UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID JUNIO 2008

Tamaño: px
Comenzar la demostración a partir de la página:

Download "UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID JUNIO 2008"

Transcripción

1 UNIVERSIDDES PÚBLICS DE L COMUNIDD DE MDRID JUNIO El mn pnt o opcion, B. El lumno bá lgi UN Y SÓLO UN ll olv lo cuto jcicio qu cont. No pmit l uó clculo con cpci pntción gáfic. PUNTUCIÓN: L clificción máim c jcicio inic n l ncbzminto l mimo. OPCIÓN Ejcicio. Clificción máim: punto. Do l itm cucion linl: pi:. ) ( punto). Dicuti l itm gún lo vlo l pámto. Rolvlo cuno l olución únic. b) ( punto). Dtmin p qué vlo o vlo l itm tin un olución n l qu.. El itm tá finio po l mtiz coficint () po l mpli. ( ). g g Si, g g n, l itm comptibl tmino, po lo tnto tui l tipo olución p lo vlo l pámto qu nuln l. : : : t ± Dicuión: i. Si ±: g g n. Sitm comptibl tmino. Solución únic. S pu olv po culqui métoo, unqu comino l métoo Cm. ii. Si : g <. g.. D lo mno olo l mno on, olo qu po tui l mno fomo po l ª ª column; g g < n. Sitm comptibl intmino. Infinit olucion. Sitm quivlnt: { ': S iii. Si : g <. g.. D lo mno olo l mno on, olo qu po tui l mno fomo po l ª ª column; g g. Sitm incomptibl.

2 b. H qu tui i p lo itm comptibl it un olución n l qu. -Sitm comptibl tmino: : : P it un olución n l qu qu l punto (, ). - Sitm comptibl intmino: P : S ': :. Eit un olución n l qu qu l punto (, ). Ejcicio. Clificción máim: punto. D l ct: z z z pi: ) (, punto). Dicuti l poición ltiv l o ct, gún lo, vlo l pámto. b) (, punto). Si, clcul l itnci mínim nt l o ct,.. L poición ltiv l o ct tui mint l ngo l mtiz fom po lo vcto icción mb ct, un gmnto fomo nt o punto, uno c ct, po lo tnto, ncio obtn un punto un vcto c un l ct, p lo cul tnfomn u cucion pmétic. λ ct λ (,,) λ : z z (,, ) z λ µ z z ct z zµ B (,, ) µ : z z (,,) z µ B b (,, ) (,, ) Rct no coplni, cuzn po no cotn k Rct cnt g Rt coplni : k Rct pll B Rct coincint El g g tui pti lo vlo l pámto qu nuln l tminnt l mtiz. : Poición ltiv i. Si :, g. L ct cuzn po no cotn. No tinn punto n común ii. Si :, g <., g. L ct on coplni.,, k,, L ct on cnt

3 b. S pu clcul o fom: i. Como ltu l pllpípo fomo po lo vcto, B. b B V h o { } B o,,,,,,,, Sutituno: B o ii. Como itnci un punto un plno. π Sino un punto π un plno pllo qu contin. z : z :,,,,,, B : π π π π Ejcicio. Clificción máim: punto. Etui lo iguint límit: ) ( punto). b) ( punto)..? L H L H b.

4 Sí < < Ejcicio. Clificción máim: punto. Obtn lo máimo mínimo ltivo, lo punto inflión l función: f () (Ln ()) ino Ln() l logitmo npino. Un función pnt tmo ltivo n lo punto on u pim iv co l gun itint co, con l iguint citio; i l gun iv poitiv á un mínimo, i l gun iv ngtiv á un máimo. Un función pnt punto inflión n lo punto on u gun iv co l tc iv itint co. f Ln Ln Ln Ln Ln f Ln ( Ln ) Ln Ln f Máimo mínimo ltivo: f : Ln Ln f Ln ( ) En l punto, : Ln ( Ln ) < l función pnt un máimo. Ln : : Ln : Ln : f : ( ) Ln En l punto f Ln, l función pnt un mínimo. () > : f ( Ln) Punto inflión: Ln f : : Ln : Ln : - Ln f ( ) : f Ln En l punto, l función pnt un punto inflión.

5 OPCIÓN B Ejcicio. Clificción máim: punto. D l iguint mtiz on n: n pi: ) (, punto). Clcul l tminnt l mtiz. b) (, punto). Clcul l tminnt l mtiz. c) ( punto). Clcul l tminnt l mtiz.. t { F F F } 9 b. F F F t 9 F F F 9 c. Siguino l l cunci pu infi qu: t n n... 9 Sgún t l: t Ejcicio. Clificción máim: punto. ) (, punto). P c vlo c >, clcul l á l gión cot compni nt l gáfic l función: f c c l j OX l ct,. b) (, punto). Hll l vlo c p l cul l á obtni n l pto ) mínim.. Si c >, f () > R. Tnino n cunt qu l función imp poitiv (t itu po ncim l j OX), l á n un intvlo á: c c c Á f c c c c c c c c c u c c c b. El á mínim obtin ivno l pión pcto c igulno co. c c c ( c ) c ( c c ) ( c) ( c ) c c c

6 c : : c : c ± c L compobción qu tt un á mínim hc con l gun iv. c c c c ( ) c c > P c l á mínim. P c l á máim. Ejcicio. Clificción máim: punto. Do lo punto (,, ), B(l,, ), C(,, ) D(l,, ), pi: ) (, punto). Dmot qu lo cuto punto no on coplnio. b) ( punto). Hll l cución l plno π tmino po lo punto, B C. c) (, punto). Hll l itnci l punto D l plno π.. Si cuto punto no on coplnio, nt llo hbá t vcto linlmnt inpnint, po tnto, l mtiz fom po to bá tn ngo. B b (,, ) (,, ) C c (,, ) (,, ) D,,,, < R tmin l ngo tui l tminnt l mtiz. 7 g Lo vcto on linlmnt inpnint, lo punto no coplnio b. El plno buco fom con o vcto ( B, C) (,,) (,, ) (,, ) un punto (). z π : B π C Dollno l tminnt po lo lmnto l ª fil onno obtin l cución gnl l plno. π z

7 c. L itnci D π clcul pticulizno l cución nomliz l plno n l coon D. 7 ( D π) Ejcicio. Clificción máim: punto. Do l plno π z l punto P(l,, ), pi: ) (, punto). Hll l cución l ct ppnicul l plno π qu p po l punto P. b) (, punto). Hll l punto Q intcción π. c) (, punto). Hll l punto R intcción π con l j OY. ) (, punto). Hll l á l tiángulo PQR.. L ct buc obtin con l vcto noml l plno como vcto icción l ct con l punto P. λ : P (,, ) n (,, ) π z λ λ b. El punto buco Q, ptnc po igul l ct l plno po tnto u coon cumpln l cucion mbo. S clcul utituno l cucion pmétic l ct n l cución gnl l plno, pj l pámto, con l vlo l pámto utituno n l cucion pmétic l ct ncuntn l coon l punto cot. π q q z q q λ q Q : : ( λ q ) ( λ q ) ( λ q ) q λ q z q λ q Opno onno pj l pámto. λ : λ Sutituno n l cucion pmétic obtinn l coon Q. q Q q z q : Q (,, ) c. S utitun l cucion pmétic l j OY n l cución l plno. OY R : µ : µ : µ : R (,, ) z z. El á un tiángulo finio po t punto obtin como plicción l móulo l poucto vctoil o vcto. Á ( PQR) PQ PR P(l,, ); Q (,, ); R (,, ) PQ PR (,, ) (,,) (,, ) (, 7, ) Á : PQ PR 7, ( PQR) PQ PR ( ) ( 9), 7 (,, 9)

SEPTIEMBRE 2001 INSTRUCCIONES:

SEPTIEMBRE 2001 INSTRUCCIONES: SEPTIEMBRE INSTRUCCIONES El mn psnt os opcions B; l lumno bá lgi un lls contst zonmnt los cuto jcicios qu const ich opción n h. min. OPCIÓN Ejcicio. Clificción máim puntos. Dtmin l cución ctsin l lug gomético

Más detalles

SEPTIEMBRE Tiempo: 90 minutos OPCIÓN A ( ) ( )

SEPTIEMBRE Tiempo: 90 minutos OPCIÓN A ( ) ( ) SEPTIEMRE 5 INSTRUCCIONES El mn psn os opcions ; l lumno bá lgi un sólo un lls solv los cuo jcicios qu cons. No s pmi l uso clculos con cpci psnción gáfic. PUNTUCIÓN L clificción máim c jcicio s inic n

Más detalles

[ ] ( ) ( ) [ ] [ ] [ ] [ ] ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2. Opción A 4 A. u 4

[ ] ( ) ( ) [ ] [ ] [ ] [ ] ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2. Opción A 4 A. u 4 IES Mditáno d Málg Solución Sptim 7 Jun Clo lono Ginontti Opción..- S qu l gáic d l unción () c l qu pc n l diujo - - - - - - - - ) Dtmin l unción [ punto] ) Clcul l á d l unción omd [ punto] [ ] [ ] [

Más detalles

Problema A.1. Obtener razonadamente, escribiendo todos los pasos del razonamiento utilizado: S, (2 puntos) y la matriz S -1, que es la

Problema A.1. Obtener razonadamente, escribiendo todos los pasos del razonamiento utilizado: S, (2 puntos) y la matriz S -1, que es la José Aulio Pin Romo JULIO MII www.pin.s EXAMEN DE ELECTIVIDAD JULIO. MATEMÁTICA II OPCIÓN A Poblm A.. Obtn ondmnt scibindo todos los psos dl onminto utilido: ) El vlo dl dtminnt d l mti ( puntos) l mti

Más detalles

+ + = = π 4 ( ) ( ) ( ) + +

+ + = = π 4 ( ) ( ) ( ) + + Moelo 8. Ejecicio B. Clificción máim: punto Do lo plno π π el punto B( ) e pie: c) (. punto) Hll el ángulo que fomn lo plno π π. c. El ángulo ente plno e clcul como ángulo ente u vectoe nomle meinte el

Más detalles

( ) ( ) ( ) ( ) BLOQUE A + = + IES Mediterráneo de Málaga Solución Junio 2012 Juan Carlos Alonso Gianonatti

( ) ( ) ( ) ( ) BLOQUE A + = + IES Mediterráneo de Málaga Solución Junio 2012 Juan Carlos Alonso Gianonatti IES Mditáno d Málg Solución Junio Jun Clos Alonso Ginontti BLOQUE A CUESTIÓN A..- ) Discut l guint stm d cucions n unción dl pámto [ 5 puntos] ) Rsul l stm cundo s comptil [ punto] λ λ λ Solución 8 Con

Más detalles

EJERCICIOS DE PUNTOS, RECTAS Y PLANOS PUNTOS

EJERCICIOS DE PUNTOS, RECTAS Y PLANOS PUNTOS EJERCICIOS DE PUNTOS, RECTAS Y PLANOS PUNTOS Ejecicio nº.- Repeent lo punto iguiente: A(, 5, ), B(,, ) C(,, ) Ejecicio nº.- Repeent lo punto iguiente: A(,, ), B(,, ) C(,, ) Ejecicio nº.- Repeent lo punto

Más detalles

( ) Peje=1 HP, Ve=120V, f=60hz, n=1650rpm, η=65%, fp=75% Sabemos que: 2

( ) Peje=1 HP, Ve=120V, f=60hz, n=1650rpm, η=65%, fp=75% Sabemos que: 2 Unividd Simón Bolív Dtmnto d Convión y Tnot d Engí Auto: Edudo Albánz. Cnt: 06-91 Pofo: J. M. All Máquin Eléctic II CT-11 Un moto d inducción monofáico d 1 HP, 10V, 60Hz, 1650m, 65% d ndiminto y 75% d

Más detalles

= 001. ( ) t. 1 adja A = A 1

= 001. ( ) t. 1 adja A = A 1 UNIVERSIDDES PÚLICS DE L COMUNIDD DE MDRID PRUE DE CCESO LS ENSEÑNZS UNIVERSITRIS OICILES DE GRDO MODELO Cso / MTERI MTEMTICS II El lmno contstá los cto jcicios d n d ls dos opcions ( o ) q s l ocn. Nnc

Más detalles

Lím. = Lím. 1 e. x 1. x 0

Lím. = Lím. 1 e. x 1. x 0 UNIVERSIDDES PÚLICS DE L COMUNIDD DE MDRID PRUE DE CCESO LS ENSEÑNZS UNIVERSITRIS OICILES DE GRDO MODELO Cuso / MTERI: MTEMTICS II El lumno consá los cuo jcicios d un d ls dos opcions ( o ) qu s l ofcn.

Más detalles

TRANSFORMACIONES GEOMÉTRICAS Proyectividad y homografía Homología y afinidad Inversión TEMA4. Objetivos y orientaciones metodológicas. 1.

TRANSFORMACIONES GEOMÉTRICAS Proyectividad y homografía Homología y afinidad Inversión TEMA4. Objetivos y orientaciones metodológicas. 1. TRNSRMINES GEMÉTRIS Poyctivi y homogfí Homologí y fini Invsión TEM4 IUJ GEMÉTRI bjtivos y ointcions mtoológics Est Tm tin como objtivos intouci l lumno n los conocimintos poyctivi, homogfí, homologí, fini

Más detalles

IES Mediterráneo de Málaga Solución Septiembre 2013 Juan Carlos Alonso Gianonatti OPCIÓN A. se pide

IES Mediterráneo de Málaga Solución Septiembre 2013 Juan Carlos Alonso Gianonatti OPCIÓN A. se pide IES Mditáno d Málg Solución Sptimb Jun los lonso Ginontti Ejcicio.- liicción máim puntos Dd l unción: 7 s pid ( 7 puntos Hll ls síntots d dich gic OPIÓN b ( 7 puntos Dtmin los intlos d cciminto dcciminto

Más detalles

Ejercicio 1. x a. Ejercicio 2.

Ejercicio 1. x a. Ejercicio 2. Sptim 5 - Opción A (Molo 6) Ejcicio. D un función f: R R s s qu f() y qu f (. () [ punto] Dtmin f. () [ 5 puntos] Clcul l á l ión limit po l áfic f, po l j sciss y po ls cts cucions - y. () Aplicno l Tom

Más detalles

I.E.S. Mediterráneo de Málaga Modelo6_09_Soluciones Juan Carlos Alonso Gianonatti. Opción A. Ejercicio 1

I.E.S. Mediterráneo de Málaga Modelo6_09_Soluciones Juan Carlos Alonso Gianonatti. Opción A. Ejercicio 1 I.E.S. Mditáno d Málaga Modlo6_9_Solucions Juan Calos Alonso Gianonatti - Sa f:r R la función dfinida po f ( ) =+. Opción A Ejcicio 1 [ 7 puntos] Dtmina los intvalos d cciminto y dcciminto d f, así como

Más detalles

EJERCICIOS DE REPASO TODA LA MATERIA (Ficha 2)

EJERCICIOS DE REPASO TODA LA MATERIA (Ficha 2) IES ÁFRIC º BCHILLERTO CCNN EJERCICIOS DE REPSO TOD L MTERI (Fich ) Ejecicio nº.- Un estdo comp biles de petóleo tes suministdoes dieentes que lo venden 7,8 y dóles el bil, espectivmente. L ctu totl sciende

Más detalles

Matemáticas II Unidad 4 Geometría

Matemáticas II Unidad 4 Geometría Mtemátic II Unidd Geometí UNIDAD EL ESPACIO AFÍN.- Demot que i do punto etán ddo epecto del item de efeenci fín cteino, entonce el vecto que lo une tiene po coodend l difeenci de l coodend de mbo punto

Más detalles

GUÍA III : FUERZAS ELECTROMAGNÉTICAS

GUÍA III : FUERZAS ELECTROMAGNÉTICAS Sitma Elctomcánico, Guía III: Fuza Elctomagnética GUÍA III : FUERZAS EECROMAGÉICAS. El núclo d la figua tin una pmabilidad dl fio infinita y cción tanval d 9 [cm ]. El dvanado tin 5 [vulta] y una itncia

Más detalles

UNIVERSIDAD DE LA RIOJA JUNIO lim

UNIVERSIDAD DE LA RIOJA JUNIO lim IES Mditrráno d Málg Emn Junio d Jun Crlos lonso Ginontti UNIVERSIDD DE L RIOJ JUNIO El lumno contstrá los jrcicios d un d ls dos propusts ( o ) qu s l ofrcn. Nunc dbrá contstr jrcicios d un propust jrcicios

Más detalles

5.1. LA DERIVADA, DERIVADAS LATERALES. Observación: df sí existe y es finito lim x a

5.1. LA DERIVADA, DERIVADAS LATERALES. Observación: df sí existe y es finito lim x a Divd d ucio u vibl l 5 LA DERIVADA, DERIVADAS LATERALES Diició 5 S : lr lr u ució, Dom, dimo qu divbl d í it y iito lim D D y d Si divbl t tbjo umo l otcio, d d p dci l divd d Ejmplo: Sí lim lim 8 Obvció:

Más detalles

OPERACIONES MATEMÁTICAS

OPERACIONES MATEMÁTICAS Cpítulo OPERACIONES MATEMÁTICAS OPERACIÓN MATEMÁTICA E un poo qu onit n l tnfoión un o á nti n ot ll ulto, jo it gl o oniion n l ul fin l opión. To opión táti pnt un gl finiión y un íolo qu l intifi llo

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE LA RIOJA JUNIO 2011 (GENERAL) (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE LA RIOJA JUNIO 2011 (GENERAL) (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos IES CASTEAR BADAJOZ PRUEBA DE ACCESO (OGSE) UNIVERSIDAD DE A RIOJA JUNIO (GENERA) (RESUETOS po Antonio Mnguiano) MATEMÁTICAS II Timpo máimo: hoas y minutos El alumno contstaá a los jcicios d una d las

Más detalles

EL ESPACIO AFÍN. Respecto del sistema de referencia, las coordenadas del punto A= a, a, a

EL ESPACIO AFÍN. Respecto del sistema de referencia, las coordenadas del punto A= a, a, a Geometí Anlític: El Espcio Afín Pofeso:Mí José Sánchez Queedo. EL ESPACIO AFÍN SISTEMA DE REFERENCIA EN EL ESPACIO AFÍN Un sistem de efeenci del espcio fín está compuesto po un punto fijo O del espcio

Más detalles

RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO EN POSICIÓN NORMAL

RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO EN POSICIÓN NORMAL Cpít ulo RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO EN POSICIÓN NORMAL Dfiniions Pvis: I. ÁNGULO EN POSICIÓN NORMAL Llmo tmién n posiión nóni o stán. Es quél ángulo tigonométio uo véti oini on l oign l sistm

Más detalles

IES CASTELAR BADAJOZ Examen Junio de 2011(General) Solución Antonio Mengiano Corbacho UNIVERSIDAD DE EXTREMADURA MATEMÁTICAS II

IES CASTELAR BADAJOZ Examen Junio de 2011(General) Solución Antonio Mengiano Corbacho UNIVERSIDAD DE EXTREMADURA MATEMÁTICAS II IES CASTELAR BADAJOZ Emn Junio d (Gnrl) Antonio ngino Corbcho UNIVERSIDAD DE ETREADURA ATEÁTICAS II ATEÁTICAS II Timpo máimo: hor minutos Instruccions: El lumno lgirá un d ls dos opcions propusts Cd un

Más detalles

Curso MATERIA: MATEMÁTICAS II (Fase general)

Curso MATERIA: MATEMÁTICAS II (Fase general) Cuso 9- MTERI MTEMÁTICS II (Fse genel) INSTRUCCIONES GENERLES Y VLORCIÓN El lumno contest los cuto ejecicios de un de l dos opciones ( o B) que se le oecen. Nunc deeá contest unos ejecicios de un opción

Más detalles

I.E.S. Mediterráneo de Málaga Junio 2012 Juan Carlos Alonso Gianonatti PROPUESTA A

I.E.S. Mediterráneo de Málaga Junio 2012 Juan Carlos Alonso Gianonatti PROPUESTA A I.E.S. Mditrráno d Málg Junio Jun Crlos lonso Ginontti PROPUEST.- ( punto) S f() un función positiv n l intrvlo [ ] sí ( ) f pr. Si l ár itd por f() l j d bciss (j O) ls rcts s igul clcul l ár dl rcinto

Más detalles

Tomamos el menor formado por las dos primeras columnas y la primera y tercera filas. 1 1

Tomamos el menor formado por las dos primeras columnas y la primera y tercera filas. 1 1 Blu I. Álg Mtmátis II Autvluión Págin D l mti M m m : ) Hll ls vls m u ls vts il M sn linlmnt innints. ) Estui l ng M sgún ls vls m. ) P m, lul l invs M. ) P u ls vts il M sn linlmnt innints, n (M ) tin

Más detalles

GEOMETRÍA 1º BACHILLERATO

GEOMETRÍA 1º BACHILLERATO GEOMETRÍA º AHILLERATO ) Dmin c co l coo pi ) A() A =() hll () - = = - = = ) () A =(--) hll A A() - =- = - =- = ( ) A( ) c) (-) A =() hll A A() - = = + = =- ) S lo co li ( ) ( ) w ( ) hz l pción gáfic

Más detalles

PRUEBA DE ACCESO A LA UNIVERSIDAD ENUNCIADO Y RESOLUCIÓN

PRUEBA DE ACCESO A LA UNIVERSIDAD ENUNCIADO Y RESOLUCIÓN PRUEBA DE ACCESO A LA UNIVERSIDAD.6 ENUNCIADO Y RESOLUCIÓN Instucciones: )Dución: 1 ho y minutos. b) Tienes que elegi ente eliz únicmente los cuto ejecicios de l Opción A o eliz únicmente los cuto ejecicios

Más detalles

CAPITULO 6 INTEGRALES MULTIPLES

CAPITULO 6 INTEGRALES MULTIPLES CAPITULO Nusts lms cus cults pun compn l mvillos quitctu l muno mi l cuso c plnt vguno ún scln ts l conociminto ininito Chistoph Mlow. INTEGALES MULTIPLES.. Intgls ols... Cálculo un intgl ol n gions gnls...

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE GALICIA SEPTIEMBRE (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE GALICIA SEPTIEMBRE (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos IES CSTELR DJOZ Mnguino PRUE DE CCESO (LOGSE) UNIVERSIDD DE GLICI SEPTIEMRE - (RESUELTOS por ntonio Mnguino) MTEMÁTICS II Timpo máimo: hors minutos El lumno db rspondr solmnt los jrcicios d un d ls opcions

Más detalles

I.E.S. Mediterráneo de Málaga Junio 2010 Juan Carlos Alonso Gianonatti OPCIÓN A

I.E.S. Mediterráneo de Málaga Junio 2010 Juan Carlos Alonso Gianonatti OPCIÓN A I.E.S. diáno álg Junio Jun Clo lono Ginoni OPCIÓN.- ) Pon un jplo i iéi on oo i niiéi on. ) S un i iéi on on () -. Clul onndo l pu l inn indo l i pu. ) Clul un i iéi ngo qu iiqu ) Un i iéi qull n qu l

Más detalles

TEMA II: POSICIONES RELATIVAS ENTRE ELEMENTOS

TEMA II: POSICIONES RELATIVAS ENTRE ELEMENTOS TEA II: POSICIONES RELATIVAS ENTRE ELEENTOS..D Ente dos ects Dos ects en el espcio pueden se: ) plels (sus poecciones homónims son plels) b) secntes (tienen un único punto en común) c) o cuse Ejemplo 4

Más detalles

IES Mediterráneo de Málaga Solución Julio 2014 Juan Carlos Alonso Gianonatti. Opción A

IES Mediterráneo de Málaga Solución Julio 2014 Juan Carlos Alonso Gianonatti. Opción A IE Mediteáneo de Málg olución Julio Jun Clos lonso Ginontti Opción Poblem.. Obtene ondmente escibiendo todos los psos del onmiento utilido que: El lo del deteminnte de l mti ( puntos l mti - que es l mti

Más detalles

Metálico: teoría de bandas

Metálico: teoría de bandas CP.: ELCES vn d Wl ( ) (Lnnd Jon) / q Iónico ( ) (Buckingm ) Covlnt ( ) D (Mo) Mtálico: toí d bnd - + - F + Enlc d hidógno Equm d ólido gún l tio d nlc Etuctu hgonl d Etuctu hgonl d hilo (nlc d hidógno)

Más detalles

2. MÉTODO DE COEFICIENTES INDETERMINADOS.

2. MÉTODO DE COEFICIENTES INDETERMINADOS. . MÉTODO DE COEFICIENTES INDETERMINADOS. E un étodo r hllr un olución rticulr d l cución linl colt [], u conit fundntlnt n intuir l for d un olución rticulr. No udn dr rgl n l co d cucion linl con coficint

Más detalles

Modelo 4 de sobrantes de 2005 - Opción A

Modelo 4 de sobrantes de 2005 - Opción A Modelo de onte de - Opción A Ejecicio. 8 Se f : R R l función definid po f () () [ punto] Clcul lo punto de cote de l gáfic de f con lo eje coodendo. () [ punto] Hll l íntot de l gáfic de f. (c) [ punto]

Más detalles

TEMA 4: GEOMETRÍA: RECTAS Y PLANOS Para empezar:

TEMA 4: GEOMETRÍA: RECTAS Y PLANOS Para empezar: Ceno Concedo Pl Mde Mol nº 86- MADRID TEMA GEOMETRÍA RECTAS Y PLANOS P empe. Ddo lo puno A() B(8) hll ) L coodend de lo vecoe fijo AB BA b) Do puno C D le que CD e equipolene AB. c) El eemo F de un veco

Más detalles

ECUACIONES DE LA RECTA

ECUACIONES DE LA RECTA RECTAS Y PLANOS EN EL ESPACIO ECUACIONES DE LA RECTA P hll l ecución de un ect en el espcio necesito: Dos puntos Un punto su vecto diecto Not: Nosotos utiliemos siempe un punto A(,, ) un vecto v (,b,c).

Más detalles

IES Mediterráneo de Málaga Solución Junio 2004 Juan Carlos Alonso Gianonatti OPCIÓN A

IES Mediterráneo de Málaga Solución Junio 2004 Juan Carlos Alonso Gianonatti OPCIÓN A IES Mditrráno d Málg Solución Junio Jun rlos lonso Ginontti OPIÓN - undo l ño 8 Bthovn scrib su Primr Sinoní su dd s di vcs mor qu l dl jovncito Frn Schubrt Ps l timpo s Schubrt quin compon su célbr Sinoní

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos OPCIÓN A

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos OPCIÓN A I.E.S. CSTELR DJOZ PRUE DE CCESO (LOGSE) UNIVERSIDD DE LERES JUNIO (RESUELTOS po nonio Mnguiano) MTEMÁTICS II Timpo máimo: hoas minuos Consa mana claa aonaa una las os opcions popusas. Caa cusión s punúa

Más detalles

I.E.S. Mediterráneo de Málaga Junio 2015 Juan Carlos Alonso Gianonatti OPCIÓN A

I.E.S. Mediterráneo de Málaga Junio 2015 Juan Carlos Alonso Gianonatti OPCIÓN A I.E.. Mdiáno d Málg Junio Jun Clo lono Ginoni OPCIÓN.- Conido l unción dinid n l inlo [ ]. Din l cución d l c ngn l cu qu pll l c qu p po lo puno P( Q(. ( puno..- Clcul l ingl indinid iguin d d ( puno.

Más detalles

IES Mediterráneo de Málaga Solución Junio 2014 Juan Carlos Alonso Gianonatti BLOQUE A

IES Mediterráneo de Málaga Solución Junio 2014 Juan Carlos Alonso Gianonatti BLOQUE A IES Mditrráno d Málg Solución Junio Jun Crlos lonso Ginontti BLOQUE CUESTIÓN.: Sbindo qu, clcul, sin dsrrollr ni utilir l rgl d Srrus, los siguints dtrminnts, indicndo n cd pso qué propidd d los dtrminnts

Más detalles

TEMAS 6 Y 7 GEOMETRÍA EN EL ESPACIO

TEMAS 6 Y 7 GEOMETRÍA EN EL ESPACIO Tems Geometí en el espcio Mtemátics II º Bchilleto TEMAS Y GEOMETRÍA EN EL ESACIO ECUACIONES DE RECTAS Y LANOS EJERCICIO es plelo plno que contiene l ect Escibe l ecución del. s hll l ecución de un plno,

Más detalles

2. EL ÁTOMO DE HIDRÓGENO

2. EL ÁTOMO DE HIDRÓGENO . EL ÁTOMO DE HIDRÓGENO. Dificultd d l toí d Boh ob l átomo d hidógno L toí d Boh ob l átomo d hidógno i bin fu un vnc, no contituyó un b tifctoi p xplic l compotminto d átomo má complo. Admá l intoducción

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE MURCIA JUNIO 2012 (GENERAL) MATEMÁTICAS II SOLUCIONES Tiempo máximo: 1 horas y 30 minutos ----------

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE MURCIA JUNIO 2012 (GENERAL) MATEMÁTICAS II SOLUCIONES Tiempo máximo: 1 horas y 30 minutos ---------- IES ASTELAR BADAJOZ A nguino PRUEBA DE AESO (LOGSE) UNIVERSIDAD DE URIA JUNIO (GENERAL) ATEÁTIAS II SOLUIONES Timpo máimo: hors minutos Osrvcions importnts: El lumno drá rspondr tods ls custions d un d

Más detalles

Ecuaciones de Poisson y Laplace

Ecuaciones de Poisson y Laplace Elctc y Mgntsmo / Elctostátc Dfncón Los conuctos n lctostátc. mpo un cg puntul. plccons l Ly Guss Intgls supposcón. Potncl lctostátco Dfncón Intptcón. Intgls supposcón. Ecucons Posson y Lplc. oncons Intfs.oncons

Más detalles

José Antonio Galindo. CANTIGAS DE SANTA MARÍA de Alfonso X "el Sabio" 4 Cantigas Armonizadas para Coro mixto "a capella" SATB

José Antonio Galindo. CANTIGAS DE SANTA MARÍA de Alfonso X el Sabio 4 Cantigas Armonizadas para Coro mixto a capella SATB é Antni Glin ANIGA DE ANA MARÍA d Aln X "l i" 4 ng Amnizd xt " cll" A ROA DA ROA ANA MARÍA, RELA DO DÍA O QUE OLA IRGEN LEIXA AN GRAN ODER Ducin md 3' +1'15 (4') +2'45", 2'40" Edición i dl Aut Mdid, 2011

Más detalles

3A,,. Prueba que M es un subespacio

3A,,. Prueba que M es un subespacio .- Dtin os tis us X Y on tls qu: Y X Y X.- Estui l inpnni linl ls tis C.- Pu qu ls siguints tis son un s l spio vtoil ls tis us on.- S onsi l onjunto } R. Pu qu s un suspio vtoil.- Hll os tis us on os

Más detalles

OPCIÓN A. rg A = rg A* = n = 3 sistema compatible determinado.

OPCIÓN A. rg A = rg A* = n = 3 sistema compatible determinado. UNIVERSIDDES ÚBLICS DE L COUNIDD DE DRID RUEB DE CCESO LS ENSEÑNZS UNIVERSITRIS OFICILES DE GRDO Cuso -5 TERI: TEÁTICS II INSTRUCCIONES GENERLES Y VLORCIÓN Dsués l tntnt tos ls gunts, l luno á sog un ls

Más detalles

MATEMÁTICAS (II) JUNIO 2002

MATEMÁTICAS (II) JUNIO 2002 MTEMÁTICS (II) JUNIO El emen present dos opciones, B. El lumno deberá elegir UN Y SÓLO UN de ells resolver los cutro ejercicios de que const. No se permite el usó de clculdors con cpcidd de representción

Más detalles

( ) ( ) Calculando por separado cada termino de la igualdad e igualando, se calcula el valor del parámetro A.

( ) ( ) Calculando por separado cada termino de la igualdad e igualando, se calcula el valor del parámetro A. UNIVERSIDDES ÚBLICS DE L COMUNIDD DE MDRID RUEB DE CCESO LS ENSEÑNZS UNIVERSITRIS OFICILES DE GRDO Cuo - Setiebe MTERI: MTEMTICS II INSTRUCCIONES GENERLES Y VLORCION El luno contet lo cuto ejecicio de

Más detalles

OPCIÓN A. Días de lectura Total de páginas Quijote Eva E D ED Marta E 5 D + 14 (E 5).( D + 14) Susana E 11 D + 44 (E 11).( D + 44)

OPCIÓN A. Días de lectura Total de páginas Quijote Eva E D ED Marta E 5 D + 14 (E 5).( D + 14) Susana E 11 D + 44 (E 11).( D + 44) IES Mditrráno d Málg Solución Junio Jun Crlos lonso Ginontti OPCIÓN..- Ev Mrt Susn son trs jóvns migs qu s compromtn lr El Quijot st vrno. Cd un por sprdo n unción dl timpo dl qu dispon dcid lr un mismo

Más detalles

INTEGRALES MÚLTIPLES

INTEGRALES MÚLTIPLES APITULO VI I. INTEGALE OBLE INTOUION INTEGALE MÚLTIPLE En l stuio intgls oinis f l función f s fini n un intvlo co [ ] p l cso stuimos ls intgls cuvilíns G c l función s fini so l cuv ho stuimos los intgls

Más detalles

TALKINGISTEACHING.ORG

TALKINGISTEACHING.ORG l b T Tlk Wht c o my lo ock? Wht c olo you? Tlk, d, d ig with you child ight fom th tt. It build thi bi d pp thm fo ucc i chool d byod. Fo id, viit TALKINGISTEACHING.ORG Sh you tlk, d, ig momt t th ludomt!

Más detalles

Pruebas de Acceso a las Universidades de Castilla y León

Pruebas de Acceso a las Universidades de Castilla y León IES diáo d álg Jio J Clo loo Gioi P d cco l Uividd d Cill Ló TEÁTICS II To p lo lmo Nº pági INDICCIONES:.- OPTTIVIDD: El lmo dá cog d l do opcio pdido doll lo co jcicio l od q d..- CLCULDOR.- S pmiiá l

Más detalles

47. Contesta a les qüestions següents referents a l àtom d hidrogen.

47. Contesta a les qüestions següents referents a l àtom d hidrogen. .6 Àtom d hidogn 7. Contst ls qüstions sgünts fnts l àtom d hidogn. n l ón l nom dls obitls cosponnts ls obitls qu s spcifiqun tvés dls nombs quàntics d l tul. b Assign cdscun d lls ls sus nombs quàntics

Más detalles

Tema 2: Antonio González Fernández Departamento de Física Aplicada III Universidad de Sevilla. Parte 6/7 Energía electrostática

Tema 2: Antonio González Fernández Departamento de Física Aplicada III Universidad de Sevilla. Parte 6/7 Energía electrostática Tm : Pincipios d l lctostátic, Antonio Gon nzálz Fná ándz Antonio Gonzálz Fnándz Dptmnto d Físic Aplicd III nivsidd d Svill Pt 6/7 Engí lctostátic Engí, tbjo y clo: l pim pincipio i i d l tmodinámic i

Más detalles

INSTRUCCIONES Y CRITERIOS GENERALES DE CALIFICACIÓN

INSTRUCCIONES Y CRITERIOS GENERALES DE CALIFICACIÓN UNIVERSIDDES PÚBLICS DE L COUNIDD DE DRID PRUEB DE CCESO ESTUDIOS UNIVERSITRIOS (LOE) EEN ODELOCURSO - TEÁTICS PLICDS LS CIENCIS SOCILES II INSTRUCCIONES Y CRITERIOS GENERLES DE CLIFICCIÓN INSTRUCCIONES:

Más detalles

r,, R r exp exp 1 cos cos 1

r,, R r exp exp 1 cos cos 1 Como obtn función on y su ngí tvés cución Schöing. Rcomos qu función on s un cución mtmátic, qu cump citos quisitos, n cu s ncunt to infomción sistm, n st cso s tt infomción cion con ctón o núco. st función

Más detalles

DEFORMACIONES. 1. Sean x, y, z la posición inicial de una partícula cuyo movimiento está descrito en un sistema lagrangiano por:

DEFORMACIONES. 1. Sean x, y, z la posición inicial de una partícula cuyo movimiento está descrito en un sistema lagrangiano por: Facltad d Cincias Epimntals Univsidad d Almía DEFORMACIONES. San,, la posición inicial d na patícla co moviminto stá dscito n n sistma lagangiano po: t X ( )( t Y ( )( + ( )( + ( )( + + Z Encnt: a) l vcto

Más detalles

Solución Tarea de Aproximaciones y errores de redondeo

Solución Tarea de Aproximaciones y errores de redondeo Métodos numéicos y álgb linl CB0085 Apoximcions y os d dondo T d Apoximcions y os d dondo. Clcul l o bsoluto y l o ltivo si p y p 2.78 dond p s l vlo clculdo. : vlo l vlo clculdo 2.78 o bsoluto : vlo clculdo

Más detalles

DERIVADAS. La derivada de una función f en el punto de abscisa x = a, se define como el siguiente límite, si existe:

DERIVADAS. La derivada de una función f en el punto de abscisa x = a, se define como el siguiente límite, si existe: DERIVADAS.- BACHILLERATO.- TEORÍA Y EJERCICIOS. Pá. DERIVADAS Dinición d drivd. L drivd d un unción n l punto d bscis, s din como l siuint límit, si ist: lím A l drivd d un unción n un punto s l llm tmbién

Más detalles

Solución de la ecuación de Schödinger para una partícula libre.

Solución de la ecuación de Schödinger para una partícula libre. Solución d l cución d Schöding un tícul lib. Vmos nliz l volución tmol d l función d ond d un tícul lib con un jmlo concto. Ptimos d l siguint condición inicil: (; ) ik dond y k son dos constnts ls. Lo

Más detalles

LUGARES GEOMÉTRICOS Y ÁNGULOS

LUGARES GEOMÉTRICOS Y ÁNGULOS REPASO Y APOYO OBJETIVO 1 LUGARES GEOMÉTRICOS Y ÁNGULOS Nombe: Cuso: Fec: Se llm lug geomético l conjunto de todos los puntos que cumplen un detemind popiedd geométic. EJEMPLO Cuál es el lug geomético

Más detalles

RADIACIONES ÓPTICAS INCOHERENTES. Problemas resueltos

RADIACIONES ÓPTICAS INCOHERENTES. Problemas resueltos RADIACIONS ÓPTICAS INCOHRNTS Poblms sultos ÍNDIC SÍMBOOS Y ABRVIATURAS... 7. CONCPTOS BÁSICOS... 9. VAUACIÓN D A XPOSICIÓN ABORA A RADIACIONS ÓPTICAS... 39 3. CONTRO Y RDUCCIÓN D A XPOSICIÓN A AS RADIACIONS

Más detalles

Ecuaciones generales Modelo de Maxwell

Ecuaciones generales Modelo de Maxwell Elcticidad y Magntimo 9/ Ecuacion gnal Modlo d Maxwll Intoducción Funt d campo: Caga léctica. Coint léctica. Ecuación d continuidad. Dfinición dl campo lctomagnético. Ecuacion d Maxwll. Foma Intgal. Foma

Más detalles

Derivadas: Teoría y ejercicios DERIVADAS. La derivada de una función f en el punto de abscisa x = a, se define como el siguiente límite, si existe:

Derivadas: Teoría y ejercicios DERIVADAS. La derivada de una función f en el punto de abscisa x = a, se define como el siguiente límite, si existe: Drivds: Torí jrcicios Bcillrto DERIVADAS Dinición d drivd. L drivd d un unción n l punto d bscis =, s din como l siuint límit, si ist: lím A l drivd d un unción n un punto s l llm tmbién ts d vrición instntán.

Más detalles

Por tanto,p(r) es la probabilidad de encontrar al electrón en esta envolvente.

Por tanto,p(r) es la probabilidad de encontrar al electrón en esta envolvente. LAS FUNCIONES DE ONDA PARA EL HIDROGENO qq Ddo qu : U k dpnd solnt d l distnci dil nt l núclo y l lctón, lgunos d los stdos pitidos p st átoo pudn s psntdos dint funcions d ond qu solo dpndn d L s sipl

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID UNIVERSIDDES PÚBLICS DE L COMUNIDD DE MDRID PRUEB DE CCESO LS ENSEÑNZS UNIVERSITRIS OFICILES DE GRDO Curso -6 MTERI: MTEMÁTICS II INSTRUCCIONES GENERLES Y VLORCIÓN Dspués d lr tntmnt tods ls prgunts, l

Más detalles

ESCUELA TÉCNICA SUPERIOR DE INGENIEROS DE TELECOMUNICACIÓN UNIVERSIDAD POLITÉCNICA DE VALENCIA

ESCUELA TÉCNICA SUPERIOR DE INGENIEROS DE TELECOMUNICACIÓN UNIVERSIDAD POLITÉCNICA DE VALENCIA SCULA ÉCNCA SUPROR D NGNROS D LCOMUNCACÓN UNRSDAD POLÉCNCA D ALNCA ANNAS 7-no-3 PROBLMA Una antna conocia po los aioaficionaos como W8JK, consta n su configuación más simpl os ipolos mu póimos longitu

Más detalles

Z = número atómico o número de protones del núcleo Z = 1 (H); 2 (He + ); 3 (Li 2+ ).

Z = número atómico o número de protones del núcleo Z = 1 (H); 2 (He + ); 3 (Li 2+ ). CAPITULO. l átoo d idógo ) Atoo d idógo idogoid Z úo atóico o úo d poto dl úclo Z (H); (H + ); (Li + ). F q q / ε F q q / θ.6-9 cul.8 - u N u cul /( ε ) / φ V() -Z / ( u ) Hˆ Hˆ Hˆ + Ψ (, ) ψ ( )ψit( )

Más detalles

Junio 2010 (Prueba General) JUNIO 2010 OPCIÓN A

Junio 2010 (Prueba General) JUNIO 2010 OPCIÓN A Junio 00 (Prueb Generl) JUNIO 00 OPCIÓN A.- ) Dds ls funciones f () = ln () y g() =, hllr el áre del recinto plno limitdo por ls rects =, = y ls gráfics de f () y g (). b) Dr un ejemplo de función continu

Más detalles

4πε. q r 2. q r C 2 2

4πε. q r 2. q r C 2 2 . ) A un distnci d. cm dl cnto d un sf conducto con cg cuyo dio s d. cm, l cmpo léctico s d 48 N/. uál s l cmpo léctico.6 cm dl cnto d l sf? ) A un distnci d. cm dl j d un cilindo conducto muy lgo con

Más detalles

=-2.8 µc, se mantiene en una posición fija por medio de soportes aislantes. Se proyecta hacia q 1

=-2.8 µc, se mantiene en una posición fija por medio de soportes aislantes. Se proyecta hacia q 1 . n esfe etálic peueñ, con un cg net de -.8 µ, se ntiene en un posición fij po edio de sopotes islntes. Se poyect hci un segund esfe etálic peueñ, con un cg net de -7.8 µ y un s de.5 g. undo ls dos esfes

Más detalles

CONTINUIDAD Y DERIVABILIDAD DE FUNCIONES

CONTINUIDAD Y DERIVABILIDAD DE FUNCIONES Colgio Mtr Slvtoris CONTINUIDAD Y DERIVABILIDAD DE FUNCIONES Ejrcicio nº.- Estudi l continuidd y l drivilidd d l guint unción: ) < < Continuidd: - Si y ) s continu, pus stá ormd por uncions continus. -

Más detalles

Problemas de difusión

Problemas de difusión Probla d difuión PROBLEMA 1 Un acro contin 8,5 % n po d Ni n l cntro d un grano d F... y 8,8% n l líit dl grano. Si lo do punto tán parado 0 μ ual l flujo d átoo ntr to punto a 0 º?. a 0,65 n Ma Ni 58,71

Más detalles

Hacia la universidad Geometría

Hacia la universidad Geometría Hc l unvesdd Geomeí OPCIÓN A Solucono ) Clcul es vecoes que sen pependcules u ) peo que no sen plelos ene sí. b) Clcul un veco que se pependcul l ve u l pmeo que hs ddo como eemplo del pdo neo. ) Los vecoes

Más detalles

El punto (a, b) es un punto de la recta 2x + y = 8. Por tanto, 2a + b = 8; es decir, b = 8 2a.

El punto (a, b) es un punto de la recta 2x + y = 8. Por tanto, 2a + b = 8; es decir, b = 8 2a. 5 Dntro dl triángulo limitado por los js OX y OY y la rcta + y 8, s S inscrib un rctángulo d vértics (a, 0), (0, 0), (a, b) y (0, b). Dtrmina l punto (a, b) al qu corrspond l rctángulo d ára máima. 8 b

Más detalles

III. Campo eléctrico y conductores

III. Campo eléctrico y conductores III. Cmpo léctico y conductos Método d ls imágns Gbil Cno Gómz, G 7/8 Dpto. Físic F Aplicd III (U. Svill) Cmpos Elctomgnéticos ticos Ingnio d Tlcomunicción Gbil Cno G Gómz, 7/8 Sistm cg puntul plno plno

Más detalles

3.11 Trasformada de Laplace de una función periódica 246

3.11 Trasformada de Laplace de una función periódica 246 3. Trformd d plc d un función priódic 46 3. Trformd d plc d un función priódic Dfinición 3.. Un función f llmd priódic i y olo i, it un númro no nulo f tl qu impr y cundo té n l dominio d f, tmbién lo

Más detalles

FORMACIÓN PROFESIONAL

FORMACIÓN PROFESIONAL FOMCIÓN POFIONL DIÑO CUICUL N UNIDD TÉCNIC CUDO 1228 D GOTO D 1985 INTUCCIÓN 0329 D 1986 DOGÓ L INTUCCIÓN 217 D 1972 Oscar Gaboa Carrillo FOMCION POFIONL: POCO MDINT L CUL L PON: DQUI Y DOLL CONOCIMINTO,

Más detalles

Curso Septiembre MATERIA: MATEMÁTICAS II (Fase general)

Curso Septiembre MATERIA: MATEMÁTICAS II (Fase general) Cuso - Sepiebe MTERI MTEMÁTICS II (Fse genel) INSTRUCCIONES GENERLES Y VLORCIÓN El luno cones los cuo ejecicios e un e l os opciones ( o B) que se le ofecen. Nunc ebeá cones unos ejecicios e un opción

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE MADRID JUNIO Tiempo máximo: 1 hora y 30 minutos OPCIÓN A

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE MADRID JUNIO Tiempo máximo: 1 hora y 30 minutos OPCIÓN A IES STELR BDJOZ PRUEB DE ESO (LOGSE) UNIVERSIDD DE MDRID JUNIO MTEMÁTIS II Tiempo máimo: hor minutos El lumno contestrá los cutro ejercicios de un de ls dos opciones ( o B) que se le ofrecen Nunc deberá

Más detalles

Cálculo con vectores

Cálculo con vectores Unidd didáctic 1 Cálculo con vectoes 1.- Mgnitudes escles vectoiles. Son mgnitudes escles quells, como l ms, l tempetu, l enegí, etc., cuo vlo qued fijdo po un númeo (con su unidd coespondiente). Gáficmente

Más detalles

( 32 x )= 53 arcsen ( 32 x ) sen x +7 cos x 1 dx. x x. e 2 x +1 dx. 5x 7 dx. x sen x dx. x 4 x x 1 dx. x 2 dx. dxx. x x x dx. 1 x.

( 32 x )= 53 arcsen ( 32 x ) sen x +7 cos x 1 dx. x x. e 2 x +1 dx. 5x 7 dx. x sen x dx. x 4 x x 1 dx. x 2 dx. dxx. x x x dx. 1 x. IES Jun Clos I Mmáics II Cimpozulos Mdid * nálisis III: Ingls Ingls inmdis o csi inmdis: b d c d d d sn d f sn cos d g g d h d i d j d k cos bd l d m n d o d p q d C d sn d cos sn d cos d dcos sn d d d

Más detalles

OPCIÓN A. Colegio La Presentación Granada MATEMATICAS II. Examen de Matemáticas GLOBAL DE GEOMETRÍA

OPCIÓN A. Colegio La Presentación Granada MATEMATICAS II. Examen de Matemáticas GLOBAL DE GEOMETRÍA Colegio L Pesentción Gnd OPCIÓN A 1- () [1 punto] Sen u y v dos vectoes otogonles y de módulo 1 Hll los vloes del pámeto p que lo vectoes u + v y u v fomen un ángulo 60º (b) [1 punto] Hll un vecto z de

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE EXTREMADURA JUNIO 2009. (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 hora y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE EXTREMADURA JUNIO 2009. (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 hora y 30 minutos I.E.S. CSTELR BDJOZ PRUEB DE CCESO (LOGSE) UNIVERSIDD DE EXTREMDUR JUNIO 9 (RESUELTOS po ntonio Menguino) MTEMÁTICS II Tiempo máimo: ho minutos El lumno elegiá un de ls dos opciones popuests. Cd un de

Más detalles

INSTITUTO TÉCNICO MARÍA INMACULADA 2011 FORMANDO LÍDERES ESTUDIANTILES PARA UN FUTURO MEJOR PLAN DE NIVELACIÓN GENERAL DE MATEMÁTICAS 8.

INSTITUTO TÉCNICO MARÍA INMACULADA 2011 FORMANDO LÍDERES ESTUDIANTILES PARA UN FUTURO MEJOR PLAN DE NIVELACIÓN GENERAL DE MATEMÁTICAS 8. INSTITUTO TÉCNICO MARÍA INMACULADA 0 FORMANDO LÍDERES ESTUDIANTILES PARA UN FUTURO MEJOR PLAN DE NIVELACIÓN GENERAL DE MATEMÁTICAS. 0 Resuelve ls siguientes situciones TALLER NÚMERO. Ubic cd entero su

Más detalles

Física. g u a y F R. Entonces : tg

Física. g u a y F R. Entonces : tg Físic g u y. Clcul l istnci el equiliio ente ls os esfes e l figu, e ms m, cgos con q coulomios, si se supone que el ángulo con l veticl es muy pequeño, y los hilos que los sujetn no tienen ms. SOLUCIÓN:

Más detalles

CONTROL 2 2ªEVAL 2ºBACH

CONTROL 2 2ªEVAL 2ºBACH CONTROL ªEVAL ºACH INSTRUCCIONES Y CRITERIOS GENERALES DE CALIFICACIÓN La prueba conta de una opción, que incluye cuatro pregunta. Se podrá hacer uo de calculadora científica no programable. CALIFICACIÓN:

Más detalles

lím 1 si x=0 3) Halla la ecuación de la recta tangente a la gráfica de la siguiente función en el punto de abscisa π/2: sen x y = arc tg 1+cos x

lím 1 si x=0 3) Halla la ecuación de la recta tangente a la gráfica de la siguiente función en el punto de abscisa π/2: sen x y = arc tg 1+cos x CURSO 4-5. de myo de 5. ) Clcul los siguientes ites: (+e ) / sen(/) ) Estudi l continuidd de l siguiente función: +e/ f() -e / si si ) Hll l ecución de l rect tngente l gráfic de l siguiente función en

Más detalles

IES Mediterráneo de Málaga Solución Septiembre 2010 (Específico) Juan Carlos Alonso Gianonatti OPCIÓN A. 2, se pide determinar:

IES Mediterráneo de Málaga Solución Septiembre 2010 (Específico) Juan Carlos Alonso Gianonatti OPCIÓN A. 2, se pide determinar: IES Mdirráno d Málg Soluión Spimr (Espíio) Jun Crlos lonso Ginoni OPCIÓN E.- Dd l unión ( ), s pid drminr: ) El dominio, los punos d or on los js y ls sínos ( puno) ) Los inrvlos d rimino y drimino, y

Más detalles

CINEMÁTICA DE UNA PARTÍCULA

CINEMÁTICA DE UNA PARTÍCULA Cpíulo IX CINEMÁTICA DE UNA PARTÍCULA 9.1 INTRODUCCIÓN L Cinemáic e ocup del movimieno de lo cuepo in conide l cu que oiginn dicho movimieno. E deci, eudiemo el movimieno de lo cuepo o pícul in conide

Más detalles

5. Convergencia de integrales impropias. Las funciones Γ y Β de Euler.

5. Convergencia de integrales impropias. Las funciones Γ y Β de Euler. GRADO DE INGENIERÍA AEROESPACIAL. CURSO. Lcción. Intgals y aplicacions. 5. Convgncia d intgals impopias. Las funcions Γ y Β d Eul. La foma haitual d calcula una intgal impopia, po jmplo dl intgando, aplica

Más detalles

EXAMEN DE MATEMATICAS II. Apellidos: Nombre:

EXAMEN DE MATEMATICAS II. Apellidos: Nombre: EXAMEN DE MATEMATICAS II ª ENSAYO Apellidos: Nobe: Instucciones: Cuso: º Gupo: A Dí: CURSO 56 ) Dución: HORA y MINUTOS. b) Debes elegi ente eliz únicente los cuto ejecicios de l Opción A o bien únicente

Más detalles

Examen Reserva Septiembre2009

Examen Reserva Septiembre2009 Eamn Rsva ptimb009 1. La validz d los tsts hac fncia a: a) la quivalncia nt las puntuacions obsvadas y las vdadas, b) la adcuación d las infncias qu s hagan a pati d las puntuacions obsvadas al objtivo

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID UNIVERSIDDES ÚBLIS DE L OMUNIDD DE MDRID RUEB DE ESO ESTUDIOS UNIVERSITRIOS (LOGSE) JUNIO INSTRUIONES GENERLES Y VLORIÓN El lumo coeá lo cuo ejecicio e u e l o opcioe ( o B) que e le oece. Nuc ebeá coe

Más detalles

Integrales impropias.

Integrales impropias. IX / 8 UNIVERSIDAD SIMON BOLIVAR MA nro-mrzo d 4 Dprtmnto d Mtmátics Purs y Aplicds. Intgrls impropis. Ejrcicios sugridos pr : los tms d ls clss dl 4 y 9 d mrzo d 4. Tms : Otrs forms indtrminds. Intgrls

Más detalles

Dadas las matrices: y. a) Hallar A 10. b) Hallar la matriz inversa de B. c) En el caso particular de k=0, halla B 10. (PAU Septiembre )

Dadas las matrices: y. a) Hallar A 10. b) Hallar la matriz inversa de B. c) En el caso particular de k=0, halla B 10. (PAU Septiembre ) Dds ls mtrices: ) Hllr A. b) Hllr l mtri invers de B. c) En el cso prticulr de k=, hll B. (PAU Septiembre 4-5) ) A = = A = = = O A 4 = A A= O A = O ; lo mismo A 5, A 6 por tnto A = b) B = = ; Es un mtri

Más detalles