DERIVABILIDAD.. Intuitivamente: cuando no presenta saltos en ese punto. Toda función derivable en un punto, es continua en ese punto.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "DERIVABILIDAD.. Intuitivamente: cuando no presenta saltos en ese punto. Toda función derivable en un punto, es continua en ese punto."

Transcripción

1 ERIVABILIA.... inir unción continu n un punto. inir unción drivbl n un punto. s posibl ponr un jmplo d un unción qu n s: ) Continu y drivbl. b) rivbl y no continu. c) Continu y no drivbl. y s continu n cundo Un undción ( ) lim Intuitivmnt: cundo no prsnt sltos n s punto. Un unción y s drivbl n cundo ist l siguint límit lim ( ) ( ) st límit s l llm drivd d n y s dsign por ( ). Intuitivmnt, cundo s continu y no tin un punto nguloso n Tod unción drivbl n un punto, s continu n s punto. EJEMPLOS ) Continu y drivbl. Culquir unción polinómic, por jmplo b c b) rivbl y no continu. Imposibl: si no s continu no pud sr drivbl. y s drivbl n c) Continu y no drivbl. Srá un unción continu con punto nguloso n, como por jmplo ls uncions mdint vlors bsolutos. si < si Continu: ( ) ( ) ( ) si < si > No drivbl: ( ) ( ). En l unción prsnt un punto nguloso

2 . Rprsnt gráicmnt l unción y. Rzon n qu puntos dic unción no s dirncibl. El primr pso s quitr los vlors bsolutos trnsormndo l prsión un unción por intrvlos, pr llo, y qu tnr n cunt qu l vlor bsoluto solo modiic l prsión d l unción n los intrvlos n los qu st s ngtiv, psndol positivo multiplicndo por. ( ) ( ) < < < < L rprsntción s bstnt sncill y qu s trt d dos prsions linls y otr constnt. L unción prsnt dos puntos vértics n y n. En stos puntos l unción s continu pro no drivbl. < < < < < > En. L unción s continu: ( ) En l unción s continu. Pr qu l unción us drivbl n, s dbrí cumplir: ( ) ( ) L unción no s drivbl n En. L unción s continu: ( ) En l unción s continu. Pr qu l unción us drivbl n, s dbrí cumplir: ( ) ( ) L unción no s drivbl n

3 . S l unción () S pid: ) Hcr un dibujo proimdo d l gráic d l unción. b) Estudir l drivbilidd d l unción n.. El primr pso s prsr l unción sin vlor bsoluto. <, <, y l vlor bsoluto lo trnsorm n ( ). ( ) < < Por podr dibujr l unción con un solo trzo, l unción s continu n R. b. L condición pr qu un unción s drivbl n un punto, s qu n s punto ist l siguint límit: ( ) ( ) Pr qu ist st límit, dbn d istir los límits ltrls y sr iguls: ( ) ( ) ( ) ( ) Estos límits corrspondn ls drivds ltrls, por lo tnto, l condición pr qu un unción s drivbl n un punto s qu n s punto ls drivds ltrls sn iguls. S < < : > y ( ) ( ) L unción no s drivbl n. 4. Estudir l drivbilidd n d ƒ() < Pr qu l unción s drivbl n, s db cumplir:

4 < > L unción s drivbl n. ( ) ( ) 5. ) in drivd d un unción n l punto. b) Aplicndo l dinición d drivd, dmostrr qu si s drivbl y priódic, d priodo T, ntoncs su drivd tmbién s priódic d priodo T.. L drivd d un unción n un punto s un númro Rl qu rprsnt l pndint d l rct tngnt l unción n l punto. ( ) ( ) b. En un unción priódic s cumpl: ( T) ( ) S pid dmostrr qu ( T) ( ) ( T ) ( T) ( T ) ( ) T ( T) ( ) 6. S considr l unción () > contstr rzondmnt ls siguints prgunts: ) Es continu n l punto?. b) Es drivbl n l punto?. c) Alcnz lgún trmo?.. Pr qu l unción s continu n s db cumplir: L unción s continu n. b. Pr qu l unción s drivbl n s db cumplir: ( ) ( ) < ( ) () : ( ) ( ) > ( ) L unción no s drivbl n.

5 c. Pr qu un unción tng un trmo bsoluto o rltivo n un punto bst con qu n s punto sté dinid, no s ncsrio qu s drivbl, pro dbrá cumplir un d ls siguints condicions: Máimo: Pr todo prtncint l ntorno d cntro, () (). Mínimo: Pr todo prtncint l ntorno d cntro, () (). Pr sbr si l unción lcnz lgún trmo bst con dibujr su gráic. Como pud obsrvrs n l gráic, n l unción lcnz un mínimo bsoluto y qu cumpl ls condicions dscrits.. (). Pr culquir vlor dl ntorno d, () (). 7. d l unción si. Rzonr ls siguints prgunts. si ) Es continu n. S pid dmostrr qu lim () s continu n. ( ) lim lim L'H. ( ) lim b) Es drivbl n. S pid comprobr si ist l lim. En l cso d istir, l vlor corrspondrá (). ( ) ( ) lim lim lim lim lim L'H L'H lim lim

6 c) Es continu l unción '() n. S pid dmostrr sí l límit d l drivd d () cundo tind cro, s igul l vlor d l drivd n cro: sindo () l vlor obtnido n l prtdo ntrior y l drivd d l unción. clculndo l límit d stá prsión cundo tind cro, s comprub qu coincid con l vlor d (). ( ) ( ) L drivd tmbién s continu n ( ) ( ) ( ) ( ) ( ) L H ( ) ( ) ( ) L H sn si 8.. S (). ndo y b nº rls, llrlos pr qu () s continu y b si > drivbl n l punto. Pr sos vlors d y b, nlizr si () tin inlión n l punto. Pr qu l unción s continu n db cumplir: Por l dinición d l unción, () sn Pr qu ist l límit, dbn d istir los límits ltrls y sr iguls: Sustituyndo por ls prsions corrspondints cd intrvlo, y rsolvindo los límits, s obtin un rlción ntr los prámtros. sn ( b) sn b b El prámtro s clcul con l condición d qu l unción s tmbién drivbl n l punto cro. Pr qu un unción s drivbl n un punto, ls drivds ltrls d l unción n l punto dbn coincidir. Igulndo cos < > cos L prsión d l unción continu y drivbl s

7 sn ² si si > L condición ncsri, no suicint, pr qu un unción tng un punto d inlión, s qu n s punto l sgund drivd s nul. Pr qu l sgund drivd s nul n un punto, l drivd d l unción db sr drivbl, y por lo tnto: ( ( sn < > ( ) sn : En cro no ist punto d inlión por no istir sgund drivd. 9. Hllr y b pr qu l unción () b Pr qu l unción s continu n db cumplir: Por l dinición d l unción, () < s continu y drivbl n. Pr qu ist l límit, dbn d istir los límits ltrls y sr iguls: Sustituyndo por ls prsions corrspondints cd intrvlo, y rsolvindo los límits, s obtin un rlción ntr los prámtros. ( b) ( ) : b : b Pr qu l unción s drivbl n, s db cumplir: ( ) ( ) () > < : : Pr qu l unción s continu y drivbl db sr: () <

8 . mostrr qu l unción () s drivbl y qu su unción drivd ' s continu. S pid comprobr si ist l lim. En l cso d istir, l vlor corrspondrá (). lim lim lim lim lim L'H S pid dmostrr sí l límit d l drivd d () cundo tind cro, s igul l vlor d l drivd n cro: sindo () l vlor obtnido n l prtdo ntrior y l drivd d l unción. clculndo l límit d stá prsión cundo tind cro, s comprub qu coincid con l vlor d (). L H 4 L H 6 L H L drivd tmbién s continu n. S > b () Hllr y b pr qu s continu n y su primr drivd s nul n. Pr qu l unción s continu n db cumplir: Pr qu ist l límit, dbn d istir los límits ltrls y sr iguls: Por lo tnto s pud concluir qu pr qu l unción s continu n, s db cumplir: b Rsolvindo los límits igulndo, s obtin l vlor d b.

9 b : b El prámtro s obtin con l condición > < () 4 Sustituyndo n l prsión d l drivd: > < () S prticulriz pr dos y s igul cro. : L unción qud: > (). ) Enuncir l rgl d drivción d l composición d uncions. Rgl d l cdn: g g g b) S {} R R : drivbl tl qu () ' pr todo distinto d. mostrr:. Qu s drivbl dos vcs. S pid dmostrr qu ist l sgund drivd d l unción, pr llo brá qu intntr prsrl n términos d. Tnindo n cunt qu: plicndo l rgl d l cdn pr drivr st prsión:

10 pr ncontrr l prsión d '() obtin lo qu s busc. s tin n cunt l dinición qu s d pr '., sustituyndo n l prsión d l sgund drivd, s. Qu istn nº rls tls qu: ''() b ' () c () y ² b² c² S pid dmostrr qu, y son linlmnt dpndints. Pr llo prtindo d l prsión d s dmustr lo qu s pid qu su vz s pud ponr d st orm: qu s l rlción pdid, con, b, c. Sn u () y v () dos uncions drivbls n un punto. Pruébs qu su producto u() v() s drivbl obtnindo l prsión d su drivd: [u () v ()] u () v () u () v () Tnindo n cunt l dinición d drivd d un unción: ( ) u v s plic l producto u ( ) v( ) u v u v lim pr simpliicr st prsión s sum y s rst l numrdor u v( ) , obtnindo: u ( ) v( ) u v( ) u v( ) u v u v lim si d los dos primro término dl numrdor s sc ctor común d ( ) ctor común d u, qud: v, y d los dos últimos s sc [ u( ) u ] v( ) u [ v( ) v ] ( u v ) lim prsión qu s pud dscomponr n u( ) u v ( ) v u v lim v u plicndo l rgl dl límit d l sum s l sum d los límits u( ) u v ( ) v u v lim v lim u cindo lo mismo con l rgl dl producto El límit dl producto s l producto d los límits u ( ) u v ( ) v u v lim lim v lim u lim

11 u u lim u lim v v v y tnindo n cunt qu: lim u u v( ) v lim v y sustituyndo n l prsión: ( u v ) u v u v 4. S l unción rl d vribl rl dinid por () > ) ( 5 puntos) Rzonr si l unción s continu n tod l rct rl. b) (,5 puntos) Rzonr si s drivbl n tod l rct rl.. Función por intrvlos dinid mdint prsions polinómics. El único punto dond pud prsntr problms d continuidd s n (punto rontr). Pr studir l continuidd n, s db comprobr si: Continu n. ( ) b. Por sr un unción dinid por prsions polinómics, l único punto dond l unción pud prsntr problms d drivbilidd s n (punto rontr). Pr qu l unción s drivbl n s dbrí cumplir: ( ) ( ) [ ] < < () [ ] > > ( ) ( ) : En l unción no s drivbl. < >

12 5. Rprsntr l unción y 7 indicr n qu puntos no s drivbl. Pr rprsntr un unción n vlor bsoluto, s rprsnt sin l vlor bsoluto y continución, s gir n torno l j OX los trmos d curv qu stén por dbjo d él. Pr cr l gráic d un polinomio d º grdo s clcul l vértic y los puntos d cort con los js. y 7 b 7 7 v 7 9 Vértic: V, y 7 v v 4 : (, ) Corts con OX(y ). 7 : 5 : ( 5, ) Cort con OY( ). y 7 : (,) Eprsión d l unción: En l intrvlo dond l unción s ngtiv, l vlor bsoluto multiplic l prsión por pr cmbir l signo y djrl n positivo. 7 ( 7 ) < < En y n 5 l unción prsnt puntos vértic o ngulosos, s dcir, puntos dond l unción s continu pro no drivbl. En : En l unción s continu.

13 ( ) ( ) 7 : ( ) ( ) En 5 igul, continu pro no drivbl. < < < 5 > 5 En l unción no s drivbl 6. S () b ( ) > Pr qu vlors d y b s continu l unción ()? Pr qu vlors d y b drivbl? Función por intrvlos dinid mdint prsions polinómics. El único punto dond pud prsntr problms d continuidd s n (punto rontr). Pr studir l continuidd n, s db comprobr si: ( ) b b. Pr y culquir vlor qu tom b, l unción s continu. Pr qu s drivbl, l unción db sr continu y dmás, ( ) ( ) b ( ) > ( ) b : b. < b > Pr qu l unción s continu y drivbl n todo R, sus prsión db sr: ( ) > 7. mostrr, plicndo l dinición d drivd y l co d qu sn sí, qu (sn ) cos. sn ( ) sn( ) sn sn cos cos sn sn sn k : cos sn cos sn cos cos cos

DERIVADAS. La derivada de una función f en el punto de abscisa x = a, se define como el siguiente límite, si existe:

DERIVADAS. La derivada de una función f en el punto de abscisa x = a, se define como el siguiente límite, si existe: DERIVADAS Dinición d drivd. L drivd d un unción n l punto d bscis =, s din como l siuint límit, si ist: lím A l drivd d un unción n un punto s l llm tmbién ts d vrición instntán. Intrprtción ométric d

Más detalles

Derivadas: Teoría y ejercicios DERIVADAS. La derivada de una función f en el punto de abscisa x = a, se define como el siguiente límite, si existe:

Derivadas: Teoría y ejercicios DERIVADAS. La derivada de una función f en el punto de abscisa x = a, se define como el siguiente límite, si existe: Drivds: Torí jrcicios Bcillrto DERIVADAS Dinición d drivd. L drivd d un unción n l punto d bscis =, s din como l siuint límit, si ist: lím A l drivd d un unción n un punto s l llm tmbién ts d vrición instntán.

Más detalles

DERIVADAS. La derivada de una función f en el punto de abscisa x = a, se define como el siguiente límite, si existe:

DERIVADAS. La derivada de una función f en el punto de abscisa x = a, se define como el siguiente límite, si existe: DERIVADAS.- BACHILLERATO.- TEORÍA Y EJERCICIOS. Pá. DERIVADAS Dinición d drivd. L drivd d un unción n l punto d bscis, s din como l siuint límit, si ist: lím A l drivd d un unción n un punto s l llm tmbién

Más detalles

3dx dx 3. dx 1-4x. 7. 3xdx 4+x x 2

3dx dx 3. dx 1-4x. 7. 3xdx 4+x x 2 MsMtscom Intgrls Clculr l intgrl: ++ + (-) (+) - 7 + 8 ln - cos sn - - - + (+) ln ln 7 8 cos ln + + - +- - - + -+ ++ Ls gráfic (i), (ii) y (iii) corrspondn, no ncsrimnt por s ordn, ls d un función drivbl

Más detalles

Se llama tasa de variación media (T.V.M.) de una función y = f(x) en un intervalo a. T.V.M. a,b =

Se llama tasa de variación media (T.V.M.) de una función y = f(x) en un intervalo a. T.V.M. a,b = TEMA 7: DERIVADAS 7. Concpto d drivd. Función drivd. 7. Rgls d drivción. 7. CONCEPTO DE DERIVADA. FUNCIÓN DERIVADA. Est concpto mtmático no sólo nos prstrá un yud primordil n l rprsntción d funcions y

Más detalles

TEMA 3 LÍMITES Y CONTINUIDAD DE FUNCIONES

TEMA 3 LÍMITES Y CONTINUIDAD DE FUNCIONES 3. LÍMITES COLEGIO RAIMUNDO LULIO Frnciscnos T.O.R. Cód. 8367 TEMA 3 LÍMITES Y CONTINUIDAD DE FUNCIONES Dfinición: S dic qu l límit d l función f s igul L, cundo tind, si cundo s proim, f s proim L, sin

Más detalles

CONTINUIDAD Y DERIVABILIDAD DE FUNCIONES

CONTINUIDAD Y DERIVABILIDAD DE FUNCIONES Colgio Mtr Slvtoris CONTINUIDAD Y DERIVABILIDAD DE FUNCIONES Ejrcicio nº.- Estudi l continuidd y l drivilidd d l guint unción: ) < < Continuidd: - Si y ) s continu, pus stá ormd por uncions continus. -

Más detalles

UNIVERSIDAD DE LA RIOJA JUNIO lim

UNIVERSIDAD DE LA RIOJA JUNIO lim IES Mditrráno d Málg Emn Junio d Jun Crlos lonso Ginontti UNIVERSIDD DE L RIOJ JUNIO El lumno contstrá los jrcicios d un d ls dos propusts ( o ) qu s l ofrcn. Nunc dbrá contstr jrcicios d un propust jrcicios

Más detalles

INTEGRAL DEFINIDA ÁREAS Y VOLUMENES

INTEGRAL DEFINIDA ÁREAS Y VOLUMENES Intgrl indinid. gl d Brrow INTEGA DEFINIDA ÁEAS Y OUMENES siguint rgl, qu s s n l torm undmntl dl cálculo intgrl, rlcion l intgrl dinid con ls intgrls indinids prmit clculr ls intgrls dinids. intgrl dinid

Más detalles

I.E.S. Mediterráneo de Málaga Junio 2012 Juan Carlos Alonso Gianonatti PROPUESTA A

I.E.S. Mediterráneo de Málaga Junio 2012 Juan Carlos Alonso Gianonatti PROPUESTA A I.E.S. Mditrráno d Málg Junio Jun Crlos lonso Ginontti PROPUEST.- ( punto) S f() un función positiv n l intrvlo [ ] sí ( ) f pr. Si l ár itd por f() l j d bciss (j O) ls rcts s igul clcul l ár dl rcinto

Más detalles

Matemáticas II Junio 2004

Matemáticas II Junio 2004 Mtmátics II Junio EJERIIO PROBLEM.. En un plno, l trdo d un crrtr discurr sgún l cución y, sindo un río l j OX. En l trrno ntr l río y l crrtr hy un pinr. Si prsmos ls distncis n kilómtros, cuánto vl l

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE GALICIA SEPTIEMBRE (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE GALICIA SEPTIEMBRE (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos IES CSTELR DJOZ Mnguino PRUE DE CCESO (LOGSE) UNIVERSIDD DE GLICI SEPTIEMRE - (RESUELTOS por ntonio Mnguino) MTEMÁTICS II Timpo máimo: hors minutos El lumno db rspondr solmnt los jrcicios d un d ls opcions

Más detalles

IES Mediterráneo de Málaga Solución Junio 2014 Juan Carlos Alonso Gianonatti BLOQUE A

IES Mediterráneo de Málaga Solución Junio 2014 Juan Carlos Alonso Gianonatti BLOQUE A IES Mditrráno d Málg Solución Junio Jun Crlos lonso Ginontti BLOQUE CUESTIÓN.: Sbindo qu, clcul, sin dsrrollr ni utilir l rgl d Srrus, los siguints dtrminnts, indicndo n cd pso qué propidd d los dtrminnts

Más detalles

1 sen. f Solución: 3 ; 1. sen. 2 sen. f Solución: ; Solución: CONTINUIDAD Y DERIVABILIDAD

1 sen. f Solución: 3 ; 1. sen. 2 sen. f Solución: ; Solución: CONTINUIDAD Y DERIVABILIDAD Frnndo Frnádz-Rmos Mrín º.- Clcul l continuidd d ls guints uncions. ) 8 7 ) 8 6 c) d) sn ) º.- Dtrminr l vlor d los prámtros d ls uncions pr qu sn continus n todo ) sn Solución: ) Solución: c) cos sn sn

Más detalles

Deducción de las reglas de derivación. Partiendo de las derivadas de la función potencial, la función exponencial y la función seno, ( ) ( ) 1

Deducción de las reglas de derivación. Partiendo de las derivadas de la función potencial, la función exponencial y la función seno, ( ) ( ) 1 dmttmtics.wordprss.com Btriz d Otto Lópz Dducción d ls rgls d drivción Prtindo d ls drivds d l función potncil, l función ponncil l función sno, = R = f = =, f = sn = cos, f,, d ls rgls d drivción pr l

Más detalles

UNIDAD 9 LÍMITES DE FUNCIONES. CONTINUIDAD.

UNIDAD 9 LÍMITES DE FUNCIONES. CONTINUIDAD. IES Pdr Povd (Gudi Mtmátics I UNIDAD 9 LÍMITES DE FUNCIONES CONTINUIDAD Límit d un unción n un punto Límits ltrls Límit d un unción n un punto Límits n l ininito Comportminto d un unción cundo Comportminto

Más detalles

UNIDAD 8 LÍMITES DE FUNCIONES. CONTINUIDAD.

UNIDAD 8 LÍMITES DE FUNCIONES. CONTINUIDAD. IES Pdr Povd (Gudi Mtmátics Aplicds ls CCSS I UNIDAD 8 LÍMITES DE FUNCIONES CONTINUIDAD CONCEPTOS PREVIOS: Dcimos qu: y s l tind, si tom vlors cd vz más próimos Ejmplo: L scunci d númros ; ; ; 9; 8; ;

Más detalles

+ ( + ) ( ) + ( + ) ( ) ( )

+ ( + ) ( ) + ( + ) ( ) ( ) latrals n. iguals. f. La función CONTINUIDAD f () Es continua n l punto?. Calcular los límits ³ ² 5 Para qu la función sa continua n s db cumplir: f f Calculamos por sparado cada mimbro d la igualdad f

Más detalles

IES CASTELAR BADAJOZ Examen Junio de 2011(General) Solución Antonio Mengiano Corbacho UNIVERSIDAD DE EXTREMADURA MATEMÁTICAS II

IES CASTELAR BADAJOZ Examen Junio de 2011(General) Solución Antonio Mengiano Corbacho UNIVERSIDAD DE EXTREMADURA MATEMÁTICAS II IES CASTELAR BADAJOZ Emn Junio d (Gnrl) Antonio ngino Corbcho UNIVERSIDAD DE ETREADURA ATEÁTICAS II ATEÁTICAS II Timpo máimo: hor minutos Instruccions: El lumno lgirá un d ls dos opcions propusts Cd un

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE MURCIA JUNIO 2012 (GENERAL) MATEMÁTICAS II SOLUCIONES Tiempo máximo: 1 horas y 30 minutos ----------

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE MURCIA JUNIO 2012 (GENERAL) MATEMÁTICAS II SOLUCIONES Tiempo máximo: 1 horas y 30 minutos ---------- IES ASTELAR BADAJOZ A nguino PRUEBA DE AESO (LOGSE) UNIVERSIDAD DE URIA JUNIO (GENERAL) ATEÁTIAS II SOLUIONES Timpo máimo: hors minutos Osrvcions importnts: El lumno drá rspondr tods ls custions d un d

Más detalles

SOLUCIONES DE LIMITES

SOLUCIONES DE LIMITES SOLUCIONES DE LIMITES.. Ln Sustituyndo por obtnmos: INDETERMINADO Ln Como s trt d un indtrminción d tipo L Hopitl, plicmos dich rgl: Ln Ln Rsolvmos prt l it Ln INDETERMINACIÓN d tipo L Hopitl otr vz: 6Ln

Más detalles

ACTIVIDADES FINALES EJERCICIOS. trino grau fernández. x lím. lím. lím. lím. sen x 1. x 1. lím x 0 sen x x. lím. x lím. sen x. x arcsen x lím 11.

ACTIVIDADES FINALES EJERCICIOS. trino grau fernández. x lím. lím. lím. lím. sen x 1. x 1. lím x 0 sen x x. lím. x lím. sen x. x arcsen x lím 11. L Í M I T E S th ls ACTIVIDADES FINALES EJERCICIOS Ln tg sn sn [ ( )] 5 sn 6 cotg 7 sn sn 8 9 sn rcsn sn b sn sn cotg 5 sn cos 6 sn 7 n 8 Ln 9 Ln trino gru frnándz th ls 5 Clculr pr qu s cumpl: π Ln tg

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID UNIVERSIDDES PÚBLICS DE L COMUNIDD DE MDRID PRUEB DE CCESO LS ENSEÑNZS UNIVERSITRIS OFICILES DE GRDO Curso -6 MTERI: MTEMÁTICS II INSTRUCCIONES GENERLES Y VLORCIÓN Dspués d lr tntmnt tods ls prgunts, l

Más detalles

( ) = Junio Problema 3.- (Calificación máxima: 2 puntos)

( ) = Junio Problema 3.- (Calificación máxima: 2 puntos) Modlo. Problm B.- (Cliiión máim puntos) L igur rprsnt l grái d un unión [ ; ] R. Contésts rzondmnt ls prgunts plntds. ) Cuál s l gno d d?. L intgrl dinid rprsnt l ár (on gno) nrrd por l urv, l j y ls rt

Más detalles

CAPÍTULO 4: LÍMITES Y CONTINUIDAD

CAPÍTULO 4: LÍMITES Y CONTINUIDAD 8 CAPÍTULO : LÍMITES Y CONTINUIDAD. LÍMITES.. Concpto d it. Id intuitiv Qué s un it? Lo podmos dinir como qul lugr l qu, si no llgmos, srmos cpcs d crcrnos todo lo qu qurmos. En sntido mtmático, l it d

Más detalles

4 3x 2x 3 6x x x x dt d x x dy p dx y

4 3x 2x 3 6x x x x dt d x x dy p dx y EJERCICIOS UNIDAD IV.- LA DERIVADA.- Comprub cd un d ls siguints drivds. d ) 8 d t 5 5 bt 5 t 5 bt dt d 6.-Rliz ls siguints drivds ) d.-comprobr cd un d ls siguints drivds. ) d d r d dr d d ( ) p b b b

Más detalles

Función exponencial y logarítmica:

Función exponencial y logarítmica: MATEMÁTICAS LA FUNCIÓN EXPONENCIAL Y LOGARÍTMICA º DE BACHILLER Función ponncil y rítmic:. Pr cd un d ls funcions qu figurn continución, s pid: i) Tbl d vlors y rprsntción gráfic. ii) Signo d f(). iii)

Más detalles

Fíjate en el comportamiento de la función ( x ) = x toma valores cercanos a 2. ( ) 5

Fíjate en el comportamiento de la función ( x ) = x toma valores cercanos a 2. ( ) 5 IES Pdr Povd (Gudi Mtmátics Aplicds ls CCSS II UNIDAD LÍMITES Y CONTINUIDAD LÍMITE DE UNA FUNCIÓN EN UN PUNTO Fíjt n l comportminto d l unción ( tom vlors crcnos cundo Si s proim, l unción tom vlors crcnos

Más detalles

EJERCICIOS RESUELTOS DE FUNCIONES REALES DE VARIABLE REAL

EJERCICIOS RESUELTOS DE FUNCIONES REALES DE VARIABLE REAL EJERCICIOS RESUELTOS DE FUNCIONES REALES DE VARIABLE REAL. Calcular los dominios d dfinición d las siguints funcions: a) f( ) 6 b) f( ) c) f( ) ln d) f( ) arctg 3 4 ) f( ) f) f( ) 5 g) f( ) sn 9 h) 4 4

Más detalles

3º.- Junio i) Producto de matrices: definición, condiciones para su realización. Si A M m n. (la matriz A tiene m filas y n columnas), B M n p

3º.- Junio i) Producto de matrices: definición, condiciones para su realización. Si A M m n. (la matriz A tiene m filas y n columnas), B M n p IES EL PILES SELECTIVIDD OVIEDO DPTO. MTEMÁTICS Mtrics dtrinnts Mtrics dtrinnts. Ejrcicios d Slctividd. º.- Junio 99. i) Dfin rngo d un triz. ii) Un triz d trs fils trs coluns tin rngo trs, cóo pud vrir

Más detalles

ESTUDIO DE UNA FUNCIÓN CON AYUDA DE LA DERIVADA. 1. a) Halla los valores de los coeficientes b, c y d para que la gráfica de la función

ESTUDIO DE UNA FUNCIÓN CON AYUDA DE LA DERIVADA. 1. a) Halla los valores de los coeficientes b, c y d para que la gráfica de la función ESTUDIO DE UNA FUNCIÓN CON AYUDA DE LA DERIVADA CMS05. a) Halla los valors d los coficints b, c y d para qu la gráfica d la función y b c d cort al j OY n l punto (0, ), pas por l punto (, ) y, n s punto,

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos OPCIÓN A

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos OPCIÓN A IES CASTELAR BADAJOZ PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO - (RESUELTOS por Antonio nguiano) ATEÁTICAS II Timpo máimo: horas minutos Contsta d manra clara raonada una d las dos opcions

Más detalles

FUNCIONES DE DOS VARIABLES DOMINIOS, DERIVADAS PARCIALES Y DIRECCIONALES. Preguntas de dominios y curvas de nivel

FUNCIONES DE DOS VARIABLES DOMINIOS, DERIVADAS PARCIALES Y DIRECCIONALES. Preguntas de dominios y curvas de nivel FUNCIONES DE DOS VARIABLES DOMINIOS, DERIVADAS PARCIALES Y DIRECCIONALES Prguntas d dominios curvas d nivl Dtrmina l dominio d las uncions: a) (, ) b) (, sin + + En cada caso indica dos puntos qu no san

Más detalles

1.3.4 Ejercicios resueltos sobre la función exponencial y logarítmica

1.3.4 Ejercicios resueltos sobre la función exponencial y logarítmica .. Ejrcicios rsultos sobr l función ponncil rítmic. Us ls propidds d l función ponncil (torm ) pr simplificr totlmnt l siguint prsión:. Prub qu Simplifiqu inicilmnt l numrdor l dnomindor d l frcción. Así:

Más detalles

RESUMEN DE FUNCIONES. LIMITE Y CONTINUIDAD

RESUMEN DE FUNCIONES. LIMITE Y CONTINUIDAD RESUMEN DE FUNCIONES. LIMITE Y CONTINUIDAD DEFINICIÓN DE FUNCIÓN REAL DE VARIABLE REAL Una unción ral d variabl ral s una aplicación d un subconjunto D d los númros rals n un subconjunto I d los númros

Más detalles

Tema 8 Límites Matemáticas II 2º Bachillerato 1. EJERCICIO 1 : Da una definición para estas expresiones y represéntalas gráficamente: c) 2.

Tema 8 Límites Matemáticas II 2º Bachillerato 1. EJERCICIO 1 : Da una definición para estas expresiones y represéntalas gráficamente: c) 2. Tm Límits Mtmátics II º Bchillrto TEMA LIMITES CÁLCULO DE LÍMITES EJERCICIO : D un dinición pr sts prons y rprséntls gráicmnt: ) ) 9 6 c) ) ) Cundo s proim, l unción s hc muy grnd ) Cundo s proim, l unción

Más detalles

2º Bachillerato: ejercicios modelo para el examen de las lecciones 11, 12 y 13

2º Bachillerato: ejercicios modelo para el examen de las lecciones 11, 12 y 13 º Bachillrato: jrcicios modlo para l amn d las lccions, y 3 Sa la unción F ( ) t dt a) Calcular F (), studiar l crciminto d F() y hallar sus máimos y mínimos. b) Calcular F () y studiar la concavidad y

Más detalles

FUNDAMENTOS MATEMÁTICOS (Grado en Ingeniería Informática) Práctica 7. INTEGRALES DEFINIDAS E IMPROPIAS

FUNDAMENTOS MATEMÁTICOS (Grado en Ingeniería Informática) Práctica 7. INTEGRALES DEFINIDAS E IMPROPIAS FUNDAMENTOS MATEMÁTICOS (Grdo n Ingnirí Informátic) Práctic 7. INTEGRALES DEFINIDAS E IMPROPIAS.- L intgrl dfinid d Rimnn. L intgrl dfinid d Rimnn surg prtir dl prolm dl cálculo d árs d suprficis dlimitds

Más detalles

INTEGRALES DEFINIDAS. APLICACIONES

INTEGRALES DEFINIDAS. APLICACIONES INTEGRLES DEINIDS. PLICCIONES. Ingrl dfinid. Propidds. unción ingrl. Torm fundmnl dl cálculo ingrl. Rgl d Brrow 5. Torm dl vlor mdio. Ár ncrrd jo un curv y l j. Ár ncrrd por dos curvs. INTEGRLES DEINIDS.

Más detalles

lm í d x = lm í ln x + x 1 H = lm í x + e x 2

lm í d x = lm í ln x + x 1 H = lm í x + e x 2 Autovaluación Página 8 Calcula los siguints límits: a) lm í c m b) lm í ccotg m c) lm í sn d) lm í ( ) / 8 ln 8 8 ln ( cos ) 8 a) lm í 8 c ln ln H ( / ) lm í ( )ln 8 ln m lm í 8 H lm í / 8 b) lm í 8 dcotg

Más detalles

REPRESENTACION GRAFICA.

REPRESENTACION GRAFICA. REPRESENTACION GRAFICA. Calcular puntos notabls así como intrvalos d monotonía y curvatura d: ² - = 0 ; ² = ; = son los valors d qu anulan l dnominador D = R- y () = 0 ; - 4 = 0 ; = 0 posibl ma, min Monotonia:

Más detalles

Tarea 11. Integral Impropia

Tarea 11. Integral Impropia Tr Intgrl Imroi Ers con l límit corrsondint cd un d ls siguints intgrls Mustr un dibujo qu indiqu l ár qu s clculrí (si ist) con l intgrl rsctiv, no clculs l intgrl d ; b) d ; c) d ; d) / cot( ) d En los

Más detalles

IES Mediterráneo de Málaga Solución Junio 2004 Juan Carlos Alonso Gianonatti OPCIÓN A

IES Mediterráneo de Málaga Solución Junio 2004 Juan Carlos Alonso Gianonatti OPCIÓN A IES Mditrráno d Málg Solución Junio Jun rlos lonso Ginontti OPIÓN - undo l ño 8 Bthovn scrib su Primr Sinoní su dd s di vcs mor qu l dl jovncito Frn Schubrt Ps l timpo s Schubrt quin compon su célbr Sinoní

Más detalles

34 EJERCICIOS de LOGARITMOS

34 EJERCICIOS de LOGARITMOS EJERCICIOS d LOGARITMOS Función ponncil y rítmic:. Pr cd un d ls funcions qu figurn continución, s pid: i) Tbl d vlors y rprsntción gráfic. ii) Signo d f(). iii) Corts con los js. iv) Intrvlos d crciminto.

Más detalles

EJERCICIOS RESUELTOS TEMA 1: PARTE 3

EJERCICIOS RESUELTOS TEMA 1: PARTE 3 Ejrcicios rsultos Tma part III): Límits d uncions º BCN EJERCICIOS RESUELTOS TEMA : PARTE 3 LÍMITES DE FUNCIONES. CONTINUIDAD Ejrcicios rsultos Tma part III): Límits d uncions º BCN ) Dada la guint unción:

Más detalles

31 EJERCICIOS de LOGARITMOS

31 EJERCICIOS de LOGARITMOS EJERCICIOS d LOGARITMOS Función ponncil y rítmic:. Pr cd un d ls funcions qu figurn continución, s pid: i) Tbl d vlors y rprsntción gráfic. ii) Signo d f(). iii) Corts con los js. iv) Intrvlos d crciminto.

Más detalles

Integrales impropias.

Integrales impropias. IX / 8 UNIVERSIDAD SIMON BOLIVAR MA nro-mrzo d 4 Dprtmnto d Mtmátics Purs y Aplicds. Intgrls impropis. Ejrcicios sugridos pr : los tms d ls clss dl 4 y 9 d mrzo d 4. Tms : Otrs forms indtrminds. Intgrls

Más detalles

OPCIÓN A. Días de lectura Total de páginas Quijote Eva E D ED Marta E 5 D + 14 (E 5).( D + 14) Susana E 11 D + 44 (E 11).( D + 44)

OPCIÓN A. Días de lectura Total de páginas Quijote Eva E D ED Marta E 5 D + 14 (E 5).( D + 14) Susana E 11 D + 44 (E 11).( D + 44) IES Mditrráno d Málg Solución Junio Jun Crlos lonso Ginontti OPCIÓN..- Ev Mrt Susn son trs jóvns migs qu s compromtn lr El Quijot st vrno. Cd un por sprdo n unción dl timpo dl qu dispon dcid lr un mismo

Más detalles

El área del rectángulo será A = p q, donde p 0,2 es variable y q depende de p. ( ) ( ) ( )

El área del rectángulo será A = p q, donde p 0,2 es variable y q depende de p. ( ) ( ) ( ) Cálculo difrncial. Matmáticas II Curso 03/4 Opción A Ejrcicio. Sa la parábola (Puntuación máima: puntos) y 4 4 y un punto ( p, q ) sobr lla con 0 p. Formamos un rctángulo d lados parallos a los js con

Más detalles

FUNCIONES DERIVABLES EN UN INTERVALO

FUNCIONES DERIVABLES EN UN INTERVALO DERIVADAS.- BACHILLERATO.- TEORÍA Y EJERCICIOS. Pá. FUNCIONES DERIVABLES EN UN INTERVALO Ls unions qu son ontinus n un intrvlo rrdo [, ] y drivls n un intrvlo irto, tinn propidds importnts. Torm d Roll.

Más detalles

Solución de los Problemas del Capítulo 3

Solución de los Problemas del Capítulo 3 1. Slccion l rspust corrct y xpliqu por qué. Un lctrón qu tin un n= y m= ) Db tnr un m s =+1/ b) Pud tnr un l= c) Pud tnr un l=, ó 1 d) Db tnr un l=1 L rspust corrct s l c) porqu si n=, los posibls vlors

Más detalles

Proyecciones ortogonales (diédricas y triédricas)

Proyecciones ortogonales (diédricas y triédricas) Proyccions ortogonls (diédrics y triédrics) Pro. Rúl F. ongiorno S dnominn proyccions ortogonls l sistm d rprsntción qu nos prmit diujr n dirnts plnos un ojto situdo n l spcio. undo hlmos d sistms d rprsntción

Más detalles

Solución: Para que sea continua deben coincidir los límites laterales con su valor de definición en dicho punto x = 2. b 1 + b

Solución: Para que sea continua deben coincidir los límites laterales con su valor de definición en dicho punto x = 2. b 1 + b Matmáticas Emprsarials I PREGUNTAS DE TIPO TEST DERIVADAS Y APLICACIONES Drivabilidad ( ) b si S09. La función f ( ) s continua y drivabl n = : a( ) si a) Si a = y b = b) Si a = y b = 5 c) Nunca pud sr

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE NAVARRA JUNIO 2012 (GENERAL) (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE NAVARRA JUNIO 2012 (GENERAL) (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos IES CSTELR DJOZ nguino PRUE DE CCESO (LOGSE) UNIVERSIDD DE NVRR JUNIO (GENERL) (RESUELTOS por nonio nguino) TEÁTICS II Timpo máimo: hors minuos Rlir un d ls dos opcions propuss ( o ) OPCIÓN º) Esudi l

Más detalles

F U T S W W P V F W P V G U T S P V G F P V W P V P V W. nfec. G nfe C. Energía libre y fuerza electromotriz.

F U T S W W P V F W P V G U T S P V G F P V W P V P V W. nfec. G nfe C. Energía libre y fuerza electromotriz. nrgí libr y furz lctromotriz. Dsd un punto d vist trmodinámico, sbmos qu tmprtur constnt, l disminución d l nrgí libr d Hlmholtz, F (pr un procso rvrsibl), rprsnt l trbjo totl (W) hcho sobr los lrddors,

Más detalles

(a+1)x+ay=3 (a+1)x+(a+1)y+(a+2)z=1 (a 2 +a)x+(a 2-1)y+(a 2-2a-8)z=2a+5. a 1. a+1. a+2 a 2-2a a+5 ~1 0. a=-1

(a+1)x+ay=3 (a+1)x+(a+1)y+(a+2)z=1 (a 2 +a)x+(a 2-1)y+(a 2-2a-8)z=2a+5. a 1. a+1. a+2 a 2-2a a+5 ~1 0. a=-1 EXTRAORDINARIO DE 4. PROBLEMA A. Estudi l siguint sistm d uions linls dpndint dl prámtro rl y rsuélvlo n los sos n qu s omptil: Aplimos l método d Guss: ~ + + + + + - 3 + --6 - -+3 (+)+y3 (+)+(+)y+(+)z

Más detalles

# - + # x # - integrales definidas. 017 resuelve estas integrales definidas. b) 2 = b) = - = calcula las integrales definidas.

# - + # x # - integrales definidas. 017 resuelve estas integrales definidas. b) 2 = b) = - = calcula las integrales definidas. intgrls dfinids 7 rsulv sts intgrls dfinids. ) + ( ) d b) d + ) + + ( ) d b) d + ln ln + ln + + 8 clcul ls intgrls dfinids. π ) ( sn ) d b) d ) ( sn ) d cos ( ) ( ) b) d ln + ln + ln 9 clcul, utilizndo

Más detalles

26 EJERCICIOS de LOGARITMOS

26 EJERCICIOS de LOGARITMOS 6 EJERCICIOS d LOGARITMOS Función ponncil y rítmic:. Pr cd un d ls funcions qu figurn continución, s pid: i) Tbl d vlors y rprsntción gráfic. ii) Signo d f(). iii) Corts con los js. iv) Intrvlos d crciminto.

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS MATEMÁTICAS

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS MATEMÁTICAS ESCUELA SUPEIO POLITÉCNICA DEL LITOAL INSTITUTO DE CIENCIAS MATEMÁTICAS Mtmátics d Nivl 0A Invirno 00 Sgund Evlución Ingnirís Abril d 00 Nombr: VESIÓN. Dd l gráfic d l función f qu s djunt l prsnt, idntifiqu

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS MATEMÁTICAS

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS MATEMÁTICAS ESCUELA SUPEIO POLITÉCNICA DEL LITOAL INSTITUTO DE CIENCIAS MATEMÁTICAS Mtmátics d Nivl 0A Invirno 00 Sgund Evlución Ingnirís Abril d 00 Nombr: VESIÓN 0. Si g s un función d l n l cu gráfic stá dd por:

Más detalles

TABLA DE DERIVADAS. g f

TABLA DE DERIVADAS. g f TABLA DE DERIVADAS Funcions:, g (continn a la ) Númro: k ) y = k y = 0 ) y = y = ) y = ± g y = ± g ) y = k y = k ) y = g y = g + g 6) y = g ' g g' g y = 7) y = k k y = k 8) y = k y = k L k 9) y = y = 0)

Más detalles

MatemáticasI. 1. Basta con mover el cuadrado para ver que el área de la región limitada es la cuarta parte del cuadrado.

MatemáticasI. 1. Basta con mover el cuadrado para ver que el área de la región limitada es la cuarta parte del cuadrado. MtmáticsI UNIDAD : Límits d fucios. Cotiuidd ACTIVIDADES-PÁG. 76. Podmos dcir lo siguit: ) Pr l gráfic dl prtdo I): f ) tid cudo tid f ) tid + cudo tid por l izquird f ) tid - cudo tid por l drch f ) tid

Más detalles

Definición de derivada

Definición de derivada Dfinición d drivada. Halla, utilizando la dfinición, la drivada d la función f ( ) n l punto =. Compruba aplicando las rglas d drivación qu tu rsultado s corrcto. f ( ) f () La drivada pdida val: f ()

Más detalles

CAPÍTULO 5: LÍMITES Y CONTINUIDAD

CAPÍTULO 5: LÍMITES Y CONTINUIDAD 7. LÍMITES.. Id intuitiv d it Actividds d introducción CAPÍTULO : LÍMITES Y CONTINUIDAD Vmos studir l comportminto d l unción pr vlors próimos. En l tbl uint obsrvmos qu, cundo dmos vlors próimos pro inriors

Más detalles

APLICACIONES DE LA DERIVADA

APLICACIONES DE LA DERIVADA APLICACIONES DE LA DEIVADA Ecucación d la rcta tangnt Ejrcicio nº.- Halla las rctas tangnts a la circunrncia: y y 6 n Ejrcicio nº.- Dada la unción abscisa., scrib la cuación d su rcta tangnt n l punto

Más detalles

2x 1. (x+ 1) e + 1 2x. 3.- Derivabilidad de una función. 6x 5, si2 x 4

2x 1. (x+ 1) e + 1 2x. 3.- Derivabilidad de una función. 6x 5, si2 x 4 º BACHILLERATO MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II FICHA TEMA 7.- FUNCIONES. DERIVADAS Y APLICACIONES (PROFESOR: RAFAEL NÚÑEZ) -----------------------------------------------------------------------------------------------------------------------------------------------------------------.-

Más detalles

REPRESENTACIÓN DE FUNCIONES

REPRESENTACIÓN DE FUNCIONES Matmáticas º Bachillrato. Prosora: María José Sánchz Quvdo REPRESENTACIÓN DE FUNCIONES Para l studio y rprsntación d una unción s sigun los siguints pasos:. Dominio d dinición y d continuidad.. Corts con

Más detalles

CAPÍTULO7: LÍMITES Y CONTINUIDAD 1. IDEA INTUITIVA DE LÍMITE Actividades de introducción

CAPÍTULO7: LÍMITES Y CONTINUIDAD 1. IDEA INTUITIVA DE LÍMITE Actividades de introducción CAPÍTULO7: LÍMITES Y CONTINUIDAD. IDEA INTUITIVA DE LÍMITE Actividds d introducción Vmos studir l comportminto d l unción pr vlors próimos. En l tbl uint obsrvmos qu, cundo dmos vlors próimos pro inriors

Más detalles

OPCIÓN A. MATEMÁTICAS 2º BACHILLERATO B Lo contrario de vivir es no arriesgarse. Fito y los Fitipaldis

OPCIÓN A. MATEMÁTICAS 2º BACHILLERATO B Lo contrario de vivir es no arriesgarse. Fito y los Fitipaldis MATEMÁTICAS º BACHILLERATO B --5 Lo contrario d vivir s no arrisgars Análisis Fito y los Fitipaldis OPCIÓN A.- a) S dsa construir un parallpípdo rctangular d 9 dm d volumn y tal qu un lado d la bas sa

Más detalles

REPRESENTACIÓN DE CURVAS

REPRESENTACIÓN DE CURVAS REPRESENTACIÓN DE CURVAS.- BACHILLERATO.- TEORÍA Y EJERCICIOS. Pág. REPRESENTACIÓN DE CURVAS Función polinómica d sgundo grado. Su gráfica s una parábola. Para rprsntarla basta con halla los puntos d cort

Más detalles

a > 0 y a 1. Si la base es e se llama exponencial natural tiene la forma

a > 0 y a 1. Si la base es e se llama exponencial natural tiene la forma INTRODUCCIÓN A LAS MATEMATICAS SUPERIORES TEMA 6 FUNCIONES LOGARÍTMICAS Un función ponncil d s tin l form f ( pr tod R > 0 y. Si l s s s llm ponncil nturl tin l form dond f (. L.- Con l informción qu cunt

Más detalles

CALCULO GRADO EN INGEN. INFORM. DEL SOFTWARE TEMA 1. ACTIVIDADES 1.11 A 1.22

CALCULO GRADO EN INGEN. INFORM. DEL SOFTWARE TEMA 1. ACTIVIDADES 1.11 A 1.22 CALCULO GRADO EN INGEN INFORM DEL SOFTWARE - TEMA ACTIVIDADES A Sa ( 0 / 0 0 a Es drivabl por la drca n 0? Es drivabl por la izquirda n 0? Es drivabl n 0? Razonar las rspustas b Obtnr la unción drivada

Más detalles

DERIVADAS. Las gráficas A, B y C son las funciones derivadas de las gráficas 1, 2 y 3, pero en otro orden. = 0 utilizando la definición.

DERIVADAS. Las gráficas A, B y C son las funciones derivadas de las gráficas 1, 2 y 3, pero en otro orden. = 0 utilizando la definición. DERIVADAS Dinición d drivada Ejrcicio nº.- Las gráicas A, B y C son las uncions drivadas d las gráicas, y, pro n otro ordn. Cuál s la drivada d cual? Justiica tus rspustas. Ejrcicio nº.- Calcula la drivada

Más detalles

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS Eamn Parcial. Análisis. Matmáticas II. Curso 010-011 I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS Curso 010-011 19-XI-010 MATERIA: MATEMÁTICAS II INSTRUCCIONES

Más detalles

INTRODUCCIÓN AL CÁLCULO DE INTEGRALES. APLICACIONES

INTRODUCCIÓN AL CÁLCULO DE INTEGRALES. APLICACIONES INTRODUCCIÓN AL CÁLCULO DE INTEGRALES. APLICACIONES.- PRIMITIVAS....- INTEGRALES INMEDIATAS SIMPLES. TABLA....- INTEGRACIÓN POR CAMBIO DE VARIABLE... 5.- INTEGRACIÓN POR PARTES... 7 5.- PARA PRACTICAR...

Más detalles

Calcula el volumen del cono circular recto más grande que está inscrito en una esfera de radio R. Por lo tanto el volumen del cono es: π V

Calcula el volumen del cono circular recto más grande que está inscrito en una esfera de radio R. Por lo tanto el volumen del cono es: π V Apllidos Nombr: N.P. : Ejrcicio. (,5 puntos) Calcula l volumn dl cono circular rcto más grand qu stá inscrito n una sra d radio. D acurdo con la igura adjunta, s aprcia qu l radio d la bas dl cono s: La

Más detalles

61.1 6.1. SERIES NUMÉRICAS INFINITAS 6.2. SERIES DE TÉRMINOS POSITIVOS 6.3. SERIES ALTERNANTES 6.4. SERIES DE POTENCIAS

61.1 6.1. SERIES NUMÉRICAS INFINITAS 6.2. SERIES DE TÉRMINOS POSITIVOS 6.3. SERIES ALTERNANTES 6.4. SERIES DE POTENCIAS Cp. 6 Sris 6. 6.. SERIES NUMÉRICAS INFINITAS 6.. SERIES DE TÉRMINOS POSITIVOS 6.. SERIES ATERNANTES 6.. SERIES DE POTENCIAS Objtivo: S prtd qu l studit: Dtrmi covrgci o divrgci d sris. Empl sris pr rsolvr

Más detalles

TRANSFORMADORES EN PARALELO

TRANSFORMADORES EN PARALELO TRNFORMDORE EN PRLELO. Trnsformdors d igul rzón d trnsformción Not: no s tomn n cunt ls pérdids n l firro. q q q llmrmos s cumpl b. Trnsformdors d rzón d trnsformción un poco distints Rfridos l scundrio:

Más detalles

7 L ímites de funciones. Continuidad

7 L ímites de funciones. Continuidad 7 L ímits d funcions. Continuidad Página 05 f () = + Pinsa y ncuntra límits a) + ; + ; + + ; ; ; ; 9 0; 0; 0 ) 0; 0; 0 f ) + ; + ; 0 g) + ; + h) ; f () = a) 0 0, Página 0 a) a) f () = ; f () = ; f () =

Más detalles

EJERCICIOS UNIDADES 3 y 4: INTEGRACIÓN DE FUNCIONES

EJERCICIOS UNIDADES 3 y 4: INTEGRACIÓN DE FUNCIONES IES Padr Povda (Guadi) EJERCICIOS UNIDADES y : INTEGRACIÓN DE FUNCIONES (-M;Jun-A-) San f : R R y g : R R las funcions dfinidas rspctivamnt por f ( ) = y g( ) = + a) ( punto) Esboza las gráficas d f y

Más detalles

E.T.S.I. Industriales y Telecomunicación Curso Grados E.T.S.I. Industriales y Telecomunicación

E.T.S.I. Industriales y Telecomunicación Curso Grados E.T.S.I. Industriales y Telecomunicación E.T.S.I. Idustrils y Tlcomuicció Curso 00-0 Grdos E.T.S.I. Idustrils y Tlcomuicció Asigtur: Cálculo I Tm : Sucsios y Sris Numérics. Sris d Potcis. Ejrcicios propustos Obtr los cutro primros térmios, sí

Más detalles

Algoritmo para Aproximar el Área Bajo la Curva de la Función Normal Estándar

Algoritmo para Aproximar el Área Bajo la Curva de la Función Normal Estándar Algoritmo para Aproimar l Ára Bajo la Curva d la Función Normal Estándar Algoritmo para Aproimar l Ára Bajo la Curva d la Función Normal Estándar M. n C. Víctor Manul Silva García, M. n C. Eduardo Vga

Más detalles

SEPTIEMBRE Opción A

SEPTIEMBRE Opción A Slctividad Sptimbr (Pruba Espcífica) SEPTIEMBRE Opción A ( + ).- Dada la función f () s pid dtrminar: a) El dominio, los puntos d cort con los js y las asíntotas. b) Los intrvalos d crciminto y dcrciminto,

Más detalles

TEMA 5. Límites y continuidad de funciones Problemas Resueltos

TEMA 5. Límites y continuidad de funciones Problemas Resueltos Matmáticas Aplicadas a las Cincias Socials II Solucions d los problmas propustos Tma 7 Cálculo d its TEMA Límits y continuidad d funcions Problmas Rsultos Para la función rprsntada n la figura adjunta,

Más detalles

1.-PROCEDIMIENTO PARA EL CÁLCULO DE LÍMITES. Límites cuando

1.-PROCEDIMIENTO PARA EL CÁLCULO DE LÍMITES. Límites cuando -PROCEDIMIENTO PARA EL CÁLCULO DE LÍMITES El cálculo d límits cuando Límits cuando a R a R s raliza sustituyndo por a Si st valor s un númro ral ntoncs ya stá calculado y st límit s único, pro n algunos

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2009 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2009 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 9 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejrcicio, Opción A Junio, Ejrcicio, Opción B Rsrva, Ejrcicio, Opción A Rsrva, Ejrcicio, Opción B Rsrva, Ejrcicio, Opción

Más detalles

f (x)dx = f (x) dx. Si la respuesta es afirmativa justifíquese, si es negativa,

f (x)dx = f (x) dx. Si la respuesta es afirmativa justifíquese, si es negativa, CALCULO INTEGRAL.(97).- Sa f() una función tal qu, para cualquira qu sa > s cumpl qu = Pruébs qu, ntoncs, s vrifica qu f( ) = f(), para todo >. f f..(97).- Sa la función f() = -. S pid: a) Hacr un dibujo

Más detalles

3.- a) [1,25 puntos] Prueba que f(x) = ex e x

3.- a) [1,25 puntos] Prueba que f(x) = ex e x EXAMEN DE MATEMATICAS II ENSAYO ª (FUNCIONES) Apllidos: Nombr: Curso: º Grupo: A Día: 6-XII-05 CURSO 05-6 Opción A.- a) [,5 puntos] Dmustra qu ln( -3) y -4 son infinitésimos quivalnts n =. b) [,5 puntos]

Más detalles

FUNCIONES EXPONENCIAL Y LOGARÍTMICA TRANSFORMACIONES ABACOS Prof : Sergio Weinberger. 2 3x. El número e

FUNCIONES EXPONENCIAL Y LOGARÍTMICA TRANSFORMACIONES ABACOS Prof : Sergio Weinberger. 2 3x. El número e NOMBRE P 6º I 8 FUNCIONES EXPONENCIAL Y LOGARÍTMICA TRANSFORMACIONES ABACOS Pro : Srgio Winbrgr MATEMÁTICA A Lico: Nº NOCT. Rsolvr : a 44 b d 8. 4. 5 5 c 6. 6 Rsolvr : a 5 5 4 b 5 > 4 El númro n "El númro

Más detalles

SEMEJANZA DE TRIÁNGULOS

SEMEJANZA DE TRIÁNGULOS IES ÉLAIOS Curso - Ruprión ª Evluión ÁREA: MATEMÁTICAS º ESO OPCIÓN B TEMAS,, 6 y 7 ACTIVIDADES DE RECUPERACIÓN DE LA ª EVALUACIÓN SEMEJANZA DE TRIÁNGULOS. S quir onstruir un prtrr on orm triángulo rtángulo.

Más detalles

( y la cuerda a la misma que une los puntos de abscisas x = 1 y x = 1. (2,5 punto)

( y la cuerda a la misma que une los puntos de abscisas x = 1 y x = 1. (2,5 punto) ARAGÓN / JUNIO. LOGSE / MATEMÁTICAS II / ANÁLISIS / OPCIÓN A / CUESTIÓN A www.profs.nt s un srvicio gratuito d Edicions SM CUESTIÓN A Calcular l ára ncrrada ntr la gráfica d la función ponncial f ) ( y

Más detalles

BLOQUE A. IES Mediterráneo de Málaga Solución Junio 2011 Juan Carlos Alonso Gianonatti

BLOQUE A. IES Mediterráneo de Málaga Solución Junio 2011 Juan Carlos Alonso Gianonatti IES Mdirráno d Málg Solución Junio Jun Crlos lonso Ginoni BLOQUE CUESTIÓN..- Dmusr sin uilir l rgl d Srrus sin dsrrollr dircmn por un il /o column qu.indiqu n cd pso qu propidd (o propidds) d los drminns

Más detalles

INTEGRALES 5.1 Primitiva de una función. Integral indefinida. Propiedades.

INTEGRALES 5.1 Primitiva de una función. Integral indefinida. Propiedades. INTEGRALES 5. Primitiva d una unción. Intgral indinida. Propidads. 5. Intgración d uncions racionals. 5. Intgración por parts. 5. Intgración por cambio d variabls. 5. Primitiva d una unción. Intgral indinida.

Más detalles

Integrales Inmediatas

Integrales Inmediatas Intgrls Inmdits. ( d. ( 5.( 6 d. ( 5 d. ( d 0. d (..sn( d 5. ( d 6. 5. sn. cos d 7. d 8 6. d 7. d d 8. d 8. ( 5 5 9. 0. d.. d ( d 9. 5 d. 8 cos( d.. ( 0. tg( d sn.. cos d d 7 sn. cos. d. 5. d.. cos( d.

Más detalles

Materia: MATEMÁTICAS II PROPUESTA A. e x e x. 2x + 1. e x e 2x 3e x + 2 dx

Materia: MATEMÁTICAS II PROPUESTA A. e x e x. 2x + 1. e x e 2x 3e x + 2 dx Prubs d ccso Ensñns Univrsiris Oficils d Grdo. chillro. O. E. Mri: MTEMÁTCS nsruccions: El luno dbrá consr un d ls dos opcions propuss o. os jrcicios dbn rdcrs con clridd, dlldn ronndo ls rspuss. Puds

Más detalles

TEMA 4 DERIVADAS. APLICACIONES A LAS DERIVADAS

TEMA 4 DERIVADAS. APLICACIONES A LAS DERIVADAS Frnciscnos T.O.R. Cód. 8367 Avd. d Sn Digo, 63 853 Mdrid Tl: 9478997 98 F: 9478943 E-mil: rldirccion@plnl.s d 9 TEMA 4 DERIVADAS. APLICACIONES A LAS DERIVADAS 3. DERIVADAS Dinición: Llmmos drivd d l unción

Más detalles