATORIO IMPLE I Este esquema de muestreo es el más usado cuando se tene un marco de muestreo que especfque la manera de dentfcar cada undad en la poblacón. Además no se tene conocmento a pror

Más detalles

A. Una pregunta muy particular que se puede hacer a una distribución de datos es de qué magnitud es es la heterogeneidad que se observa.

A. Una pregunta muy particular que se puede hacer a una distribución de datos es de qué magnitud es es la heterogeneidad que se observa. MEDIDA DE DIPERIÓ A. Una pregunta muy partcular que se puede hacer a una dstrbucón de datos es de qué magntud es es la heterogenedad que se observa. FICHA º 18 Las meddas de dspersón generalmente acompañan

Más detalles

Operadores por Regiones

Operadores por Regiones Operadores por Regones Fltros por Regones Los fltros por regones ntentan determnar el cambo de valor de un píxel consderando los valores de sus vecnos I[-1,-1] I[-1] I[+1,-1] I[-1, I[ I[+1, I[-1,+1] I[+1]

Más detalles

17/02/2015. Ángel Serrano Sánchez de León

17/02/2015. Ángel Serrano Sánchez de León Ángel Serrano Sánchez de León 1 Índce Introduccón Varables estadístcas Dstrbucones esde frecuencas c Introduccón a la representacón gráfca de datos Meddas de tendenca central: meda (artmétca, geométrca,

Más detalles

Problemas donde intervienen dos o más variables numéricas

Problemas donde intervienen dos o más variables numéricas Análss de Regresón y Correlacón Lneal Problemas donde ntervenen dos o más varables numércas Estudaremos el tpo de relacones que exsten entre ellas, y de que forma se asocan Ejemplos: La presón de una masa

Más detalles

ESTADISTÍCA. 1. Población, muestra e individuo. 2. Variables estadísticas. 3. El proceso que se sigue en estadística

ESTADISTÍCA. 1. Población, muestra e individuo. 2. Variables estadísticas. 3. El proceso que se sigue en estadística ESTADISTÍCA. Poblacón, muestra e ndvduo Las característcas de una dstrbucón se pueden estudar drectamente sobre la poblacón o se pueden nferr a partr de l estudo de una muestra. Poblacón estadístca es

Más detalles

Estadísticos muéstrales

Estadísticos muéstrales Estadístcos muéstrales Una empresa dedcada al transporte y dstrbucón de mercancías, tene una plantlla de 50 trabajadores. Durante el últmo año se ha observado que 5 trabajadores han faltado un solo día

Más detalles

16/02/2015. Ángel Serrano Sánchez de León

16/02/2015. Ángel Serrano Sánchez de León Ángel Serrano Sánchez de León Índce Introduccón Varables estadístcas Dstrbucones de frecuencas Introduccón a la representacón gráfca de datos Meddas de tendenca central: meda (artmétca, geométrca, armónca,

Más detalles

Tema 1: Análisis de datos unidimensionales

Tema 1: Análisis de datos unidimensionales Tema : Análss de datos undmensonales. Varables estadístcas undmensonales. Representacones gráfcas.. Característcas de las dstrbucones de frecuencas undmensonales.. Varables estadístcas undmensonales. Representacones

Más detalles

Tema 1:Descripción de una variable. Tema 1:Descripción de una variable. 1.1 El método estadístico. 1.1 El método estadístico. Describir el problema

Tema 1:Descripción de una variable. Tema 1:Descripción de una variable. 1.1 El método estadístico. 1.1 El método estadístico. Describir el problema Tema :Descrpcón de una varable Tema :Descrpcón de una varable. El método estadístco. Descrpcón de conjuntos de datos Dstrbucones de frecuencas. Representacón gráfca Dagrama de barras Hstograma. Meddas

Más detalles

PyE_ EF1_TIPO1_

PyE_ EF1_TIPO1_ UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉICO FACULTAD DE INGENIERÍA DIVISIÓN DE CIENCIAS BÁSICAS COORDINACIÓN DE CIENCIAS APLICADAS DEPARTAMENTO DE PROBABILIDAD Y ESTADÍSTICA PRIMER EAMEN FINAL RESOLUCIÓN SEMESTRE

Más detalles

1. Notación y tabulación

1. Notación y tabulación Tema 2: Descrpcón Unvarante. otacón y tabulacón 2. Descrpcón gráfca 3. Descrpcón numérca. Momentos estadístcos. Meddas de poscón. Meddas de dspersón v. Varable tpfcada v. Meddas de forma v. Meddas de concentracón

Más detalles

INTRODUCCIÓN AL ANÁLISIS DE DATOS SEPTIEMBRE 2014 Código asignatura: EXAMEN TIPO TEST MODELO B DURACION: 2 HORAS.

INTRODUCCIÓN AL ANÁLISIS DE DATOS SEPTIEMBRE 2014 Código asignatura: EXAMEN TIPO TEST MODELO B DURACION: 2 HORAS. eptembre 04 EAMEN MODELO B ág. INTRODUCCIÓN AL ANÁLII DE DATO ETIEMBRE 04 Códgo asgnatura: 60037 EAMEN TIO TET MODELO B DURACION: HORA olucones 0 4 40 30 0 0 0 44 4 39 6 4 36 37 3 8 00 0 0 03 04 Nº de

Más detalles

PyE_ EF2_TIPO1_

PyE_ EF2_TIPO1_ UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉICO FACULTAD DE INGENIERÍA DIVISIÓN DE CIENCIAS BÁSICAS COORDINACIÓN DE CIENCIAS APLICADAS DEPARTAMENTO DE PROBABILIDAD Y ESTADÍSTICA SEGUNDO EAMEN FINAL RESOLUCIÓN SEMESTRE

Más detalles

Estas medidas serán más significativas cuanto más homogéneos sean los datos y pueden ser engañosas cuando mezclamos poblaciones distintas.

Estas medidas serán más significativas cuanto más homogéneos sean los datos y pueden ser engañosas cuando mezclamos poblaciones distintas. UIDAD 3: Meddas estadístcas Las meddas estadístcas o parámetros estadístcos son valores representatvos de una coleccón de datos y que resumen en unos pocos valores la normacón del total de datos. Estas

Más detalles

LECTURA 06: MEDIDAS DE TENDENCIA CENTRAL (PARTE I) LA MEDIA ARITMÉTICA TEMA 15: MEDIDAS ESTADISTICAS: DEFINICION Y CLASIFICACION

LECTURA 06: MEDIDAS DE TENDENCIA CENTRAL (PARTE I) LA MEDIA ARITMÉTICA TEMA 15: MEDIDAS ESTADISTICAS: DEFINICION Y CLASIFICACION Unversdad Católca Los Ángeles de Chmbote LECTURA 06: MEDIDAS DE TENDENCIA CENTRAL (PARTE I) LA MEDIA ARITMÉTICA TEMA 15: MEDIDAS ESTADISTICAS: DEFINICION Y CLASIFICACION 1. DEFINICION: Las meddas estadístcas

Más detalles

ESTADÍSTICA UNIDIMENSIONAL

ESTADÍSTICA UNIDIMENSIONAL ESTADÍSTICA UNIDIMENSIONAL La estadístca undmensonal trata de resumr la nformacón contenda en una tabla que contene nformacón de una sola varable en unos pocos números. Las meddas de poscón pueden ser:

Más detalles

Histogramas: Es un diagrama de barras pero los datos son siempre cuantitativos agrupados en clases o intervalos.

Histogramas: Es un diagrama de barras pero los datos son siempre cuantitativos agrupados en clases o intervalos. ESTADÍSTICA I. Recuerda: Poblacón: Es el conjunto de todos los elementos que cumplen una determnada propedad, que llamamos carácter estadístco. Los elementos de la poblacón se llaman ndvduos. Muestra:

Más detalles

Regresión y Correlación Métodos numéricos

Regresión y Correlación Métodos numéricos Regresón y Correlacón Métodos numércos Prof. Mguel Hesquo Garduño. Est. Mrla Benavdes Rojas Depto. De Ingenería Químca Petrolera ESIQIE-IPN hesquogm@yahoo.com.mx mbenavdesr5@gmal.com Regresón lneal El

Más detalles

Tema 1. Conceptos generales

Tema 1. Conceptos generales Análss de Datos I Esquema del Tema Tema. Conceptos generales. COCEPTOS PREVIOS. DEFIICIÓ DE MEDICIÓ 3. DEFIICIÓ DE ESCALAS DE MEDIDA 4. VARIABLES CLASIFICACIÓ Y OTACIÓ REGLAS DEL SUMATORIO 5. EJERCICIOS

Más detalles

Estimación no lineal del estado y los parámetros

Estimación no lineal del estado y los parámetros Parte III Estmacón no lneal del estado y los parámetros 1. Estmacón recursva El ltro de Kalman extenddo 12 es una técnca muy utlzada para la la estmacón recursva del estado de sstemas no lneales en presenca

Más detalles

Medidas de Variabilidad

Medidas de Variabilidad Meddas de Varabldad Una medda de varabldad es un ndcador del grado de dspersón de un conjunto de observacones de una varable, en torno a la meda o centro físco de la msma. S la dspersón es poca, entonces

Más detalles

Introducción. Escuela Técnica Superior de Ingeniería Informática. Universidad de La Laguna. Fernando Pérez Nava

Introducción. Escuela Técnica Superior de Ingeniería Informática. Universidad de La Laguna. Fernando Pérez Nava Reconocmento de Patrones Introduccón Tema : Reconocmento Estadístco de Patrones Por qué una aproxmacón estadístca en el RP? La utlzacón de característcas para representar una entdad provoca una pérdda

Más detalles

Regresión lineal y correlación lineal

Regresión lineal y correlación lineal UNIVERSIDAD ESTATAL DEL SUR DE MANABÍ Creada medante regstro Ofcal 61 del 7 de Febrero del 001 CARRERA DE AUDITORÍA Novembre 016 abrl 017 Semnaro de Investgacón Regresón lneal y correlacón lneal Dra. Marsabel

Más detalles

b) Realiza el diagrama de dispersión c) Calcula media y desviación típica de cada variable 2

b) Realiza el diagrama de dispersión c) Calcula media y desviación típica de cada variable 2 Ejercco 1: Varable dscreta. Datos con recuencas. Tabla de doble entrada En una clase compuesta por alumnos se ha hecho un estudo sobre el número de horas daras de estudo X el número de suspensos Y, obtenéndose

Más detalles

CAPÍTULO IV. MEDICIÓN. De acuerdo con Székely (2005), existe dentro del período información

CAPÍTULO IV. MEDICIÓN. De acuerdo con Székely (2005), existe dentro del período información IV. Base de Datos CAPÍTULO IV. MEDICIÓN De acuerdo con Székely (2005), exste dentro del período 950-2004 nformacón representatva a nvel naconal que en algún momento se ha utlzado para medr la pobreza.

Más detalles

COLEGIO INGLÉS MEDIDAS DE DISPERSIÓN

COLEGIO INGLÉS MEDIDAS DE DISPERSIÓN COLEGIO IGLÉS DEPARTAMETO IVEL: CUARTO MEDIO PSU. UIDAD: ESTADISTICA 3 PROFESOR: ATALIA MORALES A. ROLADO SAEZ M. MIGUEL GUTIÉRREZ S. JAVIER FRIGERIO B. MEDIDAS DE DISPERSIÓ Las meddas de dspersón dan

Más detalles

5ª Parte: Estadística y Probabilidad

5ª Parte: Estadística y Probabilidad ª Parte: Estadístca y Probabldad. Las notas de los alumnos de una clase son:,,,, 6, 7,,,,,,,, 7,,,, 6,, Haz una tabla de frecuencas. Solucón Varable Frecuencas absolutas Frecuencas relatvas estadístca

Más detalles

Mª Dolores del Campo Maldonado. Tel: :

Mª Dolores del Campo Maldonado. Tel: : Mª Dolores del Campo Maldonado Tel: : 918 074 714 e-mal: ddelcampo@cem.mtyc.es Documentacón de referenca nternaconalmente aceptada ISO/IEC GUIDE 98-3:008 Uncertanty of measurement Part 3: Gude to the n

Más detalles

Prueba de Inferencia Estadística y Contraste de Hipótesis. 8 de octubre de 2012 GRUPO A

Prueba de Inferencia Estadística y Contraste de Hipótesis. 8 de octubre de 2012 GRUPO A Prueba de Inferenca Estadístca y Contraste de Hpótess 8 de octubre de 01 GRUPO A 1.- Se ha observado un ángulo cnco veces, obtenéndose los sguentes valores: Se pde: 65º5 ; 65º33 ; 65º3 ; 65º8 ; 65º7 a)

Más detalles

H 0 : La distribución poblacional es uniforme H 1 : La distribución poblacional no es uniforme

H 0 : La distribución poblacional es uniforme H 1 : La distribución poblacional no es uniforme Una hpótess estadístca es una afrmacón con respecto a una característca que se desconoce de una poblacón de nterés. En la seccón anteror tratamos los casos dscretos, es decr, en forma exclusva el valor

Más detalles

Introducción a la Física. Medidas y Errores

Introducción a la Física. Medidas y Errores Departamento de Físca Unversdad de Jaén Introduccón a la Físca Meddas y Errores J.A.Moleón 1 1- Introduccón La Físca y otras cencas persguen la descrpcón cualtatva y cuanttatva de los fenómenos que ocurren

Más detalles

LECTURA N 06: MEDIDAS DE TENDENCIA CENTRAL (PARTE I) TEMA 14: MEDIDAS ESTADISTICAS: DEFINICION Y CLASIFICACION

LECTURA N 06: MEDIDAS DE TENDENCIA CENTRAL (PARTE I) TEMA 14: MEDIDAS ESTADISTICAS: DEFINICION Y CLASIFICACION Unversdad Católca Los Ángeles de Chmbote LECTURA N 06: MEDIDAS DE TENDENCIA CENTRAL (PARTE I) TEMA 4: MEDIDAS ESTADISTICAS: DEFINICION Y CLASIFICACION. DEFINICION Las meddas estadístcas son meddas de resumen

Más detalles

Descripción de una variable

Descripción de una variable Descrpcón de una varable Tema. Defncones fundamentales. Tabla de frecuencas. Datos agrupados. Meddas de poscón Meddas de tendenca central: meda, medana, moda Ignaco Cascos Depto. Estadístca, Unversdad

Más detalles

Resolución. Instrucciones: Leer detenidamente los siete enunciados y resolver seis de los siete problemas propuestos.

Resolución. Instrucciones: Leer detenidamente los siete enunciados y resolver seis de los siete problemas propuestos. UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉICO FACULTAD DE INGENIERÍA DIVISIÓN DE CIENCIAS BÁSICAS COORDINACIÓN DE CIENCIAS APLICADAS DEPARTAMENTO DE PROBABILIDAD Y ESTADÍSTICA SEGUNDO EAMEN FINAL SEMESTRE 04

Más detalles

PARÁMETROS DE UNA DISTRIBUCIÓN DE PROBABILIDAD DISCRETA Media aritmética: μ = x

PARÁMETROS DE UNA DISTRIBUCIÓN DE PROBABILIDAD DISCRETA Media aritmética: μ = x Dstrbucones de Probabldad dscretas-bn1b DISTRIBUIONES DISRETAS DE PROBABILIDAD Dstrbucones dscretas son aquellas en las que la varable sólo puede tomar valores aslados. Ejemplo: lanzar una moneda ( valores:

Más detalles

Análisis de Resultados con Errores

Análisis de Resultados con Errores Análss de Resultados con Errores Exsten dos tpos de errores en los expermentos Errores sstemátcos errores aleatoros. Los errores sstemátcos son, desde lejos, los más mportantes. Errores Sstemátcos: Exsten

Más detalles

CAPÍTULO X ESTADÍSTICA APLICADA A LA HIDROLOGIA

CAPÍTULO X ESTADÍSTICA APLICADA A LA HIDROLOGIA CAPÍTULO X ESTADÍSTICA APLICADA A LA HIDROLOGIA 0. INTRODUCCIÓN. Los estudos hdrológcos requeren del análss de nformacón hdrometeorológca, esta nformacón puede ser de datos de precptacón, caudales, temperatura,

Más detalles

Tema 1: Estadística Descriptiva Unidimensional Unidad 2: Medidas de Posición, Dispersión y de Forma

Tema 1: Estadística Descriptiva Unidimensional Unidad 2: Medidas de Posición, Dispersión y de Forma Estadístca Tema 1: Estadístca Descrptva Undmensonal Undad 2: Meddas de Poscón, Dspersón y de Forma Área de Estadístca e Investgacón Operatva Lceso J. Rodríguez-Aragón Septembre 2010 Contendos...............................................................

Más detalles

CARTAS DE CONTROL. Han sido difundidas exitosamente en varios países dentro de una amplia variedad de situaciones para el control del proceso.

CARTAS DE CONTROL. Han sido difundidas exitosamente en varios países dentro de una amplia variedad de situaciones para el control del proceso. CARTAS DE CONTROL Las cartas de control son la herramenta más poderosa para analzar la varacón en la mayoría de los procesos. Han sdo dfunddas extosamente en varos países dentro de una ampla varedad de

Más detalles

Un estimado de intervalo o intervalo de confianza ( IC

Un estimado de intervalo o intervalo de confianza ( IC Un estmado puntual, por ser un sólo número, no proporcona por sí msmo nformacón alguna sobre la precsón y confabldad de la estmacón. Debdo a la varabldad que pueda exstr en la muestra, nunca se tendrá

Más detalles

VARIABLE ALEATORIA DISCRETA. DISTRIBUCIÓN BINOMIAL.

VARIABLE ALEATORIA DISCRETA. DISTRIBUCIÓN BINOMIAL. VARIABLE ALEATORIA DISCRETA. DISTRIBUCIÓN BINOMIAL. Concepto de varable aleatora. Se llama varable aleatora a toda aplcacón que asoca a cada elemento del espaco muestral de un expermento, un número real.

Más detalles

Tablas de Vida (Intervalos)

Tablas de Vida (Intervalos) Tablas de Vda (Intervalos) Resumen El procedmento Tablas de Vda (Intervalos) está dseñado para analzar datos que contengan tempos de vda o de falla, donde se sabe que el valor del tempo de vda cae en un

Más detalles

ESTADÍSTICA. Definiciones

ESTADÍSTICA. Definiciones ESTADÍSTICA Defncones - La Estadístca es la cenca que se ocupa de recoger, contar, organzar, representar y estudar datos referdos a una muestra para después generalzar y sacar conclusones acerca de una

Más detalles

Prueba de Evaluación Continua

Prueba de Evaluación Continua Estadístca Descrptva y Regresón y Correlacón Prueba de Evaluacón Contnua 1-III-18 1.- Dada la varable x y la nueva varable y=a+bx, ndcar (demostrándolo) la expresón exstente entre las respectvas medas

Más detalles

Tema 3. Estadísticos univariados: tendencia central, variabilidad, asimetría y curtosis

Tema 3. Estadísticos univariados: tendencia central, variabilidad, asimetría y curtosis Tema. Estadístcos unvarados: tendenca central, varabldad, asmetría y curtoss 1. MEDIDA DE TEDECIA CETRAL La meda artmétca La medana La moda Comparacón entre las meddas de tendenca central. MEDIDA DE VARIACIÓ

Más detalles

Estadística Unidimensional: SOLUCIONES

Estadística Unidimensional: SOLUCIONES 4ª SesónFecha: Estadístca Undmensonal: SOLUCIOES Varables estadístca dscreta 1 Con los datos del ejercco de Pág 19 nº 3 determna: a) Tabla de Frecuencas b) Dagrama de barras Gráfco acumulado c) Meddas

Más detalles

Inferencia en Regresión Lineal Simple

Inferencia en Regresión Lineal Simple Inferenca en Regresón Lneal Smple Modelo de regresón lneal smple: Se tenen n observacones de una varable explcatva x y de una varable respuesta y, ( x, y)(, x, y),...,( x n, y n ) el modelo estadístco

Más detalles

TEMA 1.- CONCEPTOS BÁSICOS

TEMA 1.- CONCEPTOS BÁSICOS TEMA 1.- CONCEPTOS BÁSICOS 1.1.- Cuestones tpo test 1.- En las encuestas personales puede codfcarse, por ejemplo, con un cero las que son contestadas por una mujer y con un uno las que lo son por un varón.

Más detalles

VARIABLES ALEATORIAS BIDIMENSIONALES. DISTRIBUCIONES

VARIABLES ALEATORIAS BIDIMENSIONALES. DISTRIBUCIONES Gestón Aeronáutca: Estadístca Teórca Facultad Cencas Económcas Empresarales Departamento de Economía Aplcada Profesor: Santago de la Fuente Fernández VARIABLES ALEATORIAS BIDIMENSIONALES. DISTRIBUCIONES

Más detalles

SEGUNDA PARTE RENTAS FINANCIERAS

SEGUNDA PARTE RENTAS FINANCIERAS SEGUNDA PARTE RENTAS FINANCIERAS 5 INTRODUCCIÓN A LA TEORÍA DE RENTAS 5.1 CONCEPTO: Renta fnancera: conjunto de captales fnanceros cuyos vencmentos regulares están dstrbudos sucesvamente a lo largo de

Más detalles

TEMA 4 MERCADOS CON INCERTIDUMBRE. Revisado, noviembre de 2017

TEMA 4 MERCADOS CON INCERTIDUMBRE. Revisado, noviembre de 2017 TEMA 4 MERCADOS CON INCERTIDUMBRE Revsado, novembre de 07 The book has grown out of a class I taught on the economcs of rsk at the Unversty of Wsconsn. My students have helped me n many ways wth ther questons,

Más detalles