Minería de Datos Web. Cursada 2018

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Minería de Datos Web. Cursada 2018"

Transcripción

1 Minería de Datos Web Cursada 2018

2 Proceso de Minería de Texto

3 Clustering de Documentos Clasificación de Documentos Es un método supervisado para dividir documentos en base a categorías predefinidas Los ejemplos tienen que ser etiquetados (con clases asignadas) Clustering de Documentos Es un método no supervisado para dividir ejemplos en grupos cuando no existen categorías predefinidas El aprendizaje no supervisado es un método descriptivo para interpretar un conjunto de datos

4 Clustering de Documentos Es el proceso de buscar un agrupamiento natural en un conjunto de datos en base a su similitud Objetivo Dividir un conjunto de ejemplos (documentos) pertenecientes a clases desconocidas en subconjuntos disjuntos de clusters tal que: Los ejemplos que estén en un mismo cluster sean lo más similares posible entre sí Los ejemplos que estén en clusters diferentes sean lo más disímiles posible entre sí

5 Clustering de Documentos Espacio de características (términos) Los documentos se representan como vectores de frecuencia en un espacio de términos La similitud de dos documentos está dada por el coseno de ambos vectores

6 Clustering de Documentos Espacio de características (términos)

7 Clustering de Documentos Espacio de características (términos) Deportes Política Música

8 Clustering de Documentos El aprendizaje no supervisado es un método descriptivo para interpretar un conjunto de datos, algunas aplicaciones posibles: Clustering de los documentos recuperados para una consulta: se presentan los resultados de una búsqueda en forma más organizada y clara para el usuario (por ej. Vivísimo) Clustering de documentos en una colección: hipótesis de clustering, documentos similares tienden a ser relevantes a la misma consulta durante la recuperación de documentos, se agregan los documentos que pertenecen a un mismo cluster que los recuperados inicialmente para mejorar el recall Clustering para generación automática de taxonomías: para facilitar la exploración de documentos (por ej. Yahoo!)

9 Clustering de Documentos Hipótesis Documentos similares tienden a ser relevantes a la misma consulta Un buen método de clustering debería identificar clusters que sean tanto compactos como separados entre sí. Es decir, que tengan: Alta similitud intra-cluster Baja similitud inter-cluster

10 Clustering de Documentos Vivísimo

11 Clusty Clusty

12 Clustering de Documentos Kartoo

13 Clustering de Documentos Qué optimizar? Dado: un número de clusters Optimizar: Compactación de los clusters {promedio/min/max} distancia de los puntos a los otros en el mismo cluster {promedio/min/max} distancia de los puntos a los centros de los clusters Usualmente se buscan aproximaciones heurísticas

14 Clustering de Documentos Qué relaciona los documentos? Idealmente: similitud semántica En la práctica: similitud estadística Se trata los documentos como vectores Para muchos algoritmos es más fácil pensar en términos de distancia (en lugar de similitud entre documentos)

15 Clustering de Documentos Algoritmos basados en particionamiento Objetivo: Particionan el conjunto de datos D de n objetos en un conjunto de k clusters Dado un k, intentan encontrar una partición de k clusters que optimiza el criterio de particionamiento k-means: cada cluster es representado por su centro del cluster

16 K-Means Las instancias son vectores de valores reales Los clusters se basan en centroides o centros de gravedad, que son a media de las instancias en el cluster c: μ c = 1 c x c x Las instancias se reasignan a los clusters en base a su distancia a los centroides

17 K-Means k-means 1)Seleccionar aleatoriamente k ejemplos (semillas) para ser centroides de los clusters 2)Asignar cada ejemplo al centroide con el que tenga mayor similitud 3)Recalcular los centroides de acuerdo a los ejemplos asignados a cada cluster 4)Si no se satisface el criterio de terminación establecido volver a 2

18 K-Means Algoritmo: Sea sim la medida de distancia entre documentos Seleccionar k documentos aleatoriamente {s 1, s 2, s k } como semillas Hasta que se satisface un criterio de terminación Para cada documento x i : Asignar x i a el cluster c j talque sim(x i, s j ) sea la mínima (Actualizar las semillas de cada cluster) Para cada cluster c j s j = (c j )

19 K-Means

20 K-Means Seleccionar k=2 semillas en forma aleatoria

21 K-Means Asignar cada ejemplo al centroide con el que tenga mayor similitud

22 K-Means Asignar cada ejemplo al centroide con el que tenga mayor similitud

23 K-Means Recalcular los centroides de acuerdo a los ejemplos asignados a cada cluster c c

24 K-Means Asignar cada ejemplo al centroide con el que tenga mayor similitud c c

25 K-Means Asignar cada ejemplo al centroide con el que tenga mayor similitud c c

26 K-Means Recalcular los centroides de acuerdo a los ejemplos asignados a cada cluster c c

27 K-Means Recalcular los centroides de acuerdo a los ejemplos asignados a cada cluster c c

28 K-Means Asignar cada ejemplo al centroide con el que tenga mayor similitud c c

29 K-Means Recalcular los centroides de acuerdo a los ejemplos asignados a cada cluster c c

30 K-Means Los ejemplos no cambian de cluster, se satisface el criterio de terminación c c

31 K-Means Ventajas: Entre los algoritmos de particionamiento es eficiente Implementación sencilla Desventajas: Necesito conocer k de antemano Sensible a outliers, puede caer en mínimos locales Sensitivo a la elección de las semillas iniciales algunas semillas pueden resultar en una taza de convergencia menor la selección de semillas se puede basar en heurísticas o resultados obtenidos por otros métodos Es aplicable cuando es posible calcular el centroide, como en el caso de los documentos, pero es de difícil aplicación en atributos categóricos

32 Clustering Jerárquico Los algoritmos jerárquicos construyen un árbol binario o dendograma a partir de un conjunto de ejemplos Un dendograma muestra como se combinan los clusters La raíz es un cluster que contiene todos los ejemplos y las hojas contienen cada una un ejemplo Cortando en diferentes niveles se consiguen diferentes clusters

33 Clustering Jerárquico

34 Clustering Jerárquico Métodos de clustering: Aglomerativo (bottom-up) Métodos que comienzan con cada ejemplo en un cluster diferente y combinan iterativamente los clusters para formar clusters mayores Divisivo (top-down) Métodos que comienzan con todos los ejemplos en un mismo cluster y los separan sucesivamente en clusters de menor tamaño

35 Clustering Jerárquico Clustering Jerárquico Aglomerativo: Asume que existe una función de similitud que determina la similitud de dos instancias: Por ejemplo, similitud del coseno en caso de documentos Asume que existe una función de similitud que determina la similitud de dos clusters conteniendo múltiples instancias: Single link Complete link Group average

36 Clustering Jerárquico Single Link La similitud de los clusters es la de los dos ejemplos más similares entre ambos clusters

37 Clustering Jerárquico Single Link La similitud de los clusters es la de los dos ejemplos más similares entre ambos clusters Complete Link La similitud de los clusters es la de los dos ejemplos menos similares entre ambos clusters

38 Clustering Jerárquico Single Link La similitud de los clusters es la de los dos ejemplos más similares entre ambos clusters Complete Link La similitud de los clusters es la de los dos ejemplos menos similares entre ambos clusters Group Average Promedio de similitudes entre los ejemplos de ambos clusters

39 Clustering Jerárquico Single Link Usa la máxima similitud de los pares sim( c i, c j ) max x c, y i c j sim( x, Puede resultar en cluster largos y angostos dado un efecto cadena y) Después de mezclar c i y c j, la similitud del cluster resultante a otro cluster c k es: sim(( c c ), c ) max( sim( c, c ), sim( c, c i j k i k j k ))

40 Clustering Jerárquico Single Link

41 Clustering Jerárquico Complete Link Usa la mínima similitud de pares sim( c i, c j ) x c min, y i c j sim( x, y) Crea clusters esféricos y compáctos que son usualmente lo que se prefiere Después de mezclar c i y c j, la similitud del cluster resultante a otro cluster c k es: sim(( c c ), c ) min( sim( c, c ), sim( c, c i j k i k j k )) C i C j C k

42 Clustering Jerárquico Complete Link

43 Clustering Jerárquico Clustering Aglomerativo Jerárquico: 1)Asignar cada ejemplo a un cluster diferente (n ejemplos, n clusters) 2)Encontrar el par de clusters más similares y combinarlos en un único cluster 3)Recalcular las similitud o distancias entre el nuevo cluster y los clusters restantes 4)Hasta que solo quede un cluster de tamaño n, volver a 2

44 Clustering Jerárquico Algoritmo: Comienza con todos los ejemplos en su propio cluster Hasta que quede un único cluster: Entre todos los cluster existentes determinar los dos clusters c i y c j que son más similares Reemplazar c i y c j por un único cluster c i c j

45 Clustering Jerárquico Asignar cada ejemplo a un cluster diferente d 1 d 2 d 3 d 4 d d 2 d d 1 d 2 d 3 d 4 d 4

46 Clustering Jerárquico Encontrar el par de clusters más similares y combinarlos en un único cluster d 1 d 2 d 3 d 4 d d 2 d d 1 d 2 d 3 d 4 d 4

47 Clustering Jerárquico Encontrar el par de clusters más similares y combinarlos en un único cluster d 1 d 2 d 3 d 4 d d d 3 10 d 1 d 4 d 2 d 3 d 4 c 1

48 Clustering Jerárquico Recalcular las similitud o distancias entre el nuevo cluster y los clusters restantes c 1 d 2 d 3 c d 2 15 d 3 d 1 d 4 d 2 d 3 c 1

49 Clustering Jerárquico Encontrar el par de clusters más similares y combinarlos en un único cluster c 1 d 2 d 3 c d 2 d 3 15 d 1 d 4 d 2 d 3 c 2

50 Clustering Jerárquico Recalcular las similitud o distancias entre el nuevo cluster y los clusters restantes c 2 d 3 c 2 20 d 2 d 3 d 1 d 4 d 2 d 3 c 2

51 Clustering Jerárquico Encontrar el par de clusters más similares y combinarlos en un único cluster c 2 d 3 c d 2 d 3 d 1 d 4 d 2 d 3

52 Clustering Jerárquico Únicamente queda un cluster de tamaño n c 3 c 3 d 1 d 4 d 2 d 3 c 3

53 Clustering Jerárquico Ventajas: No es necesario establecer un número de clusters Se puede explorar el dendograma en diferentes niveles, más rico para el análisis de los datos que el particionamiento Desventajas: No se recupera de decisiones incorrectas Computacionalmente costoso

54 Proceso de Minería de Texto

55 Evaluación de Clustering Múltiples algoritmos y métodos de clustering (por ejemplo conceptual) Los datos se analizan y comparan usando diferentes algoritmos, con distinto valores para los parámetros La interpretación de los resultados de clustering permite un mayor entendimiento del significado de los datos La evaluación de los resultados de clustering es compleja (medidas internas y externas)

56 Evaluación de Clustering Criterio interno: un buen clustering produce clusters de alta calidad donde: la similitud intra-clase (intra-cluster) es alta la similitud inter-clase (inter-cluster) es baja La medida de calidad depende tanto de la representación del documento como de la medida de similitud usada

57 Evaluación de Clustering Criterio Externo: La calidad se mide por la capacidad de descubrir alguno o todos los patrones ocultos en los datos o clases latentes en un gold standard Medir el clustering respecto de un ground truth requiere datos etiquetados Asume documentos con C clases, mientras los algoritmos producen K clusters, ω 1, ω 2,, ω K, con n i miembros

58 Evaluación de Clustering Una medida simple es la pureza, el radio entre la clase dominante en el cluster π i y el tamaño del cluster ω i 1 Purity( i ) max j ( nij ) n i j C Sesgada porque tener n clusters maximiza la pureza Otras son entropía de clases en los clusters (o mutual information entre clases y clusters)

59 Evaluación de Clustering Cluster I Cluster II Cluster III Cluster I: Purity = 1/6 (max(5, 1, 0)) = 5/6 Cluster II: Purity = 1/6 (max(1, 4, 1)) = 4/6 Cluster III: Purity = 1/5 (max(2, 0, 3)) = 3/5

60 Evaluación de Clustering Rand Index medida de decisiones entre pares. RI = 0.68 Número de puntos Mismo Cluster en el clustering Clusters diferentes en el clustering Misma clase en el ground truth Diferentes clases en el ground truth 20 72

61 Evaluación de Clustering Rand index y F-Measure RI A A B D C D Comparado con Precision y Recall: P A A B R A A C Es posible calcular F-measure

Prof. Dra. Silvia Schiaffino ISISTAN

Prof. Dra. Silvia Schiaffino ISISTAN Clustering ISISTAN sschia@ea.unicen.edu.ar Clustering: Concepto Cluster: un número de cosas o personas similares o cercanas, agrupadas Clustering: es el proceso de particionar un conjunto de objetos (datos)

Más detalles

Minería de Datos Web. 1 er Cuatrimestre 2015. Página Web. Prof. Dra. Daniela Godoy. http://www.exa.unicen.edu.ar/catedras/ageinweb/

Minería de Datos Web. 1 er Cuatrimestre 2015. Página Web. Prof. Dra. Daniela Godoy. http://www.exa.unicen.edu.ar/catedras/ageinweb/ Minería de Datos Web 1 er Cuatrimestre 2015 Página Web http://www.exa.unicen.edu.ar/catedras/ageinweb/ Prof. Dra. Daniela Godoy ISISTAN Research Institute UNICEN University Tandil, Bs. As., Argentina http://www.exa.unicen.edu.ar/~dgodoy

Más detalles

Introducción Clustering jerárquico Clustering particional Clustering probabilista Conclusiones. Clustering. Clasificación no supervisada

Introducción Clustering jerárquico Clustering particional Clustering probabilista Conclusiones. Clustering. Clasificación no supervisada Clustering Clasificación no supervisada Javier G. Sogo 10 de marzo de 2015 1 Introducción 2 Clustering jerárquico 3 Clustering particional 4 Clustering probabilista 5 Conclusiones Introducción Objetivos

Más detalles

CLUSTERING. Bases de Datos Masivas

CLUSTERING. Bases de Datos Masivas 1 CLUSTERING Bases de Datos Masivas 2 Temas Qué es clustering? K-Means Clustering Hierarchical Clustering QUÉ ES CLUSTERING? 3 Aprendizaje Supervisado vs. No Supervisado 4 Aprendizaje Supervisado: tanto

Más detalles

INTELIGENCIA DE NEGOCIO

INTELIGENCIA DE NEGOCIO INTELIGENCIA DE NEGOCIO 2016-2017 n n n n n n n n Tema 1. Introducción a la Inteligencia de Negocio Tema 2. Minería de Datos. Ciencia de Datos Tema 3. Modelos de Predicción: Clasificación, regresión y

Más detalles

Métricas para la validación de Clustering

Métricas para la validación de Clustering Métricas para la validación de Clustering MINERIA DE DATOS Elizabeth León Guzmán, Profesor Asociado Universidad Nacional de Colombia Ingeniería de Sistemas y Computación Contenido Introducción Tipos de

Más detalles

Introducción a Aprendizaje no Supervisado

Introducción a Aprendizaje no Supervisado Introducción a Aprendizaje no Supervisado Felipe Suárez, Álvaro Riascos 25 de abril de 2017 2 / 33 Contenido 1. Motivación 2. k-medias Algoritmos Implementación 3. Definición 4. Motivación 5. Aproximación

Más detalles

1. Análisis de Conglomerados

1. Análisis de Conglomerados 1. Análisis de Conglomerados El objetivo de este análisis es formar grupos de observaciones, de manera que todas las unidades en un grupo sean similares entre ellas pero que sean diferentes a aquellas

Más detalles

Lingüística computacional

Lingüística computacional Lingüística computacional Definición y alcance Escuela Nacional de Antropología e Historia (ENAH) Agosto diciembre de 2015 Lingüística Ciencias de la computación Lingüística computacional Estudio del lenguaje

Más detalles

Aprendizaje No Supervisado

Aprendizaje No Supervisado Aprendizaje Automático Segundo Cuatrimestre de 2015 Aprendizaje No Supervisado Supervisado vs. No Supervisado Aprendizaje Supervisado Clasificación y regresión. Requiere instancias etiquetadas para entrenamiento.

Más detalles

TÉCNICAS INTELIGENTES EN BIOINFORMÁTICA CLUSTERING

TÉCNICAS INTELIGENTES EN BIOINFORMÁTICA CLUSTERING TÉCNICAS INTELIGENTES EN BIOINFORMÁTICA CLUSTERING Mario de J. Pérez Jiménez Grupo de investigación en Computación Natural Dpto. Ciencias de la Computación e Inteligencia Artificial Universidad de Sevilla

Más detalles

TÉCNICAS INTELIGENTES EN BIOINFORMÁTICA CLUSTERING

TÉCNICAS INTELIGENTES EN BIOINFORMÁTICA CLUSTERING TÉCNICAS INTELIGENTES EN BIOINFORMÁTICA CLUSTERING Mario de J. Pérez Jiménez Grupo de investigación en Computación Natural Dpto. Ciencias de la Computación e Inteligencia Artificial Universidad de Sevilla

Más detalles

Clasificación Clasific NO SUPERV SUPER ISAD IS A AD AGRUPAMIENTO

Clasificación Clasific NO SUPERV SUPER ISAD IS A AD AGRUPAMIENTO Clasificación NO SUPERVISADA AGRUPAMIENTO Clasificación No Supervisada Se trata de construir clasificadores sin información a priori, o sea, a partir de conjuntos de patrones no etiquetados Objetivo: Descubrir

Más detalles

Clustering: Algoritmos

Clustering: Algoritmos Clustering: Algoritmos Clasificación no supervisada Javier G. Sogo 10 de marzo de 2015 1 Introducción 2 Algoritmo: K-medias 3 Algoritmo: BFR 4 Algoritmo: CURE Introducción Acotar el problema Complejidad

Más detalles

SISTEMAS INTELIGENTES

SISTEMAS INTELIGENTES SISTEMAS INTELIGENTES T12: Aprendizaje no Supervisado {jdiez, juanjo} @ aic.uniovi.es Índice Aprendizaje no Supervisado Clustering Tipos de clustering Algoritmos Dendogramas 1-NN K-means E-M Mapas auto-organizados

Más detalles

INTELIGENCIA DE NEGOCIO

INTELIGENCIA DE NEGOCIO INTELIGENCIA DE NEGOCIO 2018-2019 Tema 1. Introducción a la Inteligencia de Negocio Tema 2. Minería de Datos. Ciencia de Datos Tema 3. Modelos de Predicción: Clasificación, regresión y series temporales

Más detalles

Tareas de la minería de datos: agrupamiento. CI-2352 Intr. a la minería de datos Prof. Braulio José Solano Rojas ECCI, UCR

Tareas de la minería de datos: agrupamiento. CI-2352 Intr. a la minería de datos Prof. Braulio José Solano Rojas ECCI, UCR Tareas de la minería de datos: agrupamiento CI-2352 Intr. a la minería de datos Prof. Braulio José Solano Rojas ECCI, UCR Agrupamiento Agrupamiento (clasificación no supervisada, aprendizaje no supervisado).

Más detalles

ANÁLISIS DE CONGLOMERADOS (CLUSTER ANALYSIS)

ANÁLISIS DE CONGLOMERADOS (CLUSTER ANALYSIS) ANÁLISIS DE CONGLOMERADOS (CLUSTER ANALYSIS) AGRUPAMIENTOS Cuál agrupamiento es mejor? MÉTODOS DE AGRUPACIÓN Métodos jerárquicos: Los objetos se agrupan (dividen) i por partes hasta clasificar todos los

Más detalles

Diplomado BIG DATA ANALITYCS K-Means. Por Ing. Jorge E. Camargo, Ph.D.

Diplomado BIG DATA ANALITYCS K-Means. Por Ing. Jorge E. Camargo, Ph.D. Diplomado BIG DATA ANALITYCS Por Ing. Jorge E. Camargo, Ph.D. Agenda 1. Agrupamiento 2. 3. Medidas de Validación Agrupamiento (Clustering) Dado un conjunto de puntos/datos, cada uno con un conjunto de

Más detalles

Reconocimiento de Formas

Reconocimiento de Formas Reconocimiento de Formas Técnicas no Supervisadas: clustering José Martínez Sotoca Objetivo: Estudio de la estructura de un conjunto de datos, división en agrupaciones. Características: Homogeneidad o

Más detalles

Métodos no supervisados: Agrupamiento

Métodos no supervisados: Agrupamiento Métodos no supervisados: Agrupamiento Agrupamiento clustering- Carlos J. Alonso González Departamento de Informática Universidad de Valladolid Contenido 1. Introducción. Basados en particiones 3. Métodos

Más detalles

Reconocimiento de Patrones

Reconocimiento de Patrones Reconocimiento de Patrones Jesús Ariel Carrasco Ochoa Instituto Nacional de Astrofísica Óptica y Electrónica ariel@inaoep.mx Contenido Introducción Enfoques Problemas Selección de Variables Clasificación

Más detalles

Tareas de la minería de datos: clasificación. CI-2352 Intr. a la minería de datos Prof. Braulio José Solano Rojas ECCI, UCR

Tareas de la minería de datos: clasificación. CI-2352 Intr. a la minería de datos Prof. Braulio José Solano Rojas ECCI, UCR Tareas de la minería de datos: clasificación CI-2352 Intr. a la minería de datos Prof. Braulio José Solano Rojas ECCI, UCR Tareas de la minería de datos: clasificación Clasificación (discriminación) Empareja

Más detalles

Clasicación Automática de Documentos

Clasicación Automática de Documentos Clasicación Automática de Documentos Carlos G. Figuerola, José Luis Alonso Berrocal, Angel F. Zazo Universidad de Salamanca Grupo REINA http://reina.usal.es Carlos G. Figuerola (Grupo REINA) Clasicación

Más detalles

Detección y segmentación de objetos

Detección y segmentación de objetos 24 de abril de 2013 ¾Qué es segmentación? Segmentación Objetivo El objetivo de la segmentación de una imagen es el agrupamiento de ciertos píxeles de la imagen en regiones correspondientes a objetos contenidos

Más detalles

INTRODUCCION AL ANALISIS DE CLUSTER

INTRODUCCION AL ANALISIS DE CLUSTER -1- INTRODUCCION AL ANALISIS DE CLUSTER José Luis Vicente Villardón Departamento de Estadística Universidad de Salamanca -- DEFINICION E INTRODUCCION El Análisis de Clusters (o Análisis de conglomerados)

Más detalles

Carteras minoristas. árbol de decisión. Ejemplo: Construcción de un scoring de concesión basado en un DIRECCIÓN GENERAL DE SUPERVISIÓN

Carteras minoristas. árbol de decisión. Ejemplo: Construcción de un scoring de concesión basado en un DIRECCIÓN GENERAL DE SUPERVISIÓN Carteras minoristas Ejemplo: Construcción de un scoring de concesión basado en un árbol de decisión Grupo de Tesorería y Modelos de Gestión de Riesgos Sergio Gavilá II Seminario sobre Basilea II Validación

Más detalles

Introducción a Minería de Texto. Fabián Latorre

Introducción a Minería de Texto. Fabián Latorre Introducción a Minería de Texto Fabián Latorre fabian.latorre@quantil.com.co Contenido Qué es la minería de texto? Por qué es relevante? Por qué la estudiamos? Aplicaciones La complejidad del texto no

Más detalles

Técnicas de Clustering

Técnicas de Clustering Técnicas de Clustering Programa Introducción Métodos Divisivos Métodos Jerárquicos Algunos otros métodos Cuantos clusters? estabilidad Introducción Definiciones previas: Cluster: Agrupamiento de objetos.

Más detalles

Módulo Minería de Datos Diplomado Por Elizabeth León Guzmán, Ph.D. Profesora Ingeniería de Sistemas Grupo de Investigación MIDAS

Módulo Minería de Datos Diplomado Por Elizabeth León Guzmán, Ph.D. Profesora Ingeniería de Sistemas Grupo de Investigación MIDAS Módulo Minería de Datos Diplomado Por Elizabeth León Guzmán, Ph.D. Profesora Ingeniería de Sistemas Grupo de Investigación MIDAS Agrupamiento Dividir los datos en grupos (clusters), de tal forma que los

Más detalles

Análisis de imágenes digitales

Análisis de imágenes digitales Análisis de imágenes digitales SEGMENTACIÓN DE LA IMAGEN Segmentación basada en texturas INTRODUCCIÓN La textura provee información sobre la distribución espacio-local del color o niveles de intensidades

Más detalles

Máster en Ordenación y Gestión del Desarrollo Territorial y Local. Módulo I MÉTODO Y TÉCNICAS ESTADÍSTICAS PARA EL DESARROLLO TERRITORIAL Y LOCAL

Máster en Ordenación y Gestión del Desarrollo Territorial y Local. Módulo I MÉTODO Y TÉCNICAS ESTADÍSTICAS PARA EL DESARROLLO TERRITORIAL Y LOCAL ANÁLISIS CLUSTERS C U R S O TÉCNICAS MULTIVARIANTES Prof. Dr. Ángel Luís LUCENDO MONEDERO 1 http://www.geografia.us.es/ Tema 2. INTRODUCCIÓN N AL ANÁLISIS CLUSTER 2.1 Consideraciones generales. Clasificación

Más detalles

Análisis y Recuperación de Información

Análisis y Recuperación de Información Análisis y Recuperación de Información 1 er Cuatrimestre 2017 Página Web http://www.exa.unicen.edu.ar/catedras/ayrdatos/ Prof. Dra. Daniela Godoy ISISTAN Research Institute UNICEN University Tandil, Bs.

Más detalles

Tema 5: SEGMENTACIÓN (II) I N G E N I E R Í A I N F O R M Á T I C A

Tema 5: SEGMENTACIÓN (II) I N G E N I E R Í A I N F O R M Á T I C A Tema 5: SEGMENTACIÓN (II) 1 I N G E N I E R Í A I N F O R M Á T I C A Tema 5: Segmentación Los algoritmos de segmentación se basan en propiedades básicas de los valores del nivel de gris: 2 - Discontinuidad:

Más detalles

ANALISIS DE CLUSTER CON SPSS: INMACULADA BARRERA

ANALISIS DE CLUSTER CON SPSS: INMACULADA BARRERA ANALISIS DE CLUSTER CON SPSS: INMACULADA BARRERA ANALISIS DE CLUSTER EN SPSS Opción: Analizar Clasificar ANALISIS DE CLUSTER EN SPSS Tres posibles OPCIONES 1.- Cluster en dos etapas 2.- K-means 3.- Jerárquicos

Más detalles

Tema 5: SEGMENTACIÓN (II) I N G E N I E R Í A I N F O R M Á T I C A

Tema 5: SEGMENTACIÓN (II) I N G E N I E R Í A I N F O R M Á T I C A Tema 5: SEGMENTACIÓN (II) 1 I N G E N I E R Í A I N F O R M Á T I C A Tema 5: Segmentación Los algoritmos de segmentación se basan en propiedades básicas de los valores del nivel de gris: 2 - Discontinuidad:

Más detalles

RECONOCIMIENTO DE PAUTAS. ANÁLISIS DE CONGLOMERADOS (Cluster Analysis)

RECONOCIMIENTO DE PAUTAS. ANÁLISIS DE CONGLOMERADOS (Cluster Analysis) RECONOCIMIENTO DE PAUTAS ANÁLISIS DE CONGLOMERADOS (Cluster Analysis) Análisis de conglomerados los análisis exploratorios de datos (como PCA) determinan relaciones generales entre datos en ocasiones no

Más detalles

Clustering. Departamento de Ingeniería Informática y de Sistemas Universidad de La Laguna

Clustering. Departamento de Ingeniería Informática y de Sistemas Universidad de La Laguna Clustering Christopher Expósito Izquierdo Airam Expósito Márquez Israel López Plata Belén Melián Batista J. Marcos Moreno Vega {cexposit, aexposim, ilopezpl, mbmelian, jmmoreno}@ull.edu.es Departamento

Más detalles

Técnicas de agrupamiento (clustering)

Técnicas de agrupamiento (clustering) Técnicas de agrupamiento (clustering) Introducción al Reconocimiento de Patrones IIE - FING - UdelaR 2015 Duda, Hart, Stork. Pattern Classification, capítulo 10. Jain, Duin, Mao. Statistical Pattern Recognition:

Más detalles

Clasificación Jerárquica Ascendente Presentación #1. [ U n a i n t r o d u c c i ó n ]

Clasificación Jerárquica Ascendente Presentación #1. [ U n a i n t r o d u c c i ó n ] Clasificación Jerárquica Ascendente Presentación #1 [ U n a i n t r o d u c c i ó n ] Clasificación Jerárquica Clasificación Automática La clasificación automática tiene por objetivo reconocer grupos de

Más detalles

Análisis Global y Local. UCR ECCI CI-2414 Recuperación de Información Prof. Kryscia Daviana Ramírez Benavides

Análisis Global y Local. UCR ECCI CI-2414 Recuperación de Información Prof. Kryscia Daviana Ramírez Benavides UCR ECCI CI-2414 Recuperación de Información Prof. Kryscia Daiana Ramírez Benaides Análisis Global Realiza la expansión basado en la construcción de tesauros utilizando la colección completa de documentos

Más detalles

Metaheurísticas. Seminario 5. Manejo de restricciones en metaheurísticas. 1. Introducción: Optimización y Restricciones

Metaheurísticas. Seminario 5. Manejo de restricciones en metaheurísticas. 1. Introducción: Optimización y Restricciones Metaheurísticas Seminario 5. Manejo de restricciones en metaheurísticas 1. Introducción: Optimización y Restricciones 2. Manejo de Restricciones en Metaheurísticas 3. Algunos Ejemplos 1 Introducción: Optimización

Más detalles

Clasificación Supervisada. Métodos jerárquicos. CART

Clasificación Supervisada. Métodos jerárquicos. CART Clasificación Supervisada. Métodos jerárquicos. CART Ricardo Fraiman 2 de abril de 2010 Descripción del problema Muestra de entrenamiento (X 1, Y 1 ),..., (X n, Y n ) E {1,..., m}. Típicamente E = R d.

Más detalles

Introducción a la minería de datos. CI-2352 Intr. a la minería de datos Prof. Braulio José Solano Rojas ECCI, UCR

Introducción a la minería de datos. CI-2352 Intr. a la minería de datos Prof. Braulio José Solano Rojas ECCI, UCR Introducción a la minería de datos CI-2352 Intr. a la minería de datos Prof. Braulio José Solano Rojas ECCI, UCR Minería de datos Detección, interpretación y predicción de patrones cuantitativos y cualitativos

Más detalles

Sistemas Inteligentes. Tema B2T4: Aprendizaje no supervisado: algoritmo k-medias.

Sistemas Inteligentes. Tema B2T4: Aprendizaje no supervisado: algoritmo k-medias. Sistemas Inteligentes Escuela Técnica Superior de Informática Universitat Politècnica de València Tema B2T4: Aprendizaje no supervisado: algoritmo k-medias. Índice 1 Introducción 1 2 Agrupamientos particionales

Más detalles

ESTADISTICA ELEMENTAL

ESTADISTICA ELEMENTAL ESTADISTICA ELEMENTAL Dr. Edgar Acuna http://academic.uprm.edu/eacuna UNIVERSIDAD DE PUERTO RICO RECINTO UNIVERSITARIO DE MAYAGUEZ INTRODUCCIÓN En este capítulo, primero se introducirán algunos conceptos

Más detalles

Clasificación Jerárquica Ascendente Presentación #1. [ U n a i n t r o d u c c i ó n ]

Clasificación Jerárquica Ascendente Presentación #1. [ U n a i n t r o d u c c i ó n ] Clasificación Jerárquica Ascendente Presentación #1 [ U n a i n t r o d u c c i ó n ] Clasificación Jerárquica Clasificación Automática La clasificación automática tiene por objetivo reconocer grupos de

Más detalles

Tareas de la minería de datos: clasificación. PF-5028 Minería de datos Prof. Braulio José Solano Rojas UCR

Tareas de la minería de datos: clasificación. PF-5028 Minería de datos Prof. Braulio José Solano Rojas UCR Tareas de la minería de datos: clasificación PF-5028 Minería de datos Prof. Braulio José Solano Rojas UCR Tareas de la minería de datos: clasificación Clasificación (discriminación) Empareja o asocia datos

Más detalles

Anexo 2. Te cnicas de Modelado y Disen o de Pruebas

Anexo 2. Te cnicas de Modelado y Disen o de Pruebas Anexo 2. Te cnicas de Modelado y Disen o de Pruebas Contenido 1. Introducción... 2 2. Técnicas de Minería de Datos Seleccionadas... 2 2.1 Técnica de Reglas de Asociación... 2 2.1.1 Objetivo al aplicar

Más detalles

Inteligencia Artificial: Su uso para la investigación

Inteligencia Artificial: Su uso para la investigación Inteligencia Artificial: Su uso para la investigación Dra. Helena Montserrat Gómez Adorno Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas helena.adorno@iimas.unam.mx 1 Introducción

Más detalles

IDENTIFICACIÓN Y DETECCION DE PATRONES DELICTIVOS BASADA EN MINERIA DE DATOS. Departamento de Ingeniería Industrial. ITBA

IDENTIFICACIÓN Y DETECCION DE PATRONES DELICTIVOS BASADA EN MINERIA DE DATOS. Departamento de Ingeniería Industrial. ITBA IDENTIFICACIÓN Y DETECCION DE PATRONES DELICTIVOS BASADA EN MINERIA DE DATOS Perversi, I. 1, Valenga, F. 2, Fernández, E. 3,4, Britos P. 3,4, García-Martínez, R. 3,4 1 Departamento de Ingeniería Industrial.

Más detalles

Introducción al Análisis Multivariante

Introducción al Análisis Multivariante al Análisis Multivariante Vectores aleatorios, técnicas de análisis multivariante, distancias estadísticas Curso 2011-2012 Considero que el cerebro de cada cual es como una pequeña pieza vacía que vamos

Más detalles

Examen de Teoría de (Introducción al) Reconocimiento de Formas

Examen de Teoría de (Introducción al) Reconocimiento de Formas Examen de Teoría de (Introducción al) Reconocimiento de Formas Facultad de Informática, Departamento de Sistemas Informáticos y Computación Universidad Politécnica de Valencia, Enero de 007 Apellidos:

Más detalles

Clusters. Walter Sosa Escudero. Universidad de San Andres y CONICET

Clusters. Walter Sosa Escudero. Universidad de San Andres y CONICET (wsosa@udesa.edu.ar) Universidad de San Andres y CONICET Ideas generales X matriz de N filas y p columnas. Cada fila es un punto de p dimensiones. Cada columna se corresponde con una variable. Ejemplo:

Más detalles

Aprendizaje Automático. Objetivos. Funciona? Notas

Aprendizaje Automático. Objetivos. Funciona? Notas Introducción Las técnicas que hemos visto hasta ahora nos permiten crear sistemas que resuelven tareas que necesitan inteligencia La limitación de estos sistemas reside en que sólo resuelven los problemas

Más detalles

Ontologias. 2 Marcelo A. Soria Maestria en Data Mining. DC-FCEN

Ontologias. 2 Marcelo A. Soria Maestria en Data Mining. DC-FCEN Aplicaciones de Data Mining en ciencia y tecnología Ontologias. 2 Desarrollo de ontologías Clases Clases slots slots Clases facetas o restricciones de rol Clases Desarrollo de ontologías Clases Slots Facetas

Más detalles

Selección de Atributos. Dr. Jesús Ariel Carrasco Ochoa Oficina 8311

Selección de Atributos. Dr. Jesús Ariel Carrasco Ochoa Oficina 8311 Selección de Atributos Dr. Jesús Ariel Carrasco Ochoa ariel@inaoep.mx Oficina 8311 Contenido Introducción Estrategias de selección Técnicas filter Técnicas wrapper Técnicas híbridas Selección de atributos

Más detalles

Dr. Richard Mercado Rivera 18 de agosto de 2012 Matemática Elemental

Dr. Richard Mercado Rivera 18 de agosto de 2012 Matemática Elemental Universidad de Puerto Rico Recinto de Aguadilla Programa CeCiMat Elemental Definición de conceptos fundamentales de la Estadística y la Probabilidad y su aportación al mundo moderno Dr. Richard Mercado

Más detalles

Comunidades. Buscando grupos naturales de nodos

Comunidades. Buscando grupos naturales de nodos Comunidades Buscando grupos naturales de nodos cliques, -componentes (Newman 7.8.1, 7.8.2) similaridad (N7.12) Geometria: means topologia: equivalencia estructural vs equivalencia regular Clustering jerarquico

Más detalles

Redes de Neuronas de Base Radial

Redes de Neuronas de Base Radial Redes de Neuronas de Base Radial 1 Introducción Redes multicapa con conexiones hacia delante Única capa oculta Las neuronas ocultas poseen carácter local Cada neurona oculta se activa en una región distinta

Más detalles

CLASIFICACIÓN PROBLEMA SOLUCIÓN

CLASIFICACIÓN PROBLEMA SOLUCIÓN Capítulo 7 Análisis Cluster CLASIFICACIÓN Asignar objetos en su lugar correspondiente dentro de un conjunto de categorías establecidas o no. PROBLEMA Dado un conjunto de m objetos (animales, plantas, minerales...),

Más detalles

Aprendizaje no supervisado

Aprendizaje no supervisado Aprendizaje no supervisado Algoritmo de K medias Julio Waissman Vilanova Licenciatura en Ciencias de la Computación Universidad de Sonora Curso Inteligencia Artificial Plan del curso Aprendizaje no supervisado

Más detalles

Técnicas de Minería de Datos

Técnicas de Minería de Datos Técnicas de Minería de Datos Act. Humberto Ramos S. 1 Qué es Minería de datos? El desarrollo de dispositivos tecnológicos para acumular datos a bajo costo. Acumulación o registro de gran cantidad de datos.

Más detalles

Seminario Taller Brecha de Rendimiento en Arroz. 20 de Julio 2011 INIA Treinta Y Tres

Seminario Taller Brecha de Rendimiento en Arroz. 20 de Julio 2011 INIA Treinta Y Tres Seminario Taller Brecha de Rendimiento en Arroz 20 de Julio 2011 INIA Treinta Y Tres INTRODUCCIÓN Contenido de la Presentación EL CONTEXTO Y LOS ANTECEDENTES METODOLOGÍAS UTILIZADAS CARACTERISTICAS DE

Más detalles

Motores de Búsqueda Web Tarea Tema 3: Limitaciones de la recuperación de información tradicional en la Web

Motores de Búsqueda Web Tarea Tema 3: Limitaciones de la recuperación de información tradicional en la Web Motores de Búsqueda Web Tarea Tema 3: Limitaciones de la recuperación de información tradicional en la Web 71454586A Motores de Búsqueda Web Máster en Lenguajes y Sistemas Informáticos - Tecnologías del

Más detalles

TEMA 6 ANÁLISIS DE CONGLOMERADOS

TEMA 6 ANÁLISIS DE CONGLOMERADOS TEMA 6 ANÁLISIS DE CONGLOMERADOS Facultade de Psicoloxía Campus Sur, s/n 15782 Santiago de Compostela wwwusces/psicom Dr Jesús Varela Mallou Dr Antonio Rial Boubeta Dr Eduardo Picón Prado Análisis Multivariante

Más detalles

TÉCNICAS DE AGRUPAMIENTO

TÉCNICAS DE AGRUPAMIENTO TÉCNICAS DE AGRUPAMIENTO José D. Martín Guerrero, Emilio Soria, Antonio J. Serrano PROCESADO Y ANÁLISIS DE DATOS AMBIENTALES Curso 2009-2010 Page 1 of 11 1. Algoritmo de las C-Medias. Algoritmos de agrupamiento

Más detalles

Tema 8: Árboles de Clasificación

Tema 8: Árboles de Clasificación Tema 8: Árboles de Clasificación p. 1/11 Tema 8: Árboles de Clasificación Abdelmalik Moujahid, Iñaki Inza, Pedro Larrañaga Departamento de Ciencias de la Computación e Inteligencia Artificial Universidad

Más detalles

Desambiguación del Sentido de las Palabras (Word Sense Disambiguation)

Desambiguación del Sentido de las Palabras (Word Sense Disambiguation) Desambiguación del Sentido de las Palabras (Word Sense Disambiguation) Introducción qué es ambigüedad? qué significa desambiguar? qué entendemos por sentido de las palabras? en qué consiste la tarea de

Más detalles

EVALUACIÓN EN APRENDIZAJE. Eduardo Morales y Jesús González

EVALUACIÓN EN APRENDIZAJE. Eduardo Morales y Jesús González EVALUACIÓN EN APRENDIZAJE Eduardo Morales y Jesús González Significancia Estadística 2 En estadística, se dice que un resultado es estadísticamente significante, cuando no es posible que se presente por

Más detalles

Técnicas de aprendizaje sobre series temporales

Técnicas de aprendizaje sobre series temporales Técnicas de aprendizaje sobre series temporales Contenido 1. Motivación. 2. Ejemplo del Problema. 3. Aproximaciones al problema de clasificación de series temporales. 4. Aprendizaje de reglas. 5. Boosting

Más detalles

Análisis de la relación precio marginal y demanda de electricidad mediante conglomerados

Análisis de la relación precio marginal y demanda de electricidad mediante conglomerados Análisis de la relación precio marginal y demanda de electricidad mediante conglomerados Andrés Ramos, Gonzalo Cortés, Jesús María Latorre, Santiago Cerisola Universidad Pontificia Comillas Índice Introducción

Más detalles

UNIVERSIDAD TÉCNICA FEDERICO SANTA MARÍA DEPARTAMENTO DE INFORMÁTICA SANTIAGO - CHILE

UNIVERSIDAD TÉCNICA FEDERICO SANTA MARÍA DEPARTAMENTO DE INFORMÁTICA SANTIAGO - CHILE UNIVERSIDAD TÉCNICA FEDERICO SANTA MARÍA DEPARTAMENTO DE INFORMÁTICA SANTIAGO - CHILE EVALUACIÓN DE ALGORITMOS DE AGRUPAMIENTO UTILIZANDO APACHE SPARK FRANCISCO JAVIER SALINAS DEZEREGA MEMORIA DE TITULACIÓN

Más detalles

Estimación de Parámetros. Jhon Jairo Padilla A., PhD.

Estimación de Parámetros. Jhon Jairo Padilla A., PhD. Estimación de Parámetros Jhon Jairo Padilla A., PhD. Inferencia Estadística La inferencia estadística puede dividirse en dos áreas principales: Estimación de Parámetros Prueba de Hipótesis Estimación de

Más detalles

Estimación de Parámetros. Jhon Jairo Padilla A., PhD.

Estimación de Parámetros. Jhon Jairo Padilla A., PhD. Estimación de Parámetros Jhon Jairo Padilla A., PhD. Inferencia Estadística La inferencia estadística puede dividirse en dos áreas principales: Estimación de Parámetros Prueba de Hipótesis Estimación de

Más detalles

Conclusiones. Somos la suma de nuestras decisiones. WOODY ALLEN Delitos y Faltas (1989)

Conclusiones. Somos la suma de nuestras decisiones. WOODY ALLEN Delitos y Faltas (1989) Capítulo 7 Conclusiones Somos la suma de nuestras decisiones WOODY ALLEN Delitos y Faltas (1989) En este trabajo se ha presentado una nueva estrategia para construir árboles de decisión que ha conseguido

Más detalles

Segmentación de imágenes biomédicas

Segmentación de imágenes biomédicas Segmentación de imágenes biomédicas Definición de segmentación La segmentación es la partición de una imagen, en un subconjunto regiones homogéneas en base a una característica (intensidad, textura,...).

Más detalles

Tipos de Aprendizaje

Tipos de Aprendizaje Karina Figueroa Contenido Objetivo: Comprender las nociones básicas de los enfoques representativos de aprendizaje automático Nota del día Aprendizaje y el modelo científico Clasificación de los algoritmos

Más detalles

Técnicas Multivariadas Avanzadas

Técnicas Multivariadas Avanzadas Métodos basados en árboles Universidad Nacional Agraria La Molina 2014-2 Introducción Introducción Se describen métodos basados en árboles para regresión y clasicación. Estos métodos requieren estraticar

Más detalles

Aprendizaje Automático para el Análisis de Datos GRADO EN ESTADÍSTICA Y EMPRESA. Ricardo Aler Mur

Aprendizaje Automático para el Análisis de Datos GRADO EN ESTADÍSTICA Y EMPRESA. Ricardo Aler Mur Aprendizaje Automático para el Análisis de Datos GRADO EN ESTADÍSTICA Y EMPRESA Ricardo Aler Mur KNN: VECINO(S) MAS CERCANO(S) K NEAREST NEIGHBORS (KNN) Altura Niño Adulto Mayor Se guardan todos los ejemplos

Más detalles

Tema 3: Análisis multivariante para la agrupación. Objetivo: Encontrar los grupos naturales en los que se divide la población.

Tema 3: Análisis multivariante para la agrupación. Objetivo: Encontrar los grupos naturales en los que se divide la población. Tema 3: Análisis multivariante para la agrupación Objetivo: Encontrar los grupos naturales en los que se divide la población. Ejemplo canónico en Biologia: Taxonomía Rosa doméstica Reino: Plantae (Plantas)

Más detalles

Técnicas de Clasificación Supervisada DRA. LETICIA FLORES PULIDO

Técnicas de Clasificación Supervisada DRA. LETICIA FLORES PULIDO Técnicas de Clasificación Supervisada DRA. LETICIA FLORES PULIDO 2 Objetivo El objetivo principal de las técnicas de clasificación supervisada es obtener un modelo clasificatorio válido para permitir tratar

Más detalles

Introducción a las técnicas estadísticas de

Introducción a las técnicas estadísticas de Introducción a las técnicas estadísticas de clasificación y regresión. Aprendizaje no supervisado - Clustering Laura Aspirot, Sebastián Castro Universidad de la República (UdelaR) Jueves 21 y viernes 22

Más detalles

Clasificación estadística de patrones

Clasificación estadística de patrones Clasificación estadística de patrones Clasificador gaussiano César Martínez cmartinez _at_ fich.unl.edu.ar Tópicos Selectos en Aprendizaje Maquinal Doctorado en Ingeniería, FICH-UNL 19 de setiembre de

Más detalles

Clasificadores Débiles - AdaBoost

Clasificadores Débiles - AdaBoost Capítulo 3 Clasificadores Débiles - AdaBoost El término boosting hace referencia a un tipo de algoritmos cuya finalidad es encontrar una hipótesis fuerte a partir de utilizar hipótesis simples y débiles.

Más detalles

Explotación del B2B y segmentación de la clientela

Explotación del B2B y segmentación de la clientela Explotación del B2B y segmentación de la clientela Cluster, Clasificación y Segmentación Sesión 4. 24/10/2018 A.M.Mayoral (asun.mayoral@umh.es), J.Morales (j.morales@umh.es) Ejemplo Adquisición oficina

Más detalles

Desambigüación del sentido de las palabras (WSD)

Desambigüación del sentido de las palabras (WSD) Desambigüación del sentido de las palabras (WSD) Miguel A. Alonso Departamento de Computación, Facultad de Informática, Universidade da Coruña 1 / 18 Índice 1 Introducción 2 Evaluación 3 Enfoques basados

Más detalles

Definición de grupos: clasificación. Capítulos 10 y 11 de McCune y Grace 2002

Definición de grupos: clasificación. Capítulos 10 y 11 de McCune y Grace 2002 Definición de grupos: clasificación Capítulos 10 y 11 de McCune y Grace 2002 Clasificar Proceso natural humano para interpretar el mundo Pero estamos acostumbrados a sólo observar pocas dimensiones Más

Más detalles

Interfaces de Visualización de Clustering. UCR ECCI CI-2414 Recuperación de Información Prof. Kryscia Daviana Ramírez Benavides

Interfaces de Visualización de Clustering. UCR ECCI CI-2414 Recuperación de Información Prof. Kryscia Daviana Ramírez Benavides Interfaces de Visualización de Clustering UCR ECCI CI-2414 Recuperación de Información Prof. Kryscia Daviana Ramírez Benavides Introducción Los mecanismos convencionales de una búsqueda tienen baja precisión.

Más detalles

INFORME TAREA N 4 CLUSTERING

INFORME TAREA N 4 CLUSTERING Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Ingeniería Eléctrica EL4106 Inteligencia Computacional INFORME TAREA N 4 CLUSTERING Nombre Alumno : Profesor : Profesor Auxiliar

Más detalles

ANÁLISIS ESTADÍSTICO MUESTREO DE POBLACIONES FINITAS

ANÁLISIS ESTADÍSTICO MUESTREO DE POBLACIONES FINITAS ANÁLISIS ESTADÍSTICO MUESTREO DE POBLACIONES FINITAS Jorge Fallas jfallas56@gmail.com 2010 1 Temario Porqué muestrear? Para qué muestrear? Estimar parámetros de población Prueba de hipótesis Exploratorio

Más detalles

Enfoque Conceptual Borroso en Recuperación de Información

Enfoque Conceptual Borroso en Recuperación de Información I Workshop Virtual de Ingeniería Linguística UNAB-NAACL Enfoque Conceptual Borroso en Recuperación de Información Prof. Dr. Andrés Soto Villaverde Universidad Autónoma del Carmen Cd. Carmen, Campeche,

Más detalles

Sistemas de Reconocimiento de Patrones

Sistemas de Reconocimiento de Patrones Sistemas de Reconocimiento de Patrones p. 1/33 Sistemas de Reconocimiento de Patrones Luis Vázquez GTI - IIE Facultad de Ingeniería Universidad de la República Sistemas de Reconocimiento de Patrones p.

Más detalles

Predicción de potencia en el parque eólico de Villonaco, Loja, Ecuador. Alberto Reyes y Tania Guerrero INER Ecuador

Predicción de potencia en el parque eólico de Villonaco, Loja, Ecuador. Alberto Reyes y Tania Guerrero INER Ecuador Predicción de potencia en el parque eólico de Villonaco, Loja, Ecuador Alberto Reyes y Tania Guerrero INER Ecuador INTRODUCCIÓN El comportamiento del viento presenta alto grado de aleatoriedad, incertidumbre

Más detalles

Análisis de Datos. Introducción al aprendizaje supervisado. Profesor: Dr. Wilfrido Gómez Flores

Análisis de Datos. Introducción al aprendizaje supervisado. Profesor: Dr. Wilfrido Gómez Flores Análisis de Datos Introducción al aprendizaje supervisado Profesor: Dr. Wilfrido Gómez Flores 1 Conceptos básicos Desde la antigüedad, el problema de buscar patrones en datos es fundamental en diversas

Más detalles

Prof. Dr. Jose Jacobo Zubcoff Departamento de Ciencias del Mar y Biología Aplicada

Prof. Dr. Jose Jacobo Zubcoff Departamento de Ciencias del Mar y Biología Aplicada Clustering Análisis de segmentación Prof. Dr. Jose Jacobo Zubcoff Departamento de Ciencias del Mar y Biología Aplicada This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International

Más detalles

Existen diversas técnicas de agrupamiento. Se dividen en dos grandes categorías:

Existen diversas técnicas de agrupamiento. Se dividen en dos grandes categorías: Objetivo ESCOM-IPN (Sistemas Operativos II - Practica 02) Página 1 de 6 INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE CÓMPUTO Practica 02 de Sistemas Operativos II Profr. Edgardo Adrián Franco Martínez

Más detalles

I. CARACTERISTICAS DEL ALGORITMO ID3

I. CARACTERISTICAS DEL ALGORITMO ID3 I. CARACTERISTICAS DEL ALGORITMO ID3 El investigador J. Ross Quinlan desarrolló el algoritmo conocido como ID3 (Induction Decision Trees) en el año de 1983. Pertenece a la familia TDIDT (Top-Down Induction

Más detalles