Termodinámica: Ciclos motores Parte 1

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Termodinámica: Ciclos motores Parte 1"

Transcripción

1 Termodinámica: Ciclos motores Parte 1 Olivier Skurtys Departamento de Ingeniería Mecánica Universidad Técnica Federico Santa María olivier.skurtys@usm.cl Santiago, 2 de julio de 2012

2 Presentación 1 Introducción 2 El ciclo de Brayton (Joule) 3 El ciclo del turborreactor

3 Introducción 1 Introducción Generalidades

4 Generalidades 1 Introducción Generalidades

5 Generalidades Algunos generadores de potencia como una central térmica a vapor operan según un ciclo, es decir que el fluido activo retorna a su estado inicial después haber ido sometido a varias procesos. En el caso de los motores a combustión interna (motores volumetricos, turbina a gas) no operan (si estamos preciso) según un ciclo, porque el fluido activo quita el dispositivo en un estado distinto (composición y/o condiciones de presión / temperatura) en el cual es entrado. Sin embargo, en este caso es interesante analizar las eficiencias de ciclo idealizado que aproximan el proceso real El fluido activo será: sea una substancia a cambio de fase, sea un gas que consideramos como ideal.

6 Generalidades Así se puede distinguir entre los ciclos motores: los ciclos que operan en los sistemas cerrados: estos sistema dan trabajo por desplazamiento de su frontera. los ciclos que operan en sistemas abiertos: estos sistemas dan trabajo a un eje de una maquina giratoria.

7 Generalidades Para un proceso de un sistema abierto donde la energía cinética y potencial es despreciables, el trabajo por unidad de masa reversible es: w = ν dp (1) mientras que por un sistema cerrado, w = p dν (2) Estas dos magnitudes son representadas en el diagrama:

8 Generalidades Vamos a tratar primero los motores que emplean un fluido activo que es siempre al estado gaseoso: motores volumetricos de encendido (ignición) comandado motor a bencina motores volumetricos de espontaneo (ignición) motor Diésel turbinas a gas de propulsión turbo-propulsores, motores de helicóptero turbo-reactor En todos estos motores, la composición del gas varia entre la entrada y la salida en razón de la combustión del carburante. Es por esta razón que se llaman motores a combustión interna

9 Generalidades Hipótesis En razón del cambio de composición, pero también porque es realmente sistemas abierto en lo cual: el estado de escape difiera del estado de aspiración. los motores a combustión interna no son ciclos. Sin embargo, para facilitar el estudio de estos dispositivos, es interesante de los modelar por ciclos con las propiedades siguientes: 1 Una masa fija de aire realiza el ciclo. y el aire es considerado como un gas ideal. 2 La combustión es remplazada por un intercambio de calor que proviene de una fuente externa. 3 El ciclo se completa por un intercambio de calor con el medio ambiente. al ligar de procesos de admisión y de escape reales. 4 Todos los procesos son reversibles interiormente. 5 Ademas, se supone que el calor másico es constante.

10 El ciclo de Brayton (Joule) 2 El ciclo de Brayton (Joule) Descripción Eficiencia del ciclo Trabajo máxima El ciclo de Brayton con regeneración El ciclo de Brayton con interenfriamiento, recalentamiento y regeneración

11 Descripción 2 El ciclo de Brayton (Joule) Descripción Eficiencia del ciclo Trabajo máxima El ciclo de Brayton con regeneración El ciclo de Brayton con interenfriamiento, recalentamiento y regeneración

12 Descripción En atmósfera rareficada, como por ejemplo en alta altura, no se puede usar los motores a bencina o diésel clásico. Se usa motores a reacción donde el principio es eyectar el gas de combustión. Un tal ciclo es llamada ciclo de Brayton (o también ciclo de Joule) Este ciclo es usado en un gran numero de motores relacionado con la aviación: turborreactores, turbo-propulsores y motores de cohetes, Así, que por las turbinas a gas donde el principio es usar el trabajo entregado por el fluido para hacer girar un alternador que va generar de la electricidad. Es el ciclo ideal de la turbina a gas Vamos a ver que el ciclo de Brayton tiene su equivalencia en los sistemas abierto: el ciclo de Rankine.

13 Descripción El ciclo de Brayton es compuesto de las transformación siguientes: 2 intercambio de calor isobáricos 2 variaciones de presión isentrópicas El fluido se queda siempre al estado gaseoso. 1-2: Compresión isentrópica (en un compresor) 2-3: Adición de calor a presión constante 3-4: Expansión isentrópica (en un turbina) 4-1: Rechazo de calor a presión constante

14 Descripción

15 Eficiencia del ciclo 2 El ciclo de Brayton (Joule) Descripción Eficiencia del ciclo Trabajo máxima El ciclo de Brayton con regeneración El ciclo de Brayton con interenfriamiento, recalentamiento y regeneración

16 Eficiencia del ciclo La eficiencia η del ciclo a siempre por expresión a partir del primer principio: η = w neto = q c q f = 1 q f (3) q entrada q c q c y sea el eficiencia del ciclo: q c = h 3 h 2 = c p (T 3 T 2 ) (4) q f = h 1 h 4 = h 4 h 1 = c p (T 4 T 1 ) (5) η = 1 T 4 T 1 T 3 T 2 (6) Los procesos 1 2 y 3 4 son procesos isentrópicos entonces: T 1 T 2 = ( p1 p 2 ) k 1 k T 3 T 4 = ( p3 p 4 ) k 1 k = ( p2 p 1 ) k 1 k (7)

17 Eficiencia del ciclo Se deduce que: Ademas, tenemos: T 1 T 2 = T 4 T 3 (8) T 4 T 1 T 3 T 2 = T 1 T 2 T 4 T 1 1 T 3 T 2 1 = T 1 (9) T 2 Introduciendo la relación de compresión (o tasa de compresión): La relación de eficiencia térmica se escribe: r 12 = p 2 p 1 (10) η = 1 T 1 T 2 = 1 ( p1 p 2 ) k 1 k = 1 1 r k 1 k 12 (11)

18 Eficiencia del ciclo Comentarios La eficiencia es inferior al ciclo de Carnot: η = 1 T 1 T 2 < 1 T 1 T 3 = η carnot (12) La eficiencia es entonces una función creciente de la tasa de compresión r 12. η = 1 T 1 T 2 = 1 1 r k 1 k 12 (13)

19 Eficiencia del ciclo Comentarios Eso se explica a partir del diagrama entrópico. Cuando la razón de presión crece (con una razón de temperatura entrada turbina / salida compresor constante) el ciclo original se transforma en por el cual el trabajo es mas grande, mientras que el calor botado a la fuente fría es idéntica.

20 Eficiencia del ciclo Comentarios Sin embargo, la temperatura máxima es mas elevada: En practica, la temperatura de entrada de la turbina es limite por el material que constituye la turbina. Si mantenemos la temperatura de entrada de la turbina constante pero crecemos la razón de presión, se obtiene el ciclo como la eficiencia térmica dependen solamente de la razón de presión, este ciclo tiene una eficiencia idéntica al ciclo Sin embargo, el trabajo por unidad de masa es mas débil

21 Trabajo máxima 2 El ciclo de Brayton (Joule) Descripción Eficiencia del ciclo Trabajo máxima El ciclo de Brayton con regeneración El ciclo de Brayton con interenfriamiento, recalentamiento y regeneración

22 Trabajo máxima Comentarios Calculamos, este trabajo: w = (h 3 h 4 ) (h 2 h 1 ) = c p T 1 { T3 T 1 ( Ponemos sobre un gráfico de la eficiencia: en función de r w c pt 1 por una razón de temperatura T3 T 1 = 2 ) 1 r k 1 k ) (r } k 1 k 1 (14)

23 Trabajo máxima Comentarios Determinamos este el trabajo máxima, w max : Notamos y = r k 1 k Tenemos por consecuencia: 1 dw c p T 1 dy = T 3 1 T 1 y 2 1 (15) T3 y max = T 1 (16) r wmax = (T3 T 1 ) k k 1 (17) Finalmente, el inconveniente mayor del ciclo de Brayton es: la importancia del trabajo de compresión con respecto el trabajo de expansión. la potencia instalada es mas elevada que la potencia útil.

24 Trabajo máxima Comentarios Este efecto es mas importante si tomamos en cuenta las perdidas de las maquinas. El trabajo de compresión crece mientras que el trabajo entrega por la turbina es reducido El trabajo disminuye rápidamente con las perdidas

25 El ciclo de Brayton con regeneración 2 El ciclo de Brayton (Joule) Descripción Eficiencia del ciclo Trabajo máxima El ciclo de Brayton con regeneración El ciclo de Brayton con interenfriamiento, recalentamiento y regeneración

26 El ciclo de Brayton con regeneración Cuando la temperatura de salida de la turbina es superior a la temperatura de salida del compresor: se puede mejorar la eficiencia del ciclo de Brayton usando los gases de escape para calentar los gases que salen del compresor

27 El ciclo de Brayton con regeneración Si supongamos las calores másicas constantes y un intercambiador de calor ideal tenemos T x = T 4 (18) y T y = T 2 (19) η BraytonRegeneracion = (h 3 h 4 ) (h 2 h 1 ) h 3 h 4 = 1 h 2 h 1 h 3 h 4 = 1 T 2 T 1 = 1 T 1 r k 1 k T 3 T 4 T 3 > η Brayton (20)

28 El ciclo de Brayton con regeneración Este ciclo a regeneración tiene sentido solamente cuando T 4 > T 2, es decir por una razón de presión tal que: r k 1 k < T ( ) k 3 r k 1 T3 2(k 1) k r < = rwmax (21) T 1 T 1

29 El ciclo de Brayton con regeneración Comentario En practica, el intercambiador no es perfecto y por consecuencia T x < T 4 Definamos el grado de perfección del intercambiador como: η intercambiador = h x h 2 h 4 h 2 (22) El rendimiento del intercambiador tiene influencia sobre el ciclo de regeneración.

30 El ciclo de Brayton con interenfriamiento, recalentamiento y regeneración 2 El ciclo de Brayton (Joule) Descripción Eficiencia del ciclo Trabajo máxima El ciclo de Brayton con regeneración El ciclo de Brayton con interenfriamiento, recalentamiento y regeneración

31 El ciclo de Brayton con interenfriamiento, recalentamiento y regeneración Mencionamos anteriormente que el trabajo de compresión es reducido por un compresión enfriada. Se aprovecha esta propiedad en el ciclo Brayton a compresión y expansión procediendo por etapas ademas se usa la regeneración

32 El ciclo del turborreactor 3 El ciclo del turborreactor

33 El ciclo del turbooreactor es igualmente una variante del ciclo de brayton: se hace una expansión en la turbina de manera a ce que la potencia entregada por la turbina sea suficiente para entrenar el compresor Los gases a la salida de la turbina son entonces expansionado en una tobera para estar acelerado y así producir un empuje

34

35 Introduccio n Snecma CFM-56 Dia metro: 1,8m El ciclo de Brayton (Joule) El ciclo del turborreactor

36

37 Destrucción de las palas de la turbina por sobrecalentamiento

Termodinámica: Segundo principio de la termodinámica Parte 5: Maquinas térmicas

Termodinámica: Segundo principio de la termodinámica Parte 5: Maquinas térmicas Termodinámica: Segundo principio de la termodinámica Parte 5: Maquinas térmicas Olivier Skurtys Departamento de Ingeniería Mecánica Universidad Técnica Federico Santa María Email: olivier.skurtys@usm.cl

Más detalles

Ciclo de Brayton. Integrantes: Gabriela Delgado López Isamar Porras Fernández

Ciclo de Brayton. Integrantes: Gabriela Delgado López Isamar Porras Fernández Ciclo de Brayton Integrantes: Gabriela Delgado López Isamar Porras Fernández Ciclo de Brayton? Es un proceso cíclico asociado generalmente a una turbina a gas. Al igual que otros ciclos de potencia de

Más detalles

Termodinámica: Ciclos con vapor Parte 2

Termodinámica: Ciclos con vapor Parte 2 Termodinámica: Ciclos con vapor Parte 2 Olivier Skurtys Departamento de Ingeniería Mecánica Universidad Técnica Federico Santa María Email: olivier.skurtys@usm.cl Santiago, 13 de julio de 2012 Presentación

Más detalles

Termodinámica: Ciclos motores Parte 2

Termodinámica: Ciclos motores Parte 2 Termodinámica: Ciclos motores Parte 2 Olivier Skurtys Departamento de Ingeniería Mecánica Universidad Técnica Federico Santa María Email: olivier.skurtys@usm.cl Santiago, 6 de julio de 2012 Presentación

Más detalles

Termodinámica: Segundo principio de la termodinámica Parte 5: Maquinas térmicas

Termodinámica: Segundo principio de la termodinámica Parte 5: Maquinas térmicas Termodinámica: Segundo principio de la termodinámica Parte 5: Maquinas térmicas Olivier Skurtys Departamento de Ingeniería Mecánica Universidad Técnica Federico Santa María Email: olivier.skurtys@usm.cl

Más detalles

Termodinámica: Ciclos de refrigeración Parte 1

Termodinámica: Ciclos de refrigeración Parte 1 Termodinámica: Ciclos de refrigeración Parte 1 Olivier Skurtys Departamento de Ingeniería Mecánica Universidad Técnica Federico Santa María Email: olivier.skurtys@usm.cl Santiago, 16 de julio de 2012 Presentación

Más detalles

UNIDAD II: CICLOS DE POTENCIA DE VAPOR

UNIDAD II: CICLOS DE POTENCIA DE VAPOR UNIDAD II: CICLOS DE POTENCIA DE VAPOR 1. Expansion isotermica. Expansion adiabatica 3. Compresion isotermica 4. Compresión adiabatica ETAPAS DEL CICLO DE CARNOT 1. Expansión isotérmica. Expansión adiabática

Más detalles

2.- A qué se considera como eficiencia en las máquinas? Considera un proceso (no un ciclo) y compara la trayectoria real con la isentrópica

2.- A qué se considera como eficiencia en las máquinas? Considera un proceso (no un ciclo) y compara la trayectoria real con la isentrópica CUESTIONARIO UNIDAD 5 1.- Qué es la eficiencia? Es la relación entre la energía útil y la energía invertida 2.- A qué se considera como eficiencia en las máquinas? Considera un proceso (no un ciclo) y

Más detalles

Termodinámica: Ciclos con vapor Parte 1

Termodinámica: Ciclos con vapor Parte 1 Termodinámica: Ciclos con vapor Parte 1 Olivier Skurtys Departamento de Ingeniería Mecánica Universidad Técnica Federico Santa María Email: olivier.skurtys@usm.cl Santiago, 10 de julio de 2012 Presentación

Más detalles

Capítulo 4 Ciclos Termodinámicos. M del Carmen Maldonado Susano

Capítulo 4 Ciclos Termodinámicos. M del Carmen Maldonado Susano Capítulo 4 Ciclos Termodinámicos Objetivo El alumno conocerá los ciclos termodinámicos fundamentales empleados en la transformación de la energía. Contenido Ciclos de generación de potencia mecánica. Ciclos

Más detalles

INDICE A. Introducción a la Termodinámica 1. Conceptos básicos y Definiciones 2. Propiedades Relaciones pvt B. Notas sobre Solución de Problemas

INDICE A. Introducción a la Termodinámica 1. Conceptos básicos y Definiciones 2. Propiedades Relaciones pvt B. Notas sobre Solución de Problemas INDICE Prefacio XIII Prefacio para estudiantes XVII A. Introducción a la Termodinámica 1 1. Conceptos básicos y Definiciones 11 1.1. Sistema termodinámicos 12 1.2. Propiedades, estado y procesos 14 1.3.

Más detalles

UNIVERSIDAD ANTONIO NARIÑO EDUCACION A DISTANCIA INGENIERIA ELECTROMECANICA NOMBRE DEL PROGRAMA: INGENIERIA ELECTROMECANICA

UNIVERSIDAD ANTONIO NARIÑO EDUCACION A DISTANCIA INGENIERIA ELECTROMECANICA NOMBRE DEL PROGRAMA: INGENIERIA ELECTROMECANICA NUMERO DE GUIA: 8 CICLOS DE POTENCIA DE GAS II NOMBRE DEL PROGRAMA: ASIGNATURA: CICLOS TERMICOS CODIGO: 51133104 PERIODO ACADEMICO: I SEMESTRE DE 2010 SEMESTRE: OCTAVO CREDITOS DE LA ASIGNATURA: 3 HORAS

Más detalles

Tema 3. Máquinas Térmicas II

Tema 3. Máquinas Térmicas II Asignatura: Tema 3. Máquinas Térmicas II 1. Motores Rotativos 2. Motores de Potencia (Turbina) de Gas: Ciclo Brayton 3. Motores de Potencia (Turbina) de Vapor: Ciclo Rankine Grado de Ingeniería de la Organización

Más detalles

Facultad de Ingeniería División de Ciencias Básicas. Ciclo de Diesel. Martín Bárcenas

Facultad de Ingeniería División de Ciencias Básicas. Ciclo de Diesel. Martín Bárcenas Admisión Inicio compresión Fin de compresión Combustión Expansión Escape de gases 0 Admisión (Proceso Isobárico): Se supone que la circulación de los gases desde la atmósfera al interior del cilindro se

Más detalles

Ciclos de Aire Standard

Ciclos de Aire Standard Ciclos Termodinámicos p. 1/2 Ciclos de Aire Standard máquinas reciprocantes modelo de aire standard ciclo Otto ciclo Diesel ciclo Brayton Ciclos Termodinámicos p. 2/2 máquinas de combustión interna el

Más detalles

MÁQUINAS TÉRMICAS. CICLOS TERMODINÁMICOS Y ESQUEMAS. TEORÍA.

MÁQUINAS TÉRMICAS. CICLOS TERMODINÁMICOS Y ESQUEMAS. TEORÍA. 1 MÁQUINAS TÉRMICAS. CICLOS TERMODINÁMICOS Y ESQUEMAS. TEORÍA. Una máquina térmica es un dispositivo que trabaja de forma cíclica o de forma continua para producir trabajo mientras se le da y cede calor,

Más detalles

TEMA 2. Prestaciones y análisis de la misión

TEMA 2. Prestaciones y análisis de la misión EMA Prestaciones y análisis de la misión G. Paniagua, P. Piqueras Departamento de Máquinas y Motores érmicos UNIVERSIDAD POLIÉCNICA DE VALENCIA 1 Índice Análisis del ciclo termodinámico Generación de empuje

Más detalles

MÁQUINAS HIDRÁULICAS Y TÉRMICAS TURBOMÁQUINAS TÉRMICAS

MÁQUINAS HIDRÁULICAS Y TÉRMICAS TURBOMÁQUINAS TÉRMICAS 1. LA MÁQUINA TÉRMICA MÁQUINA DE FLUIDO: Es el conjunto de elementos mecánicos que permite intercambiar energía mecánica con el exterior, generalmente a través de un eje, por variación de la energía disponible

Más detalles

TEMA 9. CICLOS DE POTENCIA DE VAPOR

TEMA 9. CICLOS DE POTENCIA DE VAPOR Termodinámica Aplicada Ingeniería Química TEMA 9. CICLOS DE POTENCIA DE VAPOR TEMA 9: CICLOS DE POTENCIA DE VAPOR BLOQUE II. Análisis termodinámico de procesos industriales ANÁLISIS PROCESOS CALOR GENERALIDADES

Más detalles

Física Térmica - Práctico 5

Física Térmica - Práctico 5 - Práctico 5 Instituto de Física, Facultad de Ingeniería, Universidad de la República La numeración entre paréntesis de cada problema, corresponde a la numeración del libro Fundamentos de Termodinámica

Más detalles

Indice1. Cap.1 Energía. Cap. 2 Fuentes de Energía. Indice - Pág. 1. Termodinámica para ingenieros PUCP

Indice1. Cap.1 Energía. Cap. 2 Fuentes de Energía. Indice - Pág. 1. Termodinámica para ingenieros PUCP Indice1 Cap.1 Energía INTRODUCCIÓN... 1 La Energía en el Tiempo... 2 1.1 Energía... 5 1.2 Principio de conservación de energía... 5 1.3 Formas de energía... 7 1.4 Transformación de energía... 9 1.5 Unidades

Más detalles

Ciclo de Otto (de cuatro tiempos)

Ciclo de Otto (de cuatro tiempos) Admisión Inicio compresión Fin de compresión Combustión Expansión Escape de gases 0 Admisión (Proceso Isobárico): Se supone que la circulación de los gases desde la atmósfera al interior del cilindro se

Más detalles

1 TERMODINAMICA Departamento de Física - UNS Carreras: Ing. Industrial y Mecánica

1 TERMODINAMICA Departamento de Física - UNS Carreras: Ing. Industrial y Mecánica TERMODINAMICA Departamento de Física - UNS Carreras: Ing. Industrial y Mecánica Trabajo Práctico N : PROCESOS Y CICLOS DE POTENCIA DE VAPOR Procesos con vapor ) En un cierto proceso industrial se comprimen

Más detalles

CICLOS DE POTENCIA EN FASE GAS

CICLOS DE POTENCIA EN FASE GAS CICLOS DE POTENCIA EN FASE GAS Nicolaus Otto Rudolph Diesel Robert Stirling John Ericsson George Brayton La mayoría de sistemas de producción de trabajo operan en ciclos. Los ciclos reales son difíciles

Más detalles

Ejemplos de temas V, VI, y VII

Ejemplos de temas V, VI, y VII 1. Un sistema de aire acondicionado que emplea refrigerante R-134a como fluido de trabajo es usado para mantener una habitación a 23 C al intercambiar calor con aire exterior a 34 C. La habitación gana

Más detalles

Tecnología de Fluidos y Calor

Tecnología de Fluidos y Calor ecnología de Fluidos y Calor Ciclos de potencia Ingeniería écnica Industrial.Especialidad Electrónica Escuela Universitaria Politécnica Universidad de evilla º principio: Máquina térmica cedido η cedido

Más detalles

Ciclos de potencia de vapor y combinados. Integrantes: Raquel Mejías Araya Vanessa Jiménez Badilla Emmanuel Ugalde Corrales

Ciclos de potencia de vapor y combinados. Integrantes: Raquel Mejías Araya Vanessa Jiménez Badilla Emmanuel Ugalde Corrales Ciclos de potencia de vapor y combinados Integrantes: Raquel Mejías Araya Vanessa Jiménez Badilla Emmanuel Ugalde Corrales Se consideran ciclos de potencia de vapor en los que el fluido de trabajo se evapora

Más detalles

FORMATO CONTENIDO DE CURSO O SÍLABO

FORMATO CONTENIDO DE CURSO O SÍLABO 1. INFORMACIÓN GENERAL DEL CURSO Facultad Ingeniería Fecha de Actualización 30/01/2017 Programa Ingeniería Química Semestre V Nombre Termodinámica Aplicada Código 72114 Prerrequisitos 72102, 721030 Créditos

Más detalles

5. MODELO DE ANÁLISIS DEL CICLO TERMODINÁMICO. El método aplicado para modelar el ciclo de la Turbina se basa en el ciclo

5. MODELO DE ANÁLISIS DEL CICLO TERMODINÁMICO. El método aplicado para modelar el ciclo de la Turbina se basa en el ciclo 60 5. MODELO DE ANÁLISIS DEL CICLO TERMODINÁMICO El método aplicado para modelar el ciclo de la Turbina se basa en el ciclo Brayton para el cual se hicieron algunas simplificaciones que se especifican

Más detalles

PRÁCTICA CICLO DE POTENCIA DE GAS (BRAYTON)

PRÁCTICA CICLO DE POTENCIA DE GAS (BRAYTON) UNIVERSIDAD NACIONAL EXPERIMENTAL ``FRANCISCO DE MIRANDA ÁREA DE TECNOLOGÍA PROGRAMA DE INGENIERÍA INDUSTRIAL, MECÁNICA LABORATORIO DE TERMODINÁMICA APLICADA. LABORATORIO DE CONVERSIÓN DE ENERGÍA PRÁCTICA

Más detalles

UNIVERSIDAD TÉCNICA NACIONAL SEDE DEL PACÍFICO CURSO: TERMODINÁMICA TRABAJO DE INVESTIGACIÓN: CICLO DE BRAYTON ESTUDIANTES: CINDY JARQUÍN VIALES

UNIVERSIDAD TÉCNICA NACIONAL SEDE DEL PACÍFICO CURSO: TERMODINÁMICA TRABAJO DE INVESTIGACIÓN: CICLO DE BRAYTON ESTUDIANTES: CINDY JARQUÍN VIALES UNIVERSIDAD TÉCNICA NACIONAL SEDE DEL PACÍFICO CURSO: TERMODINÁMICA TRABAJO DE INVESTIGACIÓN: CICLO DE BRAYTON ESTUDIANTES: CINDY JARQUÍN VIALES YENDRY AZOFEIFA GONZALEZ MARTHA VILLARREAL MELÉNDEZ PROFESOR:

Más detalles

Cap. 6.- Ciclos de turbinas de gas.

Cap. 6.- Ciclos de turbinas de gas. Cap. 6.- Ciclos de turbinas de gas. Cuestiones de autoevaluación Escuela Politécnica Superior Profesores: Pedro A. Rodríguez Aumente, catedrático de Máquinas y Motores Térmicos Antonio Lecuona Neumann,

Más detalles

TEMA1: GUIA 1 CICLO RANKINE

TEMA1: GUIA 1 CICLO RANKINE UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA COMPLEJO ACADÉMICO PUNTO FIJO PROGRAMA DE INGENIERÍA INDUSTRIAL CÁTEDRA: CONVERSION DE ENERGIA TEMA: GUIA CICLO RANKINE Ciclo Rankine. Efectos de

Más detalles

Sílabo de Termodinámica aplicada

Sílabo de Termodinámica aplicada Sílabo de Termodinámica aplicada I. Datos generales Código ASUC 00888 Carácter Obligatorio Créditos 3 Periodo académico 2017 Prerrequisito Termodinámica Horas Teóricas: 2 Prácticas: 2 II. Sumilla de la

Más detalles

2. Todos los procesos de compresión y expansión se dan en el modo de cuasiequilibrio.

2. Todos los procesos de compresión y expansión se dan en el modo de cuasiequilibrio. INTRODUCCION La mayor parte de los dispositivos que producen potencia operan en ciclos, y el estudio de los ciclos de potencia es una parte interesante e importante de la termodinámica, y precisamente

Más detalles

Enunciados Lista 5 Nota: 7.2* 7.7* 7.9* 7.14* 7.20* 7.21*

Enunciados Lista 5 Nota: 7.2* 7.7* 7.9* 7.14* 7.20* 7.21* Nota: Los ejercicios 7.14, 7.20, 7.21. 7.26, 7.59, 7.62, 7.67, 7.109 y 7.115 tienen agregados y/o sufrieron modificaciones respecto al Van Wylen. 7.2* Considere una máquina térmica con ciclo de Carnot

Más detalles

SISTEMAS DE PROPULSION Tema VI-1 Análisis de comportamiento (Actuaciones) Ingeniero aeronáutico Segundo año de carrera. Curso

SISTEMAS DE PROPULSION Tema VI-1 Análisis de comportamiento (Actuaciones) Ingeniero aeronáutico Segundo año de carrera. Curso SISTEMAS DE PROPULSION Tema VI-1 Análisis de comportamiento (Actuaciones) Ingeniero aeronáutico Segundo año de carrera Curso 2.007 2.008 1 INTRODUCCION El análisis del comportamiento del motor se denomina

Más detalles

Pontificia Universidad Católica Argentina

Pontificia Universidad Católica Argentina PROGRAMA DE TERMODINÁMICA 320 INGENIERÍA AMBIENTAL OBJETIVOS DE LA MATERIA 1) Impartir el conocimiento de las Leyes de la para el análisis de las transformaciones de la energía. 2) Vincular la con las

Más detalles

Ciclos de fuerza de vapor. Jazmín Palma Campos Daniela Torrentes Díaz

Ciclos de fuerza de vapor. Jazmín Palma Campos Daniela Torrentes Díaz Ciclos de fuerza de vapor Jazmín Palma Campos Daniela Torrentes Díaz Ciclos de fuerza de vapor El vapor es el fluido de trabajo más empleado en los ciclos de potencia de vapor gracias a sus numerosas ventajas,

Más detalles

Termodinámica: Segundo principio de la termodinámica Parte 3: Maquinas térmicas

Termodinámica: Segundo principio de la termodinámica Parte 3: Maquinas térmicas Termodinámica: Segundo principio de la termodinámica Parte 3: Maquinas térmicas Olivier Skurtys Departamento de Ingeniería Mecánica Universidad Técnica Federico Santa María Email: olivier.skurtys@usm.cl

Más detalles

Carrera: Ingeniería Naval NAT Participantes

Carrera: Ingeniería Naval NAT Participantes 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Ingeniería Termodinámica Ingeniería Naval NAT - 0622 2-3-7 2.- HISTORIA DEL PROGRAMA

Más detalles

DEPARTAMENTO DE INGENIERÍA ELÉCTRICA Y ENERGÉTICA UNIVERSIDAD DE CANTABRIA TURBINAS DE GAS

DEPARTAMENTO DE INGENIERÍA ELÉCTRICA Y ENERGÉTICA UNIVERSIDAD DE CANTABRIA TURBINAS DE GAS DEPARTAMENTO DE INGENIERÍA ELÉCTRICA Y ENERGÉTICA UNIVERSIDAD DE CANTABRIA TURBINAS DE GAS Pedro Fernández Díez http://www.termica.webhop.info/ I.- TURBINAS DE GAS CICLOS TERMODINÁMICOS IDEALES I..- CARACTERÍSTICAS

Más detalles

TERMODINÁMICA AVANZADA

TERMODINÁMICA AVANZADA ERMODINÁMICA AANZADA Unidad I: ropiedades y Leyes de la ermodinámica! Ciclos de potencia! Ciclo de refrigeración 8/7/0 Ctenido! Ciclos termodinámicos!! Ciclo Rankine! ariantes del Ciclo Rankine! Ciclos

Más detalles

PROGRAMA DE CURSO. c) Aplicar conceptos adquiridos para preparar y analizar tablas y diagramas de propiedades termodinámicas de los fluidos.

PROGRAMA DE CURSO. c) Aplicar conceptos adquiridos para preparar y analizar tablas y diagramas de propiedades termodinámicas de los fluidos. PROGRAMA DE CURSO Código Nombre IQ3201 Aplicada Nombre en Inglés Applied Thermodynamics SCT es Horas de Horas Docencia Horas de Trabajo Docentes Cátedra Auxiliar Personal 10 3 1,5 5,5 CM2004, EI2001 Requisitos

Más detalles

UNIVERSIDAD NACIONAL DE INGENIERIA FACULTAD DE INGENIERIA MECANICA DEPARTAMENTO ACADEMICO DE CIENCIAS DE INGENIERIA SILABO P.A.

UNIVERSIDAD NACIONAL DE INGENIERIA FACULTAD DE INGENIERIA MECANICA DEPARTAMENTO ACADEMICO DE CIENCIAS DE INGENIERIA SILABO P.A. UNIVERSIDAD NACIONAL DE INGENIERIA FACULTAD DE INGENIERIA MECANICA DEPARTAMENTO ACADEMICO DE CIENCIAS DE INGENIERIA SILABO P.A. 2011-II 1. INFORMACION GENERAL Nombre del curso : Termodinámica Código del

Más detalles

INDICE Capitulo Uno. Conceptos Básicos de la Termodinámica 1.1. Termodinámica y Energía 1.2. Nota sobre las dimensiones y Unidades

INDICE Capitulo Uno. Conceptos Básicos de la Termodinámica 1.1. Termodinámica y Energía 1.2. Nota sobre las dimensiones y Unidades INDICE Capitulo Uno. Conceptos Básicos de la Termodinámica 1 1.1. Termodinámica y Energía 2 Áreas de aplicación de la termodinámica 3 1.2. Nota sobre las dimensiones y Unidades 3 Algunas unidades del SI

Más detalles

PROBLEMARIO No. 3. Veinte problemas con respuesta sobre los Temas 5 y 6 [Segunda Ley de la Termodinámica. Entropía]

PROBLEMARIO No. 3. Veinte problemas con respuesta sobre los Temas 5 y 6 [Segunda Ley de la Termodinámica. Entropía] Universidad Simón olívar Departamento de Termodinámica y Fenómenos de Transferencia 7-Julio-007 TF - Termodinámica I Prof. Carlos Castillo PROLEMARIO No. Veinte problemas con respuesta sobre los Temas

Más detalles

UNIVERSIDAD NACIONAL DE TUCUMÁN

UNIVERSIDAD NACIONAL DE TUCUMÁN UNIVERSIDAD NACIONAL DE TUCUMÁN Facultad de Ciencias Exactas y Tecnología CENTRALES ELÉCTRICAS TRABAJO PRÁCTICO Nº 4 CENTRALES TÉRMICAS DE GAS CICLO DE BRAYTON ALUMNO: AÑO 2015 INTRODUCCIÓN La turbina

Más detalles

PROGRAMA DE CURSO PROPÓSITO DEL CURSO

PROGRAMA DE CURSO PROPÓSITO DEL CURSO PROGRAMA DE CURSO CÓDIGO IQ3201 NOMBRE DEL CURSO Termodinámica Aplicada HORAS DE NÚMERO DE UNIDADES HORAS DE CÁTEDRA DOCENCIA DOCENTES AUXILIAR 10 3 1,5 5,5 REQUISITOS CM2004, EI2001 REQUISITOS DE ESPECÏFICOS

Más detalles

Termodinámica de los compresores de gas. Termodinámica Técnica II Emilio Rivera Chávez Septiembre agosto 2009

Termodinámica de los compresores de gas. Termodinámica Técnica II Emilio Rivera Chávez Septiembre agosto 2009 Termodinámica de los compresores de gas Termodinámica Técnica II Emilio Rivera Chávez Septiembre 2007 - agosto 2009 Que es un Compresor de Gas? What is a Gas Compressor? Un compresor de gas es un dispositivo

Más detalles

Programa Regular. Abordar y profundizar el análisis de principios y leyes de la Termodinámica.

Programa Regular. Abordar y profundizar el análisis de principios y leyes de la Termodinámica. Programa Regular Curso: Termodinámica A Carga horaria: 6hs. Modalidad de la asignatura: teórico-práctica Objetivos. Abordar y profundizar el análisis de principios y leyes de la Termodinámica. Adquirir

Más detalles

UNIVERSIDAD AUTÓNOMA DE BAJA CALIFORNIA

UNIVERSIDAD AUTÓNOMA DE BAJA CALIFORNIA UNIVERSIDAD AUTÓNOMA DE BAJA CALIFORNIA DEPARTAMENTO DE FORMACIÓN BÁSICA PROGRAMA DE ASIGNATURA POR COMPETENCIAS I. DATOS DE IDENTIFICACIÓN 1. Unidad Académica(s) FACULTAD DE INGENIERÍA 2. Programa (s)

Más detalles

1 Introducción y planteamiento del Proyecto

1 Introducción y planteamiento del Proyecto 1 Introducción y planteamiento del Proyecto 1.1 Introducción a las turbinas de gas de flujo axial Las turbinas de gas modernas no son más que un avance de lo que fue el primer modelo de reactor desarrollado

Más detalles

Formulario de Termodinámica Aplicada Conceptos Básicos Formula Descripción Donde F= fuerza (newton) Fuerza ( )

Formulario de Termodinámica Aplicada Conceptos Básicos Formula Descripción Donde F= fuerza (newton) Fuerza ( ) Conceptos Básicos Formula Descripción Donde F= fuerza (newton) Fuerza ( ) a = aceleración (m/s 2 ) Peso P= peso (newton) ( ) g = gravedad (9.087 m/s 2 ) Trabajo ( ) 1 Joule = 1( N * m) W = trabajo (newton

Más detalles

r J# -~ _. -A~#, PROPIEDADESDE UNA SUSTANCIAPURA, SIMPLEY COMPRESIBLE 85 PARAEMPEZAR:CONCEPTOS Y DEFINICIONES

r J# -~ _. -A~#, PROPIEDADESDE UNA SUSTANCIAPURA, SIMPLEY COMPRESIBLE 85 PARAEMPEZAR:CONCEPTOS Y DEFINICIONES r J# -~ _. -A~#, --1~ ~ PARAEMPEZAR:CONCEPTOS Y DEFINICIONES 1.1 El uso de la termodinámica 1 1.2 Definición de los sistemas 3 1.3 Descripción de los sistemas y de su comportamiento 5 1.4 Medida de masa,

Más detalles

TEMA 2: PRINCIPIOS DE TERMODINÁMICA. MÁQUINA TÉRMICA Y MÁQUINA FRIGORÍFICA

TEMA 2: PRINCIPIOS DE TERMODINÁMICA. MÁQUINA TÉRMICA Y MÁQUINA FRIGORÍFICA TEMA 2: PRINCIPIOS DE TERMODINÁMICA. MÁQUINA TÉRMICA Y MÁQUINA FRIGORÍFICA La termodinámica es la parte de la física que se ocupa de las relaciones existentes entre el calor y el trabajo. El calor es una

Más detalles

Ayudas visuales para el instructor. Contenido

Ayudas visuales para el instructor. Contenido Page 1 of 7 UN PANORAMA DE LA TERMODINÁMICA ENERGÍA, TRABAJO Y CALOR Por F. A. Kulacki Profesor de ingeniería mecánica Laboratorio de Termodinámica y Transferencia de Calor Departamento de Ingeniería Mecánica

Más detalles

ANÁLISIS Y CÁLCULOS DE ÍNDICES PARA UNA CENTRAL TERMOELÉCTRICA DE CICLO COMBINADO 2X1 (TERMOFLORES)

ANÁLISIS Y CÁLCULOS DE ÍNDICES PARA UNA CENTRAL TERMOELÉCTRICA DE CICLO COMBINADO 2X1 (TERMOFLORES) ANÁLISIS Y CÁLCULOS DE ÍNDICES PARA UNA CENTRAL TERMOELÉCTRICA DE CICLO COMBINADO 2X1 (TERMOFLORES) CARLOS LÓPEZ PAUTT (1), DANIEL CASTILLA PUELLO (2 ) Universidad Tecnológica de Bolívar, Facultad de Ingeniería

Más detalles

Tema 12: Circuito frigorífico y bombas de calor Guion

Tema 12: Circuito frigorífico y bombas de calor Guion Guion 1. Máquina frigorífica de compresión. 2. Elementos fundamentales de un circuito frigorífico. 3. Máquinas frigoríficas de absorción. 4. Diagrama general de una máquina frigorífica. 4.1 Foco caliente,

Más detalles

PLANIFICACION PRELIMINAR

PLANIFICACION PRELIMINAR UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA AREA DE TECNOLOGÍA DEPARTAMENTO Energética COMPLEJO DOCENTE EL SABINO UNIDAD CURRICULAR: Conversión de Energía LAPSO ACADEMICO: I I- 2009 PROFESORES

Más detalles

Motores térmicos o maquinas de calor

Motores térmicos o maquinas de calor Cómo funciona una maquina térmica? Motores térmicos o maquinas de calor conversión energía mecánica a eléctrica En nuestra sociedad tecnológica la energía muscular para desarrollar un trabajo mecánico

Más detalles

UNIVERSIDAD NACIONAL DE TUCUMÁN

UNIVERSIDAD NACIONAL DE TUCUMÁN UNIVERSIDAD NACIONAL DE TUCUMÁN Facultad de Ciencias Exactas y Tecnología CENTRALES ELÉCTRICAS TRABAJO PRÁCTICO Nº 3 CENTRALES TÉRMICAS DE GAS CICLO DE BRAYTON ALUMNO: AÑO 2017 INTRODUCCIÓN El Ciclo de

Más detalles

Capítulo 5: La segunda ley de la termodinámica.

Capítulo 5: La segunda ley de la termodinámica. Capítulo 5: La segunda ley de la termodinámica. 5.1 Introducción Por qué es necesario un segundo principio de la termodinámica? Hay muchos procesos en la naturaleza que aunque son compatibles con la conservación

Más detalles

Sentido natural de los procesos

Sentido natural de los procesos Sentido natural de los procesos Sentido natural de los procesos H H H H H H H H O O O O H O H O H H H O H O H H H H H H H H H H O O O O H O H O H H O H H H O H dos volumenes de H un volúmen de O dos volumenes

Más detalles

Prefacio Bloque TemáTico i Generalidades capítulo 1. máquinas y motores Térmicos. Generalidades capítulo 2. Procesos en fluídos comprensibles

Prefacio Bloque TemáTico i Generalidades capítulo 1. máquinas y motores Térmicos. Generalidades capítulo 2. Procesos en fluídos comprensibles ÍNDICE Prefacio... 19 Bloque TemáTico i Generalidades capítulo 1. máquinas y motores Térmicos. Generalidades... 27 Objetivos fundamentales del capítulo... 27 1.1. Introducción... 27 1.2. Concepto de máquina

Más detalles

UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA COMPLEJO ACADÉMICO EL SABINO UNIDAD CURRICULAR: TERMODINÁMICA APLICADA PROF: ELIER GARCIA

UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA COMPLEJO ACADÉMICO EL SABINO UNIDAD CURRICULAR: TERMODINÁMICA APLICADA PROF: ELIER GARCIA UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA COMPLEJO ACADÉMICO EL SABINO UNIDAD CURRICULAR: TERMODINÁMICA APLICADA PROF: ELIER GARCIA GUIA DE CICLOS DE POTENCIA DE VAPOR Ejercicios resueltos

Más detalles

GASES IDEALES, REALES, MEZCLAS 3.1 El gas ideal o perfecto. Ecuación de estado para los gases ideales. Superficie de estado para el gas ideal.

GASES IDEALES, REALES, MEZCLAS 3.1 El gas ideal o perfecto. Ecuación de estado para los gases ideales. Superficie de estado para el gas ideal. Programa Analítico de: TERMODINÁMICA TÉCNICA Especialidad: INGENIERIA ELECTROMECANICA Nivel: Tercer año. UNIDAD I 1. 1 1. 2 1. 3 1. 4 CONTENIDOS IMPORTANCIA DE LA TERMODINÁMICA EN INGENIERÍA Termodinámica

Más detalles

INDICE Capitulo 1. Introducción Capitulo 2. Cantidades y unidades termodinámicas Capitulo 3. Propiedades de una sustancias pura

INDICE Capitulo 1. Introducción Capitulo 2. Cantidades y unidades termodinámicas Capitulo 3. Propiedades de una sustancias pura INDICE Capitulo 1. Introducción 1.1. introducción 1 1.2. conceptos básicos y modelado termodinámico 5 1.3. leyes fundamentales de la termodinámica 18 1.4. sistemas y procesos termodinámico típicos 23 1.5.

Más detalles

Termodinámica: Segundo principio de la termodinámica Parte 1

Termodinámica: Segundo principio de la termodinámica Parte 1 Termodinámica: Segundo principio de la termodinámica Parte 1 Olivier Skurtys Departamento de Ingeniería Mecánica Universidad Técnica Federico Santa María Email: olivier.skurtys@usm.cl Santiago, 3 de junio

Más detalles

CICLO COMBINADO ASOCIACION DEL PERSONAL SUPERIOR DE LAS EMPRESAS DE ENERGIA. Secretaria Técnica y de Relaciones Internacionales.

CICLO COMBINADO ASOCIACION DEL PERSONAL SUPERIOR DE LAS EMPRESAS DE ENERGIA. Secretaria Técnica y de Relaciones Internacionales. CICLO COMBINADO ASOCIACION DEL PERSONAL SUPERIOR DE LAS EMPRESAS DE ENERGIA Secretaria Técnica y de Relaciones Internacionales Conceptos Básicos Ciclo combinado Esquema del funcionamiento de una central

Más detalles

Capítulo 10: ciclos de refrigeración. El ciclo de refrigeración por compresión es un método común de transferencia de calor de una

Capítulo 10: ciclos de refrigeración. El ciclo de refrigeración por compresión es un método común de transferencia de calor de una Capítulo 0: ciclos de refrigeración El ciclo de refrigeración por compresión es un método común de transferencia de calor de una temperatura baja a una alta. ENTRA IMAGEN capítulo 0-.- CAOR ambiente 2.-

Más detalles

Termodinámica: Primer Principio Parte 4

Termodinámica: Primer Principio Parte 4 Termodinámica: Primer Principio Parte 4 Olivier Skurtys Departamento de Ingeniería Mecánica Universidad Técnica Federico Santa María Email: olivier.skurtys@usm.cl Santiago, 13 de mayo de 2012 Presentación

Más detalles

Enunciados Lista 5. Nota: Realizar un diagrama T-s que sufre el agua.

Enunciados Lista 5. Nota: Realizar un diagrama T-s que sufre el agua. 7.2 Considere una máquina térmica con ciclo de Carnot donde el fluido del trabajo es el agua. La transferencia de calor al agua ocurre a 300 ºC, proceso durante el cual el agua cambia de líquido saturado

Más detalles

CICLO BRAYTON ELABORADO POR: ING GELYS GUANIPA RODRIGUEZ DOCENTE DE LA ASIGNATURA. Punto Fijo, Julio de Por Ing.Gelys Guanipa R 1/22

CICLO BRAYTON ELABORADO POR: ING GELYS GUANIPA RODRIGUEZ DOCENTE DE LA ASIGNATURA. Punto Fijo, Julio de Por Ing.Gelys Guanipa R 1/22 UNEFM COMLEJO ACADÉMICO EL SABINO AREA DE ECONOLOGÍA UNIDAD CURRICULAR: ERMODINÁMICA ALICADA DEARAMENO: ENERGÉICA ROGRAMA: ING MECÁNICA CICLO BRAYON ELABORADO OR: ING GELYS GUANIA RODRIGUEZ DOCENE DE LA

Más detalles

PLANIFICACION CONVERSION DE ENERGIA PARA EL LAPSO ACADEMICO

PLANIFICACION CONVERSION DE ENERGIA PARA EL LAPSO ACADEMICO PLANIFICACION CONVERSION DE ENERGIA PARA EL LAPSO ACADEMICO III-2010 UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA AREA DE TECNOLOGÍA DEPARTAMENTO Energética COMPLEJO DOCENTE EL SABINO UNIDAD

Más detalles

UNIVERSIDAD NACIONAL DE TUCUMÁN

UNIVERSIDAD NACIONAL DE TUCUMÁN UNIVERSIDAD NACIONAL DE TUCUMÁN Facultad de Ciencias Exactas y Tecnología CENTRALES ELÉCTRICAS TRABAJO PRÁCTICO Nº 4 CENTRALES TÉRMICAS DE GAS CICLO DE BRIGHTON ALUMNO: AÑO 2016 INTRODUCCIÓN El Ciclo de

Más detalles

2 DA LEY DE LA TERMODINAMICA TOMAS RADA CRESPO PH.D.

2 DA LEY DE LA TERMODINAMICA TOMAS RADA CRESPO PH.D. 2 DA LEY DE LA TERMODINAMICA TOMAS RADA CRESPO PH.D. Dirección de los procesos Termodinámicos Todos los procesos termodinámicos que se dan en la naturaleza son procesos irreversibles, es decir los que

Más detalles

Universidad Técnica Nacional Bachillerato en Ingeniería en Producción Industrial Termodinámica

Universidad Técnica Nacional Bachillerato en Ingeniería en Producción Industrial Termodinámica Universidad Técnica Nacional Bachillerato en Ingeniería en Producción Industrial Termodinámica Tema: Ciclo de recalentamiento Ciclo de compresión de vapor Realizado por: José Alexis Mesen Aguilar Raquel

Más detalles

Examen Final. a) identifique qué partes del diagrama corresponden al compresor, al condensador y a la válvula, (1 pto.)

Examen Final. a) identifique qué partes del diagrama corresponden al compresor, al condensador y a la válvula, (1 pto.) Pontificia Universidad Católica de Chile Instituto de Física FIS1523 Termodinámica 30 de noviembre del 2016 Tiempo: 120 minutos Se puede usar calculadora. No se puede usar celular. No se puede prestar

Más detalles

MÁQUINAS HIDRÁULICAS Y TÉRMICAS TURBOMÁQUINAS TÉRMICAS

MÁQUINAS HIDRÁULICAS Y TÉRMICAS TURBOMÁQUINAS TÉRMICAS 5. MOTORES DE REACCIÓN En los motores de reacción, la energía mecánica producida por el proceso de combustión aparece en forma de energía cinética de una corriente de fluido en lugar de presentarse como

Más detalles

UNIVERSIDAD NACIONAL DE TUCUMÁN

UNIVERSIDAD NACIONAL DE TUCUMÁN UNIVERSIDAD NACIONAL DE TUCUMÁN Facultad de Ciencias Exactas y Tecnología CENTRALES ELÉCTRICAS TRABAJO PRÁCTICO Nº 3 CENTRALES TÉRMICAS DE VAPOR CICLO DE RANKINE ALUMNO: AÑO 2016 Temperatura T [ºC] º Ciclo

Más detalles

Turbina de Gas. Recopilado por: José Antonio González Moreno Noviembre del 2015 Máquinas Térmicas

Turbina de Gas. Recopilado por: José Antonio González Moreno Noviembre del 2015 Máquinas Térmicas Turbina de Gas Recopilado por: José Antonio González Moreno Noviembre del 2015 Máquinas Térmicas Introducción: Se explicará con detalle qué es una turbina de gas, cuál es su funcionamiento y cuáles son

Más detalles

PRUEBA DE ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR JULIO 2015 PARTE ESPECÍFICA OPCIÓN B TECNOLOGIA

PRUEBA DE ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR JULIO 2015 PARTE ESPECÍFICA OPCIÓN B TECNOLOGIA PRUEBA DE ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR JULIO 2015 PARTE ESPECÍFICA OPCIÓN B TECNOLOGIA Materia: DIBUJO TÉCNICO. Duración 1 hora 15 min. SOLUCIONARIO: Todas las cuestiones puntúan igual.

Más detalles

TEMA 3: CIRCUITO FRIGORÍFICO. BOMBA DE CALOR

TEMA 3: CIRCUITO FRIGORÍFICO. BOMBA DE CALOR TEMA 3: CIRCUITO FRIGORÍFICO. BOMBA DE CALOR 1. Introducción a. Ecuación de los gases perfectos b. Principios de la termodinámica y ley de Joule de los gases ideales 2. Principio de funcionamiento de los

Más detalles

1. Punto de operación. El mapa de operación se presenta en la forma usual, según los 3 parámetros adimensionales. , o, más usualmente, P 2 / P1

1. Punto de operación. El mapa de operación se presenta en la forma usual, según los 3 parámetros adimensionales. , o, más usualmente, P 2 / P1 Unidad 10 Turbina de gas: Arranque; influencia de las condiciones ambientes; propulsión aérea. 1. Punto de operación. El mapa de operación se presenta en la forma usual, según los 3 parámetros adimensionales

Más detalles

CICLOS DE MÁQUINAS TÉRMICAS DE VAPOR

CICLOS DE MÁQUINAS TÉRMICAS DE VAPOR V CICLOS DE MÁQUINAS TÉRMICAS DE VAPOR FILMINAS 1 DE 3 1 CICLOS DE MÁQUINAS TÉRMICAS DE VAPOR 1. INTRODUCCIÓN 2. CONVENIENCIA DE UTILIZACIÓN DE UN CICLO U OTRO 3. CICLO DE CARNOT 4. CICLO DE RANKINE 41

Más detalles

1. La variación de entropía de un fluido que circula por un compresor irreversible refrigerado puede ser negativa.

1. La variación de entropía de un fluido que circula por un compresor irreversible refrigerado puede ser negativa. ASIGNAURA GAIA ermodinámica 2º CURSO KURSOA eoría (30 puntos) IEMPO: 45 minutos UILICE LA ÚLIMA CARA COMO BORRADOR eoría 1 (10 puntos) FECHA DAA + + = Lea las 10 cuestiones y escriba dentro de la casilla

Más detalles

SEDE BOGOTÁ FACULTAD DE INGENIERÍA DEPARTAMENTO DE INGENIERÍA MECÁNICA Y MECATRÓNICA SECCIÓN DE INGENIERÍA TÉRMICA

SEDE BOGOTÁ FACULTAD DE INGENIERÍA DEPARTAMENTO DE INGENIERÍA MECÁNICA Y MECATRÓNICA SECCIÓN DE INGENIERÍA TÉRMICA 1/11 SEDE BOGOTÁ FACULTAD DE INGENIERÍA DEPARTAMENTO DE INGENIERÍA MECÁNICA Y MECATRÓNICA SECCIÓN DE INGENIERÍA TÉRMICA Programa de asignatura II - 2011 Asignatura Termodinámica Técnica Código 2017279

Más detalles

U N I V E R S I D A D N A C I O N A L D E L S U R 1/5

U N I V E R S I D A D N A C I O N A L D E L S U R 1/5 U N I V E R S I D A D N A C I O N A L D E L S U R 1/5 DEPARTAMENTO DE: FÍSICA PROGRAMA DE: TERMODINÁMICA CÓDIGO: 3400 Carreras: Ingeniería Industrial Ingeniería Mecánica Profesorado en Física AREA Nro.:

Más detalles

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN PLAN DE ESTUDIOS DE LA LICENCIATURA EN INGENIERÍA QUÍMICA

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN PLAN DE ESTUDIOS DE LA LICENCIATURA EN INGENIERÍA QUÍMICA UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN PLAN DE ESTUDIOS DE LA LICENCIATURA EN INGENIERÍA QUÍMICA PROGRAMA DE LA ASIGNATURA DE: TERMODINÁMICA BÁSICA IDENTIFICACIÓN

Más detalles

UNIVERSIDAD ANTONIO NARIÑO EDUCACION A DISTANCIA INGENIERIA ELECTROMECANICA NOMBRE DEL PROGRAMA: INGENIERIA ELECTROMECANICA

UNIVERSIDAD ANTONIO NARIÑO EDUCACION A DISTANCIA INGENIERIA ELECTROMECANICA NOMBRE DEL PROGRAMA: INGENIERIA ELECTROMECANICA NUMERO DE GUIA: 8 TURBINA DE GAS I NOMBRE DEL PROGRAMA: ASIGNATURA: MAQUINAS TERMICAS CODIGO: PERIODO ACADEMICO: 1 SEMESTRE DE 2009 SEMESTRE: SEPTIMO CREDITOS DE LA ASIGNATURA: 3 HORAS DE TRABAJO DIRIGIDO:

Más detalles

MOTORES TÉRMICOS TERMODINÁMICA

MOTORES TÉRMICOS TERMODINÁMICA MOTORES TÉRMICOS TERMODINÁMICA EXPANSIÓN ISOTÉRMICA TIEMPOS DE UN CICLO DE CARNOT EXPANSIÓN ADIABÁTICA TIEMPOS DE UN CICLO DE CARNOT COMPRESIÓN ISOTÉRMICA TIEMPOS DE UN CICLO DE CARNOT COMPRESIÓN ADIABÁTICA

Más detalles

Enunciados Lista 6. Nota: Los ejercicios 8.37 y 8.48 fueron modificados respecto al Van Wylen.

Enunciados Lista 6. Nota: Los ejercicios 8.37 y 8.48 fueron modificados respecto al Van Wylen. Nota: Los ejercicios 8.37 y 8.48 fueron modificados respecto al Van Wylen. 8.1* El compresor en un refrigerador recibe refrigerante R-134a a 100 kpa y 20 ºC, y lo comprime a 1 MPa y 40 ºC. Si el cuarto

Más detalles

U N I V E R S I D A D N A C I O N A L D E L S U R 1/5

U N I V E R S I D A D N A C I O N A L D E L S U R 1/5 U N I V E R S I D A D N A C I O N A L D E L S U R 1/5 DEPARTAMENTO DE: FISICA PROGRAMA DE: TERMODINAMICA CODIGO: 3400 Carreras: Ingeniería Industrial Ingeniería Mecánica HORAS DE CLASE TEORICAS PRACTICAS

Más detalles

Enunciados Lista 6. Estado T(ºC)

Enunciados Lista 6. Estado T(ºC) 8.1 El compresor en un refrigerador recibe refrigerante R-134a a 100 kpa y 20 ºC, y lo comprime a 1 MPa y 40 ºC. Si el cuarto se encuentra a 20 ºC, determine la transferencia de calor reversible y el trabajo

Más detalles

Termodinámica II Ciclos de aire normal. Juan Esteban Tibaquirá G. Facultad de Ingeniería Mecánica Universidad Tecnológica de Pereira

Termodinámica II Ciclos de aire normal. Juan Esteban Tibaquirá G. Facultad de Ingeniería Mecánica Universidad Tecnológica de Pereira Termodinámica II Ciclos de aire normal Juan Esteban Tibaquirá G. Facultad de Ingeniería Mecánica Universidad Tecnológica de Pereira Ciclos de Potencia de gas Otto Diesel Dual Stirling Ericsson Brayton

Más detalles

Guía de Trabajo Procesos Termodinámicos. Nombre: No. Cuenta:

Guía de Trabajo Procesos Termodinámicos. Nombre: No. Cuenta: Guía de Trabajo Procesos Termodinámicos Nombre: No. Cuenta: Resolver cada uno de los ejercicios de manera clara y ordenada en hojas blancas para entregar. 1._a) Determine el trabajo realizado por un fluido

Más detalles