e i para construir el modelo econométrico que se escribe a continuación:
|
|
- Marina Montero Cabrera
- hace 4 años
- Vistas:
Transcripción
1 5.3 Especfcacón del modelo empírco Para este análss se formló n modelo econométrco de seccón crzada, porqe las observacones corresponden a las característcas de las personas encestadas en n msmo período de tempo. Se spone qe las varables ndependentes están déntcamente dstrbdas con meda cero y varanza, es decr: e ~ d (0,σ 2 ). Pero como los modelos no reportan de forma exacta las relacones (Cardad, 1998) la dscrepanca o error entre los valores meddos reales de la varable explcada y los estmados medante el modelo, se recogerán en la varable qe se denomnará pertrbacón aleatora e. En el modelo se qere probar qe la varable dependente prodccón está en fncón de las varables ndependentes antgüedad, edad, capta hmano, aparos y camoneta. La metodología econométrca parte de la fncón matemátca sgente Y = f ( x 1, x 2 ) (5.1) Para s solcón se añade el térmno de error o pertrbacón qe denotaremos con e para constrr el modelo econométrco qe se escrbe a contnacón: Y = α + β X +β X + β X + β X + β X + µ (5.2) = 1,2,3,4, N donde : Y = la varable dependente o endógena X = la varable ndependente o explcatva α = la ordenada y la pendente del modelo. β = los coefcentes de la regresón. µ = varable qe recoge los errores = Sbíndce porqe la mestra contene datos de seccón crzada, y N = el número de observacones de la mestra. 100
2 En esta expresón, la varable Y representa la prodccón, la varable X, expresa 1, 1, la antgüedad; X, expresa la edad qe tene cada apcltor; X, el captal hmano; 2 X representa los aparos qe nstalan; X, recoge la varable qe representa a los 4, 5 apcltores qe poseen camoneta. El térmno µ es na pertrbacón aleatora o componente de error. S se consdera qe n modelo no recoge todas las varables qe nflyen sobre Y y, además, qe hay errores de medcón y n mprevsble comportamento hmano, se espera qe µ recoja los efectos de las varables omtdas., 3 1 Para analzar el desarrollo de la actvdad apícola se bsca la relacón de la prodccón, con la varable de la antgüedad, la edad, el captal hmano, aparos y camonetas. En la medda en qe el modelo esté especfcado de manera correcta, los coefcentes nforman drectamente sobre el sentdo (postvo o negatvo) de la relacón Se estmó n modelo de regresón lneal normal clásco (MRLNC) qe según Pena Trapero et al (1999) teórcamente se parte del spesto de qe la varable Y es fncón de k factores explcatvos de s comportamento: (5.3) Asmsmo se presme qe las n observacones, son formadas por n mecansmo lógco qe se basa en las sgentes hpótess: Hpótess de lnealdad: donde: 101
3 (n x 1) (n x k) (k x 1) (n x 1) es decr: S se qere qe en el modelo exsta térmno ndependente, la varable X tene qe ser gal a no, o lo qe es lo msmo, la prmera colmna de la matrz X tene qe ser n vector de nos (vector ota, ). A este regresor se le llama regreso fctco. La esperanza del vector de la varable aleatora es cero: E( e ) = 0 1 σ 2 Ι e La matrz de varanzas y covaranzas del vector de varables aleatoras es: E(ee ) =, o sea los componentes del vector e tenen déntca varanza (homoscedastcdad) y además las covaranzas son 0, debdo a qe los elementos del vector e están ncorrelaconados. El rango de la matrz X es k, el número de regresores, y debe ser menor o ga a n, el número de observacones. Esta condcón es necesara para qe la matrz X X sea nvertble. Además, las varables explcatvas no peden ser lnealmente dependentes. La matrz X es na matrz aleatora o no estocástca. 102
4 El vector de la varable aleatora sge na dstrbcón normal mltvarante d 2 parámetros: e N(0,σ Ι ), es decr, es n vector normal esférco. Para este caso el modelo propesto a estmar sería: Y = X β + e; Yˆ = Xb (5.4) Donde b es el vector de estmadores de los correspondentes parámetros Sgendo MCO, se elgen aqellos estmadores qe hacen mínma la sma de las dferencas cadrátcas entre los valores observados y los valores estmados de la varable dependente, es decr, qe mnmzan la sma de los errores al cadrado: 2 Mín Σ (Y - Yˆ )2 = mín Σ e (5.5) Aplcando en el modelo propesto el método de los mínmos cadrados se obtenen estmadores lneales nsesgados y óptmos (ELIO). Una vez aplcado el método se obtene el vector de estmadores, b, a través de la sgente expresón: b = (X X)-1 X Y (4.7.6) donde (k x 1) (k x k) (k x 1) por lo qe el modelo estmado se expresa: Ŷ = Xb Ŷ = b + b X + b X b X k k 103
5 La sma de cadrados se presenta a partr de la varacón total de Y, qe pede enncarse como la sma de dos componentes: n componente qe explca a la regresón lneal y otro componente resdal qe no explca a la regresón lneal. S sabemos qe: Y = Yˆ + e Premltplcando por la transpesta: Y Y = Yˆ Ŷ + e e Y expresándolo en forma de desvacones: SCT = SCE + SCR : es decr, la sma de los cadrados totales es gal a la sma de cadrados explcada por la regresón más la sma de cadrados de resdos, donde: SCT = ( ' Y ) 2 Y Y = Y 2 ny 2 n ('Y)2 SCE = Ŷ Yˆ = b X Y ny 2 n SCR = e e = SCT SCE Donde es el vector cyos elementos son todos gales a no. Los estmadores mínmos cadrados, son nsesgados porqe la esperanza de estmador concde con el parámetro a estmar: E(b) = β; 2. La matrz de varanzas y covaranzas es: 104
6 S se defne el estmador de la varanza de la varable aleatora como: S 2 = e' e n k = SCR N K Se dce qe el estmador mínmo cadrátco es nsesgado porqe s esperanza E(S 2 ) = σ 2 concde con el parámetro a estmar: pesto qe: e = Y Xb = Y X(X X)-1X Y =[I- X(X X)-1X ]Y= MY donde la matrz M es na matrz smétrca e dempotente, y, s se calcla la esperanza, E( M) = se obtene E(S 2 ) = E( e' e ) = 1 σ 2 (n k ) = σ 2 (5.6) n k n k Sabendo esto, la estmacón nsesgada de la matrz de varanzas y covaranzas de los estmadores sería:
6 Heteroscedasticidad
6 Heteroscedastcdad Defncón casas de heteroscedastcdad Defncón: la varanza de la pertrbacón no es constante. Casas: a natraleza de la relacón entre las varables Ejemplo : relacón gasto-renta; Hogares con
CURSO INTERNACIONAL: CONSTRUCCIÓN DE ESCENARIOS ECONÓMICOS Y ECONOMETRÍA AVANZADA. Instructor: Horacio Catalán Alonso
CURSO ITERACIOAL: COSTRUCCIÓ DE ESCEARIOS ECOÓMICOS ECOOMETRÍA AVAZADA Instructor: Horaco Catalán Alonso Modelo de Regresón Lneal Smple El modelo de regresón lneal representa un marco metodológco, que
EJERCICIO 1 1. VERDADERO 2. VERDADERO (Esta afirmación no es cierta en el caso del modelo general). 3. En el modelo lineal general
PRÁCTICA 6: MODELO DE REGRESIÓN MÚLTIPLE SOLUCIÓN EJERCICIO. VERDADERO. VERDADERO (Esta afrmacón no es certa en el caso del modelo general. 3. En el modelo lneal general Y =X β + ε, explcar la forma que
Figura 1
5 Regresón Lneal Smple 5. Introduccón 90 En muchos problemas centífcos nteresa hallar la relacón entre una varable (Y), llamada varable de respuesta, ó varable de salda, ó varable dependente y un conjunto
PUBLICACIONES DE 4º CURSO
PUBLICACIONES DE 4º CURSO Grado: DERECHO-ADE Asgnatura: ECONOMERÍA Grupos: Únco ema: ESQUEMA EMA Profesores: Inmaculada Vllanúa Departamento de ANÁLISIS ECONÓMICO Curso Académco 04/5 ema : El Modelo Lneal
Tema 5: Incumplimiento de las Hipótesis sobre el Término de Perturbación
Tema 5: Incumplmento de las Hpótess sobre el Térmno de Perturbacón TEMA 5: INCMPLIMIENTO DE LAS HIPÓTESIS SOBRE EL TÉRMINO DE PERTRBACIÓN 5.) Introduccón 5.) El Modelo de Regresón Lneal Generalzado 5.3)
UNIDAD II ANÁLISIS DEL MODELO CLÁSICO DE DR. ROGER ALEJANDRO BANEGAS RIVERO REGRESIÓN LINEAL SIMLE (MCRLS)
UNIDAD II ANÁLISIS DEL MODELO CLÁSICO DE REGRESIÓN LINEAL SIMLE (MCRLS) DR. ROGER ALEJANDRO BANEGAS RIVERO Contendo El modelo de regresón lneal smple Gráfcos de dspersón Estmacón por mínmos cadrados ordnaros
Modelos lineales Regresión simple y múl3ple
Modelos lneales Regresón smple y múl3ple Dept. of Marne Scence and Appled Bology Jose Jacobo Zubcoff Modelos de Regresón Smple Que tpo de relacón exste entre varables Predccón de valores a partr de una
Aspectos fundamentales en el análisis de asociación
Carrera: Ingenería de Almentos Perodo: BR01 Docente: Lc. María V. León Asgnatura: Estadístca II Seccón A Análss de Regresón y Correlacón Lneal Smple Poblacones bvarantes Una poblacón b-varante contene
Análisis cuantitativo aplicado al Comercio Internacional y el Transporte
Máster de Comerco, Transporte y Comuncacones Internaconales Análss cuanttatvo aplcado al Comerco Internaconal y el Transporte Ramón úñez Sánchez Soraya Hdalgo Gallego Departamento de Economía Introduccón
PRÁCTICA 16: MODELO DE REGRESIÓN MÚLTIPLE SOLUCIÓN
PRÁCTICA 6: MODELO DE REGRESIÓN MÚLTIPLE SOLUCIÓN EJERCICIO. VERDADERO. VERDADERO (Esta afrmacón no es certa en el caso del modelo general). 3. En el modelo lneal general Y = X b + e, explcar la forma
Modelo Lineal Múltiple. Clase 03. Profesor: Carlos R. Pitta. ICPM050, Econometría. Universidad Austral de Chile Escuela de Ingeniería Comercial
Unversdad Austral de Chle Escuela de Ingenería Comercal ICPM050, Econometría Clase 03 Modelo Lneal Múltple Profesor: Carlos R. Ptta Econometría, Prof. Carlos R. Ptta, Unversdad Austral de Chle. Análss
LÍNEAS BASES Y EVALUACIÓN DE LOS IMPACTOS SOCIOECONÓMICOS DEL CAMBIO CLIMÁTICO EN AMÉRICA LATINA DDSAH-CEPAL
LÍNAS BASS Y VALUACIÓN D LOS IMPACTOS SOCIOCONÓMICOS DL CAMBIO CLIMÁTICO N AMÉRICA LATINA DDSAH-CPAL COMPONNT SOCIOCONÓMICO PROGRAMA UROCLIMA Análss econométrco con datos de seccón crzada TABLA D CONTNIDO
Inferencia en Regresión Lineal Simple
Inferenca en Regresón Lneal Smple Modelo de regresón lneal smple: Se tenen n observacones de una varable explcatva x y de una varable respuesta y, ( x, y)(, x, y),...,( x n, y n ) el modelo estadístco
Muestra: son datos de corte transversal correspondientes a 120 familias españolas.
Capítulo II: El Modelo Lneal Clásco - Estmacón Aplcacones Informátcas 3. APLICACIONES INFORMÁTICAS Fchero : cp.wf (modelo de regresón smple) Seres: : consumo famlar mensual en mles de pesetas RENTA: renta
Especialista en Estadística y Docencia Universitaria REGRESION LINEAL MULTIPLE
Especalsta en Estadístca y Docenca Unverstara REGRESION LINEAL MULTIPLE El modelo de regresón lneal múltple El modelo de regresón lneal múltple con p varables predctoras y basado en n observacones tomadas
FE DE ERRATAS Y AÑADIDOS AL LIBRO FUNDAMENTOS DE LAS TÉCNICAS MULTIVARIANTES (Ximénez & San Martín, 2004)
FE DE ERRATAS Y AÑADIDOS AL LIBRO FUNDAMENTOS DE LAS TÉCNICAS MULTIVARIANTES (Xménez & San Martín, 004) Capítulo. Nocones báscas de álgebra de matrces Fe de erratas.. Cálculo de la transpuesta de una matrz
EXAMEN FINAL DE ECONOMETRIA, 3º CURSO (GRADOS EN ECO y ADE) 20 DE JUNIO DE horas
EXAMEN FINAL DE ECONOMETRIA, 3º CURSO (GRADOS EN ECO y ADE) 0 DE JUNIO DE 018 15.30 horas Prmer Apelldo: Nombre: DNI: Teléfono: Segundo Apelldo: Grupo y Grado: Profesor(a): e-mal: Pregunta 1 A B C En Blanco
Instituto Tecnológico Superior del Sur del Estado de Yucatán EGRESIÓN LINEAL REGRESI. 10 kg. 10 cm
Insttuto Tecnológco Superor del Sur del Estado de Yucatán REGRESI EGRESIÓN LINEAL 100 90 80 70 60 10 kg. 50 40 10 cm. 30 140 150 160 170 180 190 200 Objetvo de la undad Insttuto Tecnológco Superor del
EXAMEN FINAL DE ECONOMETRIA, 3º CURSO (GRADOS EN ECO y ADE) 19 de Septiembre de :30 horas. Pregunta 19 A B C En Blanco
EXAMEN FINAL DE ECONOMETRIA, 3º CURSO (GRADOS EN ECO y ADE) 19 de Septembre de 01 15:30 horas Prmer Apelldo: Nombre: DNI: Teléfono: Segundo Apelldo: Grupo y Grado: Profesor(a): e mal: Pregunta 1 A B C
El Impacto de las Remesas en el PIB y el Consumo en México, 2015
El Impacto de las Remesas en el y el Consumo en Méxco, 2015 Ilana Zárate Gutérrez y Javer González Rosas Cudad de Méxco Juno 23 de 2016 1 O B J E T I V O Durante muchos años la mgracón ha sdo vsta como
EJERCICIOS. Ejercicio 1.- Para el modelo de regresión simple siguiente: Y i = βx i + ε i i =1,..., 100. se tienen las siguientes medias muestrales:
EJERCICIOS Tema 2: MODELO DE REGRESION LINEAL SIMPLE Ejercco 1.- Para el modelo de regresón smple sguente: Y = βx + ε =1,..., 100 se tenen las sguentes medas muestrales: ( P y ) /n =0.3065 ( P y 2 ) /n
EXAMEN FINAL DE ECONOMETRIA, 3º CURSO (GRADOS EN ECO y ADE) 6 de Junio de :00 horas. Pregunta 19 A B C En Blanco. Pregunta 18 A B C En Blanco
EXAMEN FINAL DE ECONOMETRIA, 3º CURSO (GRADOS EN ECO y ADE) 6 de Juno de 3 9: horas Prmer Apelldo: Nombre: DNI: Teléfono: Segundo Apelldo: Grupo y Grado: Profesor(a): e mal: Pregunta A B C En Blanco Pregunta
CAPÍTULO 4 MARCO TEÓRICO
CAPÍTULO 4 MARCO TEÓRICO Cabe menconar que durante el proceso de medcón, la precsón y la exacttud de cualquer magntud físca está lmtada. Esta lmtacón se debe a que las medcones físcas sempre contenen errores.
Análisis de Regresión y Correlación
1 Análss de Regresón y Correlacón El análss de regresón consste en emplear métodos que permtan determnar la mejor relacón funconal entre dos o más varables concomtantes (o relaconadas). El análss de correlacón
6. ANALISIS DE COLUMNAS DE DESTILACION
69 6. AALISIS DE COLUMAS DE DESTILACIO 6.1. ITRODUCCIO Una colmna de destlacón smple es na ndad compesta de n conjnto de etapas de eqlbro con n solo almento y dos prodctos, denomnados destlado y fondo.
Tema 3: Procedimientos de Constrastación y Selección de Modelos
Tema 3: Procedmentos de Constrastacón y Seleccón de Modelos TEMA 3: PROCEDIMIENTOS DE CONTRASTACIÓN Y SELECCIÓN DE MODELOS 3) Introduccón a los Modelos con Restrccones Estmacón Restrngda 3) Contrastes
Examen Final de Econometría Grado
Examen Fnal de Econometría Grado 17 de Mayo de 2016 15.30 horas Apelldos: Grado (ADE/ ECO): Nombre del profesor(a): Nombre: Grupo: Emal: Antes de empezar a resolver el examen, rellene TODA la nformacón
Tema 2: El modelo clásico de regresión
CURSO 010/011 Tema : El modelo clásco de regresón Aránzazu de Juan Fernández ECONOMETRÍA I ESQUEMA DEL TEMA Presentacón del modelo Hpótess del modelo Estmacón MCO Propedades algebracas de los estmadores
truncación inferior en el punto a=25 es igual a El grado de truncación es del
ECONOMETTRÍ ÍA III II.. Cuurrssoo 22000022- -0033 (f( f cchheer roo: : ccuueesst t oonneess lleecccc l 33) ) CUESTTI IONES SOBRE LLA LLECCI IÓN 33: : MODELLOS DE VARIABLLE DEPENDIENTTE LLI IMITTADA 1.
Estimación no lineal del estado y los parámetros
Parte III Estmacón no lneal del estado y los parámetros 1. Estmacón recursva El ltro de Kalman extenddo 12 es una técnca muy utlzada para la la estmacón recursva del estado de sstemas no lneales en presenca
TODO ECONOMETRIA. Variables cualitativas
TODO ECONOMETRIA Varables cualtatvas Índce Defncón de las varables dummy (o varables fctcas) Regresón con varables explcatvas dummy Varables dummy S queremos estudar s los hombres ganan más que las mujeres,
EXAMEN FINAL DE ECONOMETRIA, 3º CURSO (GRADOS EN ECO y ADE) 17 de Mayo de :00 horas
EXAMEN FINAL DE ECONOMETRIA, 3º CURSO (GRADOS EN ECO y ADE) 7 de Mayo de 08 9:00 horas Prmer Apelldo: Nombre: DNI: Teléfono: Segundo Apelldo: Grupo y Grado: Profesor(a): e-mal: Pregunta A B C En Blanco
coηomετría Capítulo 1: Introducción Amparo Sancho Guadalupe Serrano Bernardí Cabrer coηomετría
coηomετría Capítlo : Introdccón Amparo Sancho Gadalpe Serrano Bernardí Cabrer coηomετría Becaros: Fernando Pascal, Carlos Salvador, Joan Crespo Capítlo Introdccón Qé es n modelo econométrco? Qé son los
PyE_ EF2_TIPO1_
UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉICO FACULTAD DE INGENIERÍA DIVISIÓN DE CIENCIAS BÁSICAS COORDINACIÓN DE CIENCIAS APLICADAS DEPARTAMENTO DE PROBABILIDAD Y ESTADÍSTICA SEGUNDO EAMEN FINAL RESOLUCIÓN SEMESTRE
Problemas donde intervienen dos o más variables numéricas
Análss de Regresón y Correlacón Lneal Problemas donde ntervenen dos o más varables numércas Estudaremos el tpo de relacones que exsten entre ellas, y de que forma se asocan Ejemplos: La presón de una masa
Medidas de Variabilidad
Meddas de Varabldad Una medda de varabldad es un ndcador del grado de dspersón de un conjunto de observacones de una varable, en torno a la meda o centro físco de la msma. S la dspersón es poca, entonces
Las hipótesis en las que vamos a basar el funcionamiento del Modelo Lineal General
CAPÍULO. EL MODELO LINEAL GENERAL. Introduccón. Hpótess del modelo Las hpótess en las que vamos a basar el funconamento del Modelo Lneal General son las sguentes. Suponemos que tenemos una muestra de valores
Regresión múltiple k k
Métodos de Regresón Estadístca Ismael Sánchez Borrego Regresón múltple El modelo de regresón múltple es la extensón a k varables explcatvas del modelo de regresón smple estudado en el apartado anteror.
Efectos fijos o aleatorios: test de especificación
Cómo car?: Montero. R (2011): Efectos fjos o aleatoros: test de especfcacón. Documentos de Trabajo en Economía Aplcada. Unversdad de Granada. España Efectos fjos o aleatoros: test de especfcacón Roberto
a) DIAGRAMA DE DISPERSION
SIS 335 - A EJEMPLO.- Se ha recogdo datos de una localdad medante sendas encuestas sobre el consumo (Y) de productos de hogar y de la renta (X) de los consumdores consultados, obtenéndose los sguentes
El modelo clásico de regresión
CAPíTULO 3 El modelo clásco de regresón En el capítulo anteror hemos aplcado el algebra matrcal y la estadístca descrptva al modelo lneal general y = Xβ + u para encontrar el estmador de mínmos cuadrados
1.Variables ficticias en el modelo de regresión: ejemplos.
J.M.Arranz y M.M. Zamora.Varables fctcas en el modelo de regresón: ejemplos. Las varables fctcas recogen los efectos dferencales que se producen en el comportamento de los agentes económcos debdo a dferentes
Tema 5: PROBLEMAS EN LA ESTIMACIÓN DEL MODELO DE REGRESIÓN LINEAL SIMPLE
Introduccón a la Econometría Tema 5: PROBLEMAS E LA ESTIMACIÓ DEL MODELO Tema 5: PROBLEMAS E LA ESTIMACIÓ DEL MODELO DE REGRESIÓ LIEAL SIMPLE. Problemas en la especfcacón del modelo. La prmera etapa de
EL MODELO DE REGRESIÓN LINEAL SIMPLE
Unversdad Carlos III de Madrd César Alonso ECONOMETRIA EL MODELO DE REGRESIÓN LINEAL SIMLE Índce 1. Relacones empírcas y teórcas......................... 1 2. Conceptos prevos................................
( ) MUESTREO ALEATORIO SIMPLE SIN REEMPLAZO ( mas ) y Y. N n. S y. MUESTREO ALEATORIO SIMPLE SIN REEMPLAZO ( mas )
MUETREO ALEATORIO IMPLE I Este esquema de muestreo es el más usado cuando se tene un marco de muestreo que especfque la manera de dentfcar cada undad en la poblacón. Además no se tene conocmento a pror
REGRESION LINEAL SIMPLE
REGREION LINEAL IMPLE Jorge Galbat Resco e dspone de una muestra de observacones formadas por pares de varables: (x 1, y 1 ), (x, y ),.., (x n, y n ) A través de esta muestra, se desea estudar la relacón
REGRESION LINEAL SIMPLE
REGREION LINEAL IMPLE Jorge Galbat Resco e dspone de una mustra de observacones formadas por pares de varables: (x 1, y 1 ) (x, y ).. (x n, y n ) A través de esta muestra, se desea estudar la relacón exstente
Tema 9. Análisis de Varianza de un factor. Análisis de la Varianza (ANOVA) Conceptos generales
Tema 9 Análss de la Varanza (ANOVA) Conceptos generales La técnca del Análss de la Varanza consste en descomponer la varabldad de una poblacón (representada por su varanza) en dversos sumandos según los
El contexto básico para el análisis es un modelo de regresión de la forma: α (1)
ECONOMETRIA - ECON 3301 - SEMESTRE II - 08 Profesor: Ramón Rosales; rrosales@unandes.edu.co Profesor Taller: Wllam Delgado; w-delgad@unandes.edu.co Profesor Taller: Juan Carlos Vasquez; jvasquez@unandes.edu.co
Mª Dolores del Campo Maldonado. Tel: :
Mª Dolores del Campo Maldonado Tel: : 918 074 714 e-mal: ddelcampo@cem.mtyc.es Documentacón de referenca nternaconalmente aceptada ISO/IEC GUIDE 98-3:008 Uncertanty of measurement Part 3: Gude to the n
Regresión y correlación simple 113
Regresón y correlacón smple 113 Captulo X ANALISIS DE REGRESION Y CORRELACION El análss de regresón consste en emplear métodos que permtan determnar la mejor relacón funconal entre dos o más varables concomtantes
Relaciones entre variables
Relacones entre varables Las técncas de regresón permten hacer predccones sobre los valores de certa varable Y (dependente), a partr de los de otra (ndependente), entre las que se ntuye que exste una relacón.
Modelos unifactoriales de efectos aleatorizados
Capítulo 4 Modelos unfactorales de efectos aleatorzados En el modelo de efectos aleatoros, los nveles del factor son una muestra aleatora de una poblacón de nveles. Este modelo surge ante la necesdad de
Estadística con R. Modelo Probabilístico Lineal
Estadístca con R Modelo Probablístco Lneal Modelo Probablístco Lneal Forma de la funcón: Y b 0 +b 1 X +e Varable dependente, endógena o a explcar dcotómca : Y, S Y 0 e -b 0 - b 1 X con probabldad p. S
Estimación de incertidumbres en calibración de Osciladores
Estmacón de ncertdumbres en calbracón de Oscladores J. Maurco López R. Dvsón de Tempo Frecuenca Centro Naconal de Metrología maurco.lopez@cenam.mx Resumen La frecuenca de salda de los oscladores debe ser
Tema 2: El modelo básico de regresión lineal múltiple (I)
Tema : l modelo básco de regresó leal múltple I Casaldad la ocó de cetrs parbs e el aálss ecoométrco Repaso del cocepto de regresó smple: Recta de regresó poblacoal p verss recta de regresó estmada Motvacó
Modelo de Variables Instrumentales
Modelo de Varables Instrumentales Contraste de endogenedad El estmador de MCE es menos efcente que el de MCO cuando las varables explcatvas son exógenas. Las estmacones de MCE pueden tener errores estándar
REGRESION Y CORRELACION
nav Estadístca (complementos) 1 REGRESION Y CORRELACION Fórmulas báscas en la regresón lneal smple Como ejemplo de análss de regresón, descrbremos el caso de Pzzería Armand, cadena de restaurantes de comda
EXPERIMENTACIÓN COMERCIAL(I)
EXPERIMENTACIÓN COMERCIAL(I) En un expermento comercal el nvestgador modfca algún factor (denomnado varable explcatva o ndependente) para observar el efecto de esta modfcacón sobre otro factor (denomnado
Investigación y Técnicas de Mercado. Previsión de Ventas TÉCNICAS CUANTITATIVAS ELEMENTALES DE PREVISIÓN UNIVARIANTE. (IV): Ajustes de Tendencia
Investgacón y Técncas de Mercado Prevsón de Ventas TÉCNICAS CUANTITATIVAS ELEMENTALES DE PREVISIÓN UNIVARIANTE. (IV): s de Tendenca Profesor: Ramón Mahía Curso 00-003 I.- Introduccón Hasta el momento,
2. EL TENSOR DE TENSIONES. Supongamos un cuerpo sometido a fuerzas externas en equilibrio y un punto P en su interior.
. EL TENSOR DE TENSIONES Como se explcó prevamente, el estado tensonal en un punto nteror de un cuerpo queda defndo por 9 componentes, correspondentes a componentes por cada una de las tensones nternas
Lección 4. Ejercicios complementarios.
Introduccón a la Estadístca Grado en Tursmo Leccón 4. Ejerccos complementaros. Ejercco 1 (juno 06). La nformacón relatva al mes de enero sobre los ngresos (X) y los gastos (Y), expresados en mles de euros,
EJERCICIOS DE ESTADÍSTICA BIDIMENSIONAL.
EJERCICIOS DE ESTADÍSTICA BIDIMENSIONAL. 1. Una cofradía de pescadores regstra la cantdad de sardnas que llegan al puerto (X), en klogramos, el preco de la subasta en la lonja (Y), en euros por klo, han
Tema 8: Heteroscedasticidad
Tema 8: Heteroscedastcdad Máxmo Camacho Máxmo Camacho Econometría I - ADE+D / - Tema 8 Heteroscedastcdad Bloque I: El modelo lneal clásco r Tema : Introduccón a la econometría r Tema : El modelo de regresón
Regresión y Correlación Métodos numéricos
Regresón y Correlacón Métodos numércos Prof. Mguel Hesquo Garduño. Est. Mrla Benavdes Rojas Depto. De Ingenería Químca Petrolera ESIQIE-IPN hesquogm@yahoo.com.mx mbenavdesr5@gmal.com Regresón lneal El
ESTADÍSTICA BIDIMENSIONAL ÍNDICE GENERAL
ESTADÍSTICA BIDIMESIOAL ÍDICE GEERAL 1.-Varable Estadístca Bdmensonal. Tablas de frecuenca... 1.1.- Concepto de varable estadístca bdmensonal. Eemplos.... 1..-Tablas bdmensonales de frecuencas. Tablas
Ejercicios y Talleres. puedes enviarlos a
Ejerccos y Talleres puedes envarlos a klasesdematematcasymas@gmal.com www.klasesdematematcasymas.com EJERCICIOS DE REGRESIONES Y ANALISIS DE COVARIANZA Analzar la nformacón recoplada por medo de los dferentes
Donde y representa la altura de los estudiantes y x la media de las alturas de sus padres
Regresón smple y múltple 1. A partr de la sguente tabla de datos, Y 4 5 7 1 X 1 4 5 6 Estmar la regresón Y = +X + Solucón Basta calcular, Y X y x x y x 4 1-3 -3 9 9 5 4-0 0 0 7 5 0 1 0 1 1 6 5 10 4 Suma
Análisis de Resultados con Errores
Análss de Resultados con Errores Exsten dos tpos de errores en los expermentos Errores sstemátcos errores aleatoros. Los errores sstemátcos son, desde lejos, los más mportantes. Errores Sstemátcos: Exsten
Tema 6. Estadística descriptiva bivariable con variables numéricas
Clase 6 Tema 6. Estadístca descrptva bvarable con varables numércas Estadístca bvarable: tpos de relacón Relacón entre varables cuanttatvas Para dentfcar las característcas de una relacón entre dos varables
UNIDAD 12: Distribuciones bidimensionales. Correlación y regresión
Matemátcas aplcadas a las Cencas Socales UNIDAD 1: Dstrbucones bdmensonales. Correlacón regresón ACTIVIDADES-PÁG. 68 1. La meda la desvacón típca son: 1,866 0,065. Los jugadores que se encuentran por encma
X R = R Y. Aproximación del sesgo del estimador de la razón, (N n) 2 y S xy. NnY 2 ( (N n) y s xy
1 Estmadores de razón Estmadores de los parámetros usuales, Para el total de X, Para la meda de X, X R = R Y X R = R Y Aproxmacón del sesgo del estmador de la razón, B R N n NnY que podemos estmar a partr
Solución de los Ejercicios de Práctica # 1. Econometría 1 Prof. R. Bernal
Solucón de los Ejerccos de ráctca # 1 Econometría 1 rof. R. Bernal 1. La tabla de frecuencas está dada por: Marca A Marca B
ECONOMETRÍA ELSA NORMA ELIZALDE ANGELES RED TERCER MILENIO
ECONOMETRÍA ECONOMETRÍA ELSA NORMA ELIZALDE ANGELES RED TERCER MILENIO AVISO LEGAL Derechos Reservados 0, por RED TERCER MILENIO S.C. Vveros de Asís 96, Col. Vveros de la Loma, Tlalnepantla, C.P. 54080,
Estadística Unidimensional: SOLUCIONES
4ª SesónFecha: Estadístca Undmensonal: SOLUCIOES Varables estadístca dscreta 1 Con los datos del ejercco de Pág 19 nº 3 determna: a) Tabla de Frecuencas b) Dagrama de barras Gráfco acumulado c) Meddas
Métodos cuantitativos de análisis gráfico
Métodos cuanttatvos de análss gráfco Método de cuadrados mínmos Regresón lneal Hemos enfatzado sobre la mportanca de las representacones gráfcas hemos vsto la utldad de las versones lnealzadas de los gráfcos
TEMA III EL ANÁLISIS DE REGRESIÓN LINEAL MÚLTIPLE
TEMA III EL ANÁLISIS DE REGRESIÓN LINEAL MÚLTIPLE LECTURA OBLIGATORIA Regresón Lneal Múltple. En Ral, A. y Varela, J. (008). Estadístca Práctca para la Investgacón en Cencas de la Salud. Coruña: Netbblo.
Regresión y correlación Tema 8. 1.1 Contraste sobre β 1.2 Regresión en formato ANOVA. 2. Correlación. Contraste sobre ρ xy
Unversdad Autónoma de Madrd 1 Regresón y correlacón Tema 8 1. Regresón lneal smple 1.1 Contraste sobre β 1. Regresón en formato ANOVA. Correlacón. Contraste sobre ρ xy Análss de Datos en Pscología II Tema
Relación 2: Regresión Lineal.
Relacón 2: Regresón Lneal. 1. Se llevó a cabo un estudo acerca de la cantdad de azúcar refnada (Y ) medante un certo proceso a varas temperaturas dferentes (X). Los datos se codfcan y regstraron en el
Licenciatura en Administración y Dirección de Empresas INTRODUCCIÓN A LA ESTADÍSTICA EMPRESARIAL
INTRODUCCIÓN A LA ESTADÍSTICA EMPRESARIAL Relacón de Ejerccos nº 2 ( tema 5) Curso 2002/2003 1) Las cento trenta agencas de una entdad bancara presentaban, en el ejercco 2002, los sguentes datos correspondentes
Ejemplo: Consumo - Ingreso. Ingreso. Consumo. Población 60 familias
Ejemplo: Consumo - Ingreso Ingreso Consumo Poblacón 60 famlas ( YX ) P = x [ YX ] E = x Línea de regresón poblaconal 80 60 Meda Condconal 40 20 00 [ X = 200] EY o o o o [ X = 200] EY 80 o o o 60 o 40 8
CONCEPTOS BÁSICOS DE ESTADISTICA INFERENCIAL
CONCEPTOS BÁSICOS DE ESTADISTICA INFERENCIAL Inferenca Etadítca Se ocupa de etudar lo método necearo para etraer, o nferr, concluone válda e nformacón obre una poblacón a partr del etudo epermental de
Algunas aplicaciones del test del signo
43 Algunas aplcacones del test del sgno Test de Mc emar para sgnfcacón de cambos: En realdad este test se estuda en detalle en Métodos no Paramétrcos II, en el contexto de las denomnadas Tablas de Contngenca.
TEMA III EL ANÁLISIS DE REGRESIÓN LINEAL MÚLTIPLE
TEMA III EL ANÁLISIS DE REGRESIÓN LINEAL MÚLTIPLE LECTURA OBLIGATORIA Regresón Lneal Múltple. En Ral, A. y Varela, J. (008). Estadístca Práctca para la Investgacón en Cencas de la Salud. Coruña: Netbblo.
RECETA ELECTRÓNICA: IMPACTO SOBRE EL GASTO FARMACEÚTICO
RECETA ELECTRÓNICA: IMPACTO SOBRE EL GASTO FARMACEÚTICO Introduccón Dseño del estudo Especfcacón del modelo Resultados Introduccón Dseño del estudo Especfcacón del modelo Resultados Introduccón: Esquema
Análisis de la varianza de un factor
Análss de la varanza de un factor El test t de muestras se aplca cuando se queren comparar las medas de dos poblacones con dstrbucones normales con varanzas guales y se observan muestras ndependentes para
MULTICOLINEALIDAD: EXTENSIONES. Para fijar ideas, consideremos el siguiente modelo lineal:
puntes de eoría Econométrca I. Profesor: Vvana Fernández MUICOINEIDD: EXENSIONES I INRODUCCION El problema de la multcolnealdad surge cuando las varables explcatvas de un modelo econométrco presentan un
ACTIVIDADES ESTADÍSTICA UNIDIMENSIONAL. a) Calcula la temperatura media y la temperatura mediana de la semana.
Matemátcas Aplcadas a las Cencas Socales I ACTIVIDADES ESTADÍSTICA UNIDIMENSIONAL 1) Se ha meddo la temperatura en grados centígrados la presón atmosférca en mm en una cudad durante una semana obtenéndose
Correlación y regresión lineal simple
. Regresón lneal smple Correlacón y regresón lneal smple. Introduccón La correlacón entre dos varables ( e Y) se refere a la relacón exstente entre ellas de tal manera que a determnados valores de se asocan
Problema: Existe relación entre el estado nutricional y el rendimiento académico de estudiantes de enseñanza básica?
Relacones entre varables cualtatvas Problema: xste relacón entre el estado nutrconal y el rendmento académco de estudantes de enseñanza básca? stado Nutrconal Malo Regular Bueno TOTAL Bajo 13 95 3 55 Rendmento
Probabilidad Grupo 23 Semestre Segundo examen parcial
Probabldad Grupo 3 Semestre 015- Segundo examen parcal La tabla sguente presenta 0 postulados, algunos de los cuales son verdaderos y otros son falsos. Analza detendamente cada postulado y elge tu respuesta
ANEXO A: Método de Interpolación de Cokriging Colocado
ANEXO A: Método de Interpolacón de Corgng Colocado A. Conceptos Báscos de Geoestadístca Multvarada La estmacón conunta de varables aleatoras regonalzadas, más comúnmente conocda como Corgng (Krgng Conunto),
MODELOS DE ELECCIÓN BINARIA
MODELOS DE ELECCIÓN BINARIA Econometría I UNLP http://www.econometra1.depeco.econo.unlp.edu.ar/ Modelos de Eleccón Bnara: Introduccón Estamos nteresados en la probabldad de ocurrenca de certo evento Podemos
Geometría convexa y politopos, día 1
Geometría convexa y poltopos, día 1 Alexey Beshenov (cadadr@gmal.com) 8 de agosto de 2016 Los objetos geométrcos que nos nteresan en esta hstora son subconjuntos de R n. Voy a denotar los puntos de R n
DISTRIBUCIONES BIDIMENSIONALES
Matemátcas 1º CT 1 DISTRIBUCIONES BIDIMENSIONALES PROBLEMAS RESUELTOS 1. a) Asoca las rectas de regresón: y = +16, y = 1 e y = 0,5 + 5 a las nubes de puntos sguentes: b) Asgna los coefcentes de correlacón