Estalmat - Andalucía Oriental Más triángulos
|
|
- María Isabel Vidal Pereyra
- hace 6 años
- Vistas:
Transcripción
1 Estalmat - Andalucía Oriental Más triángulos Pascual Jara y Ceferino Ruiz 20 de octubre de La Recta de Euler 1 En un triángulo cualquiera ABC, dibuja el Baricentro G, el Ortocentro H y el Circuncentro O. Comprueba que los puntos G, H y O están alineados. Comprueba, asimismo, que la distancia GH es el doble de la distancia GO. La recta que pasa por H, G y O se llama "Recta de Euler" del triángulo ABC. 2.- La Recta de Simson 2 o Recta pedal En un triángulo cualquiera ABC, dibuja la circunferencia circunscrita con centro en O. Considera un punto P sobre esa circunferencia y, desde P, traza las 3 perpendiculares hasta los lados (prolongados si es necesario). Dichas perpendiculares cortarán respectivamente a esos lados en los puntos Q, R y S. Comprueba que los 3 puntos Q, R y S están alineados. La recta que pasa por Q, R y S se llama "Recta de Simson" del triángulo ABC asociada a P. A los puntos Q, R y S se les llama "pies" de las perpendiculares desde P a los lados del triángulo. Por eso, a la Recta de Simson asociada a P también se le suele llamar "Recta pedal" de P del triángulo ABC. Si P coincide con alguno de los vértices, dos de estos pies coinciden con el propio P y la otra perpendicular desde P sobre el lado opuesto, es la altura desde P. Al punto correspondiente, donde cae la altura en el lado puesto, se le llama "pie de altura". La Recta pedal coincide en este caso, con la recta altura. 1 Leonhard Euler nació el 15 de abril de 1707 en Basilea, Suiza. Murió el 18 de septiembre de 1783 en San Petersburgo, Rusia. 2 Robert Simson nació el 14 de octubre de 1687 en West Kilbride, Ayrshire, Escocia. Murió el 1 de octubre de 1768 en Glasgow, Escocia.
2 3.- Las Rectas cevianas y el Teorema de Ceva 3 En un triángulo cualquiera ABC, a las rectas que pasan por uno de los vértices y cortan al lado opuesto (o a su prolongación) se les llama "Rectas cevianas" del triángulo ABC. Dado un punto cualquiera P del plano, que no sea ninguno de los vértices, desde P podemos dibujar 3 rectas cevianas, uniendo P con cada uno de los vértices; eventualmente, dos de estas rectas pueden coincidir y esto ocurrirá solamente si P está sobre alguno de los lados de ABC. Si P no está sobre ninguno de los lados, entonces las 3 rectas cevianas que pasan por P y parten de los vértices A, B y C, cortaran a los lados opuestos a, b y c en los puntos Q, R y S, respectivamente. De esta forma, se obtienen seis segmentos: BQ y QC sobre la recta que contiene al lado a; CR y RA sobre b; y AS y SB sobre c. Sean,,,, y BQ QC CR RA AS SB sus longitudes. Comprueba que se verifica: AS BQ CR = 1 [3.1] SB QC RA El "Teorema de Ceva" establece esta propiedad y su recíproca: Sean 3 cevianas desde los vértices ABC de un triángulo que cortan a los lados opuestos respectivamente en los puntos Q, R y S. Las 3 cevianas son concurrentes, es decir, se cortan en un punto, si y solamente si se verifica la expresión [3.1]. Razones entre segmentos Nota: Dado un segmento AB y un punto S sobre la recta que lo contiene, al cociente AS/SB se le conoce como la "razón" en la que S divide o corta al segmente AB. Si el punto S coincide con A, la razón es 0. Si S coincide con B, se dice que la razón es infinito. Si S está entre el punto A y el punto B, la razón es positiva. Mientras que si S está fuera del segmento AB, la razón se toma negativa. 3 Giovanni Ceva nació el 7 Diciembre de 1647 en Milán, Italia. Murió el 15 de Junio de 1734 en Mantua, Italia.
3 4.- El Teorema de Napoleón 4 y el Punto de Fermat 5 En un triángulo cualquiera ABC, dibuja 3 triángulos equiláteros sobre cada uno de los lados, de modo que no corten al triángulo de partida. Tendremos así 3 triángulos equiláteros que notaremos ABM, BCN y CAP, cuyos centros respectivos denotaremos Q, R y S. Comprueba que el triángulo QRS que forman esos centros es equilátero. Este resultado se conoce como "Teorema de Napoleón". Propiedades curiosas: Las 3 circunferencias circunscritas a los e triángulos equiláteros se cortan en un punto F, el cuál se denomina "Punto de Fermat. Los segmentos AF, BF y CF forman entre si (2 a 2) tres ángulos de 120º. El punto de Fermat F es el punto del plano cuya suma de distancias a los vértices del triángulo es más pequeña, o punto de mínima distancia a los tres vértices. Las rectas AN, BP y CM son 3 cevianas de ABC que concurren en F. Los segmentos AN, BP y CM tienen la misma longitud, es decir: AN = BP= CM También podemos construir los 3 triángulos equiláteros hacia el lado donde se encuentra el triángulo de partida. Los centros de estos 3 nuevos triángulos equiláteros construidos hacia el interior forman también un triángulo equilátero. Sería el triángulo de Napoleón interior. La diferencia de áreas entre los dos triángulos de Napoleón, construidos hacia el exterior y hacia el interior del triángulo ABC es, precisamente, el área del triángulo de partida. 5.- El Triángulo de Morley 6 En un triángulo cualquiera ABC, dibuja las trisectrices de los ángulos (en cada vértice un par de rectas que dividen al ángulo en 3 partes iguales). Ojo, esta construcción no siempre se puede hacer con regla y compás! 4 Napoleón Bonaparte nació el 15 de agosto de 1769 en Ajaccio, Córcega, Francia. Murió el 5 de mayo de 1821 en la Isla de Santa Helena, Reino Unido. 5 Pierre de Fermat nació el 17 de agosto de 1601 en Beaumont-de-Lomagne, Francia. Murió el 12 de enero de 1665 en Castres, Francia. 6 Frank Morley nació el 9 de septiembre de 1860 en Woodbridge, Suffolk, Inglaterra. Murió el 17 de octubre de 1937 en Baltimore, Maryland, EE.UU.
4 En principio, estas 6 trisectrices se cortan (2 a 2) en 12 puntos, sin contar los vértices. Consideremos los 3 puntos Q, R y S donde se cortan los pares de trisectrices adyacentes de vértices contiguos. El triángulo QRS es equilátero y se le denomina Triángulo de Morley del triángulo ABC. 6.- La Fórmula de Herón 7 Sea ABC un triángulo cualquiera cuyos lados miden a, b y c. Para calcular su área podemos realizar la siguiente construcción: Trazar la circunferencia inscrita que tendrá radio r. Unir el incentro I con los puntos de contacto de la circunferencia con los lados: Q sobre el lado BC, R sobre CA y S sobre AB; Unir I con lo vértices A, B y C mediante las bisectrices. De este modo se descompone nuestro triángulo en 6 triángulos rectángulos: ASI, ISB, BQI, IQC, CRI e IRA. Observación: El área de los triángulos rectángulos es, claramente, la mitad de la del cuadrilátero rectángulo que tiene por lados a los catetos. Por eso, el área de un triángulo rectángulo es mitad del producto de las longitudes de los catetos. El área de nuestro triángulo ABC es pues, la suma de las áreas de esos 6 triángulos rectángulos. Como todos ellos tienen la longitud de un cateto igual a r, en la suma podemos sacar factor común ese r y, agrupando los otros catetos de 2 en 2, queda que el área es a+ b+ c ABC = r 2 [6.1] a+b+c es el perímetro del triángulo ABC. Llamando a+ b+ c s = 2 al semiperímetro, se tiene la expresión del área ABC en función del semiperímetro y del radio de la circunferencia inscrita: ABC = s r [6.2] 7 Herón (o Hero) de Alejandría nació hacia el año 10. Murió hacia el año 70 en Alejandría, Egipto.
5 La fórmulas [6.1] y [6.2] permiten calcular el área de un triángulo conociendo los lados y el radio de la circunferencia inscrita, o bien este último y el semiperímetro. La "Fórmula de Herón" permite calcular el área de un triángulo ABC conociendo solamente las longitudes de los lados a, b y c (y con ellos el semiperímetro s). Esta es: ABC = s( s a)( s b)( s c) [6.3] En términos de los lados, resulta:: ABC = ( a+ b+ c)( a+ b+ c)( a b+ c)( a+ b c) 7.- Cuadrados de los lados de un triángulo. 4 [6.4] En un triángulo cualquiera ABC, conviene a veces conocer la longitud de uno de sus lados en función de los otros dos y de algún dato adicional. Fijemos para esto uno de los vértices, por ejemplo el A y obtengamos la longitud a del lado opuesto. Si el ángulo A es recto, a será la longitud de la hipotenusa, y b y c la de los catetos. Tenemos el "Teorema de Pitágoras 8 ": a = b + c Si el ángulo A es agudo, tenemos: [7,1] Si el ángulo A es obtuso, tenemos: a b c 2c = + m a = b + c + 2cm [7.2] [7.3] donde m es la longitud del segmento que une A con el pié de altura de C. Observación: El Teorema de Pitágoras [7.1] es el caso límite tanto de la fórmula para el cuadrado del lado opuesto al ángulo agudo [7.2], como la del cuadrado del lado opuesto al ángulo obtuso [7.3]. Pues si el ángulo en el vértice A es recto, el pie de altura desde C coincide con A y, por tanto, m = 0. 8 Pitágoras de Samos nació en la Isla de Samos hacia el año Murió aproximadamente en -507.
EL TRIÁNGULO. Recordemos algunas propiedades elementales de los triángulos
EL TRIÁNGULO 1. EL TRIÁNGULO. PRIMERAS PROPIEDADES El triángulo es un polígono que tiene tres lados y tres ángulos. Es, por tanto, el polígono más simple y el conocimiento de sus características y propiedades
TEMA 8: TRAZADOS GEOMÉTRICOS
EDUCACIÓN PLÁSTICA Y VISUAL 3º DE LA E.S.O. TEMA 8: TRAZADOS GEOMÉTRICOS En dibujo técnico, es fundamental conocer los trazados geométricos básicos para construir posteriormente formas o figuras de mayor
XLIV Olimpiada Matemática Española Fase nacional 2008 (Valencia) PRIMERA SESIÓN (28 de marzo)
Fase nacional 008 (Valencia) PRIMERA SESIÓN (8 de marzo).- Halla dos enteros positivos a y b conociendo su suma y su mínimo común múltiplo. Aplícalo en el caso de ue la suma sea 97 y el mínimo común múltiplo
Tema 1: Cuerpos geométricos. Aplicaciones
Tema 1: Cuerpos geométricos. Aplicaciones 1.- los polígonos. Un polígono es un trozo de plano limitado por una línea poligonal (sin curvas) cerrada. Es un polígono No son polígonos Hay dos clases de polígonos:
CENAFE MATEMÁTICAS POLÍGONOS
POLÍGONOS Es la porción del plano comprendida dentro de una línea poligonal cerrada. Es la superficie del plano limitada por una línea poligonal. La medida de un polígono es su área. Criterios de clasificación:
LOS ÁNGULOS Y SU MEDIDA
LOS ÁNGULOS Y SU MEDIDA LOS ÁNGULOS Y SUS ELEMENTOS Ángulo es la región del plano comprendida entre dos semirrectas (lados) que tienen el mismo origen (vértice). Notación: â o bien Los ángulos se miden
Vectores: Producto escalar y vectorial
Nivelación de Matemática MTHA UNLP 1 Vectores: Producto escalar y vectorial Versores fundamentales Dado un sistema de coordenadas ortogonales, se considera sobre cada uno de los ejes y coincidiendo con
8 GEOMETRÍA DEL PLANO
EJERIIOS PROPUESTOS 8.1 alcula la medida del ángulo que falta en cada figura. a) 6 b) 145 15 105 160 130 a) En un triángulo, la suma de las medidas de sus ángulos es 180. p 180 90 6 8 El ángulo mide 8.
Lección 7 - Coordenadas rectangulares y gráficas
Lección 7 - Coordenadas rectangulares gráficas Coordenadas rectangulares gráficas Objetivos: Al terminar esta lección podrás usar un sistema de coordenadas rectangulares para identificar puntos en un plano
Cuadernillo de actividades
Construyendo con Geogebra II Jornadas sobre Geogebra en Andalucía Abril 2011 Actividades para el Taller: Construyendo con EVA COSTA GAVILÁN Mª TRINIDAD CASTILLO CARA Mª ÁNGELES MARTÍN TAPIAS Cuadernillo
XIII Concurso Intercentros de Matemáticas de la Comunidad de Madrid
PRU POR QUIPOS 1º y 2º de.s.o. (45 minutos) 1. n el triángulo dibujamos tres paralelas a la base que dividen a la altura sobre dicho lado en cuatro partes iguales. Si el área del trapecio rayado es 35
SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD
Pág. 1 PÁGINA 180 EJERCICIOS Semejanza de figuras 1 Sobre un papel cuadriculado, haz un dibujo semejante a este ampliado al triple de su tamaño: 2 En un mapa a escala 1 :50 000 la distancia entre dos pueblos,
5 Geometría analítica plana
Solucionario Geometría analítica plana ACTIVIDADES INICIALES.I. Halla las coordenadas del punto medio del segmento de extremos A(, ) y B(8, ). El punto medio es M(, 8)..II. Dibuja un triángulo isósceles
Definición de vectores
Definición de vectores Un vector es todo segmento de recta dirigido en el espacio. Cada vector posee unas características que son: Origen: O también denominado Punto de aplicación. Es el punto exacto sobre
Actividades con Geoplano
Descripción General Actividades con Geoplano El Geoplano es un arreglo rectángular de puntos (clavos) de tal manera que entre puntos adyacentes horizontal o verticalmente hay una distancia constante. En
Preparación para la XLVII Olimpiada Matemática Española (II) Soluciones
Preparación para la XLVII Olimpiada Matemática Española (II) Soluciones Eva Elduque Laburta y Adrián Rodrigo Escudero 5 de noviembre de 010 Problema 1. Construir un triángulo conocidos 1. un lado, su ángulo
CONSTRUCCIONES GEOMÉTRICAS CON GEOGEBRA
CONSTRUCCIONES GEOMÉTRICAS CON GEOGEBRA GEOGEBRA es un programa de geometría dinámica libre. Todos los problemas presentados se pueden trabajar con cualquiera de los programas de geometría dinámica, hemos
1. Producto escalar, métrica y norma asociada
1. asociada Consideramos el espacio vectorial R n sobre el cuerpo R; escribimos los vectores o puntos de R n, indistintamente, como x = (x 1,..., x n ) = n x i e i i=1 donde e i son los vectores de la
TEMA 6: LA GEOMETRÍA DEL TRIÁNGULO
TEMA 6: LA GEOMETRÍA DEL TRIÁNGULO Matías Arce, Sonsoles Blázquez, Tomás Ortega, Cristina Pecharromán 1. INTRODUCCIÓN... 1 2. CLASIFICACIÓN DE TRIÁNGULOS... 2 3. PUNTOS Y RECTAS NOTABLES... 3 4. SEMEJANZA
Seminario de problemas-eso. Curso 2012-13. Hoja 7
Seminario de problemas-eso. Curso 2012-13. Hoja 7 43. La suma de las edades de mamá, papá, mi hermano y yo es 83. Seis veces la edad de papá es igual a siete veces la edad de mamá, y la edad de mamá es
13 LONGITUDES Y ÁREAS
1 LONGITUDES Y ÁREAS EJERCICIOS PROPUESTOS 1.1 Calcula el perímetro de las siguientes figuras. a),5 cm b) cm cm cm cm a) p,5 8 5 1 cm b) p 9 cm 1. Halla el perímetro de estas figuras. a) Un cuadrado de
TEMA 6 SEMEJANZA DE TRIÁNGULOS
Tema 6 Semejanza de triángulos Matemáticas - 4º ESO 1 TEMA 6 SEMEJANZA DE TRIÁNGULOS ESCALAS EJERCICIO 1 : En una fotografía, María y Fernando miden,5 cm y,7 cm, respectivamente; en la realidad, María
1º ESO CAPÍTULO 9: LONGITUDES Y ÁREAS
1º ESO CAPÍTULO 9: LONGITUDES Y ÁREAS LibrosMareaVerde.tk www.apuntesmareaverde.org.es Revisores: Javier Rodrigo y Raquel Hernández Ilustraciones: Banco de Imágenes de INTEF 19 Índice 1. PERÍMETROS Y ÁREAS
a De los siguientes cuerpos geométricos, di cuáles son poliedros y cuáles no. Razona tu respuesta.
POLIEDROS Ejercicio nº 1.- a De los siguientes cuerpos geométricos, di cuáles son poliedros y cuáles no. Razona tu respuesta. b Cuál es la relación llamada fórmula de Euler que hay entre el número de caras,
Segundo Examen eliminatorio estatal 28va OMM Durango
Segundo Examen eliminatorio estatal 28va OMM Durango 1. En la división de 999 entre n donde n es un entero de dos cifras, el residuo es 3. Cuál es el residuo de la división de 2001 entre n? (a)3 (b)5 (c)6
Qué son los cuerpos geométricos?
Qué son los cuerpos geométricos? Definición Los cuerpos geométricos son regiones cerradas del espacio. Una caja de tetrabrick es un ejemplo claro de la figura que en matemáticas se conoce con el nombre
Bisectrices. Incentro.
78 CAPÍTULO 7: GEOMETRÍA DEL PLANO. Matemáticas 3º de ESO 1. LUGARES GEOMÉTRICOS Muchas veces definimos una figura geométrica como los puntos del plano que cumplen una determinada condición. Decimos entonces
APUNTES DE MATEMÁTICAS TEMA 4: VECTORES 1º BACHILLERATO
APUNTES DE MATEMÁTICAS TEMA 4: VECTORES 1º BACHILLERATO ÍNDICE VECTORES EN EL PLANO... 3 Vector Fijo... 3 VECTOR LIBRE... 3 Operaciones con Vectores... 3 Suma de vectores... 3 Producto de un número por
Áreas de figuras planas (I) (p. 107)
Tema 3: Áreas de figuras planas (I) (p. 107) El cálculo del área de regiones planas está en el origen de las matemáticas. (Egipto, el Nilo y sus crecidas). El proceso de medida de áreas es el mismo que
Polígonos, perímetros y áreas
9 Polígonos, perímetros y áreas Objetivos Antes de empezar En esta quincena aprenderás a: Reconocer, representar e identificar los elementos geométricos que caracterizan a diferentes polígonos. Construir
Universidad de la Frontera. Geometría Anaĺıtica: Departamento de Matemática y Estadística. Cĺınica de Matemática. J. Labrin - G.
Universidad de la Frontera Departamento de Matemática y Estadística Cĺınica de Matemática 1 Geometría Anaĺıtica: J. Labrin - G.Riquelme 1. Los puntos extremos de un segmento son P 1 (2,4) y P 2 (8, 4).
4.- Deduce la ecuación de la recta cuyos puntos de intersección con los ejes son A=(6,0) y B=(0,-2). Sol: x-3y-6=0.
Tipos de rectas. Vector director. Pendiente. Paralelas y perpendiculares. 1.- Encuentra la ecuación vectorial, paramétrica y continua de la recta que pasa por los puntos A=(3,2) y B=(1,-1). Sol: (x,y)=(3,2)+t(2,3);
_ Antología de Física I. Unidad II Vectores. Elaboró: Ing. Víctor H. Alcalá-Octaviano
24 Unidad II Vectores 2.1 Magnitudes escalares y vectoriales Unidad II. VECTORES Para muchas magnitudes físicas basta con indicar su valor para que estén perfectamente definidas y estas son las denominadas
GEOMETRÍA 1.- INTRODUCCIÓN:
GEOMETRÍA 1.- INTRODUCCIÓN: Etimológicamente hablando, la palabra Geometría procede del griego y significa Medida de la Tierra. La Geometría es la parte de las Matemáticas que estudia las idealizaciones
SOLUCIONES ELEMENTALES A PROBLEMAS ELEMENTALES. Darío Durán Cepeda
1 SOLUIONES ELEMENTLES ROLEMS ELEMENTLES arío urán epeda He sido profesor de matemática desde el año de 1960 hasta la fecha y he aprendido que la matemática no se enseña aunque sí se aprende. Mucha gente
SOLUCIONES CIRCUNFERENCIA. 1. Ecuación de la circunferencia cuyo centro es el punto (1, 2) y que pasa por el punto (2,3).
SOLUCIONES CIRCUNFERENCIA 1. Ecuación de la circunferencia cuyo centro es el punto (1,) y que pasa por el punto (,). Para determinar la ecuación de la circunferencia es necesario conocer el centro y el
1.- LA CIRCUNFERENCIA Es una línea curva, cerrada y plana en la que todos sus puntos están a la misma distancia de un punto interior llamado centro.
1.- LA CIRCUNFERENCIA Es una línea curva, cerrada y plana en la que todos sus puntos están a la misma distancia de un punto interior llamado centro. 2.- ELEMENTOS DE LA CIRCUNFERENCIA: *Centro: Punto central.
Actividades recreativas para recordar a los vectores. 1) Representa en un eje de coordenadas las siguientes sugerencias:
Actividades recreativas para recordar a los vectores 1) Representa en un eje de coordenadas las siguientes sugerencias: a) Dibuja un segmento y oriéntalo en sentido positivo. b) Dibuja un segmento y oriéntalo
DEMOSTRACIONES GEOMÉTRICAS
DEMOSTRACIONES GEOMÉTRICAS Ana M. Martín Caraballo, Universidad Pablo de Olavide de Sevilla. José Muñoz Santonja, IES Macarena de Sevilla. ESTALMAT ANDALUCÍA SEDE SEVILLA ÍNDICE INTRODUCCIÓN PRIMERA PARTE:
Esta es la forma vectorial de la recta. Si desarrollamos las dos posibles ecuaciones, tendremos las ecuaciones paramétricas de la recta:
Todo el mundo sabe que dos puntos definen una recta, pero los matemáticos son un poco diferentes y, aún aceptando la máxima universal, ellos prefieren decir que un punto y un vector nos definen una recta.
Geometría Tridimensional
Capítulo 4 Geometría Tridimensional En dos dimensiones trabajamos en el plano mientras que en tres dimensiones trabajaremos en el espacio, también provisto de un sistema de coordenadas. En el espacio,
GEOMETRÍA ANALÍTICA EJERCITARIO DE FACULTAD DE INGENIERÍA CURSO PREPARATORIO DE INGENIERÍA (CPI) UNIVERSIDAD NACIONAL DE ASUNCIÓN
UNIVERSIDAD NACIONAL DE ASUNCIÓN FACULTAD DE INGENIERÍA CURSO PREPARATORIO DE INGENIERÍA (CPI) EJERCITARIO DE GEOMETRÍA ANALÍTICA (ÁLGEBRA VECTORIAL - TEORÍA) AÑO 2014 ÁLGEBRA VECTORIAL - EJERCICIOS TEÓRICOS
Triángulos. 1. En todo triángulo la suma de sus ángulos interiores es En todo triángulo la suma de los ángulos exteriores es 360
Triángulos Es un polígono formado por tres segmentos cuyos tres puntos de intersección no están en línea recta. Triángulo ABC A,B y C son vértices del triángulo α, β, γ s interiores. a, b y c, longitud
GUIAS ÚNICAS DE LABORATORIO DE FÍSICA I ASPECTOS PRELIMINARES SUMA DE VECTORES
GUIAS ÚNICAS DE LABORATORIO DE FÍSICA I ASPECTOS PRELIMINARES SUMA DE VECTORES SANTIAGO DE CALI UNIVERSIDAD SANTIAGO DE CALI DEPARTAMENTO DE LABORATORIOS SUMA DE VECTORES OBJETIVOS Usar la mesa de fuerzas
Tarea 4 Soluciones. la parte literal es x3 y 4
Tarea 4 Soluciones Extracto del libro Baldor. Definición. Término.-es una expresión algebraica que consta de un solo símbolo o de varios símbolos no separados entre sí por el signo + o -. Así, a, 3b, 2xy,
Geometría analítica. Impreso por Juan Carlos Vila Vilariño Centro I.E.S. PASTORIZA
Conoce los vectores, sus componentes y las operaciones que se pueden realizar con ellos. Aprende cómo se representan las rectas y sus posiciones relativas. Impreso por Juan Carlos Vila Vilariño Centro
TORNEO DE LAS CUENCAS. 2013 Primera Ronda Soluciones PRIMER NIVEL
TORNEO DE LAS CUENCAS 2013 Primera Ronda Soluciones PRIMER NIVEL Problema 1- La figura adjunta está formada por un rectángulo y un cuadrado. Trazar una recta que la divida en dos figuras de igual área.
COORDENADAS CURVILINEAS
CAPITULO V CALCULO II COORDENADAS CURVILINEAS Un sistema de coordenadas es un conjunto de valores que permiten definir unívocamente la posición de cualquier punto de un espacio geométrico respecto de un
3.1 DEFINICIÓN. Figura Nº 1. Vector
3.1 DEFINICIÓN Un vector (A) una magnitud física caracterizable mediante un módulo y una dirección (u orientación) en el espacio. Todo vector debe tener un origen marcado (M) con un punto y un final marcado
MÓDULO Nº 4. Nivelación. Matemática 2005. Módulo Nº4. Contenidos. Circunferencia y Círculo Volúmenes
MÓDULO Nº 4 Nivelación Matemática 2005 Módulo Nº4 Contenidos Circunferencia y Círculo Volúmenes Nivelación Circunferencia y Círculo Circunferencia. Es una línea curva cerrada, cuyos puntos tienen la propiedad
Examen de Matemáticas 2 o de Bachillerato Mayo 2003
Examen de Matemáticas o de Bachillerato Mayo 00 1. Expresar el número 60 como suma de tres enteros positivos de forma que el segundo sea el doble del primero y su producto sea máximo. Determinar el valor
Ejercicios de Trigonometría
Ejercicios de Trigonometría 1) Indica la medida de estos ángulos en radianes: a) 0º b) 45º c) 60º d) 120º Recuerda que 360º son 2π radianes, con lo que para hacer la conversión realizaremos una simple
, y su resultado es igual a la suma de los productos de las coordenadas correspondientes. Si u = (u 1, u 2 ) y v = (v 1, v 2 ), = u1 v 1 + u 2 v 2
Los vectores Los vectores Distancia entre dos puntos del plano Dados dos puntos coordenados del plano, P 1 = (x 1, y 1 ) y P = (x, y ), la distancia entre estos dos puntos, d(p 1,P ), se calcula de la
Caracterización geométrica
Caracterización geométrica Ahora vamos a centrar nuestra atención en la elipe. Esta figura geométrica tiene la misma esencia que la circunferencia, pero ésta está dilatada en uno de sus ejes. Recuerda
LA MATEMÁTICA DEL TELEVISOR
LA MATEMÁTICA DEL TELEVISOR ADRIANA RABINO Y PATRICIA CUELLO 1. Las publicidades, por lo general, describen el tamaño de las pantallas de TV dando la longitud de su diagonal en pulgadas (1 = 2,47 cm).
IX Concurso Intercentros de Matemáticas de la Comunidad de Madrid
PRUE POR EQUIPOS 1º y 2º de E.S.O. (45 minutos) 1.- Hallad todos los valores de p y q para que el número de cinco cifras p 5 4 3 q sea múltiplo de 36. 2.- ompleta el siguiente crucinúmeros en el que, como
TEMA 5: CIRCUNFERENCIA Y CÍRCULO
TEMA 5: CIRCUNFERENCIA Y CÍRCULO Matías Arce, Sonsoles Blázquez, Tomás Ortega, Cristina Pecharromán 1. INTRODUCCIÓN... 1 2. LA CIRCUNFERENCIA Y EL CÍRCULO... 1 3. MEDICIÓN DE ÁNGULOS... 3 4. ÁNGULOS EN
Ecuaciones de segundo grado
3 Ecuaciones de segundo grado Objetivos En esta quincena aprenderás a: Identificar las soluciones de una ecuación. Reconocer y obtener ecuaciones equivalentes. Resolver ecuaciones de primer grado Resolver
6. VECTORES Y COORDENADAS
6. VECTORES Y COORDENADAS Página 1 Traslaciones. Vectores Sistema de referencia. Coordenadas. Punto medio de un segmento Ecuaciones de rectas. Paralelismo. Distancias Página 2 1. TRASLACIONES. VECTORES
Ver Aplicación Triángulos 03- Rectas y Puntos notables del triángulo: https://www.geogebra.org/m/uta2pdwd
TRIÁNGULOS RECTAS Y PUNTOS NOTABLES Las rectas notables del triángulo son altura, mediatriz, mediana y bisectriz. Ver Aplicación Triángulos 03- Rectas y Puntos notables del triángulo: https://www.geogebra.org/m/uta2pdwd
1. Aplicar el teorema de Pitágoras para responder a las siguientes cuestiones (y hacer un dibujo aproximado,
FICHA 1: Teorema de Pitágoras 1. Aplicar el teorema de Pitágoras para responder a las siguientes cuestiones (y hacer un dibujo aproximado, cuando proceda): a) Hallar la hipotenusa de un triángulo rectángulo
FUNCIONES CUADRÁTICAS Y RACIONALES
www.matesronda.net José A. Jiménez Nieto FUNCIONES CUADRÁTICAS Y RACIONALES 1. FUNCIONES CUADRÁTICAS. Representemos, en función de la longitud de la base (), el área (y) de todos los rectángulos de perímetro
TRIÁNGULOS. Pascual Jara y Ceferino Ruiz. Granada
ESTALMAT-Andalucía TRIÁNGULOS Pascual Jara y Ceferino Ruiz Granada 1. Definición de triángulo Comenzamos la Geometría viendo como organizar figuras en el plano. Los ejemplos más sencillos de figuras a
SEGUNDA EDICIÓN DEL CURSO DE CAPACITACION EN MATEMATICA PARA PROFESORES DE PRIMARIA
SEGUNDA EDICIÓN DEL CURSO DE CAPACITACION EN MATEMATICA PARA PROFESORES DE PRIMARIA MODULO III - GEOMETRIA ENCUENTRO NÚMERO TRES El Teorema de Thales y sus Aplicaciones 03 DE AGOSTO DE 2014 MANAGUA FINANCIADO
PROBLEMAS MÉTRICOS. Página 183 REFLEXIONA Y RESUELVE. Diagonal de un ortoedro. Distancia entre dos puntos. Distancia de un punto a una recta
PROBLEMAS MÉTRICOS Página 3 REFLEXIONA Y RESUELVE Diagonal de un ortoedro Halla la diagonal de los ortoedros cuyas dimensiones son las siguientes: I) a =, b =, c = II) a = 4, b =, c = 3 III) a =, b = 4,
4. GEOMETRÍA // 4.3. PROPIEDADES DE LOS
4. GEOMETRÍA // 4.3. PROPIEDADES DE LOS POLÍGONOS. COMPLEMENTOS PARA LA FORMACIÓN DISCIPLINAR EN MATEMÁTICAS. 4.3.1. La geometría del triángulo. MEDIATRIZ DE UN SEGMENTO La mediatriz de un segmento AB
PRIMER CONCURSO NACIONAL
PRIMER CONCURSO NACIONAL P R O Y E C T O S D E I N N O V A C I O N D E P R A C T I C A L A E D U C A T I V A Y D E C A P A C I T A C I O N P A R A J O V E N E S Y A D U L T O S (CATEGORIA A ) PROPUESTA:
6. Circunferencia. y polígonos
6. Circunferencia y polígonos Matemáticas 2º ESO 1. Lugares geométricos 2. Polígonos en la circunferencia 3. Simetrías en los polígonos 4. Longitud de la circunferencia y superficie del círculo 192 Circunferencia
MINISTERIO DE EDUCACIÓN Concurso Nacional de Matemática Educación Preuniversitaria Curso 2009 2010 Temario por Grados
MINISTERIO DE EDUCACIÓN Concurso Nacional de Matemática Educación Preuniversitaria Curso 009 010 Temario por Grados Nombre: Grado: Escuela: Provincia: Municipio: Número C.I.: Calif: La distribución de
Movimientos en el plano
7 Movimientos en el plano Objetivos En esta quincena aprenderás a: Manejar el concepto de vector como elemento direccional del plano. Reconocer los movimientos principales en el plano: traslaciones, giros
KIG: LA GEOMETRÍA A GOLPE DE RATÓN. Asesor de Tecnologías de la Información y de las Comunicaciones
KIG: LA GEOMETRÍA A GOLPE DE RATÓN Asesor de Tecnologías de la Información y de las Comunicaciones GNU/LINEX Mariano Real Pérez KIG KDE Interactive geometry (Geometría interactiva de KDE) es una aplicación
La derivada de y respecto a x es lo que varía y por cada unidad que varía x. Ese valor se designa por dy dx.
Conceptos de derivada y de diferencial Roberto C. Redondo Melchor, Norberto Redondo Melchor, Félix Redondo Quintela 1 Universidad de Salamanca 18 de agosto de 2012 v1.3: 17 de septiembre de 2012 Aunque
PRESENTACIÓN GRÁFICA DE LOS DATOS
PRESENTACIÓN GRÁFICA DE LOS DATOS Una imagen dice más que mil palabras, esta frase explica la importancia de presentar los datos en forma gráfica. Existe una gran variedad de gráficos y la selección apropiada
UNIDAD N 4: TRIGONOMETRÍA
Matemática Unidad 4 - UNIDD N 4: TRIGONOMETRÍ ÍNDICE GENERL DE L UNIDD Trigonometría....... 3 Sistema de medición angular... 3 Sistema seagesimal...... 3 Sistema Radial....... 3 Tabla de conversión entre
Tema 7. Geometría en plano. Vectores y rectas
Tema 7. Geometría en plano. Vectores y rectas. Vectores y puntos en el plano. Coordenadas.... Operaciones con vectores... 5.. Suma y resta de vectores... 5.. Producto de un número real por un vector....
EJERCICIOS DE SISTEMAS DE ECUACIONES
EJERCICIOS DE SISTEMAS DE ECUACIONES Ejercicio nº 1.- a) Resuelve por sustitución: 5x y 1 3x 3y 5 b) Resuelve por reducción: x y 6 4x 3y 14 Ejercicio nº.- a) Resuelve por igualación: 5x y x y b) Resuelve
Muchas veces hemos visto un juego de billar y no nos percatamos de los movimientos de las bolas (ver gráfico 8). Gráfico 8
Esta semana estudiaremos la definición de vectores y su aplicabilidad a muchas situaciones, particularmente a las relacionadas con el movimiento. Por otro lado, se podrán establecer las características
Tema 1. VECTORES (EN EL PLANO Y EN EL ESPACIO)
Vectores Tema. VECTORES (EN EL PLANO Y EN EL ESPACIO Definición de espacio vectorial Un conjunto E es un espacio vectorial si en él se definen dos operaciones, una interna (suma y otra externa (producto
10 FIGURAS Y CUERPOS GEOMÉTRICOS
EJERCICIOS PROPUESTOS 10.1 Indica cuál de estos poliedros es cóncavo y cuál es convexo. a) Cóncavo b) Convexo 10.2 Completa la siguiente tabla. Caras (C ) Vértices (V ) Aristas (A) C V A 2 Tetraedro 4
Geometría del plano. Objetivos. Antes de empezar
8 Geometría del plano Objetivos En esta quincena aprenderás a: Conocer los elementos del plano. Conocer las rectas y sus propiedades. Manipular rectas y otros elementos relacionados con ellas. Conocer
NÚMEROS NATURALES Y NÚMEROS ENTEROS
NÚMEROS NATURALES Y NÚMEROS ENTEROS Los números naturales surgen como respuesta a la necesidad de nuestros antepasados de contar los elementos de un conjunto (por ejemplo los animales de un rebaño) y de
4. GEOMETRÍA // 4.3. PROPIEDADES DE LOS
4. GEOMETRÍA // 4.3. PROPIEDADES DE LOS POLÍGONOS. COMPLEMENTOS PARA LA FORMACIÓN DISCIPLINAR EN MATEMÁTICAS. 4.3.1. Dos nuevas demostraciones del teorema de Pitágoras. La demostración china del teorema
Vectores en el espacio
Vectores en el espacio Un sistema de coordenadas tridimensional se construye trazando un eje Z, perpendicular en el origen de coordenadas a los ejes X e Y. Cada punto viene determinado por tres coordenadas
VECTORES. Por ejemplo: la velocidad de un automóvil, o la fuerza ejercida por una persona sobre un objeto.
Un vector v es un segmento orientado. VECTORES Se representa gráficamente por medio de una flecha, por ejemplo: Todos los vectores poseen las siguientes características: Punto de aplicación: es el lugar
DEPARTAMENTO DE SERVICIOS EDUCATIVOS COMISIÓN ANDRAGÓGICA AÑO 2011 GUÍA PARA ASESORAR
DEPARTAMENTO DE SERVICIOS EDUCATIVOS COMISIÓN ANDRAGÓGICA AÑO 2011 GUÍA PARA ASESORAR a las personas jóvenes y adultas que requieren presentar el examen de OPERACIONES AVANZADAS 1 NÚMEROS CON SIGNO. Los
GEOMETRÍA CON LA CLASSPAD 300
8. GEOMETRÍA CON LA CLASSPAD 300 LA APLICACIÓN GEOMETRÍA Para acceder a la aplicación para trabajar con distintas construcciones geométricas bastará con pulsar el icono correspondiente a Geometry en el
UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL SISTEMA DE EDUCACIÓN A DISTANCIA CARRERA DE CIENCIAS DE EDUCACIÓN AREA DE MATEMÁTICAS. Módulo
UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL SISTEMA DE EDUCACIÓN A DISTANCIA CARRERA DE CIENCIAS DE EDUCACIÓN AREA DE MATEMÁTICAS Módulo TRIGONOMETRÍA Y DIBUJO TÉCNICO Msc. Sexto Nivel Tercera Edición Quito, marzo
APU TES Y EJERCICIOS DEL TEMA 9 PROPORC. GEOMÉTRICA. THALES. ESCALA.
APU TES Y DEL TEMA 9 PROPORC. GEOMÉTRICA. THALES. ESCALA. 1-T 9--2ºESO RECORDATORIO INICIAL: Antes de empezar de lleno con este tema, os digo que, ocasionalmente, se van a trabajar ciertos conceptos que
1.- LÍNEAS POLIGONALES Y POLÍGONOS.
1.- LÍNEAS POLIGONALES Y POLÍGONOS. Línea poligonal.- Una línea poligonal está formada por varios segmentos consecutivos. Las líneas poligonales pueden ser abiertas o cerradas. Polígono.- Es la región
a < b y se lee "a es menor que b" (desigualdad estricta) a > b y se lee "a es mayor que b" (desigualdad estricta)
Desigualdades Dadas dos rectas que se cortan, llamadas ejes (rectangulares si son perpendiculares, y oblicuos en caso contrario), un punto puede situarse conociendo las distancias del mismo a los ejes,
Triángulos IES BELLAVISTA
Triángulos IES BELLAVISTA Definiciones y notación Un triángulo es la figura plana limitada por tres rectas que se cortan dos a dos. Los puntos de corte se denominan vértices. El triángulo tiene tres lados
VECTORES. Abel Moreno Lorente. February 3, 2015
VECTORES Abel Moreno Lorente February 3, 015 1 Aspectos grácos. 1.1 Deniciones. Un vector entre dos puntos A y B es el segmento de recta orientado que tiene su origen en A y su extremo en B. A este vector
Apoyo para la preparación de los estudios de Ingeniería y Arquitectura Física (Preparación a la Universidad) Unidad 4: Vectores
Apoyo para la preparación de los estudios de Ingeniería y Arquitectura Física (Preparación a la Universidad) Unidad 4: Vectores Universidad Politécnica de Madrid 5 de marzo de 2010 2 4.1. Planificación
Funciones, x, y, gráficos
Funciones, x, y, gráficos Vamos a ver los siguientes temas: funciones, definición, dominio, codominio, imágenes, gráficos, y algo más. Recordemos el concepto de función: Una función es una relación entre
1 Estática Básica Prohibida su reproducción sin autorización. CONCEPTOS DE FISICA MECANICA. Conceptos de Física Mecánica
1 CONCEPTOS DE FISICA MECANICA Introducción La parte de la física mecánica se puede dividir en tres grandes ramas de acuerdo a lo que estudia cada una de ellas. Así, podemos clasificarlas según lo siguiente:
Programa para el Mejoramiento de la Enseñanza de la Matemática en ANEP Proyecto: Análisis, Reflexión y Producción. Fracciones
Fracciones. Las fracciones y los números Racionales Las fracciones se utilizan cotidianamente en contextos relacionados con la medida, el reparto o como forma de relacionar dos cantidades. Tenemos entonces
VECTORES. Módulo, dirección y sentido de un vector fijo En un vector fijo se llama módulo del mismo a la longitud del segmento que lo define.
VECTORES El estudio de los vectores es uno de tantos conocimientos de las matemáticas que provienen de la física. En esta ciencia se distingue entre magnitudes escalares y magnitudes vectoriales. Se llaman
EVALUACIÓN DIAGNÓSTICA
ASESORIA DE OLIMPIADAS EVALUACIÓN DIAGNÓSTICA M en C. LUZMA ORTIZ BARRETO NOMBRE DEL ALUMNO: GPO: N.L. 5 1) Resolver la siguiente ecuación i x es un número real y 7 3 x 7 3 x Cuál es el valor de x? 2)
Definición 1.1.1. Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas.
Tema 1 Matrices Estructura del tema. Conceptos básicos y ejemplos Operaciones básicas con matrices Método de Gauss Rango de una matriz Concepto de matriz regular y propiedades Determinante asociado a una