SISTEMAS DE DOS ECUACIONES LINEALES CON DOS INCÓGNITAS

Tamaño: px
Comenzar la demostración a partir de la página:

Download "SISTEMAS DE DOS ECUACIONES LINEALES CON DOS INCÓGNITAS"

Transcripción

1 MATEMÁ TTCAS BÁSICAS SISTEMAS DE DOS ECUACIONES LINEALES CON DOS INCÓGNITAS Ddos números reles l', b l, b, l Y ' l pr de euiones lx + b,y=l Y x + b y = se denomin un sistem linel de dos euiones en ls dos inógnits x, y (o sistem linel dos por dos). Culquier prej de números reles (x, y) que stisfg simultánemente ls dos euiones se dirá un soluión del sistem. Como d un de ests euiones represent un ret; podrá ourrir que ls rets se ortn en un únio punto, en uyo so l soluión del sistem es úni; o bien ls rets oiniden, en uyo so el onjunto soluión estrá onstituido por tods ls prejs que están sobre es ret; o bien ls rets resultn prlels y disjunts, en uyo so no hbrá prej que stisfg el sistem, es deir, el sistem no tiene soluión (el onjunto soluión es vío). Ejemplo!. Resolver los siguientes sistems: i) x + y = 4,y, I x - Y = - 9 ii) x - y = 6,y, - x + Y = -9 iii) x-y=7,y, 6x-y=14 x + y = 4 Soluión: i) El sistem se puede esribir tmbién en l form I. L sum de { x - y =- los "miembros izquierdos" de d euión es igul l sum de los "miembros derehos", sí que ( + I J x = 1, es deir, 10 x = 1, o se x =. Reemplzndo, por ejemplo, en l 10 pri mer euión, se obtiene ( ) + Y = 4, de lo ul se obtiene y = 4 _ 9 = 1. Luego 10 lo 10 I ulll,. so l" uclon di' e sistem es () x, y = (, 1 ). N otese ' que di' e pnmer euclon., es 10 lo 1 y = - x + 4 Y de l segund euión es y = x +, Y entones ls rets son perpendiulres, y que (- ) 1 = -1, 10 que se puede verifir grfindo ls dos rets dds. x - y = 6 ii) El sistem ddo es 9. Multiplindo l segund euión por se { - x + Y =-9 obtiene l euión - x + y = -6, o equivlentemente, x - y = 6, que es l mism primer euión. Luego ls dos euiones representn l mism ret x - y = 6, y el onjunto soluión está formdo por tods ls prejs (x, y) tles que x - y = 6. ejemplo, (1, - ~Jes soluión del sistem, y que undo x = 1, - y = 6, o se - y = 4, r 5

2 MATEM ÁTICAS BÁSICAS 4 es deir, y = -. Tmbién (0,-) es soluión del sistem. En generl, tods ls prejs de números reles de l form ( 6 + Y, y) on y E R, son ls soluiones del sistem ddo. iii) El sistem ddo es { x - y = 7. Multiplindo l primer euión por se obtiene 6x-y=14 6X- Y = l 6x - y = 1, es deir, el sistem ddo es el mismo sistem {, y es lro que. 6x - y = 14 este sistem no tiene soluión, pues no existe un prej (x, y), de números reles, que stisfg simultánemente ests dos euiones, y que esto llevrí l bsurdo 1 = 14. Así que l soluión es el onjunto vío, es deir, el sistem ddo no tiene soluión. Nótese 14 que de l primer euión se obtiene y = x - 7 Y de l segund y = x -. Luego ls dos rets son prlels, pues tienen igul pendiente, pero psn por puntos diferentes, l primer por (O, - 7) Yl segund por (O, ). Ejemplo. De uerdo on l diet progrmd pr un bovino, ierto veterinrio reomiend el onsumo mensul de 90 librs de ven y 4 librs de míz, demás de heno, psto y gu. Si se dispone de do tipos de limento, en el que d libr del limento tipo r ontiene 5 onzs de ven y onzs de míz, y d libr del limento tipo II ontiene 6 onzs de ven y de míz, uánts librs de d limento debe usr pr obtener l mezl desed? Soluión: En l siguiente tbl se indin los ontenidos de ven y míz de d uno de los limentos de los tipos 1 y II: Alimento ti po 1 Ali mento tipo II Consumo mensul I Aven 5 onzs/l ibr 6 onzs/libr 90 librs I Míz onzs/libr onzs/libr 4 li brs Sen x : # librs del limento 1que debe usr en l mezl y: # librs del limento II que deben usrse en l mezl. Como d libr del limento tipo 1 ontiene 5 onzs de en, x librs de diho limento ontendrán 5x onzs de v n ((5 onzs/libr) (x librs) =5x onzs). De l mism mner, omo d libr del limento tipo Il ontiene 6 onzs de ven, y librs de diho limento ontendrán 6y onzs de ven. Como el onsumo mensul progrmdo de ven es de 90 librs, y d libr ontiene 16 onzs, entones debe stisferse: 5x + 6y = 90(l6), esto es, 5x + 6y = Análogmente, pr el m íz, debe tisferse: 5

3 MATEMÁTICAS BÁSICAS x +y = 4(16) = 67 O se que debemos resolver el sistem linel de euiones: 5X + 6y = 1440 { x+y = 67 Multiplindo mbos miembros de l segund euión por -, se obtiene l euión equivlente - 4x - 6y = Ahor bien, sumndo miembro miembro est últim euión on l primer euión se obtiene x = 96. Reemplzndo este resultdo en l segund euión iniil se obtiene (96)+ y = 67, de donde se obtiene y = 160. Así que el veterinrio debe usr 96 librs del limento tipo 1 y 160 librs del limento tipo II pr obtener l mezl desed. LAS CÓNICAS Un óni es el lugr geométrio de todos puntos (x, y) del plno rtesino tles que su distni un punto fijo, llmdo foo, dividid por su distni un ret fij, llmd diretriz, es un onstnte positiv e, llmd exentriidd de l óni. Si e = 1 l óni se denomin prábol, si e < 1 l óni se denomin elipse y si e > 1 l óni se denomin hipérbol. Euiones nónis de ls ónis Ls euiones nónis de ls ónis uys diretries stisfen x = (o y = ) y uyos foos tienen por oordends (, O) ( o respeti vmente (O, ) ) y l exentriidd es e =, se denominn euiones nónis de ls ónis. Ls euiones nónis de l prábol son de l form y = ( ~Jx, donde l diretriz tiene por euión y = - = -,l exentriidd es e = = 1, es deir, =, y el foo es (O, ) ; o son de l form x = ( 1 ) Y donde l diretriz tiene por euión x =- = _ 4. l exentriidd es e = = I y el foo es (, O). En efeto, por ejemplo, si (x, y) stisfe: distni de (x,y) l punto fijo (O,)=1 distni de (x, y) l ret y =- entones (x - f + (y - ) (x-x) +(y-(- e)f = l. Ver l figur siguiente. 54

4 MATEMÁTICAS BÁSICAS Práb ol y = (1 /(4» x ~ F = (O,) r-- /' (-x,y) 1'", ---,:.. ~ -~~1Íx, y ) ---~_ ~ I x I ~ y = (x, -) De donde x + (y -? = 0 + (y + r ' o se que x + y - y + = / + y +. Luego x =4y, es deir, y =( 4~ ) X. Reípromente, si (x, y) stisfe y = ( ~ ) X, entones distni de (x, y) l punto fijo (o,) = distni de (x, y) l ret y = - esto es, el punto (x, y) está sobre l prábol. X + (y _ C) (X- X) +(y_(_ )) Ls euiones nónis de l elipse son de l form 4y + (y -f / + y + (y +? y + y + =1 X / + = 1, donde l(ls) b diretriz(diretries) tiene(n) por euión(euiones) x = ±, l exentriidd es e =, = b + y el(los) foo( s) tiene(n) oordend(s): (,O) (y (-,O) ; o ls euiones y X son de l form + = 1, donde l(ls) diretriz(diretries) tiene(n) por b b tiene(n) oordend(s): (O,) (y (O,- ). Aá suponemos que by son positivos. euión(euiones) y = ±, l exentriidd es e =, = + y ej(los) foo(s) En efeto, por ejemplo, si (x, y) stisfe: 55

5 MA TEMÁTICAS BÁSICAS distni de (x, y) l punto (,O) (x - C)+ (y _ 0) = e (= e), es deir, = distni de (x, y) l ret x = e De donde (x - e? + y = [ e - x : (: _xr+ (y - y)' e [ 4 x ] o se que X - x + e + y == - + x. Luego x + e + Y = + X, es deir, _ ] sí que x + / = b (reordr que [ y (O,b) (-,O) <"/ F 1 = (-e,o) x (O,-b) X (N otese ' que, d e x y se tiene que ::; 1. Luego - ::; x ::;. Análogmente, de b / X. = 1 - se tiene que - b ::; y ::; b ). b Reípromente, si (x, y) stisfe X / + = 1, entones b 56

UNIDAD VI LA ELIPSE 6.1. ECUACIÓN EN FORMA COMÚN O CANÓNICA DE LA ELIPSE

UNIDAD VI LA ELIPSE 6.1. ECUACIÓN EN FORMA COMÚN O CANÓNICA DE LA ELIPSE UNIDAD VI LA ELIPSE OBJETIVO PARTIULAR Al onluir l unidd, el lumno onoerá plirá ls propieddes relionds on el lugr geométrio llmdo elipse, determinndo los distintos prámetros, su euión respetiv vievers.

Más detalles

MATEMÁTICAS II Cónicas en coordenadas polares Curso 07-08

MATEMÁTICAS II Cónicas en coordenadas polares Curso 07-08 MATEMÁTICAS II Cónis en oordends olres Curso 07-08 1. El omet Hlley desribe un orbit elíti de exentriidd e 0.97. l longitud del eje myor de l órbit es, roximdmente, 6,18 uniddes stronómis (un u.., distni

Más detalles

UNIDAD 14 LA ELIPSE Y LA HIPÉRBOLA

UNIDAD 14 LA ELIPSE Y LA HIPÉRBOLA UNIDAD LA ELIPSE Y LA HIPÉRBOLA EJERCICIOS RESUELTOS Ojetivo generl. Al terminr est Unidd plirás ls definiiones los elementos que rterizn l elipse l hipérol en ls soluiones de ejeriios prolems. Ojetivo.

Más detalles

La elipse. coordenadas de los vértices, y la longitud del eje mayor que es #+Þ. coordenadas de los extremos del eje menor, cuya longitud es #,Þ

La elipse. coordenadas de los vértices, y la longitud del eje mayor que es #+Þ. coordenadas de los extremos del eje menor, cuya longitud es #,Þ Definiión. L elipse Est Guí tiene..todas...ls respuests MALAS Se llm elipse, l lugr geométrio de los puntos de un plno u sum de distnis dos puntos fijos del mismo plno es onstnte. Los puntos fijos se ostumrn

Más detalles

Elipse: Ecuación de la elipse dados ciertos elementos

Elipse: Ecuación de la elipse dados ciertos elementos Elipse: Euión de l elipse ddos iertos elementos Tinoo, G. (013). Euión de l elipse ddos iertos elementos. [Mnusrito no publido]. Méxio: UAEM. Espio de Formión Multimodl Elipse vertil Si l elipse tiene

Más detalles

SESIÓN 11 SISTEMA DE ECUACIONES DE PRIMER GRADO CON DOS INCOGNITAS I

SESIÓN 11 SISTEMA DE ECUACIONES DE PRIMER GRADO CON DOS INCOGNITAS I Mtemátis I SESIÓN SISTEMA DE ECUACIONES DE PRIMER GRADO CON DOS INCOGNITAS I I. CONTENIDOS:. Conepto y representión geométri.. Métodos de soluión: o Igulión o Sustituión. o Reduión (sum y rest). o Determinnte.

Más detalles

Departamento: Física Aplicada III

Departamento: Física Aplicada III Fund mentos Físi os de l Ingenierí. (Ind ustri les) Prlelogrmo insrito en trpezoide Ddo un trpezoide (udrilátero irregulr que no tiene ningún ldo prlelo otro), demuestre, usndo el álger vetoril, que los

Más detalles

ECUACIONES DE PRIMER Y SEGUNDO GRADO

ECUACIONES DE PRIMER Y SEGUNDO GRADO UNIDAD ECUACIONES DE PRIMER Y SEGUNDO GRADO EJERCICIOS RESUELTOS Ojetivo generl. Al terminr est Unidd resolverás ejeriios y prolems que involuren l soluión de euiones de primer grdo y de segundo grdo Ojetivo.

Más detalles

DETERMINANTES. GUIA DETERMINANTES 1

DETERMINANTES. GUIA DETERMINANTES 1 GUI DETERMINNTES DETERMINNTES. Los determinntes fueron originlmente investigdos por el mtemátio jponés Sei Kow lrededor de 8, por seprdo, por el filósofo mtemátio lemán Gottfried Wilhelm Leiniz lrededor

Más detalles

Calcular los parámetros y los vértices de las siguientes hipérbola equilátera: La hipérbola equilátera es aquella cuyos ejes son iguales a = b

Calcular los parámetros y los vértices de las siguientes hipérbola equilátera: La hipérbola equilátera es aquella cuyos ejes son iguales a = b Problem relizdo por Elen Abd Felip Enunido: Clulr los prámetros y los vérties de ls siguientes hipérbol equiláter: y = 6 ) Según sus síntots b) Según sus ejes Bses teóris: L hipérbol equiláter es quell

Más detalles

a vectores a y b se muestra en la figura del lado derecho.

a vectores a y b se muestra en la figura del lado derecho. Produto ruz o produto vetoril Otr form nturl de definir un produto entre vetores es trvés del áre del prlelogrmo determindo por dihos vetores. El prlelogrmo definido por los h vetores y se muestr en l

Más detalles

5. RECTA Y PLANO EN EL ESPACIO

5. RECTA Y PLANO EN EL ESPACIO Teorí ejeriios de Mtemátis II. Geometrí Rets plnos en el espio. RECTA Y PLANO EN EL ESPACIO. PUNTOS EN EL ESPACIO Semos que pr determinr l posiión de un punto en el plno neesitmos tomr, por un prte, un

Más detalles

MATEMÁTICAS II Cónicas en coordenadas polares Curso 10-11

MATEMÁTICAS II Cónicas en coordenadas polares Curso 10-11 MATEMÁTICAS II Cónis en oordends olres Curso -.- L Lun es el stélite nturl de l Tierr y tiene un órit elíti on el entro de l Tierr en uno de sus foos. Est órit tiene los siguientes dtos: = 800 km, e=0.05.

Más detalles

Eje normal. P(x,y) LLR Eje focal

Eje normal. P(x,y) LLR Eje focal . L Hipérol...1 L Hipérol omo lugr geométrio. L hipérol es el lugr geométrio de todos los puntos tles que el vlor soluto de l difereni de sus distnis dos puntos fijos es un onstnte. Los puntos fijos se

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE ZARAGOZA SEPTIEMBRE (RESUELTOS por Antonio Menguiano)

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE ZARAGOZA SEPTIEMBRE (RESUELTOS por Antonio Menguiano) ES CSTELR DJOZ Menguino PRUE DE CCESO (LOGSE) UNVERSDD DE ZRGOZ SEPTEMRE (RESUELTOS por ntonio Menguino) MTEMÁTCS Tiempo máimo: hors Se vlorrá el uso del voulrio l notión ientíi Los errores ortográios,

Más detalles

2.3.2 VÉRTICE, MÁXIMOS Y MÍNIMOS DE UNA FUNCIÓN CUADRÁTICA EL VÉRTICE.

2.3.2 VÉRTICE, MÁXIMOS Y MÍNIMOS DE UNA FUNCIÓN CUADRÁTICA EL VÉRTICE. .3. VÉRTICE, MÁXIMOS Y MÍNIMOS DE UNA FUNCIÓN CUADRÁTICA..3.. EL VÉRTICE. El vértie es un punto que form prte de l prábol, el ul tiene omo ordend el vlor mínimo o máimo de l funión. En ese punto se puede

Más detalles

UNIDAD 14 LA ELIPSE Y LA HIPÉRBOLA

UNIDAD 14 LA ELIPSE Y LA HIPÉRBOLA UNIDAD 1 LA ELIPSE Y LA HIPÉRBOLA Ojetivo generl. Al terminr est Unidd plirás ls definiiones los elementos que rterizn l elipse l hipérol en ls soluiones de ejeriios prolems. Ojetivos espeífios: 1. Reordrás

Más detalles

X. LA ELIPSE DEFINICIÓN DE ELIPSE COMO LUGAR GEOMÉTRICO. La recta que pasa por el punto medio del segmento el, se llama EJE MENOR de la elipse.

X. LA ELIPSE DEFINICIÓN DE ELIPSE COMO LUGAR GEOMÉTRICO. La recta que pasa por el punto medio del segmento el, se llama EJE MENOR de la elipse. X. LA ELIPSE 10.1. DEFINICIÓN DE ELIPSE COMO LUGAR GEOMÉTRICO Definiión Se llm elipse l lugr geométrio de un punto P que se mueve en el plno, de tl modo que l sum de ls distnis del punto P dos puntos fijos

Más detalles

Taller: Sistemas de ecuaciones lineales

Taller: Sistemas de ecuaciones lineales Deprtmento de ienis ásis Asigntur: Mtemátis I Doente: Vitor Hugo Gil Avendño Apellidos-Nomres: 0 de mrzo de 08 Tller: Sistems de euiones lineles Un sistem de euiones es un onjunto de dos o más euiones

Más detalles

Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio

Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio Colegio Sn Ptriio A-09 - Inorpordo l Enseñnz Ofiil Fundión Edutiv Sn Ptriio MATEMÁTICA º AÑO Trjo prátio Nº 8 Sistems de dos euiones lineles on dos inógnits Un sistem de euiones es un onjunto de dos o

Más detalles

AA = Eje menor La elipse.

AA = Eje menor La elipse. 3.. L elipse. 3... L elipse omo lugr geométrio. L elipse es el lugr geométrio del onjunto de puntos P(, ) u sum de ls distnis dos puntos fijos llmdos foos equivlen l dole de un onstnte (), l ul represent

Más detalles

Trabajo Práctico N 9: APLICACIONES A LA GEOMETRÍA

Trabajo Práctico N 9: APLICACIONES A LA GEOMETRÍA Fultd Regionl Mendo. UTN Álger Geometrí Anlíti 6 Trjo Prátio N 9: APLICACIONES A LA GEOMETRÍA Ejeriio : Hlle l euión norml generl de l irunfereni siendo que el segmento de etremos (- ; 3) (4; -) es diámetro

Más detalles

FUNCIÓN CUADRÁTICA Y LA ECUACIÓN DE UNA PARÁBOLA HORIZONTAL

FUNCIÓN CUADRÁTICA Y LA ECUACIÓN DE UNA PARÁBOLA HORIZONTAL FUNCIÓN CUADRÁTICA Y LA ECUACIÓN DE UNA PARÁBOLA HORIZONTAL El prolem de l práol horizontl Qué relión h entre ls propieddes nlítis de l funión udráti ls propieddes geométris de l práol horizontl? Como

Más detalles

INGENIERÍA TÉCNICA INDUSTRIAL CÁLCULO INFINITESIMAL COMPLEMENTOS 6: SUPERFICIES CUÁDRICAS

INGENIERÍA TÉCNICA INDUSTRIAL CÁLCULO INFINITESIMAL COMPLEMENTOS 6: SUPERFICIES CUÁDRICAS INGENIERÍA TÉCNICA INDUSTRIAL CÁLCULO INFINITESIMAL COMPLEMENTOS 6: SUPERFICIES CUÁDRICAS * Se denominn superfiies uádris tods quells superfiies que pueden ser definids medinte un euión de segundo orden.

Más detalles

Profesora Jessica Mora Bolaños Décimo año // Liceo San Nicolás de Tolentino Pág. 1 Función

Profesora Jessica Mora Bolaños Décimo año // Liceo San Nicolás de Tolentino Pág. 1 Función Déimo ño // Lieo Sn Niolás de Tolentino Pág. 1 Funión Ddos dos onjuntos no víos y, se denomin funión de en, l relión o orrespondeni de d elemento del onjunto on un ÚNICO elemento del onjunto. lgunos spetos

Más detalles

1. AA AB = (-1,1) 2. AA AB = (5,9) 3. AA AB = (-5,-9) 4. AA AB = (1,-1) 3. AA A(1,-4) B(3,-5) < AB = (5,-5) D d A(-1,-2) B(3,2)

1. AA AB = (-1,1) 2. AA AB = (5,9) 3. AA AB = (-5,-9) 4. AA AB = (1,-1) 3. AA A(1,-4) B(3,-5) < AB = (5,-5) D d A(-1,-2) B(3,2) Mr l opión que ontiene el vetor fijo definido por los puntos A(3,4) y B(-2,-5). AA AB = (-1,1) AA AB = (5,9) AB = (-5,-9) AB = (1,-1) Mr tods ls opiones que definen el vetor fijo AB = (-2,1). AA A(-5,-3)

Más detalles

3.1 Circunferencia 3.2 Parábola 3.3 Elipse 3.4 Hiperbola

3.1 Circunferencia 3.2 Parábola 3.3 Elipse 3.4 Hiperbola Moisés Villen Muñoz Cónis. Cirunfereni. Práol. Elise. Hierol Ojetivos. Se ersigue que el estudinte: Identifique, grfique determine los elementos de un óni onoiendo su euión generl. Ddo elementos de un

Más detalles

Cónicas y Cuádricas. Tema V. 2 Intersección de una recta y una cónica. 1 Definición y ecuaciones.

Cónicas y Cuádricas. Tema V. 2 Intersección de una recta y una cónica. 1 Definición y ecuaciones. Tem V Cpítulo Cónis Álgebr Deprtmento de Métodos Mtemátios de Representión UDC Tem V Cónis Cuádris Cónis En todo este pítulo trbjremos en el plno fín eulídeo E 2 on respeto un refereni retngulr {O; ē,

Más detalles

el blog de mate de aida: MATE I. Cónicas pág. 1

el blog de mate de aida: MATE I. Cónicas pág. 1 el blog de mte de id: MATE I. Cónics pág. 1 SECCIONES CÓNICAS Un superficie cónic se obtiene l girr un rect g (llmd genertriz), lrededor de otr rect e, llmd eje de giro, l que cort en un punto V (vértice).

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos IES ASTELAR BADAJOZ A enguino PRUEBA DE AESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO 7 (RESUELTOS por Antonio enguino) ATEÁTIAS II Tiempo máimo: hors minutos ontest de mner lr rond un de ls dos opiones propuests

Más detalles

z b 2 = z b y a + c 2 = y a z b + c

z b 2 = z b y a + c 2 = y a z b + c 47 ESTUDIO DEL CONO ELIPTICO Not: Lo diujos orrespondientes ls interseiones de este estudio tienen el mismo speto l estudio del ono irulr. Sin emrgo l interseión on plnos prlelos l plno son en este so

Más detalles

3.1 Circunferencia 3.2 Parábola 3.3 Elipse 3.4 Hiperbola

3.1 Circunferencia 3.2 Parábola 3.3 Elipse 3.4 Hiperbola Moisés Villen Muñoz Cónis. Cirunfereni. Prábol. Elipse. Hiperbol Objetivos. Se persigue que el estudinte: Identifique, grfique determine los elementos de un óni onoiendo su euión generl. Ddo elementos

Más detalles

Trabajo Práctico N 9: APLICACIONES A LA GEOMETRÍA

Trabajo Práctico N 9: APLICACIONES A LA GEOMETRÍA Fultd Regionl Mendo. UTN Álger Geometrí Anlíti Trjo Prátio N 9: APLICACIONES A LA GEOMETRÍA Ejeriio : Hlle l euión norml generl de l irunfereni que tiene entro en (- ; 3) que ps por el punto ( ; -). Grfique.

Más detalles

Matemática Diseño Industrial Cónicas Ing. Avila Ing. Moll CÓNICAS. Directriz. Generatriz

Matemática Diseño Industrial Cónicas Ing. Avila Ing. Moll CÓNICAS. Directriz. Generatriz Mtemáti Diseño Industril Cónis Ing. Avil Ing. Moll CÓNICAS Diretriz Genertriz Un superfiie óni está generd por un ret (genertriz) que se mueve poyándose en un urv fij (diretriz) y que ps por un punto fijo

Más detalles

5 Integral doble de Riemann

5 Integral doble de Riemann Miguel eyes, Dpto. de Mtemáti Aplid, FI-UPM 1 5 Integrl doble de iemnn 5.1 Definiión Llmremos retángulo errdo de 2 l produto de dos intervlos errdos y otdos de, es deir = [, b] [, d] = { (x, y) 2 : x b,

Más detalles

c a, b tal que f(c) = 0

c a, b tal que f(c) = 0 IES Mediterráneo Málg Junio Jun Crlos lonso Ginontti Propuest.- ) Enuni el teorem olno ( puntos) ) Se pue plir diho teorem l funión f en lgún interlo? ( punto) ) Demuestr que l funión f() nterior g se

Más detalles

Una condición necesaria y suficiente para que el triangulo PBP sea equilátero es que el ángulo HBP sea 30º. b que es la relación buscada.

Una condición necesaria y suficiente para que el triangulo PBP sea equilátero es que el ángulo HBP sea 30º. b que es la relación buscada. Hoj de Prolems Geometrí III 49. Dd l elipse, si tommos el etremo B de ordend positiv del eje menor omo entro, se desrie un irunfereni de rdio igul diho eje menor, ortr l elipse en dos punto P P. Determinr

Más detalles

SISTEMAS DE ECUACIONES LINEALES CON DOS INCÓGNITAS

SISTEMAS DE ECUACIONES LINEALES CON DOS INCÓGNITAS nstituto Dr. Jun Segundo Fernández Áre y urso: Mtemáti 4º ño. Profesor: Griel Bejr TRABAJO PRÁCTICO Nº. SISTEMAS DE ECUACIONES LINEALES CON DOS INCÓGNITAS RESOLUCIÓN DE SISTEMAS DE ECUACIONES Ténis de

Más detalles

MATEMÁTICAS II Cónicas en coordenadas polares Curso 06-07

MATEMÁTICAS II Cónicas en coordenadas polares Curso 06-07 MATEMÁTICAS II Cónis en oorens olres Curso 06-07 ) El omet Hlley esribe un orbit elíti e exentrii e 07 l longitu el eje myor e l órbit es, roximmente, 68 unies stronómis (un u, istni mei entre l Tierr

Más detalles

CUESTIONES RESUELTAS 1. VECTORES Y MATRICES FUNDAMENTOS DE MATEMÁTICAS. 1º GRADO GESTIÓN AERONAÚTICA

CUESTIONES RESUELTAS 1. VECTORES Y MATRICES FUNDAMENTOS DE MATEMÁTICAS. 1º GRADO GESTIÓN AERONAÚTICA CUESTIONES RESUELTS. VECTORES Y MTRICES FUNDMENTOS DE MTEMÁTICS. º GRDO GESTIÓN ERONÚTIC. Se el onjunto e vetores } tl que entones se verifi:. El onjunto M es linelmente inepeniente.. El onjunto M tiene

Más detalles

se llama ecuación polinómica de primer grado con una incógnita. Dos ecuaciones son equivalentes cuando admiten el mismo conjunto solución.

se llama ecuación polinómica de primer grado con una incógnita. Dos ecuaciones son equivalentes cuando admiten el mismo conjunto solución. Euiones e ineuiones de Primer Grdo on un inógnit Se P () un euión polinómi, on P() un polinomio, resolver l mism es enontrr los eros o ríes de P(), es deir, los vlores de que nuln diho polinomio. X se

Más detalles

DETERMINACIÓN DE LOS PUNTOS NOTABLES DE UN TRIÁNGULO EN TÉRMINOS DE SUS LADOS HERNAN DARIO ORTIZ ALZATE

DETERMINACIÓN DE LOS PUNTOS NOTABLES DE UN TRIÁNGULO EN TÉRMINOS DE SUS LADOS HERNAN DARIO ORTIZ ALZATE DETERMINACIÓN DE LOS PUNTOS NOTABLES DE UN TRIÁNGULO EN TÉRMINOS DE SUS LADOS HERNAN DARIO ORTIZ ALZATE ESPECIALISTA EN LA ENSEÑANZA DE LAS MATEMÁTICAS U de A INTRODUCCIÓN En el desrrollo de l geometrí

Más detalles

MATRICES , B= , B= , I= ,I= 6.- Hallar todas las matrices A que satisfacen a la ecuación. , se pide : Calcular 3A A t -2I. ,hallarx 2 y X 3.

MATRICES , B= , B= , I= ,I= 6.- Hallar todas las matrices A que satisfacen a la ecuación. , se pide : Calcular 3A A t -2I. ,hallarx 2 y X 3. Ejeriios de ÁLGEBRA º Bhillerto págin MATRICES.- Dds ls mtries A=, B=, lulr A+B, A-B,AB,BA, AA,BB..- Dds ls mtries A=, B=, lulr A+B, A-B,AB,BA, AA,BB..- Clulr A -A I, siendo: A=, I=.- Resolver el sistem

Más detalles

Clase 12: Integración de funciones de varias variables con valores reales

Clase 12: Integración de funciones de varias variables con valores reales Clse : Integrión de funiones de vris vribles on vlores reles C.J. Vnegs de junio de 8 eordemos.. L integrl f. fx)dx, pr f represent el áre bjo l gráfi de Similrmente si tenemos un funión de dos vribles:

Más detalles

Cuestionario Respuestas

Cuestionario Respuestas Cuestionrio Respuests Copright 2014, MtemtiTu Derehos reservdos 1) Un ineuión o desiguldd on un vrile (inógnit) es un enunido en que se presentn dos epresiones, l menos un on l vrile entre ells uno de

Más detalles

Seminario de problemas. Curso Soluciones Hoja 18

Seminario de problemas. Curso Soluciones Hoja 18 Seminrio de problems. Curso 015-16. Soluiones Hoj 18 10. Sen, b, y d utro números enteros. Demostrr que el produto de ls seis diferenis b,, d, b, d b, d es múltiplo de 1. Soluión Vemos que diho produto

Más detalles

ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE-

ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Resumen teorí Prof Alón ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- 1 Números enteros Un número rel se die entero si es ero o es un número nturl o es el opuesto de un número nturl Si indimos on N l subonjunto

Más detalles

En donde x representa la incógnita, y a, b y c son constantes.

En donde x representa la incógnita, y a, b y c son constantes. FUNCIÓN CUADRÁTICA. Cundo los elementos de un onjunto los elementos de un onjunto se soin medinte un regl de orrespondeni definid por un euión de segundo grdo en, l llmmos funión de segundo grdo o udráti.

Más detalles

En el espacio una superficie cuádrica es la gráfica de una ecuación de segundo grado en las variables x, y, z. la forma general de esta ecuación es:

En el espacio una superficie cuádrica es la gráfica de una ecuación de segundo grado en las variables x, y, z. la forma general de esta ecuación es: UNIVERSIDAD FRANCISCO DE PAULA SANTANDER FACULTAD DE CIENCIAS BÁSICAS DEPARTAMENTO DE CIENCIAS BASICAS. SUPERFICIES CUADRICAS 1 SUPERFICIES CUADRICAS En el espio un superfiie uádri es l gráfi de un euión

Más detalles

Ecuaciones Cuadráticas (por lo menos una variable elevada al cuadrado)

Ecuaciones Cuadráticas (por lo menos una variable elevada al cuadrado) Breve Reso de Geometrí en el Plno Euión Linel (tods ls vriles están elevds l 1ª) Ret Euión Generl de l Ret: A B C = 0 = f ( ) Euión Segmentri de l Ret: = 1 Euiones Cudrátis (or lo menos un vrile elevd

Más detalles

x x = 0 es una ecuación compatible determinada por que sólo se

x x = 0 es una ecuación compatible determinada por que sólo se Euiones Denominmos euión l iguldd que se stisfe pr uno o más vlores de l(s) vrile(s), o inógnit(s), que interviene en ell. Ejemplos: + 5 + 5 + 6 0 + 0 Denominmos euión lgeri tod euión del tipo: n n n +

Más detalles

Matemática básica para ingeniería (MA105) Clase Práctica Dada la siguiente ecuación, identifique la cónica, grafique y encuentre todos sus

Matemática básica para ingeniería (MA105) Clase Práctica Dada la siguiente ecuación, identifique la cónica, grafique y encuentre todos sus Mtemáti ási pr ingenierí (MA05) Clse Práti 4.. Dd l siguiente euión, identifique l óni, grfique enuentre todos sus elementos. 6 9 64 54 6 0 Completndo udrdos: ( ) ( 3) 3 4 Centro= C(; 3) 3 4 Como Entones

Más detalles

funciones de DERIVE permiten calcular algunos invariantes y expresiones asociados a la ecuación de dicha cónica necesarios para su estudio:

funciones de DERIVE permiten calcular algunos invariantes y expresiones asociados a la ecuación de dicha cónica necesarios para su estudio: CÓNICS - - Indiiones Llmndo l mriz soid un óni en un deermindo sisem de refereni l mriz de su form udrái, iers funiones de DERIVE permien lulr lgunos invrines epresiones soidos l euión de dih óni neesrios

Más detalles

Colegio de Bachilleres Plantel No. 15 Contreras Guía de Estudio para presentar Examen de Evaluación de Recuperación 2015B

Colegio de Bachilleres Plantel No. 15 Contreras Guía de Estudio para presentar Examen de Evaluación de Recuperación 2015B Colegio de Bhilleres Plntel No. 5 Contrers Guí de Estudio pr presentr Emen de Evluión de Reuperión 05B Elborr en hojs blns mno solo los ejeriios propuestos, indindo pr d serie l págin de los mismos. Entregr

Más detalles

1.-Algunas desigualdades básicas.

1.-Algunas desigualdades básicas. Preprión Olimpid Mtemáti Espñol. Curso 05-6. Desigulddes (y polinomios, y funiones). 3 de Noviemre de 05. Fernndo Myorl..-Alguns desigulddes ásis. ) 0 pr ulquier R. L iguldd sólo se umple pr = 0. ) (Desiguldd

Más detalles

B 1. d 1 d 2 B 2 XI.2 ECUACIÓN ORDINARIA DE LA HIPÉRBOLA HORIZONTAL CON CENTRO EN EL ORIGEN

B 1. d 1 d 2 B 2 XI.2 ECUACIÓN ORDINARIA DE LA HIPÉRBOLA HORIZONTAL CON CENTRO EN EL ORIGEN Págin del Colegio de Mtemátis de l ENP-UNAM Hipérol Autor: Dr. José Mnuel Beerr Espinos HIPÉRBOLA UNIDAD XI XI.1 DEFINICIÓN DE HIPÉRBOLA Un hipérol es el lugr geométrio de todos los puntos P del plno,

Más detalles

B 1. d 1 d 2 B 2 ECUACIÓN ORDINARIA DE LA HIPÉRBOLA HORIZONTAL CON CENTRO EN EL ORIGEN

B 1. d 1 d 2 B 2 ECUACIÓN ORDINARIA DE LA HIPÉRBOLA HORIZONTAL CON CENTRO EN EL ORIGEN Fultd de Contdurí Administrión. UNAM Hipérol Autor: Dr. José Mnuel Beerr Espinos MATEMÁTICAS BÁSICAS HIPÉRBOLA DEFINICIÓN DE HIPÉRBOLA Un hipérol es el lugr geométrio de todos los puntos P del plno, tles

Más detalles

ANALISIS MATEMATICO II INTEGRAL DEFINIDA - 2 PARTE

ANALISIS MATEMATICO II INTEGRAL DEFINIDA - 2 PARTE ANALISIS MATEMATICO II INTEGRAL DEFINIDA - 2 PARTE Mrí Susn Montelr Fultd de Cienis Exts, Ingenierí y Agrimensur - UNR EXTENSIÓN DEL SÍMBOLO INTEGRAL < b f(x) dx = g(x) dx b = b f(x) dx = 0 PROPIEDADES

Más detalles

Funciones GENERALIDADES. Sean los conjuntos: A ={1; 2; 3; 4} B = {u, d, t, c}

Funciones GENERALIDADES. Sean los conjuntos: A ={1; 2; 3; 4} B = {u, d, t, c} Funiones El onepto de Funión es un de ls ides undmentles en l Mtemáti. Csi ulquier estudio que se reier l pliión de l Mtemáti prolems prátios o que requier el nálisis de dtos, emple este onepto mtemátio.

Más detalles

Fase Nacional de la XLV Olimpiada Matemática Española Sant Feliu de Guixols (Girona), 27 de marzo de 2009 PRIMERA SESIÓN SOLUCIONES

Fase Nacional de la XLV Olimpiada Matemática Española Sant Feliu de Guixols (Girona), 27 de marzo de 2009 PRIMERA SESIÓN SOLUCIONES Fse Nionl de l XLV Olimpid Mtemáti Espñol Snt Feliu de Guiols (Giron) 7 de mro de 9 PRIMERA SESIÓN SOLUCIONES PROBLEMA - Hll tods ls suesiones finits de n números nturles onseutivos on n tles que 9 n Primer

Más detalles

ALGEBRA. 1. Si A y B son matrices cuadradas de orden n, se cumple la relación (A-B) 2 = A 2-2AB+B 2?

ALGEBRA. 1. Si A y B son matrices cuadradas de orden n, se cumple la relación (A-B) 2 = A 2-2AB+B 2? ejeriiosemenes.om. Si A B son mtries udrds de orden n, se umple l relión (AB) A ABB?. Siendo que d e f. Hllr el vlor de: g h i ( e) i h g d g i d f ) (d e) f i e h ) h e ) h/ / e/ e i h i f i f. Enuni

Más detalles

1. AA (2,2) 2. AA (1,3) 3. AA (1,-1) 4. AA (3,2) 1. AA -x-3y = 4 2. AA x-3y = AA -2x-3y = 0 4. AA 3x-2y = 4

1. AA (2,2) 2. AA (1,3) 3. AA (1,-1) 4. AA (3,2) 1. AA -x-3y = 4 2. AA x-3y = AA -2x-3y = 0 4. AA 3x-2y = 4 MsMtes.om oleiones e tivies Sistems e euiones oleión.. Mr l opión que ontiene un soluión (xy) e l euión: x-y = -4.. (). (). (-) (). Mr l euión que mite l soluión (xy) = (-).. -x-y = 4. x-y = -. -x-y =

Más detalles

UNIVERSIDAD LIBRE FACULTAD DE INGENIERÌA DEPARTAMENTO DE CIENCIAS BÁSICAS TALLER N

UNIVERSIDAD LIBRE FACULTAD DE INGENIERÌA DEPARTAMENTO DE CIENCIAS BÁSICAS TALLER N UNIVERSIDAD LIBRE FACULTAD DE INGENIERÌA DEPARTAMENTO DE CIENCIAS BÁSICAS TALLER N NOMBRE DE LA ASIGNATURA: CALCULO MULTIVARIADO Y VECTORIAL TÍTULO: SUPERFICIES DURACIÓN: DOS CLASES CUATRO HORAS BIBLIOGRAFÍA

Más detalles

INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA:

INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMATICAS ASIGNATURA: MATEMATICAS DOCENTE: EDISON MEJÍA MONSALVE. TIPO DE GUIA: CONCEPTUAL - EJERCITACION PERIODO GRADO N FECHA DURACION 9

Más detalles

Sistemas de Ecuaciones lineales Discusión con parámetros. Discutir el siguiente sistema de ecuaciones lineales según el valor del parámetro a:

Sistemas de Ecuaciones lineales Discusión con parámetros. Discutir el siguiente sistema de ecuaciones lineales según el valor del parámetro a: ALGEBRA Sistems de Euiones lineles Disusión on prámetros Disutir el siguiente sistem de euiones lineles según el vlor del prámetro : + ( + ) = + = + = Interpretión: Del enunido se dedue que se trt de un

Más detalles

TEORÍA DE ECUACIONES. una. igualdad

TEORÍA DE ECUACIONES. una. igualdad Euion Linel Los Ostáulos Todos los ser humnos, undo intentmos logrr ulquier os en l vid, nos enontrmos ostáulos que nos lo impiden, y entre myor difiultd enontrmos, myor filidd dquirimos. Los ostáulos

Más detalles

UNI DAD 2 TRIGONOMETRÍA ANALÍTICA. Objetivos

UNI DAD 2 TRIGONOMETRÍA ANALÍTICA. Objetivos UNI DAD 2 TRIGONOMETRÍA ANALÍTICA Objetivos Geometrí nlític Introducción funciones trigonométrics Vribles: dependientes independientes Constnte: numéric bsolut rbitrri, y z., b, c, Funciones: función

Más detalles

3º Año. Vectores. Matemática

3º Año. Vectores. Matemática 3º Año Cód. 1302-17 P r o f. M ó n i N p o l i t n o P r o f. M. D e l L u j á n M r t í n e z R e v i s i ó n P r o f. P t r i i G o d i n o Dpto. de M temáti 1- INTRODUCCIÓN En diverss oportuniddes nos

Más detalles

SOLUCIONES DE LOS EJERCICIOS DE CORRIENTE CONTINUA -1 er TRIMESTRE-. problemas:11, 12 y 14

SOLUCIONES DE LOS EJERCICIOS DE CORRIENTE CONTINUA -1 er TRIMESTRE-. problemas:11, 12 y 14 R= SOLUCONES DE LOS PROLEMS DE ELECTRCDD DE C.C. SOLUCONES DE LOS EJERCCOS DE CORRENTE CONTNU - er TRMESTRE-. prolems:, y ª ) Soluionremos este prolem por el método generl de nálisis por lzos ásios, omprondo

Más detalles

8. La elipse. 9/ Las cónicas.

8. La elipse. 9/ Las cónicas. 9/ Ls ónis. 8. L elipse. Definiión: Ddos dos puntos un distni 2 mor que l distni, se llm elipse de foos prámetro 2, l lugr geométrio de los puntos del plno u sum de distnis es 2. Dee umplirse pues que,

Más detalles

GEOMETRÍA ANALÍTICA DEL ESPACIO

GEOMETRÍA ANALÍTICA DEL ESPACIO CAPITULO Espero que l posteridd me jugue on enevoleni no solo por ls oss que he eplido sino tmién por quells que he omitido inteniondmente pr dejr los demás el pler de desurirls René Desrtes. GEOMETRÍA

Más detalles

UTalca - Versión Preliminar

UTalca - Versión Preliminar 1. Definición L hipérbol es el lugr geométrico de todos los puntos del plno cuyo vlor bsoluto de l diferenci de ls distncis dos puntos fijos es constnte. Más clrmente: Ddos (elementos bses de l hipérbol)

Más detalles

Variable Conjunto al que pertenece

Variable Conjunto al que pertenece Por Más Mtemáti istem de euiones ituión : Césr Ymil horrron $ 00 Complet el udro Inógnits Cntidd de dinero horrdo por 00 Cntidd de dinero horrdo por Ymil Vrile Conjunto l que pertenee Plnteo de l situión

Más detalles

y a z b 2 = y a z b + c

y a z b 2 = y a z b + c 65 ESTUDIO DEL HIPERBOLOIDE DE UNA HOJA - Estudi de l Simetrí Simetrí respet ls plns rdends Simetrí respet l pln l euión de l superfiie n se lter si mims el sign de l vrile, nluims que l superfiie es simétri

Más detalles

SISTEMAS DE ECUACIONES LINEALES

SISTEMAS DE ECUACIONES LINEALES UNEFA C.I.N.U. Mtemátis Mteril dptdo on fines instruionles por Teres Gómez, de: Oho, A., González N., Lorenzo J. Gómez T. (008) Fundmentos de Mtemátis, Unidd 5: Euiones e Ineuiones, CIU 008, UNEFA, Crs.

Más detalles

-5x 2 4ay 4-1 4b 2 z 2 3a 2 x 4 4a 2 b

-5x 2 4ay 4-1 4b 2 z 2 3a 2 x 4 4a 2 b MsMtes.om Coleiones de tividdes Expresiones lgebris Complet l siguiente tbl, referid los monomios que se indin. -5y x 6 x y x x 5 Coefiiente Grdo. Coefiiente Grdo Prte literl Prte literl bx x x b -x x

Más detalles

SISTEMAS DE ECUACIONES

SISTEMAS DE ECUACIONES SISTAS D CUACIONS. Resolver los siguientes sistems de dos euiones lineles on dos inógnits. Se puede resolver por ulquier método, pero deido que es fáil despejr l de l primer euión, lo resuelvo por sustituión.

Más detalles

Características 1) Es siempre cuadrado (igual cantidad de filas y columnas) 2) Está formado por número que determina un valor 3) Se resuelve

Características 1) Es siempre cuadrado (igual cantidad de filas y columnas) 2) Está formado por número que determina un valor 3) Se resuelve Colegio Ténio Nionl y Centro de Entrenmiento Voionl Arq. Rúl Mrí Benítez Perdomo Segundo urso de l Eduión Medi y Téni - Mtemáti Determinntes mtriz) On x n Es un funión que sign un número un mtriz (es deir

Más detalles

UNIVERSIDAD CRISTIANA AUTONOMA DE NICARAGUA UCAN FACULTAD DE INGENIERÍAS. Ingeniería en Sistemas de Computación. Ing. Enmanuel de Jesús Fonseca Alfaro

UNIVERSIDAD CRISTIANA AUTONOMA DE NICARAGUA UCAN FACULTAD DE INGENIERÍAS. Ingeniería en Sistemas de Computación. Ing. Enmanuel de Jesús Fonseca Alfaro CARRERA: Ingenierí en Sistems de Computión PLAN DE ESTUDIOS: 00 ASIGNATURA: AÑO ACADÉMICO: DOCENTE: MATEMATICA BASICA I Año Ing. Enmnuel de Jesús Fonse Alfro UNIDAD I: ALGEBRA Al finlir est unidd el estudinte

Más detalles

Fase Nacional de la XLV Olimpiada Matemática Española Sant Feliu de Guixols (Girona), 27 de marzo de 2009 PRIMERA SESIÓN SOLUCIONES

Fase Nacional de la XLV Olimpiada Matemática Española Sant Feliu de Guixols (Girona), 27 de marzo de 2009 PRIMERA SESIÓN SOLUCIONES Fse Nionl de l XLV Olimpid Mtemáti Espñol Snt Feliu de Guiols (Giron 7 de mro de 9 PRIMER SESIÓN SOLUCIONES - Hll tods ls suesiones finits de n números nturles onseutivos on n tles que 9 n Primer soluión:

Más detalles

Colegio Nuestra Señora de Loreto TRIGONOMETRÍA 4º E.S.O.

Colegio Nuestra Señora de Loreto TRIGONOMETRÍA 4º E.S.O. TRIGONOMETRÍ 4º E.S.O. Frniso Suárez Bluen TRIGONOMETRÍ PREVIOS. Teorem de Tles (Semejnz) Si ortmos dos rets por un serie de rets prlels, los segmentos determindos en un de ells son proporionles los segmentos

Más detalles

XVI Encuentro Departamental de Matemáticas: La innovación en el proceso docente educativo en Matemáticas a partir de diferentes medios de aprendizaje

XVI Encuentro Departamental de Matemáticas: La innovación en el proceso docente educativo en Matemáticas a partir de diferentes medios de aprendizaje XVI Enuentro Deprtmentl de Mtemátis: L innovión en el proeso doente edutivo en Mtemátis prtir de diferentes medios de prendizje y I Enuentro Deprtmentl de GeoGer Netmente intuitivos. Inextitud de los

Más detalles

a b c =(b a)(c a) (c b)

a b c =(b a)(c a) (c b) E N U N C I D O S ÁLGEBR + y + z P.- Ddo el sistem de euiones se pide: y + z ) Enontrr pr qué vlores de el sistem tiene soluión úni ) Resuelve el sistem pr P.- Despej l mtriz X en l siguiente euión y hll

Más detalles

CONSTRUCCION DE TRIANGULOS

CONSTRUCCION DE TRIANGULOS ONSTRUION DE TRINGULOS INTRODUION Ls exigenis que se imponen un figur que se dese onstruir son ls siguientes: 1) l mgnitud de segmentos, ros, ángulos y áres. 2) l posiión reltiv de puntos y línes. 3) l

Más detalles

Integración compleja

Integración compleja ntegrión omplej Aunque l interpretión ms omún de l integrl (definid) de un funión rel f es omo el áre bjo l urv y f(x) l definiión de l integrl es independiente de est interpretión, y l integrl puede usrse

Más detalles

Solución Examen. (1 + a)x + y + z + u = α x + (1 + a)y + z + u = β x + y + (1 + a)z + u = γ x + y + z + (1 + a)u = δ.

Solución Examen. (1 + a)x + y + z + u = α x + (1 + a)y + z + u = β x + y + (1 + a)z + u = γ x + y + z + (1 + a)u = δ. Ingenierí Mtemátic FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Algebr Linel MA 0, 0/08/3, Profs. J. González, R. Gouet. Solución Exmen. Considere el siguiente sistem de ecuciones lineles,

Más detalles

1 - Resolver los siguientes determinantes usando propiedades 1/10

1 - Resolver los siguientes determinantes usando propiedades 1/10 - Resolver los siguientes determinntes usndo propieddes ) ) / ) d) e) f) / / g) / / / / / / / / / / / / / h) / / / / / / / / / / / / / / / i) / / / / j) / / 8 / k) h k w k w h w h k h k w - Hllr los vlores

Más detalles

GEOMETRÍA DEL ESPACIO

GEOMETRÍA DEL ESPACIO Mtemáti Diseño Industril Poliedros Ing. Gustvo Moll GEOMETRÍA DEL ESPACIO L geometrí pln estudi el onjunto de todos los puntos del plno, l geometrí del espio se refiere l onjunto de puntos del espio, es

Más detalles

1. Marca la opción que contiene una solución (x,y) de la ecuación: x 2-2y 2 = AA (-2,3) 2. AA (-1,-1) 3. AA (0,2) 4.

1. Marca la opción que contiene una solución (x,y) de la ecuación: x 2-2y 2 = AA (-2,3) 2. AA (-1,-1) 3. AA (0,2) 4. Coleiones e tivies Coleión B.. Mr l opión que ontiene un soluión (xy) e l euión: x -y =.. AA (-3). AA (--) (0) (-). Mr l euión que mite l soluión (xy) = (-3).. AA x-y =. AA x +x+y = x - y = -4x +y = 5

Más detalles

y ) = 0; que resulta ser la

y ) = 0; que resulta ser la º BT Mt I CNS CÓNICAS Lugr geométrico.- Es el conjunto de los puntos que verificn un determind propiedd p. Considermos un determindo sistem de referenci crtesino del plno. Diremos que l ecución f(x,)=0

Más detalles

APUNTE: TRIGONOMETRIA

APUNTE: TRIGONOMETRIA APUNTE: TRIGONOMETRIA UNIVERSIDAD NACIONAL DE RIO NEGRO Asigntur: Mtemáti Crrers: Li. en Eonomí Profesor: Prof. Mel S. Chresti Cutrimestre: ero Año: 06 o Coneptos Previos o Definiión de ángulo Un ángulo

Más detalles

CONCEPTO AUTÓMATAS DE ESTADO FINITO (AF) Analizar los autómatas de estado finito y sus componentes, así como las diferentes formas de representarlos.

CONCEPTO AUTÓMATAS DE ESTADO FINITO (AF) Analizar los autómatas de estado finito y sus componentes, así como las diferentes formas de representarlos. CONCEPTO AUTÓMATAS DE ESTADO FINITO (AF) OBJETIVO Anlizr los utómts de estdo finito y sus omponentes, sí omo ls diferentes forms de representrlos. JUSTIFICACION L definiión de los utómts de estdo finito

Más detalles

1.- MEDIDA DE ÁNGULOS. - El sistema sexagesimal que usa como unidad de medida el grado. Un grado es la 90-ava parte del ángulo recto.

1.- MEDIDA DE ÁNGULOS. - El sistema sexagesimal que usa como unidad de medida el grado. Un grado es la 90-ava parte del ángulo recto. º Bhillerto Mtemátis I Dpto de Mtemátis- I.E.S. Montes Orientles (Iznlloz)-Curso 0/0 TEMAS 4 y 5.- RESOLUCIÓN DE TRIÁNGULOS. FUNCIONES FÓRMULAS TRIGONOMÉTRICAS Pr medir ángulos se suelen usr dos sistems

Más detalles

TEMA 4: Integración múltiple

TEMA 4: Integración múltiple TEMA 4: ntegrión múltiple Cálulo ngeniero de Teleomuniión Cálulo () TEMA 4 ngeniero de Teleomuniión 1 / 32 1 L integrl de Riemnn en R n 2 ntegrl doble ntegrl doble sobre un retángulo ntegrl doble sobre

Más detalles

TRANSFORMACIONES LINEALES

TRANSFORMACIONES LINEALES . 7 Cpítulo 5 RANSFORMACIONES LINEALES Mrtínez Hétor Jiro Snri An Mrí Semestre,.7 5.. Introduión Reordemos que un funión : A B es un regl de soiión entre los elementos de A y los elementos de B, tl que

Más detalles

7.1 Ecuación en forma común o canónica de la hipérbola. En la gráfica dada a continuación (Fig. 1) es posible encontrar los elementos siguientes:

7.1 Ecuación en forma común o canónica de la hipérbola. En la gráfica dada a continuación (Fig. 1) es posible encontrar los elementos siguientes: UNIDAD VII. LA HIPÉRBOLA. DEFINICIÓN: L Hipérol es el onjunto de puntos en el plno u difereni de sus distnis dos puntos fijos en el mismo plno, llmdos foos, es onstnte e igul. 7.1 Euión en form omún o

Más detalles

GRAMATICAS REGULARES - EXPRESIONES REGULARES

GRAMATICAS REGULARES - EXPRESIONES REGULARES CIENCIAS DE LA COMPUTACION I 29 GRAMATICAS REGULARES - EXPRESIONES REGULARES Grmátis Ls grmátis formles definen un lenguje desriiendo ómo se pueden generr ls dens del lenguje. Un grmáti forml es un udrupl

Más detalles

APLICACIONES DE LA DERIVADA

APLICACIONES DE LA DERIVADA APLICACIONES DE LA DERIVADA.- BACHILLERATO.- TEORÍA Y EJERCICIOS. Pág. 1 Creimiento y dereimiento. APLICACIONES DE LA DERIVADA Cundo un funión es derivle en un punto, podemos onoer si es reiente o dereiente

Más detalles

Triángulos y generalidades

Triángulos y generalidades Geometrí Pln y Trigonometrí (ldor) Septiemre Diiemre 2008 INOE 5/1 pítulo 5. Ejeriios Resueltos (pp. 62 63) (1) Los ldos de un triángulo miden 6 m, 7 m y 9 m. onstruir el triángulo y lulr su perímetro

Más detalles