= ( F)(5,3V) 1, C N = 1, electrones. N = q e = CV e. q = CV (1)

Tamaño: px
Comenzar la demostración a partir de la página:

Download "= (55 10 15 F)(5,3V) 1,60 10 19 C N = 1,8 10 6 electrones. N = q e = CV e. q = CV (1)"

Transcripción

1 1 La capacitancia Un capacitor consiste de dos conductores a y b llamados placas. Se supone ue están completamente aislados y ue se encuentran en el vacío. Se dice ue un capacitor está cargado si sus placas tienen cargas iguales y opuestas, + y. Cuando se mencione a la carga,, de un capacitor se considera a la magnitud de la carga de cualuiera de las placas. Un capacitor puede aduirir carga eléctrica si se conecta a las terminales de una batería. Puesto ue las placas son conductoras, entonces son euipotenciales, y la diferencia de potencial a través de las placas será la misma ue la de la batería. Por conveniencia, a la magnitud de la diferencia de potencial entre las placas se le llama V. La carga y la diferencia de potencial en un capacitor se relacionan por = CV (1) donde C es una constante de proporcionalidad llamada capacitancia. La unidad de medida de la capacitancia en el SI es el farad (abreviado F). 1 f arad = 1coulomb/volt Ejercicio 1. Un capacitor de almacenamiento en una memoria de aceso aleatorio (RAM en inglés) tiene una cpacitancia de 55 ff. Si la diferencia de potencial es de 5.3 V, cuál es el exceso de electrones en la placa negativa? Si la placa negativa tiene un exceso de N electrones, entonces porta una carga neta = Ne. Así ue N = e = CV e = ( F)(5,3V) 1, C N = 1, electrones. El cálculo de la capacitancia Conviene establecer un plan 1. se supone una carga en las placas 2. se calcula el campo eléctrico E entre las placas en términos de su carga, usando la ley de Gauss 3. una vez conocido E, se calcula la diferencia de potencial V entre las placas y 4. se calcula C a partir de C = /V. El cálculo del campo eléctrico: de acuerdo con la ley de Gauss (ver la figura 1) 1 E da = (2) 4πε 0

2 2 donde los signos + y indican ue la trayectoria inicia en la placa con carga positiva y termina en la placa con carga negativa. Un capacitor de placas paralelas De acuerdo con la figura 1, se tiene ue Figura 1: ue, dadas las condiciones, da como resultado ε 0 EA =, (3) donde A es el área de traslape entre las placas y la superficie gaussiana. El cálculo de la diferencia de potencial. La diferencia de potencial se calcula según f V f V i = E ds, (4) i auí la integral se ha evaluado a lo largo de la trayectoria ue inicia en una placa y termina en la otra. Dado ue sólo nos interesa la magnitud de V, se puede establecer ue V f V i = V, por lo ue V = E ds, (5) + V = Eds = d ds = d + ε 0 A 0 ε 0 A. (6) y de la definicion de capacitancia C = ε 0 A d. (7) y sólo depende de la geometría del capacitor! De auí ue otra forma de definir a ε 0 da ε 0 = F/m = 8.85pF/m. Un capacitor cilíndrico La figura 2 muestra, en seccion transversal, a un capacitor cilíndrico de longitud L formado por dos cilindros coaxiales a y b. Se supone ue L >> b. La superficie gaussiana más conveneinte es un cilindro de longitu L y radio r, con tapas en sus extremos. Así, la ecuacion (3) da = ε 0 EA = ε 0 E(2πrL)

3 3 y, nuevamente, la capacitancia sólo depende de los factores geométricos. Un capacitor esférico La figura 2, también representa a la seccion transversal de un capacitor ue consiste de dos cascarones esféricos de radios a y b. Como superficie gaussiana se elige una esfera de radio r. Aplicando la ecuacion (3) a esta superficie = ε 0 EA = ε 0 E(4πr 2 ), Figura 2: donde 2πrL es el área de la pared de la superficie gaussiana. Resolviendo para E E = y, sustituyendo en la ecuacion (5) V = + por lo ue E ds = 2πε 0 L 2πε 0 Lr. (8) b a L C = 2πε 0 ln(b/a) dr r = ( b ) 2πε 0 L ln. (9) a (10) Si se resuelve para E E = 1 4πε 0 r 2, (11) y sustituyendo en la ecuacion (5) se encuentra V = + E ds = 4πε 0 V = b a dr r 2 = ( 1 4πε 0 a 1 ) b 4πε 0 b a ab. (12) Y sustituyendo en la ecuacion (12) en (1) y resolviendo para C se obtiene ab C = 4πε 0 b a. (13)

4 4 Una esfera aislada Si b en la ecuacion (13) y se sustituye R por a, se encuentra ue C = 4πε 0 R. (14) Ejercicio 2. Las placas de un capacitor de placas paralelas están separadas una distancia d=1.00 mm. Cuál debe ser el área de las placas para ue la capacitancia sea de 1.0 F? Si la ecuacion (7) se resuleve para A y se obtiene A = Cd ε 0 = m 2. Ejercicio 3. El espacio entre los conductores de un cable coaxial largo, usado para transmitir señales de TV, tiene un radio interno a=0.15 mm y un radio externo b=2.1 mm. Cuál es la capacitancia por unidad de longitud de este cable? De la ecuacion (10) se tiene C L = 2πε 0 ln(b/a) = 21pF/m. Cuál es la capacitancia de la Tierra, vista como una esfera conductora aislada de radio 6370 km? De la ecuacion (14) se tiene C = 4πε 0 R = 710µF. Capacitores en serie y en paralelo Al analizar los circuitos eléctricos, con frecuencia se desea conocer la capacitancia euivalente de dos o más capacitores ue están conectados de cierta manera. Por capacitancia euivalente se entiende la capacitancia de un solo capacitor ue se puede sustituir por la combinación sin cambio en la operacion del resto del circuito. Capacitores conectados en paralelo La figura 3a muestra dos capacitores conectados en paralelo. Características: Figura 3:

5 5 1. para pasar de a a b se puede tomar una de dos trayectorias, pasando a traves de C 1 o a través de C 2, ue son paralelas 2. Cuando se conecta una batería con diferencia de potencial V a través de la combinacion se establece la misma diferencia de potencial a través de cada capacitor 3. La carga total transportada por la batería a la combinacion se reparte entre los capacitores. Así, para cada capacitor se tiene 1 = C 1 V y 2 = C 2 V. (15) Y dada la característica (3), se tiene = (16) Si se reemplaza la combinación por un capacitor euivalente, C e y se conecta a la misma batería, se debe tener la misma carga en las placas del capacitor euivalente, así ue = C e V. (17) Sustituyendo la ecuacion (16) en la (17) y usando las ecuaciones (15) en el resultado, se tiene ue C e V = C 1 V +C 2 V, o C e = C 1 +C 2. (18) Si se tienen más de dos capacitores conectados en paralelo, entonces C e = n C n (19) Capacitores conectados en serie La figura 4 muestra dos capacitores conectados en serie. Características: Figura 4: 1. para pasar a a b se debe recorrer todo el circuito, pasando a través de todos los elementos sucesivamente 2. cuando se conecta una batería a través de la combinación, la diferencia de potencial V de la batería es igual a la suma de las diferencias de potencial a través de cada uno de los capacitores

6 6 3. la carga en cada capacitor de la combinación en serie tiene el mismo valor Para cada capacitor individual se tiene, usando la ecuacion (1): V 1 = C 1 y V 2 = C 2. (20) con la misma carga a través de cada capacitor pero diferente mangnitud en la diferencia de potencial. De acuerdo con la segunda propiedad se tiene V = V 1 +V 2. (21) Entonces, la capacitancia euivalente C e ue puede reemplazar a la combinación debe almacenar la misma carga al conectarla a la misma diferencia de potencial V = C e. (22) Sustituyendo la ecuacion (21) en la (22) y usando las ecuaciones (29) se tiene o C e = C 1 + C 2, 1 C e = 1 C C 2. (23) Si se tienen más de dos capacitores conectados en serie, entonces 1 1 = C e (24) n C n Ejercicio 5. (a) Encuentre la capacitancia euivalente en la combinación ue se muestra en la figura 5a. Suponga ue C 1 = 12.0µF, C 2 = 5.3µF y C 3 = 4.5µF. (b) Se aplica una diferencia de potencial V = 12,5 V a las terminales de la figura 7a. Cuál es la carga sobre C 1? Figura 5: Los capacitores C 1 y C 2 están conectados en paralelo, por lo ue la capacitancia euivalente es C 12 = C 1 +C 2 = 17.3µF

7 7 Como se muestra en la figura 7b, C 12 y C 3 están conectados en serie. De la ecuacion (23), la capacitancia euivalente final es (ver la figura 7c): o 1 = = 0.280µF 1 C 123 C 12 C 3 C 123 = 3.57µF. (b) A los capacitores C 12 y C 123 se les considera como a capacitores comúnes y corrientes. La carga sobre C 123 en la figura 7c es, entonces, 123 = C 123 V = (3.57µF)(12.5V ) = 44.6µC Esta misma carga es la ue se encuentra en cada capacitor de la combinación en serie de la figura 7b. La diferencia de potencial a través de C 12 en esa figura es V 12 = 12 = 44.4µC C µF = 2.58V La misma diferenca de potencial aparece a través de C 1 en la figura 7a, por lo ue 1 = C 1 V 1 = (12µF)(2,68V) = 31µC. La energía almacenada en un campo eléctrico Como ya se vió anteriormente, la energía potencial eléctrica U es igual al trabajo W realizado por un agente externo para ensamblar una configuracion de cargas. En un capacitor, el agente externo ue transporta cargas de una placa a la otra es la batería. Suponga ue en un tiempo t se ha transferido una carga de una placa a la otra. La diferencia de potencial V entre las placas en ese momento es V = /C. Si luego se transfiere un incremento de carga d, el peueño cambio en du en la energía potencial eléctrica es, de acuerdo con V = U/ 0, du = V d = C d Si el proceso continua hasta ue se haya transferido una carga total, la energía potencial total es o U = du = 0 C d (25) U = 2 2C. (26)

8 8 De la relación = CV también se puede escribir U = 1 2 CV 2. (27) De auí, si se tiene un capacitor de placas paralelas, el campo eléctrico el campo eléctrico en el espacio entre las placas es uniforme (omitiendo los efectos de borde). Así, la densidad de energía u, ue es la energía almacenada por unidad de volumen, debe ser la misma en todo el volumen entre las placas; u está dada por u = U 1 Ad = 2 CV 2 Ad. Sustituyendo la ecuacion (7) se tiene pero E = V /d, por lo ue u = ε ( 0 V ) 2. 2 d u = 1 2 ε 0E 2. (28) Aunue se trató solamente para un capacitor de placas paralelas, el resultado es válido para cualuier geometría. Aunue en general E cambia con la localización, así ue u será función de las coordenadas.

Módulo 1: Electrostática Condensadores. Capacidad.

Módulo 1: Electrostática Condensadores. Capacidad. Módulo 1: Electrostática Condensadores. Capacidad. 1 Capacidad Hemos visto la relación entre campo eléctrico y cargas, y como la interacción entre cargas se convierte en energía potencial eléctrica Ahora

Más detalles

EJERCICIOS DE POTENCIAL ELECTRICO

EJERCICIOS DE POTENCIAL ELECTRICO EJERCICIOS DE POTENCIAL ELECTRICO 1. Determinar el valor del potencial eléctrico creado por una carga puntual q 1 =12 x 10-9 C en un punto ubicado a 10 cm. del mismo como indica la figura 2. Dos cargas

Más detalles

CAPACITANCIA Y ARREGLOS DE CAPACITORES. Ejercicios de Capacitancia

CAPACITANCIA Y ARREGLOS DE CAPACITORES. Ejercicios de Capacitancia APAITANIA Y ARREGLOS DE APAITORES Ejercicios de apacitancia.- Las placas de un capacitor tienen un área de 0.04 m y una separación de aire de mm. La diferencia de potencial entre las placas es de 00 V.

Más detalles

Cap. 24 La Ley de Gauss

Cap. 24 La Ley de Gauss Cap. 24 La Ley de Gauss Una misma ley física enunciada desde diferentes puntos de vista Coulomb Gauss Son equivalentes Pero ambas tienen situaciones para las cuales son superiores que la otra Aquí hay

Más detalles

Tema 13: CORRIENTE ELÉCTRICA Y CIRCUITOS ELÉCTRICOS

Tema 13: CORRIENTE ELÉCTRICA Y CIRCUITOS ELÉCTRICOS Tema 13: CORRIENTE ELÉCTRICA Y CIRCUITOS ELÉCTRICOS CORRIENTE ELÉCTRICA Y MOVIMIENTO DE CARGAS Problema 1: Una corriente de 3.6 A fluye a través de un faro de automóvil. Cuántos Culombios de carga fluyen

Más detalles

Ejercicios resueltos

Ejercicios resueltos Ejercicios resueltos Boletín 5 Campo eléctrico Ejercicio 1 La masa de un protón es 1,67 10 7 kg y su carga eléctrica 1,6 10 19 C. Compara la fuerza de repulsión eléctrica entre dos protones situados en

Más detalles

Esta guía es una herramienta que usted debe usar para lograr los siguientes objetivos:

Esta guía es una herramienta que usted debe usar para lograr los siguientes objetivos: FI120: FÍICA GENERAL II GUÍA#5: Conducción eléctrica y circuitos. Objetivos de aprendizaje Esta guía es una herramienta que usted debe usar para lograr los siguientes objetivos: Conocer y analizar la corriente

Más detalles

Apoyo para la preparación de los estudios de Ingeniería y Arquitectura Física (Preparación a la Universidad) Unidad 4: Vectores

Apoyo para la preparación de los estudios de Ingeniería y Arquitectura Física (Preparación a la Universidad) Unidad 4: Vectores Apoyo para la preparación de los estudios de Ingeniería y Arquitectura Física (Preparación a la Universidad) Unidad 4: Vectores Universidad Politécnica de Madrid 5 de marzo de 2010 2 4.1. Planificación

Más detalles

FISICA DE LOS PROCESOS BIOLOGICOS

FISICA DE LOS PROCESOS BIOLOGICOS FISICA DE LOS PROCESOS BIOLOGICOS BIOELECTROMAGNETISMO 1. Cuál es la carga total, en coulombios, de todos los electrones que hay en 3 moles de átomos de hidrógeno? -289481.4 Coulombios 2. Un átomo de hidrógeno

Más detalles

MAGNETISMO INDUCCIÓN ELECTROMAGNÉTICA FÍSICA II - 2011 GUÍA Nº4

MAGNETISMO INDUCCIÓN ELECTROMAGNÉTICA FÍSICA II - 2011 GUÍA Nº4 GUÍA Nº4 Problema Nº1: Un electrón entra con una rapidez v = 2.10 6 m/s en una zona de campo magnético uniforme de valor B = 15.10-4 T dirigido hacia afuera del papel, como se muestra en la figura: a)

Más detalles

Potencial eléctrico. du = - F dl

Potencial eléctrico. du = - F dl Introducción Como la fuerza gravitatoria, la fuerza eléctrica es conservativa. Existe una función energía potencial asociada con la fuerza eléctrica. Como veremos, la energía potencial asociada a una partícula

Más detalles

Ejercicios Propuestos Inducción Electromagnética.

Ejercicios Propuestos Inducción Electromagnética. Ejercicios Propuestos Inducción Electromagnética. 1. Un solenoide de 2 5[] de diámetro y 30 [] de longitud tiene 300 vueltas y lleva una intensidad de corriente de 12 [A]. Calcule el flujo a través de

Más detalles

Electromagnetismo Pedagogía en Física R. Lagos. PROBLEMAS RESUELTOS

Electromagnetismo Pedagogía en Física R. Lagos. PROBLEMAS RESUELTOS PROBLEMAS RESUELTOS. Un capacitor e lleno e aire está compuesto e os placas paralela, caa una con un área e 7 6 [ 2 ], separaas por una istancia e,8 [mm]. Si se aplica una iferencia e potencial e 20 [V]

Más detalles

Figura 1. Tipos de capacitores 1

Figura 1. Tipos de capacitores 1 CAPACITOR EN CIRCUITO RC OBJETIVO: REGISTRAR GRÁFICAMENTE LA DESCARGA DE UN CAPACITOR Y DETERMINAR EXPERIMENTALMENTE LA CONSTANTE DE TIEMPO RC DEL CAPACITOR. Ficha 12 Figura 1. Tipos de capacitores 1 Se

Más detalles

TRANSDUCTORES CAPACITIVOS

TRANSDUCTORES CAPACITIVOS CLASE 10 -- TRANSDUCTORES CAPACITIVOS Un capacitor o condensador consiste en dos superficies conductivas separadas por un material dieléctrico, el cual puede ser un sólido, líquido, gas o vacío. La capacitancia

Más detalles

Ejemplo 2. Velocidad de arrastre en un alambre de cobre

Ejemplo 2. Velocidad de arrastre en un alambre de cobre Ejemplo 1 Cual es la velocidad de desplazamiento de los electrones en un alambre de cobre típico de radio 0,815mm que transporta una corriente de 1 A? Si admitimos que existe un electrón libre por átomo

Más detalles

Máster Universitario en Profesorado

Máster Universitario en Profesorado Máster Universitario en Profesorado Complementos para la formación disciplinar en Tecnología y procesos industriales Aspectos básicos de la Tecnología Eléctrica Contenido (II) SEGUNDA PARTE: corriente

Más detalles

MOVIMIENTO ONDULATORIO

MOVIMIENTO ONDULATORIO 1 Apunte N o 1 Pág. 1 a 7 INTRODUCCION MOVIMIENTO ONDULATORIO Proceso por el que se propaga energía de un lugar a otro sin transferencia de materia, mediante ondas mecánicas o electromagnéticas. En cualquier

Más detalles

Si la intensidad de corriente y su dirección no cambian con el tiempo, entonces esa corriente se llama corriente continua.

Si la intensidad de corriente y su dirección no cambian con el tiempo, entonces esa corriente se llama corriente continua. 1.8. Corriente eléctrica. Ley de Ohm Clases de Electromagnetismo. Ariel Becerra Si un conductor aislado es introducido en un campo eléctrico entonces sobre las cargas libres q en el conductor va a actuar

Más detalles

4. LA ENERGÍA POTENCIAL

4. LA ENERGÍA POTENCIAL 4. LA ENERGÍA POTENCIAL La energía potencial en un punto es una magnitud escalar que indica el trabajo realizado por las fuerzas de campo para traer la carga desde el infinito hasta ese punto. Es función

Más detalles

Las resistencias disipan la energía, los capacitores e inductores la almacenan. Un capacitor es un elemento pasivo diseñado para almacenar energía en

Las resistencias disipan la energía, los capacitores e inductores la almacenan. Un capacitor es un elemento pasivo diseñado para almacenar energía en CAPACITORES Las resistencias disipan la energía, los capacitores e inductores la almacenan. Un capacitor es un elemento pasivo diseñado para almacenar energía en su campo eléctrico. Construcción Están

Más detalles

JOSÉ PERAZA, FÍSICA 2 JOSÉ PERAZA, FÍSICA 2 JOSÉ PERAZA, FÍSICA 2 Energía Potencial eléctrica

JOSÉ PERAZA, FÍSICA 2 JOSÉ PERAZA, FÍSICA 2 JOSÉ PERAZA, FÍSICA 2 Energía Potencial eléctrica Energía Potencial eléctrica Si movemos la carga q2 respecto a la carga q1 Recordemos que la diferencia en la energía tenemos que: potencial U cuando una partícula se mueve entre dos puntos a y b bajo la

Más detalles

ELECTRICIDAD. (Ejercicios resueltos) Alumno: Curso: Año:

ELECTRICIDAD. (Ejercicios resueltos) Alumno: Curso: Año: (Ejercicios resueltos) Alumno: Curso: Año: La Ley de Ohm La Ley de Ohm dice que la intensidad de corriente que circula a través de un conductor es directamente proporcional a la diferencia de potencial

Más detalles

TEMA: CAMPO ELÉCTRICO

TEMA: CAMPO ELÉCTRICO TEMA: CAMPO ELÉCTRICO C-J-06 Una carga puntual de valor Q ocupa la posición (0,0) del plano XY en el vacío. En un punto A del eje X el potencial es V = -120 V, y el campo eléctrico es E = -80 i N/C, siendo

Más detalles

UNICA Facultad de Ingeniería Mecánica

UNICA Facultad de Ingeniería Mecánica UNICA Facultad de Ingeniería Mecánica y Eléctrica CURSO Dibujo Electrónico Alumno Porras Dávalos Alexander Darwin Paginas de estudio porrasdavalosa1.wikispaces.com porrasdavalosa.wordpress.com porrasdavalosa.blogger.com

Más detalles

Definición de vectores

Definición de vectores Definición de vectores Un vector es todo segmento de recta dirigido en el espacio. Cada vector posee unas características que son: Origen: O también denominado Punto de aplicación. Es el punto exacto sobre

Más detalles

Campo y potencial eléctrico de una carga puntual

Campo y potencial eléctrico de una carga puntual Campo y potencial eléctrico de una carga puntual Concepto de campo Energía potencial Concepto de potencial Relaciones entre fuerzas y campos Relaciones entre campo y diferencia de potencial Trabajo realizado

Más detalles

Entonces el trabajo de la fuerza eléctrica es : =F d (positivo porque la carga se desplaza en el sentido en que actúa la fuerza (de A a B)

Entonces el trabajo de la fuerza eléctrica es : =F d (positivo porque la carga se desplaza en el sentido en que actúa la fuerza (de A a B) Consideremos la siguiente situación. Una carga Q que genera un campo eléctrico uniforme, y sobre este campo eléctrico se ubica una carga puntual q.de tal manara que si las cargas son de igual signo la

Más detalles

ELEMENTOS DE UN CIRCUITO Unidad 1. Conceptos básicos de electricidad

ELEMENTOS DE UN CIRCUITO Unidad 1. Conceptos básicos de electricidad ELEMENTOS DE UN CIRCUITO Unidad 1. Conceptos básicos de electricidad Qué elementos componen un circuito eléctrico? En esta unidad identificaremos los elementos fundamentales de un circuito eléctrico, nomenclatura

Más detalles

E.U.I.T.I.Z. (1º Electrónicos) Curso 2006-07 Electricidad y Electrometría. P. resueltos Tema 1 1/27

E.U.I.T.I.Z. (1º Electrónicos) Curso 2006-07 Electricidad y Electrometría. P. resueltos Tema 1 1/27 E.U.I.T.I.Z. (1º Electrónicos) Curso 2006-07 Electricidad y Electrometría. P. resueltos Tema 1 1/27 Tema 1. Problemas resueltos 1. Cuáles son las similitudes y diferencias entre la ley de Coulomb y la

Más detalles

EJERCICIOS RESUELTOS DE: ANÁLISIS DE CIRCUITOS I (Parte 1)

EJERCICIOS RESUELTOS DE: ANÁLISIS DE CIRCUITOS I (Parte 1) EJERCICIOS RESUELTOS DE: ANÁLISIS DE CIRCUITOS I (Parte ) ELABORADO POR: RICARDO DOMÍNGUEZ GARCÍA IET 70 ACADEMIA DE MATEMÁTICAS ESCUELA DE INGENIERÍA EN COMPUTACIÓN Y ELECTRÓNICA UNIVERSIDAD DE LA SALLE

Más detalles

Fisica III -10 - APENDICES. - APENDICE 1 -Conductores -El generador de Van de Graaff

Fisica III -10 - APENDICES. - APENDICE 1 -Conductores -El generador de Van de Graaff Fisica III -10 - APENDICES - APENDICE 1 -Conductores -El generador de Van de Graaff - APENDICE 2 - Conductores, dirección y modulo del campo en las proximidades a la superficie. - Conductor esférico. -

Más detalles

Energía del campo electrostático: Condensadores 1. Definición de condensador. Capacidad de un condensador. Cálculo de capacidades.

Energía del campo electrostático: Condensadores 1. Definición de condensador. Capacidad de un condensador. Cálculo de capacidades. Energía del campo electrostático: ondensadores 1. Definición de condensador. apacidad de un condensador. álculo de capacidades.. Asociación de condensadores. 3. Energía de un condensador. Energía del campo

Más detalles

1 Flujo del campo eléctrico. Ley de Gauss

1 Flujo del campo eléctrico. Ley de Gauss 1 Flujo del campo eléctrico Ley de Gauss El número de líneas de campo que atraviesan una determinada superficie depende de la orientación de esta última con respecto a las líneas de campo. ds es un vector

Más detalles

LINEAS EQUIPOTENCIALES

LINEAS EQUIPOTENCIALES LINEAS EQUIPOTENCIALES Construcción de líneas equipotenciales. Visualización del campo eléctrico y del potencial eléctrico. Análisis del movimiento de cargas eléctricas en presencia de campos eléctricos.

Más detalles

Unidad Didáctica. Leyes de Kirchhoff

Unidad Didáctica. Leyes de Kirchhoff Unidad Didáctica Leyes de Kirchhoff Programa de Formación Abierta y Flexible Obra colectiva de FONDO FORMACION Coordinación Diseño y maquetación Servicio de Producción Didáctica de FONDO FORMACION (Dirección

Más detalles

EXPERIMENTOS Nos. 3 y 4 FENÓMENOS ELECTROSTÁTICOS

EXPERIMENTOS Nos. 3 y 4 FENÓMENOS ELECTROSTÁTICOS EXPERIMENTO 1: Electrostática EXPERIMENTOS Nos. 3 y 4 FENÓMENOS ELECTROSTÁTICOS Objetivos Obtener cargas de distinto signo mediante varios métodos y sus características Uso del electroscopio como detector

Más detalles

Muchas veces hemos visto un juego de billar y no nos percatamos de los movimientos de las bolas (ver gráfico 8). Gráfico 8

Muchas veces hemos visto un juego de billar y no nos percatamos de los movimientos de las bolas (ver gráfico 8). Gráfico 8 Esta semana estudiaremos la definición de vectores y su aplicabilidad a muchas situaciones, particularmente a las relacionadas con el movimiento. Por otro lado, se podrán establecer las características

Más detalles

Todo lo que sube baja... (... y todo lo que se carga se descarga!)

Todo lo que sube baja... (... y todo lo que se carga se descarga!) Todo lo que sube baja... (... y todo lo que se carga se descarga!) María Paula Coluccio y Patricia Picardo Laboratorio I de Física para Biólogos y Geólogos Depto. de Física, FCEyN, UBA 1999 Resumen En

Más detalles

UNIDAD 4: PLANO CARTESIANO, RELACIONES Y FUNCIONES. OBJETIVO DE APRENDIZAJE: Representar gráficamente relaciones y funciones en el plano cartesiano.

UNIDAD 4: PLANO CARTESIANO, RELACIONES Y FUNCIONES. OBJETIVO DE APRENDIZAJE: Representar gráficamente relaciones y funciones en el plano cartesiano. UNIDAD 4: PLANO CARTESIANO, RELACIONES Y FUNCIONES OBJETIVO DE APRENDIZAJE: Representar gráficamente relaciones y funciones en el plano cartesiano. EL PLANO CARTESIANO. El plano cartesiano está formado

Más detalles

Centro de Bachillerato Tecnológico Industrial y de Servicios nº 137. Submódulo: Prueba Circuitos Eléctricos y Electrónicos Para Sistemas de Control

Centro de Bachillerato Tecnológico Industrial y de Servicios nº 137. Submódulo: Prueba Circuitos Eléctricos y Electrónicos Para Sistemas de Control Centro de Bachillerato Tecnológico Industrial y de Servicios nº 137 Submódulo: Prueba Circuitos Eléctricos y Electrónicos Para Sistemas de Control Profr. Ing. Cesar Roberto Cruz Pablo Enrique Lavín Lozano

Más detalles

Integral definida. 4. La integral definida de una suma de funciones es igual a la suma de integrales (Propiedad de linealidad)

Integral definida. 4. La integral definida de una suma de funciones es igual a la suma de integrales (Propiedad de linealidad) Integral definida Dada una función f(x) de variable real y un intervalo [a,b] R, la integral definida es igual al área limitada entre la gráfica de f(x), el eje de abscisas, y rectas x = a y x = b. bb

Más detalles

a < b y se lee "a es menor que b" (desigualdad estricta) a > b y se lee "a es mayor que b" (desigualdad estricta)

a < b y se lee a es menor que b (desigualdad estricta) a > b y se lee a es mayor que b (desigualdad estricta) Desigualdades Dadas dos rectas que se cortan, llamadas ejes (rectangulares si son perpendiculares, y oblicuos en caso contrario), un punto puede situarse conociendo las distancias del mismo a los ejes,

Más detalles

ELECTRÓNICA 4º ESO IES JJLOZANO Curso 2013-2014

ELECTRÓNICA 4º ESO IES JJLOZANO Curso 2013-2014 CONDENSADORES Su funcionamiento se parece al de las pequeñas baterías recargables y, al igual que éstas, son capaces de almacenar y descargar energía eléctrica. Están formados por dos láminas de un material

Más detalles

35 Facultad de Ciencias Universidad de Los Andes Mérida-Venezuela. Potencial Eléctrico

35 Facultad de Ciencias Universidad de Los Andes Mérida-Venezuela. Potencial Eléctrico q 1 q 2 Prof. Félix Aguirre 35 Energía Electrostática Potencial Eléctrico La interacción electrostática es representada muy bien a través de la ley de Coulomb, esto es: mediante fuerzas. Existen, sin embargo,

Más detalles

El generador de Van de Graaff

El generador de Van de Graaff Cuando se introduce un conductor cargado dentro de otro hueco y se ponen en contacto, toda la carga del primero pasa al segundo, cualquiera que sea la carga inicial del conductor hueco Teóricamente, el

Más detalles

Experimento 5 COMBINACIONES DE RESISTENCIAS. Objetivos. Introducción. Figura 1 Circuito con dos resistencias en serie

Experimento 5 COMBINACIONES DE RESISTENCIAS. Objetivos. Introducción. Figura 1 Circuito con dos resistencias en serie Experimento 5 COMBINACIONES DE RESISTENCIAS Objetivos 1. Construir circuitos con baterías, resistencias, y cables conductores, 2. Analizar circuitos con combinaciones de resistencias en serie para verificar

Más detalles

E 1 - E 2 = I 1. r 1 + (I 1 - I). r 2 E 1 - E 2 = I 1. (r 1 + r 2 ) - I. r 2. E 2 = I. R + (I - I 1 ). r 2 E 2 = I. (R + r 2 ) - I 1.

E 1 - E 2 = I 1. r 1 + (I 1 - I). r 2 E 1 - E 2 = I 1. (r 1 + r 2 ) - I. r 2. E 2 = I. R + (I - I 1 ). r 2 E 2 = I. (R + r 2 ) - I 1. Dos pilas de f.e.m. y resistencias internas diferentes se conectan en paralelo para formar un único generador. Determinar la f.e.m. y resistencia interna equivalentes. Denominamos E i a las f.e.m. de las

Más detalles

3.1 En el circuito de la figura, calcular la resistencia total, la intensidad que circula y las caidas de tensión producidas en cada resistencia.

3.1 En el circuito de la figura, calcular la resistencia total, la intensidad que circula y las caidas de tensión producidas en cada resistencia. 1. CÁLCULO DE LA RESISTENCIA MEDIANTE LA LEY DE OHM. Hállese la resistencia de una estufa que consume 3 amperios a una tensión de 120 voltios. Aplicamos la ley de Ohm: El resultado será, despejando la

Más detalles

SISTEMAS DE COORDENADAS SISTEMA COORDENADO UNIDIMENSIONAL

SISTEMAS DE COORDENADAS SISTEMA COORDENADO UNIDIMENSIONAL SISTEMAS DE COORDENADAS En la vida diaria, nos encontramos con el problema de ordenar algunos objetos; de tal manera que es necesario agruparlos, identificarlos, seleccionarlos, estereotiparlos, etc.,

Más detalles

VECTORES. Módulo, dirección y sentido de un vector fijo En un vector fijo se llama módulo del mismo a la longitud del segmento que lo define.

VECTORES. Módulo, dirección y sentido de un vector fijo En un vector fijo se llama módulo del mismo a la longitud del segmento que lo define. VECTORES El estudio de los vectores es uno de tantos conocimientos de las matemáticas que provienen de la física. En esta ciencia se distingue entre magnitudes escalares y magnitudes vectoriales. Se llaman

Más detalles

Tema 1. VECTORES (EN EL PLANO Y EN EL ESPACIO)

Tema 1. VECTORES (EN EL PLANO Y EN EL ESPACIO) Vectores Tema. VECTORES (EN EL PLANO Y EN EL ESPACIO Definición de espacio vectorial Un conjunto E es un espacio vectorial si en él se definen dos operaciones, una interna (suma y otra externa (producto

Más detalles

Características de funciones que son inversas de otras

Características de funciones que son inversas de otras Características de funciones que son inversas de otras Si f es una función inyectiva, llamamos función inversa de f y se representa por f 1 al conjunto. f 1 = a, b b, a f} Es decir, f 1 (x, y) = { x =

Más detalles

3.1 DEFINICIÓN. Figura Nº 1. Vector

3.1 DEFINICIÓN. Figura Nº 1. Vector 3.1 DEFINICIÓN Un vector (A) una magnitud física caracterizable mediante un módulo y una dirección (u orientación) en el espacio. Todo vector debe tener un origen marcado (M) con un punto y un final marcado

Más detalles

POTENCIAL ELECTRICO. W q. B o

POTENCIAL ELECTRICO. W q. B o POTENCIAL ELECTRICO Un campo eléctrico que rodea a una barra cargada puede describirse no solo por una intensidad de campo eléctrico E (Cantidad Vectorial) si no también como una cantidad escalar llamada

Más detalles

XX Olimpiada Española de Física 13 de marzo de 2009 Fase Local, Universidad de Salamanca

XX Olimpiada Española de Física 13 de marzo de 2009 Fase Local, Universidad de Salamanca Cuestión (a) Un grifo gotea sobre una superficie de agua. El goteo tiene lugar a razón de 80 gotas por minuto y genera en el agua ondas circulares separadas 45 cm. Cuál es la velocidad de propagación de

Más detalles

EJERCICIOS SOBRE : NÚMEROS ENTEROS

EJERCICIOS SOBRE : NÚMEROS ENTEROS 1.- Magnitudes Absolutas y Relativas: Se denomina magnitud a todo lo que se puede medir cuantitativamente. Ejemplo: peso de un cuerpo, longitud de una cuerda, capacidad de un recipiente, el tiempo que

Más detalles

3.- DETERMINANTES. a 11 a 22 a 12 a 21

3.- DETERMINANTES. a 11 a 22 a 12 a 21 3.- DETERMINANTES. 3.1. -DEFINICIÓN Dada una matriz cuadrada de orden n, se llama determinante de esta matriz (y se representa por A o deta al polinomio cuyos términos son todos los productos posibles

Más detalles

CORRIENTE CONTÍNUA (II) GENERADORES Y MOTORES

CORRIENTE CONTÍNUA (II) GENERADORES Y MOTORES CORRENTE CONTÍNU () GENERORES Y OTORES ES La agdalena. vilés. sturias En un circuito se pueden intercalar, además de resistencias, elementos activos tales como generadores y motores. Los generadores (o

Más detalles

Movimiento Rectilíneo Uniforme

Movimiento Rectilíneo Uniforme Movimiento Rectilíneo Uniforme 1. Teoría La mecánica es la parte de la física encargada de estudiar el movimiento y el reposo de los cuerpos, haciendo un análisis de sus propiedades y causas. La mecánica

Más detalles

CASTILLA LA MANCHA / JUNIO 03. LOGSE / FÍSICA / EXAMEN COMPLETO

CASTILLA LA MANCHA / JUNIO 03. LOGSE / FÍSICA / EXAMEN COMPLETO OPCIÓN A CASTILLA LA MANCHA / JUNIO 03. LOGSE / FÍSICA / EXAMEN PROBLEMAS: El alumno deberá contestar a una de las dos opciones propuestas A o B. Los problemas puntúan 3 puntos cada uno y las cuestiones

Más detalles

Ecuaciones de primer grado con dos incógnitas

Ecuaciones de primer grado con dos incógnitas Ecuaciones de primer grado con dos incógnitas Si decimos: "las edades de mis padres suman 120 años", podemos expresar esta frase algebraicamente de la siguiente forma: Entonces, Denominamos x a la edad

Más detalles

Liceo Los Andes Cuestionario de Física. Profesor: Johnny Reyes Cedillo Periodo Lectivo: 2015-2016 Temas a evaluarse en el Examen

Liceo Los Andes Cuestionario de Física. Profesor: Johnny Reyes Cedillo Periodo Lectivo: 2015-2016 Temas a evaluarse en el Examen Liceo Los Andes Cuestionario de Física Curso: Segundo Bachillerato Quimestre: Primero Profesor: Johnny Reyes Cedillo Periodo Lectivo: 2015-2016 Temas a evaluarse en el Examen Electrización: Formas de cargar

Más detalles

Lección 24: Lenguaje algebraico y sustituciones

Lección 24: Lenguaje algebraico y sustituciones LECCIÓN Lección : Lenguaje algebraico y sustituciones En lecciones anteriores usted ya trabajó con ecuaciones. Las ecuaciones expresan una igualdad entre ciertas relaciones numéricas en las que se desconoce

Más detalles

U.T. 4.- CIRCUITOS ELÉCTRICOS

U.T. 4.- CIRCUITOS ELÉCTRICOS U.T. 4.- CIRCUITOS ELÉCTRICOS Un circuito eléctrico es un conjunto de operadores eléctricos que, conectados entre sí de forma adecuada, permite la circulación y el control de la corriente eléctrica. OPERADORES

Más detalles

INTEGRAL DE SUPERFICIE

INTEGRAL DE SUPERFICIE INTEGRAL E UPERFICIE 1. Geometría de las superficies. Entendemos por superficie el lugar geométrico de un punto que se mueve en el espacio R 3 con dos grados de libertad. También podemos pensar una superficie

Más detalles

XLIV Olimpiada Matemática Española Fase nacional 2008 (Valencia) PRIMERA SESIÓN (28 de marzo)

XLIV Olimpiada Matemática Española Fase nacional 2008 (Valencia) PRIMERA SESIÓN (28 de marzo) Fase nacional 008 (Valencia) PRIMERA SESIÓN (8 de marzo).- Halla dos enteros positivos a y b conociendo su suma y su mínimo común múltiplo. Aplícalo en el caso de ue la suma sea 97 y el mínimo común múltiplo

Más detalles

corriente) C Aquí q esta en Coulomb, t en segundos, I en Amperes (1A= 1 ) s

corriente) C Aquí q esta en Coulomb, t en segundos, I en Amperes (1A= 1 ) s UNA CORRIENTE i de electricidad existe en cualquier región donde sean transportadas cargas eléctricas desde un punto a otro punto de esa región.supóngase que la carga se mueve a través de un alambre.si

Más detalles

La electricidad. La electricidad se origina por la separación o movimiento de los electrones que forman los átomos.

La electricidad. La electricidad se origina por la separación o movimiento de los electrones que forman los átomos. 1 La electricidad Es el conjunto de fenómenos físicos relacionados con la presencia y flujo de cargas eléctricas. Se manifiesta en una gran variedad de fenómenos como los rayos, la electricidad estática,

Más detalles

Ejercicios resueltos

Ejercicios resueltos Ejercicios resueltos oletín 6 Campo magnético Ejercicio Un electrón se acelera por la acción de una diferencia de potencial de 00 V y, posteriormente, penetra en una región en la que existe un campo magnético

Más detalles

6. VECTORES Y COORDENADAS

6. VECTORES Y COORDENADAS 6. VECTORES Y COORDENADAS Página 1 Traslaciones. Vectores Sistema de referencia. Coordenadas. Punto medio de un segmento Ecuaciones de rectas. Paralelismo. Distancias Página 2 1. TRASLACIONES. VECTORES

Más detalles

FOLLETO DEL PRIMER PARCIAL DE MAQUINARIA ELÉCTRICA I

FOLLETO DEL PRIMER PARCIAL DE MAQUINARIA ELÉCTRICA I FOLLETO DEL PRIMER PARCIAL DE MAQUINARIA ELÉCTRICA I 1- UN MOTOR INTERPOLAR SHUNT DE 7.5HP Y 220V TIENE ARMADURA Y CAMPO DE DERIVACION CON UNA RESISTENCIA DE 0.5 OHM Y 200 OHM RESPECTIVAMENTE, LA CORRIENTE

Más detalles

Ayudantía 7 Problema 1.

Ayudantía 7 Problema 1. Pontificia Universidad Católica de Chile Facultad de Física FIS533 Electricidad y Magnetismo Profesor: Máximo Bañados Ayudante: Felipe Canales, correo: facanales@uc.cl Ayudantía 7 Problema. La figura de

Más detalles

La magnitud vectorial mas simple es el desplazamiento (cambio de posición de un punto a otro de una partícula o de un cuerpo)

La magnitud vectorial mas simple es el desplazamiento (cambio de posición de un punto a otro de una partícula o de un cuerpo) Existen ciertas magnitudes que quedan perfectamente determinadas cuando se conoce el nombre de una unidad y el numero de veces que se ha tomado.estas unidades se llaman escalares (tiempo, volumen, longitud,

Más detalles

Circuito RC, Respuesta a la frecuencia.

Circuito RC, Respuesta a la frecuencia. Circuito RC, Respuesta a la frecuencia. A.M. Velasco (133384) J.P. Soler (133380) O.A. Botina (13368) Departamento de física, facultad de ciencias, Universidad Nacional de Colombia Resumen. Se armó un

Más detalles

Números Reales DESIGUALDADES DESIGUALDADES. Solución de desigualdades. 2x + 4 < 6x +1 6x + 3 8x 7 x 2 > 3x 2 5x + 8. INECUACIONES o DESIGUALDADES

Números Reales DESIGUALDADES DESIGUALDADES. Solución de desigualdades. 2x + 4 < 6x +1 6x + 3 8x 7 x 2 > 3x 2 5x + 8. INECUACIONES o DESIGUALDADES Números Reales INECUACIONES o DESIGUALDADES DESIGUALDADES Una desigualdad en una variable es una expresión donde se establece una relación entre dos cantidades. Las relaciones de orden son: ,, Ejemplos:

Más detalles

Relación de Problemas: CORRIENTE ELECTRICA

Relación de Problemas: CORRIENTE ELECTRICA Relación de Problemas: CORRIENTE ELECTRICA 1) Por un conductor de 2.01 mm de diámetro circula una corriente de 2 A. Admitiendo que cada átomo tiene un electrón libre, calcule la velocidad de desplazamiento

Más detalles

Sol: 1,3 10-4 m/s. Sol: I = σωr 2 /2

Sol: 1,3 10-4 m/s. Sol: I = σωr 2 /2 2 ELETOINÉTI 1. Por un conductor filiforme circula una corriente continua de 1. a) uánta carga fluye por una sección del conductor en 1 minuto? b) Si la corriente es producida por el flujo de electrones,

Más detalles

164 Ecuaciones diferenciales

164 Ecuaciones diferenciales 64 Ecuaciones diferenciales Ejercicios 3.6. Mecánica. Soluciones en la página 464. Una piedra de cae desde el reposo debido a la gravedad con resistencia despreciable del aire. a. Mediante una ecuación

Más detalles

SOLUCIONES CIRCUNFERENCIA. 1. Ecuación de la circunferencia cuyo centro es el punto (1, 2) y que pasa por el punto (2,3).

SOLUCIONES CIRCUNFERENCIA. 1. Ecuación de la circunferencia cuyo centro es el punto (1, 2) y que pasa por el punto (2,3). SOLUCIONES CIRCUNFERENCIA 1. Ecuación de la circunferencia cuyo centro es el punto (1,) y que pasa por el punto (,). Para determinar la ecuación de la circunferencia es necesario conocer el centro y el

Más detalles

ETS Caminos Santander. Curso 2012. Ejercicios de introducción a la programación.

ETS Caminos Santander. Curso 2012. Ejercicios de introducción a la programación. Ejercicio 1. Saludo. El programa preguntará el nombre al usuario y a continuación le saludará de la siguiente forma "Hola, NOMBRE" donde NOMBRE es el nombre del usuario. Ejercicio 2. Suma. El programa

Más detalles

Mecánica Racional 20 TEMA 3: Método de Trabajo y Energía.

Mecánica Racional 20 TEMA 3: Método de Trabajo y Energía. INTRODUCCIÓN. Mecánica Racional 20 Este método es útil y ventajoso porque analiza las fuerzas, velocidad, masa y posición de una partícula sin necesidad de considerar las aceleraciones y además simplifica

Más detalles

ESTATICA: TIPOS DE MAGNITUDES: CARACTERÍSTICAS DE UN VECTOR. Rama de la física que estudia el equilibrio de los cuerpos.

ESTATICA: TIPOS DE MAGNITUDES: CARACTERÍSTICAS DE UN VECTOR. Rama de la física que estudia el equilibrio de los cuerpos. ESTATICA: Rama de la física que estudia el equilibrio de los cuerpos. TIPOS DE MAGNITUDES: MAGNITUD ESCALAR: Es una cantidad física que se especifica por un número y una unidad. Ejemplos: La temperatura

Más detalles

y la masa se puede calcular recordando que el peso es una fuerza de atracción gravitacional que se puede encontrar con la expresión:

y la masa se puede calcular recordando que el peso es una fuerza de atracción gravitacional que se puede encontrar con la expresión: 9. POBLEMAS ESUELTOS DE HIDOSTATICA. 1.- Una estrella de neutrones tiene un radio de 10 Km y una masa de X 10 0 K. Cuánto pesaría un volumen de 1 de esa estrella, bajo la influencia de la atracción ravitacional

Más detalles

ESCULA SUPERIOR POLITECNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS DEBER DE ELECTROSTATICA

ESCULA SUPERIOR POLITECNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS DEBER DE ELECTROSTATICA ESCULA SUPERIOR POLITECNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS DEBER DE ELECTROSTATICA Aceleración de la gravedad 9,8m/s Constante de permitividad 8,85x10-1 Nm /C Masa del protón 1,67x10-7 kg Masa

Más detalles

Función exponencial y Logaritmos

Función exponencial y Logaritmos Eje temático: Álgebra y funciones Contenidos: Función exponencial y Logaritmos Nivel: 4 Medio Función exponencial y Logaritmos 1. Funciones exponenciales Existen numerosos fenómenos que se rigen por leyes

Más detalles

Trabajo Practico 1: Fuerza Eléctrico y Campo Eléctrico

Trabajo Practico 1: Fuerza Eléctrico y Campo Eléctrico Universidad Nacional del Nordeste Facultad de Ingeniería Cátedra: Física III Profesor Adjunto: Ing. Arturo Castaño Jefe de Trabajos Prácticos: Ing. Cesar Rey Auxiliares: Ing. Andrés Mendivil, Ing. José

Más detalles

Unidad IV. Volumen. Le servirá para: Calcular el volumen o capacidad de diferentes recipientes o artefactos.

Unidad IV. Volumen. Le servirá para: Calcular el volumen o capacidad de diferentes recipientes o artefactos. Volumen Unidad IV En esta unidad usted aprenderá a: Calcular el volumen o capacidad de recipientes. Convertir unidades de volumen. Usar la medida del volumen o capacidad, para describir un objeto. Le servirá

Más detalles

4º ESO 1. ECUAC. 2º GRADO Y UNA INCÓGNITA

4º ESO 1. ECUAC. 2º GRADO Y UNA INCÓGNITA 4º ESO 1. ECUAC. 2º GRADO Y UNA INCÓGNITA Una ecuación con una incógnita es de segundo grado si el exponente de la incógnita es dos. Ecuaciones de segundo grado con una incógnita son: Esta última ecuación

Más detalles

Nivelación de Matemática MTHA UNLP 1. Vectores

Nivelación de Matemática MTHA UNLP 1. Vectores Nivelación de Matemática MTHA UNLP 1 1. Definiciones básicas Vectores 1.1. Magnitudes escalares y vectoriales. Hay magnitudes que quedan determinadas dando un solo número real: su medida. Por ejemplo:

Más detalles

MEDICIONES ELECTRICAS I

MEDICIONES ELECTRICAS I Año:... Alumno:... Comisión:... MEDICIONES ELECTRICAS I Trabajo Práctico N 6 Tema: PUENTES DE CORRIENTE CONTINUA Y DE CORRIENTE ALTERNA. Q - METER Introducción Las mediciones de precisión de los valores

Más detalles

Práctica 2: Medidas de Voltaje DC, Potencia y Capacitancia

Práctica 2: Medidas de Voltaje DC, Potencia y Capacitancia Práctica 2: Medidas Voltaje DC, Potencia y Capacitancia Objetivos: Medir voltaje y potencia en circuitos divisores voltaje. Medir capacitancia. Medir voltajes, tiempos carga y scargas y diferencias fase

Más detalles

Inductancia. Auto-Inductancia, Circuitos RL X X XX X X XXXX L/R 07/08/2009 FLORENCIO PINELA - ESPOL 0.0183156

Inductancia. Auto-Inductancia, Circuitos RL X X XX X X XXXX L/R 07/08/2009 FLORENCIO PINELA - ESPOL 0.0183156 nductancia Auto-nductancia, Circuitos R X X XX X X XXXX X X XX a b R a b e 1 e1 /R B e ( d / dt) 0.0183156 1 0 1 2 3 4 Vx f( ) 0.5 0 t A NERCA Y A NDUCTANCA a oposición que presentan los cuerpos al intentar

Más detalles

Resortes y fuerzas. Analiza la siguiente situación. Ley de Hooke. 2do Medio > Física Ley de Hooke. Qué aprenderé?

Resortes y fuerzas. Analiza la siguiente situación. Ley de Hooke. 2do Medio > Física Ley de Hooke. Qué aprenderé? 2do Medio > Física Ley de Hooke Resortes y fuerzas Analiza la siguiente situación Aníbal trabaja en una fábrica de entretenimientos electrónicos. Es el encargado de diseñar algunas de las máquinas que

Más detalles

APLICACIONES DE LA DERIVADA

APLICACIONES DE LA DERIVADA APLICACIONES DE LA DERIVADA.- BACHILLERATO.- TEORÍA Y EJERCICIOS. Pág. 1 Crecimiento y decrecimiento. APLICACIONES DE LA DERIVADA Cuando una función es derivable en un punto, podemos conocer si es creciente

Más detalles

Universidad de la Frontera Departamento de Matemática y Estadística. Problemas de Optimización. Cĺınica de Matemática. J. Labrin - G.

Universidad de la Frontera Departamento de Matemática y Estadística. Problemas de Optimización. Cĺınica de Matemática. J. Labrin - G. Universidad de la Frontera Departamento de Matemática y Estadística Cĺınica de Matemática 1 Problemas de Optimización J. Labrin - G.Riquelme 1. Una caja con base cuadrada y parte superior abierta debe

Más detalles

De dos incógnitas. Por ejemplo, x + y 3 = 4. De tres incógnitas. Por ejemplo, x + y + 2z = 4. Y así sucesivamente.

De dos incógnitas. Por ejemplo, x + y 3 = 4. De tres incógnitas. Por ejemplo, x + y + 2z = 4. Y así sucesivamente. 3 Ecuaciones 17 3 Ecuaciones Una ecuación es una igualdad en la que aparecen ligados, mediante operaciones algebraicas, números y letras Las letras que aparecen en una ecuación se llaman incógnitas Existen

Más detalles

Experimento 6 LAS LEYES DE KIRCHHOFF. Objetivos. Teoría. Figura 1 Un circuito con dos lazos y varios elementos

Experimento 6 LAS LEYES DE KIRCHHOFF. Objetivos. Teoría. Figura 1 Un circuito con dos lazos y varios elementos Experimento 6 LAS LEYES DE KIRCHHOFF Objetivos 1. Describir las características de las ramas, los nodos y los lazos de un circuito, 2. Aplicar las leyes de Kirchhoff para analizar circuitos con dos lazos,

Más detalles

TEMA 9 POTENCIA EN SISTEMAS TRIFÁSICOS.

TEMA 9 POTENCIA EN SISTEMAS TRIFÁSICOS. TEMA 9 POTENCIA EN SISTEMAS TRIFÁSICOS. 9.. Potencias en sistemas equilibrados y simétricos en tensiones Un sistema trifásico puede considerarse como circuitos monofásicos, por lo que la potencia total

Más detalles