TRIGONOMETRÍA. 4º E.S.O. Académicas AB = OA

Tamaño: px
Comenzar la demostración a partir de la página:

Download "TRIGONOMETRÍA. 4º E.S.O. Académicas AB = OA"

Transcripción

1 ÁNGULO. GRDO. TRIGONOMETRÍ El grdo es l medid de d uno de los ángulos que resultn l dividir el ángulo reto en 90 prtes igules. Su símolo es el º. 4º E.S.O. démis IRUNFERENI GONIOMÉTRI ÁNGULO. RDIÁN. 90º 80º γ β δ 0º O El ángulo mide un rdián porque l longitud del ro es igul l medid del rdio. = O 70º

2 PSO DE RDINES GRDOS Y VIEVERS RZONES TRIGONOMÉTRIS DE UN ÁNGULO GUDO 60º = π rdines sen = os = tg = Pso de grdos rdines Pso de rdines grdos π grdos = rdines 60 n 60 rdines = n grdos π El vlor de un rdián es: = = 57º 7' 45'' π, 46 RZONES TRIGONOMÉTRIS DE UN ÁNGULO GUDO RZONES TRIGONOMÉTRIS DEL ÁNGULO 45º Los ldos de un triángulo miden 8, 5 y 7 entímetros, respetivmente. ) omprue si el triángulo es retángulo. ) Hll ls rzones trigonométris del ángulo gudo de myor mplitud. 7 5 ) Pr que el triángulo se retángulo h de umplir el teorem de Pitágors = = 89 = 7 El triángulo es retángulo. 8 45º = + = = sen 45º = = = os 45º = = = tg 45º = = ) En el triángulo el teto opuesto l de myor mplitud es el más grnde, por tnto mide 5, y el teto ontiguo mide sen = os = tg = sen 45º = os 45º = tg 45º =

3 RZONES TRIGONOMÉTRIS DEL ÁNGULO 60º RZONES TRIGONOMÉTRIS DEL ÁNGULO 0º 60º / 0º h sen 60º = = h = = = 4 4 os 60º = = tg 60º = = 60º / 0º h sen 0º = = os 0º = = h = = = 4 4 tg0º = = = sen 60º = os 60º = tg 60º = sen 0º = os 0º = tg 0º = RELIÓN ENTRE LS RZONES TRIGONOMÉTRIS RELIÓN ENTRE LS RZONES TRIGONOMÉTRIS sen = = = tg os sen tg = os sen + os = + sen + os = + = = = sen + os sen os = = + = + os os os os tg tg + = os

4 RELIÓN ENTRE LS RZONES TRIGONOMÉTRIS Si el oseno de un ángulovle, uál es el seno de este ángulo? Y l tngente? sen + os = sen + = sen = 7 sen = 9 sen = 7 7 sen 7 4 tg = = = = os 80º IRUNFERENI GONIOMÉTRI Segundo udrnte Terer udrnte 90º 70º os Primer udrnte (os, sen ) sen urto udrnte 0º Ls oordends del punto son el vlor de oseno y seno de RZONES TRIGONOMÉTRIS DE UN ÁNGULO ULQUIER RZONES TRIGONOMÉTRIS DE UN ÁNGULO ULQUIER sen 0 os 0 tg 0 os β 90º os sen 0 os 0 tg 0 π Hll el oseno y l tngente desi sen = y π. sen + os = 80º sen 0 os 0 tg 0 sen β sen γ γ os γ β δ 70º os δ sen sen δ D 0º sen 0 os 0 tg 0 + = os os os = 8 = 9 8 os = sen 8 tg = = = = = os

5 RELIONES ENTRE LS RZONES TRIGONOMÉTRIS Ángulos Suplementrios RELIONES ENTRE LS RZONES TRIGONOMÉTRIS Ángulos que difieren en 80º 80º ( 80 ) ( 80 ) ( 80 ) sen º = sen os º = os tg º = tg +80º ( 80 ) ( 80 ) ( 80 ) sen + º = sen os + º = os tg + º = tg RELIONES ENTRE LS RZONES TRIGONOMÉTRIS Ángulos opuestos RELIONES ENTRE LS RZONES TRIGONOMÉTRIS Ángulos omplementrios sen os tg ( ) ( ) ( ) = sen = os = tg 90º ( 90 ) ( 90 ) ( 90 ) sen º = os os º = sen tg º = otg

6 RELIONES ENTRE LS RZONES TRIGONOMÉTRIS RESOLUIÓN DE TRIÁNGULOS ULESQUIER Hll ls rzones trigonométris del ángulo de 0º. Teorem del seno sen 0º = sen ( 60º 0º ) = sen ( 0º ) = sen ( 0º ) = = = sen sen sen h ( ) ( ) ( ) os 0º = os 60º 0º = os 0º = os 0º = Demostrión: sen 0º tg 0º = = = = os 0º h sen = h = sen sen = sen = h sen sen sen = h = sen RESOLUIÓN DE TRIÁNGULOS ULESQUIER Ejemplo: Dos ángulos y un ldo. Hllr RESOLUIÓN DE TRIÁNGULOS ULESQUIER Ejemplo: Dos ldos y el ángulo opuesto. Hllr Dtos: = 6m = 8º = 4º? 8º 6m 4º Dtos: = 4m = 5m = 0º 5m 4m 0º = 80º 8º 4º = 55º 6 sen 8º 6 76, 4 m sen = sen sen 8º = sen 55º = sen 55º = sen 0º = = sen = = 0, 4 sen sen sen sen 0º 5 Dos posiles soluiones: = º 4' 4'' y = 56º 5' 9'' Si = 56º 5' 9'' + > 80º = º 4' 4''

7 RESOLUIÓN DE TRIÁNGULOS ULESQUIER Teorem del oseno RESOLUIÓN DE TRIÁNGULOS ULESQUIER Ejemplo: Dos ldos y el ángulo que formn. Hllr = + os = + os = + os Dtos: = 00m = 700 m = 08º 00m 08º 700m = + os = os 08º = 564, 97 m LONGITUDES, ÁRES Y VOLÚMENES Ejemplo: Hll l potem y el áre de un pentágono regulr de ldo 8 m. LONGITUDES, ÁRES Y VOLÚMENES Ejemplo: lul el áre lterl y totl de l figur. 8 m 60º = = 7º = 6º tg ( 6º ) = = = 5'5m tg 6º ( )  h  = 90º 70º = 0º 4 h 4sen 70º = h = = 0'99m sen 0º sen 70º sen 0º = 4 4 0'99 = 75'84m LTERL 6º p 40 5'5 Áre = = = 0'm = '84m = 07'84m TOTL 4

8 LONGITUDES, ÁRES Y VOLÚMENES Ejemplo: lul el volumen de l figur. ˆ 60º = = 7º ˆ + ˆ = 80º ˆ = 54º 5 7 R = R = 5'95m sen 7º sen 54º = 5'95 '5 = 4'8m ˆ Â R ˆ SE p 7 5 4'8 = = = 84'8 m se ltur 84'8 6 Volumen = = = 448'96 m

TRIGONOMETRÍA. 1. ÁNGULOS 1.1. Ángulo en el plano Criterios de orientación de ángulo Sistema de medida de ángulos. Sistema sexagesimal

TRIGONOMETRÍA. 1. ÁNGULOS 1.1. Ángulo en el plano Criterios de orientación de ángulo Sistema de medida de ángulos. Sistema sexagesimal . ÁNGULOS.. Ángulo en el plno TRIGONOMETRÍA Dos semirrets en el plno, r y s, on un origen omún O, dividen diho plno en dos regiones. Cd un de de ests regiones determin un ángulo. O es el vértie de los

Más detalles

Colegio Nuestra Señora de Loreto TRIGONOMETRÍA 4º E.S.O.

Colegio Nuestra Señora de Loreto TRIGONOMETRÍA 4º E.S.O. TRIGONOMETRÍ 4º E.S.O. Frniso Suárez Bluen TRIGONOMETRÍ PREVIOS. Teorem de Tles (Semejnz) Si ortmos dos rets por un serie de rets prlels, los segmentos determindos en un de ells son proporionles los segmentos

Más detalles

APUNTE: TRIGONOMETRIA

APUNTE: TRIGONOMETRIA APUNTE: TRIGONOMETRIA UNIVERSIDAD NACIONAL DE RIO NEGRO Asigntur: Mtemáti Crrers: Li. en Eonomí Profesor: Prof. Mel S. Chresti Cutrimestre: ero Año: 06 o Coneptos Previos o Definiión de ángulo Un ángulo

Más detalles

Semejanza. 2. Relación entre perímetros, áreas y volúmenes de figuras semejantes 51

Semejanza. 2. Relación entre perímetros, áreas y volúmenes de figuras semejantes 51 Semejnz 1. Teorem de Tles 50 2. Relión entre perímetros, áres y volúmenes de figurs semejntes 51 3. Teorem de Pitágors, teorem del teto y teorem de l ltur 52 4. Rzones trigonométris de un ángulo gudo y

Más detalles

1 RESOLUCIÓN DE TRIÁNGULOS RECTÁNGULOS

1 RESOLUCIÓN DE TRIÁNGULOS RECTÁNGULOS T3: TRIGONOMETRÍ 1º T 1 RESOLUIÓN DE TRIÁNGULOS RETÁNGULOS Resolver un triángulo es llr ls longitudes de sus ldos y ls mplitudes de sus ángulos. Ls fórmuls que se plin son: ) Ls rzones trigonométris: ˆ

Más detalles

1.- MEDIDA DE ÁNGULOS. - El sistema sexagesimal que usa como unidad de medida el grado. Un grado es la 90-ava parte del ángulo recto.

1.- MEDIDA DE ÁNGULOS. - El sistema sexagesimal que usa como unidad de medida el grado. Un grado es la 90-ava parte del ángulo recto. º Bhillerto Mtemátis I Dpto de Mtemátis- I.E.S. Montes Orientles (Iznlloz)-Curso 0/0 TEMAS 4 y 5.- RESOLUCIÓN DE TRIÁNGULOS. FUNCIONES FÓRMULAS TRIGONOMÉTRICAS Pr medir ángulos se suelen usr dos sistems

Más detalles

I.E.S. Ciudad de Arjona Departamento de Matemáticas. 1º BAC

I.E.S. Ciudad de Arjona Departamento de Matemáticas. 1º BAC I.E.S. Ciudd de Arjon Deprtmento de Mtemátis. º BAC UNIDAD : TRIGONOMETRÍA. MEDIDAS DE ÁNGULOS. GRADOS: Un grdo sexgesiml es el ángulo orrespondiente un de ls 60 prtes en que se divide el ángulo entrl

Más detalles

TRIGONOMETRÍA (4º OP. A)

TRIGONOMETRÍA (4º OP. A) SEMEJANZA DE TRIÁNGULOS TRIGONOMETRÍA (4º OP. A) Dos figurs son semejntes undo tienen l mism form: Dos triángulos son semejntes si tienen: Sus ldos proporionles: r rzón de semejnz ' ' ' Sus ángulos, respetivmente

Más detalles

Unidad didáctica 4. Trigonometría plana

Unidad didáctica 4. Trigonometría plana Interpretión Gráfi Unidd didáti 4. Trigonometrí pln 4.1 Medids de ros y ángulos omo en un mism irunfereni ros igules orresponden ángulos igules, se quiere enontrr un medid de ros que sirv pr ángulos y

Más detalles

7 Semejanza. y trigonometría. 1. Teorema de Thales

7 Semejanza. y trigonometría. 1. Teorema de Thales 7 Semejnz y trigonometrí 1. Teorem de Tles Si un person que mide 1,70 m proyet un sombr de,40 m y el mismo dí, l mism or y en el mismo lugr l sombr de un árbol mide 15 m, uánto mide de lto el árbol? Se

Más detalles

TRIGONOMETRÍA. =60 ; 1 = de 1 1 =60 60

TRIGONOMETRÍA. =60 ; 1 = de 1 1 =60 60 TRIGONOMETRÍA SISTEMAS DE MEDIDAS DE ÁNGULOS Pr medir ángulos se utilizn: 1. Sistem sexgesiml: L unidd de medid en este sistem es el grdo sexgesiml Un ángulo mide un grdo sexgesiml (1 0 ) si su ro entrl

Más detalles

α A TRIGONOMETRÍA PLANA

α A TRIGONOMETRÍA PLANA TRIGONOMETRÍ PLN El origen de l plr trigonometrí puede enontrrse en el griego, trígono triángulo y metrí medid. L trigonometrí justmente trt de eso, l mediión y resoluión de situiones donde se preten triángulos.

Más detalles

Qué tienes que saber?

Qué tienes que saber? Trigonometrí Qué tienes que sber? QUÉ tienes que sber? tividdes Finles Ten en uent Rzones trigonométris de un ángulo gudo, α: teto opuesto sen α hipotenus teto dyente os α hipotenus teto opuesto tgα teto

Más detalles

Problemas de trigonometría

Problemas de trigonometría Prolems de trigonometrí Reliones trigonométris de un ángulo. Clulr ls rzones trigonométris de un ángulo α, que pertenee l primer udrnte, y siendo que 8 sin α. 7 sin α + os α 8 7 + os α os α 64 5 5 osα

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD 7 Pág. Págin 66 PRTI Rzones trigonométris de un ángulo gudo Hll ls rzones trigonométris del ángulo en d uno de estos triángulos: ) ) ), m, m,6 m 8, m m 8, m ) sen, 0, os 0, 0,89 tg 0, 0,, 0,89 ) tg,6,

Más detalles

SECRETARÍA ACADÉMICA ÁREA DE INGRESO MATEMÁTICA

SECRETARÍA ACADÉMICA ÁREA DE INGRESO MATEMÁTICA Ministerio de Eduión Universidd Tenológi Nionl Fultd Regionl Rosrio SECRETARÍA ACADÉMICA ÁREA DE INGRESO MATEMÁTICA - Septiemre de 03 - Ministerio de Eduión Universidd Tenológi Nionl Fultd Regionl Rosrio

Más detalles

TRIGONOMETRÍA SISTEMAS DE MEDIDAS DE ÁNGULOS. Para medir ángulos se utilizan:

TRIGONOMETRÍA SISTEMAS DE MEDIDAS DE ÁNGULOS. Para medir ángulos se utilizan: TRIGONOMETRÍA SISTEMAS DE MEDIDAS DE ÁNGULOS Pr medir ángulos se utilizn:. Sistem sexgesiml: L unidd de medid en este sistem es el grdo sexgesiml Un ángulo mide un grdo sexgesiml ( 0 ) si su ro entrl orrespondiente,

Más detalles

RESOLUCIÓN DE TRIÁNGULOS OBLICUÁNGULOS

RESOLUCIÓN DE TRIÁNGULOS OBLICUÁNGULOS Geometrí y Trigonometrí Resoluión de triángulos oliuángulos 9. RESOLUIÓN DE TRIÁNGULOS OLIUÁNGULOS Un triángulo es oliuángulo undo no present un ángulo reto, se denomin de dos forms: triángulo utángulo

Más detalles

DISTINGUIR LAS RAZONES TRIGONOMÉTRICAS

DISTINGUIR LAS RAZONES TRIGONOMÉTRICAS 7 REPASO Y APOYO OBJETIVO DISTINGUIR LAS RAZONES TRIGONOMÉTRICAS Nomre: Curso: Fe: Ddo un triánguo retánguo, definimos s rzones trigonométris de uno de sus ánguos gudos : seno sen oseno os tngente tg (teto

Más detalles

TEMA 8.- TRIGONOMETRÍA. RESOLUCIÓN DE TRIÁNGULOS

TEMA 8.- TRIGONOMETRÍA. RESOLUCIÓN DE TRIÁNGULOS TEMA 8.- TRIGONOMETRÍA. RESOLUCIÓN DE TRIÁNGULOS L trigonometrí es l prte de ls mtemátis que estudi ls reliones métris entre los elementos de un tringulo. A) RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO AGUDO

Más detalles

2. a) Llamando x a la base de un triángulo rectángulo de 18 cm 2 de área, demuestra que su perímetro sería

2. a) Llamando x a la base de un triángulo rectángulo de 18 cm 2 de área, demuestra que su perímetro sería Resolución de Triángulos - Soluciones 1. Un rectángulo circunscribe simétricmente un sector circulr tl como muestr el dibujo djunto. Si el ángulo del sector es de 1 rdián y su áre es de 7 ², hll en milímetros

Más detalles

Definiciones de seno, coseno OBJETIVOS CONTENIDOS PROCEDIMIENTOS. Definiciones de seno, coseno y tangente.

Definiciones de seno, coseno OBJETIVOS CONTENIDOS PROCEDIMIENTOS. Definiciones de seno, coseno y tangente. 89566 _ 009-06.qxd /6/08 :55 Págin Trigonometrí INTRODUCCIÓN En est unidd se pretende que los lumnos dquiern los onoimientos ásios en trigonometrí, que serán neesrios en ursos posteriores, sore todo pr

Más detalles

SECRETARÍA ACADÉMICA ÁREA DE INGRESO MATEMÁTICA

SECRETARÍA ACADÉMICA ÁREA DE INGRESO MATEMÁTICA SECRETARÍA ACADÉMICA ÁREA DE INGRESO MATEMÁTICA - Septiemre de 007 - Noiones de Trigonometrí: L trigonometrí se dedi l estudio de ls reliones que existen entre ls medids de los ángulos y ldos de un triángulo.

Más detalles

3- Calcula la amplitud de los ángulos interiores de los siguientes cuadriláteros. b c s t

3- Calcula la amplitud de los ángulos interiores de los siguientes cuadriláteros. b c s t 3- Clul l mplitud de los ángulos interiores de los siguientes udriláteros. s t 36 r u rstu trpeio isóseles û x 16 tˆ x 30 TRIÁNGULOS Se llm triángulo tod figur de tres ldos. Un triángulo tiene tres vérties,

Más detalles

TRIGONOMETRÍA II = = ; procediendo igual que antes, pero con h : longitudes de los lados son proporcionales a los senos de los ángulos opuestos).

TRIGONOMETRÍA II = = ; procediendo igual que antes, pero con h : longitudes de los lados son proporcionales a los senos de los ángulos opuestos). TEMA: 1. TEOREMA DE LOS SENOS despejndo h de ms igulddes: En generl tendremos que resolver triángulos no retángulos, y, en ellos, no es posile plir ls definiiones de ls rzones trigonométris de sus ángulos.

Más detalles

INTRODUCCIÒN Solución de triángulos rectángulos

INTRODUCCIÒN Solución de triángulos rectángulos INTRODUIÒN omo se vio en l unidd 1, l trigonometrí, se encrg de enseñr l relción entre los ldos y los ángulos de un tringulo. Es de sum importnci y que nos yud encontrr ls respuests en l físic, pr medir

Más detalles

c c a c a b b a c a A estas razones numéricas se les da el nombre: Si en cambio consideramos γ, resulta: Comparando (1), (2), (3), (4) obtenemos:

c c a c a b b a c a A estas razones numéricas se les da el nombre: Si en cambio consideramos γ, resulta: Comparando (1), (2), (3), (4) obtenemos: TRIGONOMETRIA NOCIONES PREVIAS Si onsidermos tres vrills,, tles que puede onstruirse on ells un triángulo (siempre que se umpl que l medid de d vrill se menor que l sum de ls otrs dos mor que l difereni)

Más detalles

TRIGONOMETRIA. Diremos que un ángulo tiene medida positiva si la medición se realiza en sentido antihorario y negativo en sentido horario.

TRIGONOMETRIA. Diremos que un ángulo tiene medida positiva si la medición se realiza en sentido antihorario y negativo en sentido horario. TRIGONOMETRI. Introduión. Medids de ángulos Ángulos orientdos. onsiderremos los ejes rtesinos, y representremos sore ellos los ángulos de tl form que el vértie oinid on el origen de oordends, y uno de

Más detalles

22. Trigonometría, parte II

22. Trigonometría, parte II 22. Trigonometrí, prte II Mtemátis II, 202-II 22. Trigonometrí, prte II Extensión del dominio Se P un punto sore l irunfereni x 2 + 2 =. Est irunfereni tiene rdio entro el origen O(0, 0). Denotmos por

Más detalles

Razones trigonométricas de un ángulo agudo. Relaciones fundamentales

Razones trigonométricas de un ángulo agudo. Relaciones fundamentales B C Mtemátis I - º Billerto Rzones trigonométris de un ángulo gudo. Reliones fundmentles En todo triángulo retángulo BC ls rzones trigonométris (seno, oseno y tngente) de uno de sus ángulos gudos, en este

Más detalles

DISTINGUIR LAS RAZONES TRIGONOMÉTRICAS

DISTINGUIR LAS RAZONES TRIGONOMÉTRICAS 7 REPSO Y POYO OJETIVO DISTINGUIR LS RZONES TRIGONOMÉTRICS Nomre: Curso: Feh: Ddo un triánguo retánguo, definimos s rzones trigonométris de uno de sus ánguos gudos : seno sen oseno os tngente tg (teto

Más detalles

Guía - 4 de Matemática: Trigonometría

Guía - 4 de Matemática: Trigonometría 1 entro Eduionl Sn rlos de rgón. oordinión démi Enseñnz Medi. Setor: Mtemáti. Nivel: NM Prof.: Ximen Gllegos H. Guí - de Mtemáti: Trigonometrí Nomre(s): urso: Feh. ontenido: Trigonometrí. prendizje Esperdo:

Más detalles

Resumen creado por Hernán Verdugo Fabiani, profesor de Matemática y Física, abril 2011.

Resumen creado por Hernán Verdugo Fabiani, profesor de Matemática y Física, abril 2011. Reliones métris en un triángulo Resumen redo or Hernán Verdugo Fini, rofesor de Mtemáti y Físi, ril 011. El estudio de un triángulo siemre revestido interés y or ello es ue existen un serie de desriiones,

Más detalles

Haga clic para cambiar el estilo de título

Haga clic para cambiar el estilo de título Medids de ángulos 90º 0º 80º 360º R 70º reto 90º º 60' ' 60'' Se die que mide un rdián si el ro de irunfereni orrespondiente tiene un longitud igul l rdio de l mism. R Equivlenis entre grdos segesimles

Más detalles

COLEGIO PEDAGOGICO DE LOS ANDES GUIA DE TRIGONOMETRÍA RECUPERACION PERIODO UNO CECIMO GRADO. = 57,29578 grados = 57º rad

COLEGIO PEDAGOGICO DE LOS ANDES GUIA DE TRIGONOMETRÍA RECUPERACION PERIODO UNO CECIMO GRADO. = 57,29578 grados = 57º rad OLEGIO PEDGOGIO DE LOS NDES GUI DE TRIGONOMETRÍ REUPERION PERIODO UNO EIMO GRDO Los ángulos se pueden medir en grdos sexgesimles y rdines Un ángulo de 1 rdián es quel uyo ro tiene longitud igul l rdio

Más detalles

4 Trigonometría UNIDAD

4 Trigonometría UNIDAD UNIDAD 4 Trigonometrí ÍNDICE DE CONTENIDOS 1. Ángulos............................................ 77 1.1. Sistem sexgesiml................................. 77 1.2. Rdines........................................

Más detalles

Razones trigonome tricas de un a ngulo agudo. Relaciones fundamentales

Razones trigonome tricas de un a ngulo agudo. Relaciones fundamentales Rzones trigonome tris de un ngulo gudo. Reliones fundmentles En todo triángulo retángulo C ls rzones trigonométris (seno, oseno y tngente) de uno de sus ángulos gudos, en este so, se definen de l siguiente

Más detalles

GYMNÁZIUM BUDĚJOVICKÁ. MATEMÁTICAS. TRIGONOMETRÍA. EJERCICIOS IV: RESOLUCIÓN DE TRIÁNGULOS. PROBLEMAS.

GYMNÁZIUM BUDĚJOVICKÁ. MATEMÁTICAS. TRIGONOMETRÍA. EJERCICIOS IV: RESOLUCIÓN DE TRIÁNGULOS. PROBLEMAS. GYMNÁZIUM BUDĚJOVICKÁ MATEMÁTICAS TRIGONOMETRÍA EJERCICIOS IV: RESOLUCIÓN DE TRIÁNGULOS PROBLEMAS - Determinr ls longitudes de los ldos y los tmños de los ángulos interiores del triángulo ABC si semos:

Más detalles

RAZONES TRIGONOMÉTRICAS EN EL TRIÁNGULO RECTÁNGULO

RAZONES TRIGONOMÉTRICAS EN EL TRIÁNGULO RECTÁNGULO Geometrí y Trigonometrí Rzones trigonométris en el triángulo retángulo 7. RZONES TRIGONOMÉTRIS EN EL TRIÁNGULO RETÁNGULO 7.1 onepto de trigonometrí Trigonometrí L plr trigonometrí es un volo ltino ompuesto

Más detalles

Tema 5. Semejanza. Tema 5. Semejanza

Tema 5. Semejanza. Tema 5. Semejanza Tem 5. Semejnz Tem 5. Semejnz 1. Definiión de Semejnz. Esls. Teorem de Tles 3. Semejnz de Triángulos. riterios 4. riterios de Semejnz en triángulos retángulos 5. Teorems en triángulos retángulos 6. Relión

Más detalles

MAT I RESOLUCIÓN DE TRIÁNGULOS. «Mi pereza no me deja tiempo libre para nada» Escritor MATERIAL ÍNDICE:

MAT I RESOLUCIÓN DE TRIÁNGULOS. «Mi pereza no me deja tiempo libre para nada» Escritor MATERIAL ÍNDICE: 4 «Mi perez no me dej tiempo lire pr nd» Esritor MT I RESOLUIÓN DE TRIÁNGULOS ÍNDIE: MTERIL 1. RZONES TRIGONOMÉTRIS DE UN ÁNGULO GUDO (0º 90º). RZONES TRIGONOMÉTRIS DE UN ÁNGULO ULQUIER (0º 360º) 3. RZONES

Más detalles

U.T.N. F.R.C.U. Seminario Universitario Matemática. Módulo 6. Trigonometría

U.T.N. F.R.C.U. Seminario Universitario Matemática. Módulo 6. Trigonometría U.T.N. F.R.C.U. Seminrio Universitrio Mtemáti Módulo 6 Trigonometrí L mtemáti ompr los más diversos fenómenos y desubre ls nlogís serets que los unen Joseph Fourier TRIGONOMETRÍA Pr omenzr trbjr on trigonometrí

Más detalles

de Thales y Pitágoras

de Thales y Pitágoras 8 Teorems de Thles y Pitágors 8.1. Cuents y problem del dí 1. Reliz l siguiente operción: 874,53 + 3 607,8 + 875,084 2. Reliz l siguiente operción, obtén dos decimles en el cociente y hz l prueb de l división:

Más detalles

1. Definición de Semejanza. Escalas

1. Definición de Semejanza. Escalas Tem 5. Semejnz Tem 5. Semejnz 1. Definiión de Semejnz. Esls. Teorem de Tles 3. Semejnz de Triángulos. riterios 4. riterios de Semejnz en triángulos retángulos 5. Teorems en triángulos retángulos 6. Relión

Más detalles

SenB. SenC. c SenC = 3.-

SenB. SenC. c SenC = 3.- TRIANGULOS OBLICUANGULOS Se llmn oliuángulos por que los ldos son oliuos on relión uno l otro, no formndo nun ángulos retos. Hy seis elementos fundmentles en un tringulo: los tres ldos y los tres ángulos,

Más detalles

C? a = 5 m. Área? B? c = 4 m. b 2 = a 2 c 2. b = 3 m c = 4 m. c cos B = a. 4 cos B = B = 36 52' 12'' 5 C C = 90 B. 1 Área = b c 2. a = 5,41 cm. Área?

C? a = 5 m. Área? B? c = 4 m. b 2 = a 2 c 2. b = 3 m c = 4 m. c cos B = a. 4 cos B = B = 36 52' 12'' 5 C C = 90 B. 1 Área = b c 2. a = 5,41 cm. Área? 4 Resoluión de triángulos. Resoluión de triángulos retángulos Piens y lul lul mentlmente l inógnit que se pide en los siguientes triángulos retángulos: ) = 6 m, = 8 m; ll l ipotenus ) = 35 ; ll el otro

Más detalles

MAT I RESOLUCIÓN DE TRIÁNGULOS. «Mi pereza no me deja tiempo libre para nada» Escritor MATERIAL ÍNDICE:

MAT I RESOLUCIÓN DE TRIÁNGULOS. «Mi pereza no me deja tiempo libre para nada» Escritor MATERIAL ÍNDICE: 4 «Mi perez no me dej tiempo lire pr nd» Esritor MT I RESOLUIÓN DE TRIÁNGULOS ÍNDIE: MTERIL 1. RZONES TRIGONOMÉTRIS DE UN ÁNGULO GUDO (0º 90º). RZONES TRIGONOMÉTRIS DE UN ÁNGULO ULQUIER (0º 360º) 3. RZONES

Más detalles

NOMBRE: CURSO: FECHA: coseno. a (cateto contiguo dividido entre hipotenusa) cos α = c a = 4 5

NOMBRE: CURSO: FECHA: coseno. a (cateto contiguo dividido entre hipotenusa) cos α = c a = 4 5 00 _ 00-06.qd 9/7/0 9:7 Págin RAZONES OBJETIVO TRIGONOMÉTRICAS Ddo un triánguo retánguo, definimos s rzones trigonométris de uno de sus ánguos gudos : seno sen = (teto opuesto dividido entre ipotenus)

Más detalles

PB' =. Además A PB = APB por propiedad de

PB' =. Además A PB = APB por propiedad de limpid de Mtemátis, Querétro GEMETRÍ: Trigonometrí, Áres, ílios, Ptolomeo Rosrio Velázquez 0 y de Junio, 005 PRLEM EL EXMEN ESTTL P es ulquier punto del interior de un triángulo. Sen, y los puntos medios

Más detalles

INSTITUCION EDUCATIVA NUESTRA SEÑORA DE GUADALUPE

INSTITUCION EDUCATIVA NUESTRA SEÑORA DE GUADALUPE Áre: MTEMÁTIS Dignostio Trigonometrí Feh: Enero de 07 onoimiento: Rzones Trigonométris y TP Doente: Sntigo Vásquez Grdo: UNDEIMO Estudinte: Ojetivo: Repsr los oneptos ásios sore rzones trigonométris, teorem

Más detalles

Matemática Diseño Industrial Trigonometría Ing. Avila Ing. Moll

Matemática Diseño Industrial Trigonometría Ing. Avila Ing. Moll Mtemáti Diseño Industril Trigonometrí Ing. vil Ing. Moll TRIGONOMETRÍ Es l rm de l mtemáti que tiene por ojeto el estudio de ls reliones numéris que existen entre los elementos retilíneos y ngulres de

Más detalles

MATEMÁTICA MÓDULO 3 Eje temático: Geometría

MATEMÁTICA MÓDULO 3 Eje temático: Geometría MATEMÁTICA MÓDULO 3 Eje temátio: Geometrí 1. SEGMENTOS PROPORCIONALES EN EL TRIÁNGULO RECTÁNGULO En el ABC retángulo en C de l figur: Se pueden estbleer ls siguientes semejnzs: 1) De est semejnz, se obtienen

Más detalles

MINISTERIO DE EDUCACION CURSO DE POSTGRADO TERCER CICLO DE EDUCACION BASICA ESPECIALIDAD EN MATEMATICA

MINISTERIO DE EDUCACION CURSO DE POSTGRADO TERCER CICLO DE EDUCACION BASICA ESPECIALIDAD EN MATEMATICA MINISTERIO DE EDUCACION CURSO DE POSTGRADO TERCER CICLO DE EDUCACION BASICA ESPECIALIDAD EN MATEMATICA CURSO 4 TRIGONOMETRIA Y TRANSFORMACIONES GEOMETRICAS EN EL PLANO CARTA DIDÁCTICA Desripión: Con este

Más detalles

GEOMETRÍA 2º DE ESO CURSO

GEOMETRÍA 2º DE ESO CURSO EJERCICIOS DE GEOMETRÍ 2º ESO Profesors: Mónic Mrtínez Espín Inmculd Grcí Ruiz Mónic Mrtínez Espín Lámins GEOMETRÍ 2º DE ESO CURSO 2018-2019 1. CRTÓN. Indic el vlor de los ángulos que formn un crtón. Ángulo

Más detalles

Trigonometría 3 de Secundaria: I Trimestre. yanapa.com

Trigonometría 3 de Secundaria: I Trimestre. yanapa.com I: SISTEMA DE MEDIDA ANGULAR ÁNGULOS TRIGONOMÉTRICOS-En trigonometrí se onsidern ángulos de ulquier vlor, por lo que se he neesrio plir el onepto de ángulo, supongmos un ryo AB, on origen en A en l figur

Más detalles

1. Razones trigonométricas en triángulos rectángulos. (Ángulos agudos)

1. Razones trigonométricas en triángulos rectángulos. (Ángulos agudos) Trigonometrí (I). Rzones trigonométris en triángulos retángulos. (Ángulos gudos).... Reliones trigonométris fundmentles.... Rzones trigonométris de 0º, 45º y 60º... 4 4. Resoluión de triángulos retángulos....

Más detalles

UNIDAD Nº 1: LAS RELACIONES TRIGONOMETRICAS Y SUS APLICACIONES, GUIA 2 DOCENTE: LIC ROSMIRO FUENTES ROCHA

UNIDAD Nº 1: LAS RELACIONES TRIGONOMETRICAS Y SUS APLICACIONES, GUIA 2 DOCENTE: LIC ROSMIRO FUENTES ROCHA REPUBLICA DE COLOMBIA SECRETARIA DE EDUCACION DISTRITAL DE SANTA MARTA INSTITUCION EDUCATIVA DISTRITAL RODRIGO DE BASTIDAS Resoluión Nº 88 de noviemre.8/ Emnd de l Seretri De Eduión Distritl DANE Nº7-99

Más detalles

En todo triángulo rectángulo se cumple el Teorema de Pitágoras. sen C hipotenusa. cos C. BC : hipotenusa B AC. (Regla: SOHCAHTOA)

En todo triángulo rectángulo se cumple el Teorema de Pitágoras. sen C hipotenusa. cos C. BC : hipotenusa B AC. (Regla: SOHCAHTOA) RAZONES TRIGONOMÉTRICAS Recordmos los siguientes conceptos: ABC es un triángulo rectángulo en A : BC : hipotenus AB : cteto dycente B ó cteto opuesto C AC : cteto opuesto B ó cteto dycente C Propiedd de

Más detalles

Trigonometría Ing. Avila Ing. Moll

Trigonometría Ing. Avila Ing. Moll Trigonometrí Ing. vil Ing. Moll TRIGONOMETRÍ Es l rm de l mtemáti que tiene por ojeto el estudio de ls reliones numéris que existen entre los elementos retilíneos y ngulres de un triángulo o de un figur

Más detalles

RESOLUCIÓN DE TRIÁNGULOS

RESOLUCIÓN DE TRIÁNGULOS RESOLUIÓN DE TRIÁNGULOS Págin 103 REFLEXION Y RESUELVE Prolem 1 Pr lulr l ltur de un árol, podemos seguir el proedimiento que utilizó Tles de Mileto pr hllr l ltur de un pirámide de Egipto: omprr su somr

Más detalles

Resolución de triángulos de cualquier tipo

Resolución de triángulos de cualquier tipo Resoluión de triángulos de ulquier tipo Ejeriio nº 1.- Hll los ldos y los ángulos de este triángulo: Ejeriio nº.- Clul los ldos y los ángulos del siguiente triángulo: Ejeriio nº 3.- Hll los ldos y los

Más detalles

BLOQUE 1.TRIGONOMETRIA. RESOLUCIÓN DE TRIÁNGULOS. 1ª Parte :Trigonometría:Resolución de triángulos.

BLOQUE 1.TRIGONOMETRIA. RESOLUCIÓN DE TRIÁNGULOS. 1ª Parte :Trigonometría:Resolución de triángulos. BLOQUE 1.TRIGONOMETRIA. RESOLUCIÓN DE TRIÁNGULOS 1ª Prte :Trigonometrí:Resolución de triángulos. 1.-Medid de ángulos. Un ángulo se puede medir en : )Grdos sexgesimles (DEG ó D) : 1º=60,1 =60. = 90º, =180º

Más detalles

Trigonometría: ángulos / triángulos. matemática / arquitectura

Trigonometría: ángulos / triángulos. matemática / arquitectura Trigonometrí: ángulos / triángulos mtemátic / rquitectur Grn pirámide de Guiz. Egipto. 2750.C. (h=146,62m / l=230,35m) Pirámide del Museo Louvre. Pris. 1989. rq. Ieoh Ming Pei. (h=20m / l=35m) Grn pirámide

Más detalles

1 Halla las razones trigonométricas del ángulo a en cada uno de estos triángulos: a) b) c)

1 Halla las razones trigonométricas del ángulo a en cada uno de estos triángulos: a) b) c) Pág. 1 Rzones trigonométrics de un ángulo gudo 1 Hll ls rzones trigonométrics del ángulo en cd uno de estos triángulos: ) b) c) 7 m 25 m 11,6 cm 8 m 32 m 60 m 2 Midiendo los ldos, hll ls rzones trigonométrics

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD SOLUIONES LOS EJERIIOS DE L UNIDD Pág. 1 Págin 187 PRTI Rzones trigonométrics de un ángulo 1 Hll ls rzones trigonométrics de los ángulos y en cd uno de los siguientes triángulos rectángulos. Previmente,

Más detalles

Los triángulos se clasifican según la magnitud de sus lados y de sus ángulos internos. SEGÚN SUS LADOS EQUILÁTERO ISÓSCELES ESCALENO

Los triángulos se clasifican según la magnitud de sus lados y de sus ángulos internos. SEGÚN SUS LADOS EQUILÁTERO ISÓSCELES ESCALENO Unidd uno Geometrí y Trigonometrí 4. TRIÁNGULOS 4.1 Definiión y notión de triángulos El triángulo es un polígono de tres ldos. Los puntos donde se ortn se llmn vérties. Los elementos de un triángulo son:

Más detalles

Visualización de triángulos. Curso de Matemáticas para Física. Trigonometría. Trigonometría. Física I, Internet A b.

Visualización de triángulos. Curso de Matemáticas para Física. Trigonometría. Trigonometría. Física I, Internet A b. Visulizión de triángulos Curso de Mtemátis pr Físi Curso de Mtemátis pr Físi Físi I, vi@ Internet 2004 B A C Físi I, vi@ Internet 2004 Visulizión de triángulos Fijémonos en un triángulo ulquier. Curso

Más detalles

10 Figuras planas. Semejanza

10 Figuras planas. Semejanza 10 Figurs plns. Semejnz Qué tienes que ser 10 QUÉ tienes que ser Atividdes Finles 10 Ten en uent Teorem de Pitágors. En un triángulo retángulo, el udrdo de l hipotenus es igul l sum de los udrdos de los

Más detalles

UNIVERSIDAD NACIONAL AGRARIA LA MOLINA CENTRO DE ESTUDIOS PREUNIVERSITARIOS SEXTO SEMINARIO DE GEOMETRÍA

UNIVERSIDAD NACIONAL AGRARIA LA MOLINA CENTRO DE ESTUDIOS PREUNIVERSITARIOS SEXTO SEMINARIO DE GEOMETRÍA UNIVRSI NINL GRRI L LIN NTR STUIS PRUNIVRSITRIS SXT SINRI GTRÍ ÁR RGINS URNGULRS 0. n l figur, G es prlelo y el áre del prlelogrmo es m. Hlle el áre sombred. ) m ) m ) 9 m ) m ) 6m G 0. n un trpecio (

Más detalles

EJERCICIOS DE 1º BACHILLERATO CIENCIAS DE LA SALUD

EJERCICIOS DE 1º BACHILLERATO CIENCIAS DE LA SALUD EJERCICIOS DE º BACHILLERATO CIENCIAS DE LA SALUD TRIGONOMETRÍA I - Sin utilizr l clculdor, hll el vlor de l siguientes expresiones: π π 5 π π 7π 4π π sen. 4sen + senπ sen sen cos + tg + tg 6 6 - Comprueb:

Más detalles

RESOLUCIÓN DE TRIÁNGULOS

RESOLUCIÓN DE TRIÁNGULOS RESOLUIÓN DE TRIÁNGULOS Págin 103 REFLEXION Y RESUELVE Prolem 1 Pr lulr l ltur de un árol, podemos seguir el proedimiento que utilizó Tles de Mileto pr hllr l ltur de un pirámide de Egipto: omprr su somr

Más detalles

FIGURAS SEMEJANTES. r B CRITERIOS DE SEMEJANZA DE TRIÁNGULOS. Dos triángulos son semejantes si cumplen alguna de las siguientes condiciones:

FIGURAS SEMEJANTES. r B CRITERIOS DE SEMEJANZA DE TRIÁNGULOS. Dos triángulos son semejantes si cumplen alguna de las siguientes condiciones: Lo fundmentl de l unidd Nombre y pellidos:... urso:... Feh:... FIGURS SEMEJNTES Dos figurs son semejntes si sus ángulos orrespondientes son... y sus distnis... D F D' ' F' ' ' Por ejemplo, si ls figurs

Más detalles

NOCIONES DE TRIGONOMETRÍA

NOCIONES DE TRIGONOMETRÍA Ejeiios de Tigonometí http://pi-tgos.esp.st NOCIONES DE TRIGONOMETRÍA L Tigonometí tiene po ojeto l esoluión de tiángulos, es dei, onoe los vloes de sus tes ldos de sus tes ángulos. P esolve un tiángulo

Más detalles

344 MATEMÁTICAS 2. ESO MATERIAL FOTOCOPIABLE SANTILLANA EDUCACIÓN, S. L. OBJETIVO 1 LA RAZÓN DE DOS SEGMENTOS NOMBRE: CURSO: FECHA:

344 MATEMÁTICAS 2. ESO MATERIAL FOTOCOPIABLE SANTILLANA EDUCACIÓN, S. L. OBJETIVO 1 LA RAZÓN DE DOS SEGMENTOS NOMBRE: CURSO: FECHA: LULR OJETIVO 1 L RZÓN DE DOS SEGMENTOS NOMRE: URSO: EH: RET, SEMIRRET Y SEGMENTO Un ret es un líne ontinu formd por infinitos puntos, que no tiene ni prinipio ni finl. Dos puntos definen un ret. Por un

Más detalles

TRIGONOMETRÍA ETIMOLÓGICAMENTE: Lado Final o Terminal Vértice. Lado Inicial

TRIGONOMETRÍA ETIMOLÓGICAMENTE: Lado Final o Terminal Vértice. Lado Inicial TRIGONOMETRÍ ETIMOLÓGICMENTE: Trigonometrí, es l prte de l mtemáti que estudi ls reliones que eisten entre los ángulos internos y los ldos de un triángulo, y pli dihs reliones l álulo del vlor o medid

Más detalles

Compilado por CEAVI: Centro de Educación de Adultos

Compilado por CEAVI: Centro de Educación de Adultos olígonos Un polígono es l región del plno limitd por tres o más segmentos. lementos de un polígono Ldos: on los segmentos que lo limitn. Vértices: on los puntos donde concurren dos ldos. Ángulos interiores

Más detalles

BLOQUE III Geometría

BLOQUE III Geometría LOQUE III Geometrí 7. Semejnz y trigonometrí 8. Resolución de triángulos rectángulos 9. Geometrí nlític 7 Semejnz y trigonometrí 1. Teorem de Thles Si un person que mide 1,70 m proyect un sombr de 3,40

Más detalles

Dados dos triángulos rectángulos PQR y P QR, se dice que son semejantes si tienen un mismo ángulo α en el vértice Q RQ R'Q RQ R'Q PQ P'Q

Dados dos triángulos rectángulos PQR y P QR, se dice que son semejantes si tienen un mismo ángulo α en el vértice Q RQ R'Q RQ R'Q PQ P'Q 1..Coneptos sore trigonometrí. 1.1. Definiión. 1.. Rzones de ángulos omplementrios. 1.3. Otr definiión de rzón trigonométri. 1.4. Rzones de ángulos otusos. 1.5. ngulos suplementrios 1.6. Ángulos que difieren

Más detalles

cos α sen α sen 0º 30º 45º 60º 90º cos 90º 60º 45º 30º 0º

cos α sen α sen 0º 30º 45º 60º 90º cos 90º 60º 45º 30º 0º Preuniversitrio Populr Vítor Jr 7.. TRIGONOMETRÍA L trigonoetrí (del griego, trigono = tres ldos o triángulo, y etrí = edid) es l r de ls teátis que estudi ls reliones entre los ldos y los ángulos de triángulos,

Más detalles

2 Números reales: la recta real

2 Números reales: la recta real Unidd. Números reles ls Enseñnzs Aplicds Números reles: l rect rel Págin. ) Justific que el punto representdo es. 0 Represent 7 (7 ) y 0 (0 + ). ) Aplicndo Pitágors: x x + x + x x 0 7 7 0 0 7 0 0 7. Qué

Más detalles

Evaluación NOMBRE APELLIDOS CURSO Y GRUPO FECHA CALIFICACIÓN. 3. Trigonometría I

Evaluación NOMBRE APELLIDOS CURSO Y GRUPO FECHA CALIFICACIÓN. 3. Trigonometría I Evlución NMBRE PELLIDS CURS GRUP FECH CLIFICCIÓN 4 L solución de l ecución sen 0,5 es: ) 0 y 50 b) 50 y 0 c) 0 y 0 Si sen 0 0,4, entonces cos 0 será: ) 0,4 b) 0,94 c) 0,4 Un estc de longitud, clvd verticlmente

Más detalles

UNIVERSIDAD NACIONAL AGRARIA LA MOLINA CENTRO DE ESTUDIOS PREUNIVERSITARIOS SEXTO SEMINARIO DE GEOMETRÍA

UNIVERSIDAD NACIONAL AGRARIA LA MOLINA CENTRO DE ESTUDIOS PREUNIVERSITARIOS SEXTO SEMINARIO DE GEOMETRÍA UNIVRSI NINL GRRI L LIN NTR STUIS PRUNIVRSITRIS SXT SINRI GTRÍ ÁR RGINS URNGULRS 0. n l figur, G es prlelo y el áre del prlelogrmo es 8. Hlle el áre sombred. ) ) 8 ) 9 ) ) 6 0. n un trpecio ( // ), se

Más detalles

Trigonometría. Prof. María Peiró

Trigonometría. Prof. María Peiró Trigonometrí Prof. Mrí Peiró Trigonometri Funciones Trigonométrics Ls funciones trigonométrics son rzones o cocientes entre dos ldos de un triángulo rectángulo. Hy seis funciones trigonométrics: Directs

Más detalles

CALCULAR LA RAZÓN DE DOS SEGMENTOS

CALCULAR LA RAZÓN DE DOS SEGMENTOS 9 LULR L RZÓN DE DOS SEGMENTOS REPSO Y POYO OJETIVO 1 RET, SEMIRRET Y SEGMENTO Un ret es un líne ontinu formd por infinitos puntos, que no tiene ni prinipio ni finl. Dos puntos definen un ret. Por un punto

Más detalles

UNIVERSIDAD NACIONAL AGRARIA LA MOLINA CENTRO DE ESTUDIOS PREUNIVERSITARIOS SEXTO SEMINARIO DE GEOMETRIA

UNIVERSIDAD NACIONAL AGRARIA LA MOLINA CENTRO DE ESTUDIOS PREUNIVERSITARIOS SEXTO SEMINARIO DE GEOMETRIA UNIVRSI NINL GRRI L LIN NTR STUIS PRUNIVRSITRIS SXT SINRI GTRI ÁR RGINS URNGULRS 0. n l figur, G // y el áre del prlelogrmo es 8. Hlle el áre de l región sombred. ) ) 8 ) 9 ) ) 6 0. n un trpecio ( // ),

Más detalles

EJERCICIOS DE MATEMÁTICAS PARA ALUMNOS CON LAS MATEMÁTICAS DE 1º E.S.O. PENDIENTES 2º PARCIAL

EJERCICIOS DE MATEMÁTICAS PARA ALUMNOS CON LAS MATEMÁTICAS DE 1º E.S.O. PENDIENTES 2º PARCIAL Mtemátics pendientes de 1º (º prcil) 1 EJERCICIOS DE MATEMÁTICAS PARA ALUMNOS CON LAS MATEMÁTICAS DE 1º E.S.O. PENDIENTES º PARCIAL Fech tope pr entregrlos: 17 de bril de 015 Exmen el 3 de bril de 015

Más detalles

Triángulos y generalidades

Triángulos y generalidades Geometrí Pln y Trigonometrí (ldor) Septiemre Diiemre 2008 INOE 5/1 pítulo 5. Ejeriios Resueltos (pp. 62 63) (1) Los ldos de un triángulo miden 6 m, 7 m y 9 m. onstruir el triángulo y lulr su perímetro

Más detalles

OBJETIVO 1 CalCUlaR la RazÓN DE DOS SEGMENTOS NOMBRE: CURSO: FECHA: RECTA, SEMIRRECTA Y SEGMENTO

OBJETIVO 1 CalCUlaR la RazÓN DE DOS SEGMENTOS NOMBRE: CURSO: FECHA: RECTA, SEMIRRECTA Y SEGMENTO OJETIVO 1 lulr l RzÓN DE DOS SEGMENTOS NOMRE: URSO: EH: RET, SEMIRRET Y SEGMENTO Un ret es un líne ontinu formd por infinitos puntos, que no tiene ni prinipio ni finl. Dos puntos definen un ret. Por un

Más detalles

4º ESO ACADÉMICAS - APLICADAS TRIGONOMETRÍA DEPARTAMENTO DE MATEMÁTICAS. SAGRADO CORAZÓN COPIRRAI_Julio César Abad Martínez-Losa TRIGONOMETRÍA

4º ESO ACADÉMICAS - APLICADAS TRIGONOMETRÍA DEPARTAMENTO DE MATEMÁTICAS. SAGRADO CORAZÓN COPIRRAI_Julio César Abad Martínez-Losa TRIGONOMETRÍA º ESO ACADÉMICAS - APLICADAS TRIGONOMETRÍA DEPARTAMENTO DE MATEMÁTICAS. COPIRRAI_Julio Césr Ad Mrtínez-Los TRIGONOMETRÍA El polígono más senillo es el de tres ldos, el triángulo, es por ello que el estudio

Más detalles

2.7. POLÍGONO REGULAR INSCRITO EN UNA CIRCUNFERENCIA (Método general)

2.7. POLÍGONO REGULAR INSCRITO EN UNA CIRCUNFERENCIA (Método general) 2.7. POLÍGONO REGULR INSRITO EN UN IRUNFERENI (Método generl) Reuerd: Ddo el rdio del polígono de n ldos (3 m) 1. Diuj un irunfereni de 3 m. de rdio. 2. Trz su diámetro, y divídelo en n prtes igules. 3.

Más detalles

Distancia de la Tierra a la Luna

Distancia de la Tierra a la Luna ASTRONOMÍA: Cálculo del rdio de l Tierr, distnci de l Tierr l Lun, distnci de l Tierr l Sol, predicción de eclipses, confección de clendrios... CARTOGRAFÍA: Elborción del mp de un lugr del que se conocen

Más detalles

TRIÁNGULO RECTÁNGULO

TRIÁNGULO RECTÁNGULO TRIÁNGULO RECTÁNGULO 1 Rzones trigonométris En mtemátis, el término rzón es sinónimo división o oiente entre dos ntiddes Por lo tnto l referirse ls rzones trigonométris nos estmos refiriendo ls reliones

Más detalles

LÁMINAS 2º ESO TRAZADOS FUNDAMENTALES Y POLÍGONOS

LÁMINAS 2º ESO TRAZADOS FUNDAMENTALES Y POLÍGONOS LÁMINAS 2º ESO TRAZADOS FUNDAMENTALES Y POLÍGONOS Prlels y Perpendiulres Lámin nº 1 Prlels y Perpendiulres Lámin nº 1 Trzr un perpendiulr en el extremo de un segmento de 60 mm. de longitud. Trzr un perpendiulr

Más detalles

5? Empezamos calculando el valor de cos a. cos a52 12sen 2 a sen 2a52sen a cos a5 2? 2. cos 56. cos 70º2cos 50º 5.

5? Empezamos calculando el valor de cos a. cos a52 12sen 2 a sen 2a52sen a cos a5 2? 2. cos 56. cos 70º2cos 50º 5. Mtemátics Bchillerto? Solucionrio del Libro Trigonometrí 07 Actividdes. Clcul ls rzones trigonométrics de un ángulo del segundo cudrnte, si. De sen cos se obtiene cos sen 9. Como está en el tercer cudrnte,

Más detalles

CAPÍTULO 24: RESOLUCIÓN DE TRIÁNGULOS ESFÉRICOS (III)

CAPÍTULO 24: RESOLUCIÓN DE TRIÁNGULOS ESFÉRICOS (III) PÍTULO 4: RESOLUIÓN DE TRIÁNGULOS ESFÉRIOS (III) Dnte Guerrero-hnduví Piur, 015 FULTD DE INGENIERÍ Áre Deprtmentl de Ingenierí Industril y de Sistems PÍTULO 4: RESOLUIÓN DE TRIÁNGULOS ESFÉRIOS (III) Est

Más detalles

RESOLUCIÓN DE TRIÁNGULOS

RESOLUCIÓN DE TRIÁNGULOS RESOLUIÓN DE TRIÁNGULOS Págin 0 PR EMPEZR, REFLEXION Y RESUELVE Prolem Pr lulr l ltur de un árol, podemos seguir el proedimiento que utilizó Tles de Mileto pr llr l ltur de un pirámide de Egipto: omprr

Más detalles

PLANTEL Iztapalapa V

PLANTEL Iztapalapa V Colegio Ncionl de Educción Profesionl Técnic PLANTEL Iztplp V Modulo: Representción Simbólic y Angulr del Entorno Docente: Turno: Mtutino Resuelve y Gráfic x+1 ) x 6 x b) < x+ c) 5 x d) x + x + 7 e) +

Más detalles

- Aplicar la ley de Ohm en los circuitos puros de corriente alterna.

- Aplicar la ley de Ohm en los circuitos puros de corriente alterna. 9. CIRCUITOS SIMPLES DE CORRIENTE ALTERNA Conoidos los omponentes, hor se prenderá ómo se omportn de form individul l estr onetdos un fuente de limentión de orriente ltern. El onoimiento de l ley de Ohm

Más detalles