2) (1p) Halla las ecuaciones de las asíntotas y clasifica las discontinuidades. ln x f(x)= x-1

Tamaño: px
Comenzar la demostración a partir de la página:

Download "2) (1p) Halla las ecuaciones de las asíntotas y clasifica las discontinuidades. ln x f(x)= x-1"

Transcripción

1 CURSO Primera parte. 2 de mayo de 29. ) (p) Calcula el siguiente límite: lím x (x e/x ) 2) (p) Halla las ecuaciones de las asíntotas y clasifica las discontinuidades de la función: f(x)= x- 3) (p) Calcula la ecuación de la recta tangente a la gráfica de la siguiente función en el punto de abscisa π: sen x y=sen x 4) (p) Determina los valores de los parámetros a y b si se sabe que la recta tangente a la gráfica de la función y=2x 3 +2x 2 +ax+b en su punto de inflexión es y=2x+3. 5) (p) Calcula una primitiva de la siguiente función y comprueba el resultado: f(x)= x --

2 CURSO Segunda parte. 22 de mayo de 29. 6) (p) Discute y resuelve, en su caso, el sistema: x+3y+z=5 my-z=m mx+2z= 7) (p) Dadas las matrices A y B, halla X si A - X A=B: A= B= - 2 8) (p) Prueba la siguiente identidad: x+2 x+2 x+2 =(x+) 3 9) (p) Dados los puntos A(,-,2), B(-2,,3) y C(2,,-), halla la ecuación continua de la altura del triángulo ABC relativa al vértice A. ) (p) Dadas las rectas r y s, halla la ecuación del plano que determinan y el ángulo que dicho plano forma con el eje de abscisas: 2x+y= r z= s x- = y+ -2 = z- -2-

3 CURSO Ejercicio : Calcula el siguiente límite: lím x (x e/x ) Este límite no existe: ( PUNTO) lím (x e /x ) = e /- = e - = = x x< lím (x e /x ) = x x> lím x x> e /x /x =2 lím x x> e /x (/x)' (/x)' = lím e /x = e /+ = e + = + x x> Transformamos la indeterminación en la indeterminación /. 2 Como sale la indeterminación /, aplicamos L'Hôpital. -3-

4 CURSO Ejercicio 2: Halla las ecuaciones de las asíntotas y clasifica las discontinuidades de la función: f(x)= ( PUNTO) x- º) Dom(f)=(,) (,+ ): x> x- x> x 2º) La recta x= es asíntota vertical de la función: lím x x> f(x) = lím x x- = - - = + x> 3º) La función tiene una discontinuidad evitable en x=: lím x f(x) = lím x x- = lím x /x = 4º) La recta y= es asíntota horizontal de la función en + : Posición relativa: /x lím f(x) = lím x + x + x- =2 lím x + = x + lím x = + = f(x)-y= x- - = x- Por tanto, como la diferencia es positiva en +, ya que numerador y denominador son positivos, la función se encuentra situada por encima de la asíntota. Como sale la indeterminación /, aplicamos L'Hôpital. 2 Como sale la indeterminación /, aplicamos L'Hôpital. -4-

5 CURSO Ejercicio 3: Calcula la ecuación de la recta tangente a la gráfica de la siguiente función en el punto de abscisa π: sen x y=sen ( PUNTO) x º) Calculamos la ordenada del punto de tangencia: y(π)=sen sen π = sen = π 2º) Para hallar la pendiente, derivamos la función: sen x y'= cos x sen x x ' sen x x x-sen x = cos x cos x 2 = 3º) Calculamos la pendiente en el punto de tangencia: Resumiendo: y'(π)= π cos π-sen π cos π 2 sen π = π x y y' π -/π x cos x-sen x sen x x 2 cos x π (-)- cos =-/π π 2 4º) Por tanto, la ecuación explícita de la recta tangente es: y-=- π (x-π) y=- π x+ -5-

6 CURSO Ejercicio 4: Determina los valores de los parámetros a y b si se sabe que la recta tangente a la gráfica de la función y=2x 3 +2x 2 +ax+b en su punto de inflexión es y=2x+3. ( PUNTO) La condición necesaria de punto de inflexión es que la derivada segunda valga cero: y=2x 3 +2x 2 +ax+b y'=6x 2 +24x+a y"=2x+24=2(x+2)= x=-2 Por el criterio de la derivada tercera, x=-2 es punto de inflexión: y'"=2 y'"(-2)=2 Como y=2x+3 es la recta tangente en dicho punto, podemos calcular la ordenada de éste: y(-2)=2 (-2)+3=- Teniendo en cuenta que la pendiente de la recta tangente es 2, podemos hacer el siguiente resumen: x y y' -2-2 Como los puntos (-2,2) y (-2,-) pertenecen a las gráficas de las funciones y' e y, respectivamente, tenemos lo siguiente: y'(-2)= a=2 a=26 y(-2)= a+b=- b= b=9 Ya que a=

7 CURSO Ejercicio 5: Calcula una primitiva de la siguiente función y comprueba el resultado: f(x)= ( PUNTO) x x dx = x-/2 dx = 2x /2-2 x-/2 dx = 2 = 2x /2-2 x-/2+ -/2+ +C = 2x/2-4x /2 +C = 2 x -4 x+c Comprobación: S D I + x -/2 - x -/2+ x -/2+ = 2x/2 (2 x -4 x)'= 2 2 x +2 x x ln x -4 2 x = x + 2 x - 2 x = x Esta integral se hace por partes. La integral efectuada en la columna I es inmediata de tipo potencial. 2 Esta integral es inmediata de tipo potencial. -7-

8 CURSO Ejercicio 6: Discute y resuelve, en su caso, el siguiente sistema: x+3y+z=5 my-z=m mx+2z= Aplicamos el método de Gauss: m 3 m 5-2 m ~ 3 m -3m 5-2-m m -5m Estudiamos los distintos casos: ~ 2 º) Si m=-, el sistema es incompatible: 4 3 m m m -2m 3 ( PUNTO) m= --m= m= m= º) Si m=, el sistema es compatible indeterminado y la solución depende de un parámetro: ~ x+3y+z=5 -z= x=5-3y z= x=5-3α y=α z= 3º) En los demás casos el sistema es compatible determinado: x+3y+z=5 my-z=m -(+m)z=-2m z= 2m m+ my=m+ 2m m+ = m 2 +m+2m m+ m(m+3) = m+ m+3 y= m+ x=5-3y-z=5-3 m+3 m+ - 2m m+ = 5m+5-3m-9-2m m+ -4 x= m+ 3ªf-m ªf. 2 3ªf+3 2ªf. 3 Como no se puede dividir por cero, tenemos que calcular los valores del parámetro que anulan los coeficientes de las incógnitas que tenemos que despejar luego (caso 3º). 4 Ya que la tercera ecuación es incompatible. 5 3ªf-2ªf. -8-

9 CURSO Ejercicio 7: Dadas las matrices A y B, halla X si A - X A=B: A= B= - 2 Como A, la matriz A es inversible: A = =-3+2=- Por tanto: A= A*= (A*)'= ( PUNTO) A - = (A*)' A = = -2-3 Ahora bien: A - X A=B X=A B A - = = = = Comprobación: A - X A= = = - 2 = B También puede calcularse la inversa de A por el método de Gauss. 2 Calculamos la adjunta de A. 3 Calculamos la traspuesta de la adjunta de A. -9-

10 CURSO Ejercicio 8: Prueba la siguiente identidad: x+2 x+2 x+2 =(x+) 3 ( PUNTO) x+2 x+2 x+2 x+ x+ x+ = = 2 (x+) 3 ªc-4ªc; 2ªc-4ªc; 3ªc-4ªc 2 El determinante de una matriz triangular es igual al producto de los elementos de la diagonal principal. --

11 CURSO Ejercicio 9: Dados los puntos A(,-,2), B(-2,,3) y C(2,,-), halla la ecuación continua de la altura del triángulo ABC relativa al vértice A. ( PUNTO) Sea ABC el triángulo dado. Trazamos la altura correspondiente al vértice A que corta al lado opuesto en X: A(,-,2) B(-2,,3) C(2,,-) X(x,y,z) Como [BX ] es la proyección de [BA ] sobre [BC ]: [BX [BA ] [BC ] ]= [BC ] [BC ] [BC (3,-,-) (4,,-4) ] (x+2,y,z-3)= (4,,-4) (4,,-4) (4,,-4) 2++4 (x+2,y,z-3)= 6++6 (4,,-4) (x+2,y,z-3)= 2 (4,,-4) (x+2,y,z-3)= (2,,-2) x+2=2 y= z-3=-2 x= y= z= X(,,) [XA x ]=(,-,) XA = y - = z- También puede hallarse la altura calculando directamente un vector direccional: el producto vectorial de [BC ] por un vector característico del plano ABC, ya que ambos son perpendiculares a dicha recta. O como intersección del plano ABC y el perpendicular a la recta BC que pasa por A. O hallando el punto X como intersección de este último plano con la recta BC. O teniendo en cuenta que el punto X está en la recta BC y que los vectores [XA ] y [BC ] son perpendiculares; o que X es el punto de la recta BC más próximo a A; o aplicando el teorema de Pitágoras al triángulo ABX (en este caso, además de X, te saldrá como solución extraña B). Al aplicar el teorema de Pitágoras al triángulo ABX, siempre sale como una de las soluciones el punto B de la recta BC, ya que, si en la fórmula del teorema, sustituyes X por B, se obtiene AB 2 +BB 2 =AB 2, esto es, AB 2 =AB 2, lo que siempre es cierto. --

12 CURSO Ejercicio : Dadas las rectas r y s, halla la ecuación del plano que determinan y el ángulo que dicho plano forma con el eje de abscisas: r 2x+y= x- z= s = y+ -2 = z- ( PUNTO) a) Calculamos una determinación lineal de cada una de las rectas: 2x+y= r z= y=-2x z= x- s = y+ -2 = z- x=α y=-2α z= P(,,) u =(,-2,) Q(,-,) v =(,-2,) Como las rectas tienen el mismo vector direccional, son paralelas. Por tanto, una determinación lineal del plano π que definen dichas rectas es (P,u,[PQ ]): s r π Q(,-,) v (,-2,) P(,,) u (,-2,) Como [PQ ]=(,-,), la ecuación del plano π es: x y z -2 - = -2x-y+z= 2x+y-z= b) Como el eje OX tiene por vector direccional i (,,) y el vector característico del plano es w (2,,-): i w sen(ox,π)= i w = (,,) (2,,-) (,,) (2,,-) = 2 = 4++ = 2 6 (OX,π)=54º44'8,2" -2-

3) Halla el punto de la curva y=x 3-3x 2 +6x-4 en el que la recta tangente tiene pendiente mínima. Calcula la ecuación de dicha recta tangente.

3) Halla el punto de la curva y=x 3-3x 2 +6x-4 en el que la recta tangente tiene pendiente mínima. Calcula la ecuación de dicha recta tangente. CURSO 4-5. Septiembre de 5. ) De la siguiente función f, se pide: a) Dominio. b) Derivada. c) Continuidad y discontinuidades. + f()= ln ) De la función del problema anterior, se pide. a) Asíntotas verticales.

Más detalles

2) Halla a y b para que la siguiente función sea continua y derivable en x=1. Calcula la ecuación de la recta tangente en dicho punto:

2) Halla a y b para que la siguiente función sea continua y derivable en x=1. Calcula la ecuación de la recta tangente en dicho punto: CURSO 2-22. 24 de mayo de 2. ) Calcula: sen lím cos - 2) Halla a y b para que la siguiente función sea continua y derivable en =. Calcula la ecuación de la recta tangente en dicho punto: f()= a 2 +b+b

Más detalles

1) Calcula los límites de la siguiente función en 0 y + : 3x+sen x f(x)= x. 2) Estudia la continuidad y derivabilidad de la siguiente función en x=0:

1) Calcula los límites de la siguiente función en 0 y + : 3x+sen x f(x)= x. 2) Estudia la continuidad y derivabilidad de la siguiente función en x=0: CURSO 22-23. 23 de mayo de 23. ) Calcula los límites de la siguiente función en y + : 3+sen f() 2) Estudia la continuidad y derivabilidad de la siguiente función en : 3) Deriva y simplifica: f() e / +e

Más detalles

lím 2) (1,3p) Halla m y n para que sea derivable la función: x 2-5x+m si x 1 -x 2 +nx si x>1 sen x y=arc tg 1+cos x x 1-x 2 dx

lím 2) (1,3p) Halla m y n para que sea derivable la función: x 2-5x+m si x 1 -x 2 +nx si x>1 sen x y=arc tg 1+cos x x 1-x 2 dx CURSO -. 5 de mayo de. ) (,p) Calcula: ln x lím x (+senx) sen x ) (,3p) Halla m y n para que sea derivable la función: f(x) x -5x+m si x -x +nx si x> 3) (,3p) Deriva y simplifica la función: 4) (,p) Halla:

Más detalles

1) (1,4p) Define asíntota oblicua de una función f en +. Halla la ecuación de la asíntota oblicua que la función y= x 2-2x tiene en +.

1) (1,4p) Define asíntota oblicua de una función f en +. Halla la ecuación de la asíntota oblicua que la función y= x 2-2x tiene en +. CURSO 7-8. Septiembre de 8. ) (,4p) Define asíntota oblicua de una función f en +. Halla la ecuación de la asíntota oblicua que la función y= x -x tiene en +. ) (,p) Calcula: -cos(x-) x ln x 3) (,p) La

Más detalles

x-1-1 x+2-2 lím 2) (1p) Averigua el valor del parámetro k para que la función sea continua en todo su dominio: f(x)= ln(1+x) si -1<x 0 k si x=0

x-1-1 x+2-2 lím 2) (1p) Averigua el valor del parámetro k para que la función sea continua en todo su dominio: f(x)= ln(1+x) si -1<x 0 k si x=0 CURSO 2-2. Septiembre de 2. ) (,5p) Calcula: x 2 x-- x+2-2 2) (p) Averigua el valor del parámetro k para que la función sea continua en todo su dominio: sen(2x) f(x) ln(+x) si -

Más detalles

1) (1p) Prueba que las coordenadas del vector [AB. ] se obtienen restando las del punto A a las del punto B.

1) (1p) Prueba que las coordenadas del vector [AB. ] se obtienen restando las del punto A a las del punto B. CURSO 2000-200. 8 de mayo de 200. GEOMETRÍA ) (p) Prueba que las coordenadas del vector [AB ] se obtienen restando las del punto A a las del punto B. 2) (p) Deduce la ecuación vectorial de la recta. 3)

Más detalles

2) (1,2p) Halla las ecuaciones de las asíntotas de la función: f(x)= x-1

2) (1,2p) Halla las ecuaciones de las asíntotas de la función: f(x)= x-1 CURSO 2009-200 0 de marzo de 200. π ) (,3p) Dada la función f(x)=x cos( 2 x)+2x, prueba que existe α en (,2) tal que f'(α)=0. Menciona los resultados teóricos que utilices. 2) (,2p) Halla las ecuaciones

Más detalles

x+(a-1)y+z=-1 (a-1)y+2z=-2 x+(a 2-5a+5)z=-a+4 2 a 2-5a a+5 ~2 1 0 ~ 4 1 0

x+(a-1)y+z=-1 (a-1)y+2z=-2 x+(a 2-5a+5)z=-a+4 2 a 2-5a a+5 ~2 1 0 ~ 4 1 0 JUNIO DE 7. PROBLEMA A. Estudia el siguiente sistema de ecuaciones lineales dependiente del parámetro real a y resuélvelo en los casos en que es compatible: Aplicamos el método de Gauss: a- a- - a -5a+5

Más detalles

1) (1p) Demuestra la fórmula de la derivada de y=arc sen f. 3) (1p) Enuncia el criterio de la derivada tercera y pruébalo en uno de los casos.

1) (1p) Demuestra la fórmula de la derivada de y=arc sen f. 3) (1p) Enuncia el criterio de la derivada tercera y pruébalo en uno de los casos. 28 de noviembre de 2008. 1) (1p) Demuestra la fórmula de la derivada de y=arc sen f. 2) (1p) Enuncia el teorema de Rolle. 3) (1p) Enuncia el criterio de la derivada tercera y pruébalo en uno de los casos.

Más detalles

a(a+1)=0 a 2 -a-2=0 4 (a+1)(a-2)=0 a=-1, a=2 a(a-2)=0 a=0, a= x+2y+z=2 -z=2

a(a+1)=0 a 2 -a-2=0 4 (a+1)(a-2)=0 a=-1, a=2 a(a-2)=0 a=0, a= x+2y+z=2 -z=2 EXTRAORDINARIO DE. PROBLEMA A. Estudia el siguiente sistema de ecuaciones lineales dependiente del parámetro real a y resuélvelo en los casos en que es compatible: ~ Aplicamos el método de Gauss: a +a

Más detalles

JUNIO DE PROBLEMA A1.

JUNIO DE PROBLEMA A1. JUNIO DE 7. PROBLEMA A. Estudia el siguiente sistema de ecuaciones lineales dependiente del parámetro real a y resuélvelo en los casos en que es compatible: x- az - x+()y+ (-a)z x+()y+(a +)za+ (3 PUNTOS)

Más detalles

y+3z=1 (a 2 -a-2)x-y-3z=-1 (a 2 -a-2)x+(a 2-2a)z=2-a -3 a 2-2a -1 3 a 2-2a 1 2-a ~ a ~3 0 a=2, a=-1 a 2-2a=0 a(a-2)=0 a=0, a=2 z=1 y=1-3z

y+3z=1 (a 2 -a-2)x-y-3z=-1 (a 2 -a-2)x+(a 2-2a)z=2-a -3 a 2-2a -1 3 a 2-2a 1 2-a ~ a ~3 0 a=2, a=-1 a 2-2a=0 a(a-2)=0 a=0, a=2 z=1 y=1-3z EXTRAORDINARIO DE. PROBLEMA A. Estudia el siguiente sistema de ecuaciones lineales dependiente del parámetro real a y resuélvelo en los casos en que es compatible: Aplicamos el método de Gauss: ~ a -a-

Más detalles

2 2 2 a a 2. a a=0 a(a+1)=0 a=0, a=-1. x=-y-2 z=-1

2 2 2 a a 2. a a=0 a(a+1)=0 a=0, a=-1. x=-y-2 z=-1 JUNIO DE 3. PROBLEMA A. Estudia el siguiente sistema de ecuaciones lineales dependiente del parámetro real a y resuélvelo en los casos en que es compatible: ax+(a +a)y+z axy+z ax+yza (3 PUNTOS) Aplicamos

Más detalles

SEPTIEMBRE DE PROBLEMA A1.

SEPTIEMBRE DE PROBLEMA A1. SEPTIEMBRE DE 7. PROBLEMA A. Estudia el siguiente sistema de ecuaciones lineales dependiente del parámetro real a y resuélvelo en los casos en que es compatible: x+ y+ az= ax+(3a-)y+(+a )z= x+ y+(a -a)z=a-

Más detalles

a-2. -a º) Si a= 2, el sistema es compatible indeterminado y la solución depende de un parámetro: 4. 2 =-2y z=1.

a-2. -a º) Si a= 2, el sistema es compatible indeterminado y la solución depende de un parámetro: 4. 2 =-2y z=1. EXTRAORDINARIO DE 7. PROBLEMA A. Estudia el siguiente sistema de ecuaciones lineales dependiente del parámetro real a y resuélvelo en los casos en que es compatible: x+y+z x+(a +)y+3z3 x(a +)y+(a3)z 3

Más detalles

ax+y-z=2 2ax+(a 2 +1)y+(a-1)z=a+5 ax+a 2 y+(a-2)z=a+5 a+5 ~1 a 0 a=0 a 2-1=0 a 2 =1 a=±1 a+1

ax+y-z=2 2ax+(a 2 +1)y+(a-1)z=a+5 ax+a 2 y+(a-2)z=a+5 a+5 ~1 a 0 a=0 a 2-1=0 a 2 =1 a=±1 a+1 EXTRAORDINARIO DE 5. PROBLEMA A. Estudia el siguiente sistema de ecuaciones lineales dependiente del parámetro real a y resuélvelo en los casos en que es compatible: Aplicamos el método de Gauss: ~ a a

Más detalles

JUNIO DE PROBLEMA A1.

JUNIO DE PROBLEMA A1. JUNIO DE 8. PROBLEMA A. Estudia el siguiente sistema de ecuaciones lineales dependiente del parámetro real a y resuélvelo en los casos en que es compatible: - y- z +(a -a-)y - +(a -a-)y+(a-)z-a (3 PUNTOS)

Más detalles

1) (1,6p) Estudia la continuidad y clasifica las discontinuidades de la función: f(x)= e x -1. x-1

1) (1,6p) Estudia la continuidad y clasifica las discontinuidades de la función: f(x)= e x -1. x-1 CURSO 2009-200 6 de diciembre de 2009. ) (,6p) Estudia la continuidad y clasifica las discontinuidades de la función: x - x- 2) (,6p) Halla las ecuaciones de las asíntotas de la siguiente función: 3) (2p)

Más detalles

Ejercicio 1 del modelo 2 de la opción A de sobrantes de Solución

Ejercicio 1 del modelo 2 de la opción A de sobrantes de Solución Ejercicio 1 del modelo 2 de la opción A de sobrantes de 2001 Sea f: R R la función dada por f(x) = 8 x 2. (a) [1 punto] Esboza la gráfica y halla los extremos relativos de f (dónde se alcanzan y cuáles

Más detalles

-1± 1+8-1±3. a=-2, a=1 a 2 +2a=0 a(a+2)=0 a=0, a=-2 a 2 -a=0 a(a-1)=0 a=0, a= x=-1 z=1 x=1/2. z=1. 3a z= a(a-1) z= 3.

-1± 1+8-1±3. a=-2, a=1 a 2 +2a=0 a(a+2)=0 a=0, a=-2 a 2 -a=0 a(a-1)=0 a=0, a= x=-1 z=1 x=1/2. z=1. 3a z= a(a-1) z= 3. JUNIO DE. PROBLEMA A. Estudia el siguiente sistema de ecuaciones lineales dependiente del parámetro real a y resuélvelo en los casos en que es compatible: (a +a-)x-ay+az- (a +a-)x+a y+(a+)z (a +a-)x-ay+a

Más detalles

a-3 a-1 a-1 a+3 1 a 2-3 a-3=0 a=3 a-1=0 a=1 a+2=0 a=-2 x=2/5-2α/5-3y+z=1-5x=2+2z z=α -5x-2z= z= (a+2)(a-2) a+2

a-3 a-1 a-1 a+3 1 a 2-3 a-3=0 a=3 a-1=0 a=1 a+2=0 a=-2 x=2/5-2α/5-3y+z=1-5x=2+2z z=α -5x-2z= z= (a+2)(a-2) a+2 EXTRAORDINARIO DE. PROBLEMA A. Estudia el siguiente sistema de ecuaciones lineales dependiente del parámetro real a y resuélvelo en los casos en que es compatible: (a-)x-z (a-)x+(a-)y-z (a-)x+(a-)y+(a+)za

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD Opción A Ejercicio 1.- Sea f : R R definida por f(x) = x 3 +ax 2 +bx+c. a) [1 75 puntos] Halla a,b y c para que la gráfica de f tenga un punto de inflexión de abscisa x = 1 2 y que la recta tangente en

Más detalles

2a+1. a+2. a+2 ~2 0 a 2 +a=0 a(a+1) a=0, a=-1 a+2=0 a=-2 -a-1=0 a=-1. a ~ z= a+1 -(a+1) =-1 z=-1 (a+2)y=1-z=2

2a+1. a+2. a+2 ~2 0 a 2 +a=0 a(a+1) a=0, a=-1 a+2=0 a=-2 -a-1=0 a=-1. a ~ z= a+1 -(a+1) =-1 z=-1 (a+2)y=1-z=2 EXTRAORDINARIO DE. PROBLEMA A. Estudia el siguiente sistema de ecuaciones lineales dependiente del parámetro real a y resuélvelo en los casos en que es compatible: (a +a)x+(a+)y+az (a +a)x+(3a+3)y+(a+)z

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD Opción A Ejercicio 1. [2 5 puntos] Calcula lim x 0 siendo Ln(1 + x) el logaritmo neperiano de 1 + x. Ln(1 + x) sen x, x sen x Ejercicio 2. Sea f : R R la función definida por f(x) = e x/3. (a) [1 punto]

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD Opción A Ejercicio 1.- Sea f : R R definida por f(x) = x 3 +ax 2 +bx+c. a) [1 75 puntos] Halla a,b y c para que la gráfica de f tenga un punto de inflexión de abscisa x = 1 2 y que la recta tangente en

Más detalles

Ejercicio nº 1 de la opción A del modelo 1 de Solución

Ejercicio nº 1 de la opción A del modelo 1 de Solución Ejercicio nº 1 de la opción A del modelo 1 de 2001 Se quiere dividir la región encerrada entre la parábola y = x 2 y la recta y = 1 en dos regiones de igual área mediante la recta y = a. Halla el valor

Más detalles

PRUEBA DE ACCESO A LA UNIVERSIDAD

PRUEBA DE ACCESO A LA UNIVERSIDAD Opción A Ejercicio 1.- Sea f : (0,+ ) R la función definida por f(x) = 3x + 1 x. (a) [1 5 puntos] Determina los intervalos de crecimiento y de decrecimiento y los extremos relativos de f (puntos donde

Más detalles

EXAMEN DE MATRICES Y DETERMINANTES

EXAMEN DE MATRICES Y DETERMINANTES º BACHILLERATO EXAMEN DE MATRICES Y DETERMINANTES 8 7 m + Ejercicio. Considera las matrices A m (a) [,5 puntos] Determina, si existen, los valores de m para los que A I A (b) [ punto] Determina, si existen,

Más detalles

Ejercicio 1 de la Opción A del modelo 1 de Solución

Ejercicio 1 de la Opción A del modelo 1 de Solución Ejercicio 1 de la Opción A del modelo 1 de 2008 Sean f : R R y g : R R las funciones definidas por f(x) = x 2 -(x + 1) + ax + b y g(x) = ce Se sabe que las gráficas de f y g se cortan en el punto ( 1,

Más detalles

Opción A Ejercicio 1 opción A, modelo Junio Incidencias 2014

Opción A Ejercicio 1 opción A, modelo Junio Incidencias 2014 Opción A Ejercicio 1 opción A, modelo Junio Incidencias 014 Sea f la función definida por f(x) = 1 + ln(x) para x > 0 (ln denota el logaritmo x neperiano). (a) [1 75 puntos] Determina el punto de la gráfica

Más detalles

Solución. Como f(2) = 0, tenemos 0 = -3/(2+1) + K = -3/3 + K = -1 + K, de donde K = 1, y la función es

Solución. Como f(2) = 0, tenemos 0 = -3/(2+1) + K = -3/3 + K = -1 + K, de donde K = 1, y la función es Ejercicio n º 1 de la opción A de junio de 2004 (Modelo 6) De la función f : (-1,+ ) R se sabe que f '(x) = 3/(x +1) 2 y que f(2) = 0. (a) [1'25 puntos] Determina f. [1'25 puntos] Halla la primitiva de

Más detalles

IES Francisco Ayala Modelo 2 (Septiembre) de 2008 Soluciones Germán Jesús Rubio Luna. Opción A. x - bx - 4 si x > 2

IES Francisco Ayala Modelo 2 (Septiembre) de 2008 Soluciones Germán Jesús Rubio Luna. Opción A. x - bx - 4 si x > 2 IES Francisco Ayala Modelo (Septiembre) de 008 Soluciones Germán Jesús Rubio Luna Opción A Ejercicio n 1 de la opción A de septiembre de 008 ax + x si x Sea f: R R la función definida por: f(x). x - bx

Más detalles

Opción A Ejercicio 1 opción A, modelo 5 Septiembre Reserva_ tan(x) - sen(x) [2 5 puntos] Calcula lim

Opción A Ejercicio 1 opción A, modelo 5 Septiembre Reserva_ tan(x) - sen(x) [2 5 puntos] Calcula lim IES Fco Ayala de Granada Septiembre de 014 Reserva 1 (Modelo 5) Soluciones Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo 5 Septiembre Reserva_1 014 tan(x) - sen(x) [ 5 puntos] Calcula lim

Más detalles

JUNIO DE PROBLEMA A1.

JUNIO DE PROBLEMA A1. JUNIO DE 29. PROBLEMA A. Estudia el siguiente sistema de ecuaciones lineales dependiente del parámetro real a y resuélvelo en los casos en que es compatible: x+ y- az -x+ay+ az2a+ x+ y+(a 3-2a)z a- (3

Más detalles

EXAMEN DE MATRICES Y DETERMINANTES

EXAMEN DE MATRICES Y DETERMINANTES EXAMEN DE MATRICES Y DETERMINANTES 14 10 16 Ejercicio 1. Tres personas, A, B, C, quieren comprar las siguientes cantidades de fruta: A: kg de peras, 1 kg de manzanas y 6 kg de naranjas. B: kg de peras,

Más detalles

JUNIO DE PROBLEMA A1.

JUNIO DE PROBLEMA A1. JUNIO DE. PROBLEMA A. Estudia el siguiente sistema de ecuaciones lineales dependiente del parámetro real a y resuélvelo en los casos en que es compatible: y+a za+4 a-y+(a+)z a-y+az (3 PUNTOS) Aplicamos

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO Opción A Ejercicio 1.- Sea la función f : (0, + ) R definida por f(x) = 1 +ln(x) donde ln denota la función x logaritmo neperiano. (a) [1 75 puntos] Halla los [ extremos ] absolutos de f (abscisas donde

Más detalles

Ejercicio 1 de la Opción A del modelo 2 de Solución

Ejercicio 1 de la Opción A del modelo 2 de Solución Ejercicio 1 de la Opción A del modelo 2 de 2003 En la figura adjunta puedes ver representada parte de la gráfica de una función f que está definida en el intervalo (-3, 3) y que es simétrica respecto al

Más detalles

SEPTIEMBRE 2003 PRUEBA A

SEPTIEMBRE 2003 PRUEBA A PROBLEMAS SEPTIEMBRE 003 PRUEBA A 1.- a) Discutir en función de los valores de m: x 3y 0 x y+ z 0 x + y + mz m b) Resolver en los casos de compatibilidad el sistema anterior..- Calcular el área de la región

Más detalles

Curso MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES Y VALORACIÓN

Curso MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES Y VALORACIÓN UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 2011-2012 MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES Y VALORACIÓN El alumno

Más detalles

Ejercicio 1 de la Opción A del modelo 6 de Solución

Ejercicio 1 de la Opción A del modelo 6 de Solución Ejercicio 1 de la Opción A del modelo 6 de 2008 Sea f : R R la función definida por f(x) = (3x 2x 2 )e x. [1 5 puntos] Determina los intervalos de crecimiento y de decrecimiento de f. [1 punto] Calcula

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD Opción A Ejercicio 1.- [2 5 puntos] Entre todos los triángulos rectángulos de 5 metros de hipotenusa, determina los catetos del de área máxima. Ejercicio 2.- [2 5 puntos] Sea f : ( 2, + ) R la función

Más detalles

Ejercicio 1 del modelo 5 de la opción A de sobrantes de Solución

Ejercicio 1 del modelo 5 de la opción A de sobrantes de Solución Ejercicio 1 del modelo 5 de la opción A de sobrantes de 2002 2'5 puntos Calcula una primitiva de la función f definida por f(x) = (2x 2 +10x)/(x 2 +2x - 3) para x 1 y x -3. Como f(x) = (2x 2 +10x)/(x 2

Más detalles

[2 5 puntos] Sea f la función definida, para x 0, por. Determina las asíntotas de la gráfica de f. Solución

[2 5 puntos] Sea f la función definida, para x 0, por. Determina las asíntotas de la gráfica de f. Solución Ejercicio n º 1 de la opción A de junio de 2008 [2 5 puntos] Sea f la función definida, para x 0, por. Determina las asíntotas de la gráfica de f. La recta x = a es una asíntota vertical (A.V.) de la función

Más detalles

IES Fco Ayala de Granada Junio de 2012 (Común Modelo ) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Junio de 2012 (Común Modelo ) Soluciones Germán-Jesús Rubio Luna IES Fco Ayala de Granada Junio de 01 (Común Modelo ) Soluciones Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo Junio 01 común Sea f : R R la función definida como f(x) = e x.(x ). [1 punto]

Más detalles

2) (1p) Aplicando la definición de derivada de una función en un punto, halla la derivada de f(x)= x sen x en x=0.

2) (1p) Aplicando la definición de derivada de una función en un punto, halla la derivada de f(x)= x sen x en x=0. 5 de diciembre de 2002. 1) (4p) Teoría: a) Define derivada de una función en un punto. b) Halla la derivada de y=a u, donde a es una constante positiva distinta de 1 y u es una función de. c) Enuncia la

Más detalles

IES Fco Ayala de Granada Junio de 2012 (Común Modelo 4) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Junio de 2012 (Común Modelo 4) Soluciones Germán-Jesús Rubio Luna IES Fco Ayala de Granada Junio de 01 (Común Modelo 4) Soluciones Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo Junio 01 común Sea f : R R la función definida como f(x) = e x.(x ). [1 punto]

Más detalles

1. Examen de matrices y determinantes

1. Examen de matrices y determinantes 1 EXAMEN DE MATRICES Y DETERMINANTES 1 1. Examen de matrices y determinantes Ejercicio 1. Halla todas las matrices X no nulas de la forma [ ] a 1 X = 0 b tales que X = X. Puesto que: X = [ ] [ ] a 1 a

Más detalles

Ejercicio 1 de la Opción A del modelo 5 de Solución

Ejercicio 1 de la Opción A del modelo 5 de Solución Ejercicio 1 de la Opción A del modelo 5 de 2007 Sea f : R R la función definida por f(x) = (x - 3)e x. [1 punto] Calcula los extremos relativos de f (puntos donde se obtienen y valores que se alcanzan).

Más detalles

Ejercicio 1 de la Opción A del modelo 4 de Solución

Ejercicio 1 de la Opción A del modelo 4 de Solución Ejercicio 1 de la Opción A del modelo 4 de 2005 Sea f : R R la función definida por f (x) = (5x + 8) / (x 2 + x + 1). (a) [0 5 puntos] Calcula los puntos de corte de la gráfica de f con los ejes coordenados.

Más detalles

IES Fco Ayala de Granada Junio de 2011 (Específico Modelo 5) Solución Germán-Jesús Rubio Luna. Opción A

IES Fco Ayala de Granada Junio de 2011 (Específico Modelo 5) Solución Germán-Jesús Rubio Luna. Opción A IES Fco Ayala de Granada Junio de 2011 (Específico Modelo 5) Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo Junio 2011 específico1 [2'5 puntos] Un alambre de 100 m de longitud se divide

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD Opción A Ejercicio 1.- [2 5 puntos] Una ventana normanda consiste en un rectángulo coronado con un semicírculo. De entre todas las ventanas normandas de perímetro 10 m, halla las dimensiones del marco

Más detalles

1) (1,6p) Estudia y clasifica las discontinuidades de la función: x+4-3 x-5. f(x)=

1) (1,6p) Estudia y clasifica las discontinuidades de la función: x+4-3 x-5. f(x)= 2 de diciembre de 2008. ) (,6p) Estudia y clasifica las discontinuidades de la función: f()= +4-3 -5 2) (,6p) Halla las ecuaciones de las asíntotas de la siguiente función y estudia la posición relativa:

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD Opción A xcos(x)+b sen(x) Ejercicio 1.- [2 5 puntos] Sabiendo que lím x 0 x 3 es finito, calcula b y el valor del límite. Ejercicio 2.- Sean f : R R y g : R R las funciones definidas mediante f(x) = x(x

Más detalles

IES Fco Ayala de Granada Junio específico de 2010 (Modelo 4) Solución Germán-Jesús Rubio Luna. Opción A

IES Fco Ayala de Granada Junio específico de 2010 (Modelo 4) Solución Germán-Jesús Rubio Luna. Opción A IES Fco Ayala de Granada Junio específico de 010 (Modelo 4) Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo 4 Junio Específico 010 [ 5 puntos] La hipotenusa de un triángulo rectángulo mide

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD Opción A Ejercicio 1.- [2 5 puntos] Halla las dimensiones del rectángulo de área máxima inscrito en un triángulo isósceles de 6 metros de base (el lado desigual) y 4 metros de alto. Ejercicio 2.- Sean

Más detalles

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás Problemas de Selectividad de Matemáticas II Comunidad de Madrid Resueltos Isaac Musat Hervás 22 de mayo de 203 Capítulo 7 Año 2006 7.. Modelo 2006 - Opción A Problema 7.. 2 puntos Un punto de luz situado

Más detalles

1) Estudia las discontinuidades y halla las ecuaciones de las asíntotas de la función: 1 f(x)= 1-e x

1) Estudia las discontinuidades y halla las ecuaciones de las asíntotas de la función: 1 f(x)= 1-e x CURSO 22-23. Septiebre de 23. ) Estudia las discontinuidades y halla las ecuaciones de las asíntotas de la función: f() -e 2) Utilizando la definición, calcula las derivadas laterales de la función f()

Más detalles

Matemáticas II. Curso Exámenes

Matemáticas II. Curso Exámenes Matemáticas II. Curso 009-00. Exámenes. Matrices y determinantes Ejercicio. Calcular el rango de la matriz A = 0 4 5 5 rango A = rango 0 4 5 5 poniendo ceros en la 3 a columna = rango 0 0 Puesto que F

Más detalles

IES Fco Ayala de Granada Modelo 5 del Solución Germán-Jesús Rubio Luna. Opción A. Ejercicio 1 de la opción A del modelo 5 de 1999.

IES Fco Ayala de Granada Modelo 5 del Solución Germán-Jesús Rubio Luna. Opción A. Ejercicio 1 de la opción A del modelo 5 de 1999. IES Fco Ayala de Granada Modelo 5 del 999. Germán-Jesús Rubio Luna Opción A Ejercicio de la opción A del modelo 5 de 999. [ 5 puntos] Haciendo el cambio de variable t = e x, calcula Calculamos primero

Más detalles

IES Fco Ayala de Granada Septiembre de 2015 (Modelo 3) Soluciones Germán-Jesús Rubio Luna. Opción A. Ejercicio 1 opción A, modelo 3 Septiembre

IES Fco Ayala de Granada Septiembre de 2015 (Modelo 3) Soluciones Germán-Jesús Rubio Luna. Opción A. Ejercicio 1 opción A, modelo 3 Septiembre IES Fco Ayala de Granada Septiembre de 015 (Modelo 3) Soluciones Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo 3 Septiembre 015 ax + b [ 5 puntos] Halla los valores a, b y c sabiendo que

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LOS EXÁMENES DEL COLEGIO DE ÁLGEBRA Y GEOMETRÍA DE MATEMÁTICAS II CURSO

SOLUCIONES A LOS EJERCICIOS DE LOS EXÁMENES DEL COLEGIO DE ÁLGEBRA Y GEOMETRÍA DE MATEMÁTICAS II CURSO SOLUCIONES A LOS EJERCICIOS DE LOS EXÁMENES DEL COLEGIO DE ÁLGEBRA Y GEOMETRÍA DE MATEMÁTICAS II CURSO 013-014 1 0 Ejercicio 1º.- Dada la matriz: A 1 1 a) (1,5 puntos) Determina los valores de λ para los

Más detalles

IES Fco Ayala de Granada Septiembre de 2014 Reserva 2 (Modelo 6) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Septiembre de 2014 Reserva 2 (Modelo 6) Soluciones Germán-Jesús Rubio Luna IES Fco Ayala de Granada Septiembre de 01 Reserva (Modelo 6) Soluciones Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo 6 Septiembre 01 ['5 puntos] De entre todos los triángulos rectángulos

Más detalles

Ejercicio 1 de la Opción A del modelo 4 de Solución

Ejercicio 1 de la Opción A del modelo 4 de Solución Ejercicio 1 de la Opción A del modelo 4 de 2004 Considera la integral definida I = (a) [1 5 puntos] Expresa la anterior integral definida aplicando el cambio de variables 1 + = t. (b) [1 punto] Calcula

Más detalles

MATEMÁTICAS: PAU 2016 JUNIO CASTILLA Y LEÓN

MATEMÁTICAS: PAU 2016 JUNIO CASTILLA Y LEÓN MATEMÁTICAS: PAU 26 JUNIO CASTILLA Y LEÓN Opción A Ejercicio A 5 a a) Discutir para qué valores de a R la matriz M = ( ) tiene inversa. Calcular M a para a =. ( 5 puntos) Para que exista inversa de una

Más detalles

3 2x +1. 3) Prueba que la ecuación 5 x =8x-2 tiene alguna raíz real. Encuentra un intervalo de amplitud menor que 0,25 donde esté dicha raíz.

3 2x +1. 3) Prueba que la ecuación 5 x =8x-2 tiene alguna raíz real. Encuentra un intervalo de amplitud menor que 0,25 donde esté dicha raíz. 21 de diciembre de 2000. 1 1) Calcula: 0 ln 2) Halla las asíntotas de la función: 5 3 f() 2-2 3 +7 3) Prueba que la ecuación 5 8-2 tiene alguna raíz real. Encuentra un intervalo de amplitud menor que 0,25

Más detalles

Examen de Matemáticas II (Septiembre 2016) Selectividad-Opción A Tiempo: 90 minutos

Examen de Matemáticas II (Septiembre 2016) Selectividad-Opción A Tiempo: 90 minutos Examen de Matemáticas II (Septiembre 206) Selectividad-Opción A Tiempo: 90 minutos Problema (3 puntos) Dada la función f(x) = (6 x)e x/3, se pide: a) ( punto). Determinar su dominio, asíntotas y cortes

Más detalles

Modelo 3. Ejercicio 1 de la Opción A de Sobrantes de 2010

Modelo 3. Ejercicio 1 de la Opción A de Sobrantes de 2010 Modelo 3. Ejercicio 1 de la Opción A de Sobrantes de 2010 [2 5 puntos] Sea la función f : R R dada por f(x) = Calcula las constantes a, b y c sabiendo que f es derivable y que la recta tangente a la gráfica

Más detalles

IES Fco Ayala de Granada Sobrantes del 2010 (Modelo 6) Soluciones Germán-Jesús Rubio Luna. Opción A

IES Fco Ayala de Granada Sobrantes del 2010 (Modelo 6) Soluciones Germán-Jesús Rubio Luna. Opción A Opción A Ejercicio 1 opción A, modelo 6 del 010 [ 5 puntos] Dada la función f : R R definida como f(x)= a.sen(x)+ bx + cx + d, determina los valores de las constantes a, b, c y d sabiendo que la gráfica

Más detalles

2) (1p) Demuestra que la derivada de y=ln x es y'=1/x.

2) (1p) Demuestra que la derivada de y=ln x es y'=1/x. CURSO 00-0 6 de noviembre de 00. ) (p) Define función derivada. ) (p) Demuestra que la derivada de yln es y'/. 3) (p) Enuncia el criterio de la derivada segunda para el estudio de la curvatura y los puntos

Más detalles

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás de mayo de 013 Capítulo 1 Año 011 1.1. Modelo 011 - Opción A Problema 1.1.1 (3 puntos) Dado el sistema: λx

Más detalles

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás de mayo de 013 Capítulo 10 Año 009 10.1. Modelo 009 - Opción A Problema 10.1.1 (3 puntos) Dados el plano π

Más detalles

M a t e m á t i c a s I I 1

M a t e m á t i c a s I I 1 Matemáticas II Matemáticas II CASTILLA Y LEÓN CONVOCATORIA SEPTIEMBRE 9 SOLUCIÓN DE LA PRUEBA DE ACCESO AUTOR: José Luis Pérez Sanz Prueba A Problemas a) f(x) x El denominador de f(x) nunca se anula; por

Más detalles

IES Fco Ayala de Granada Sobrantes del 2015 (Modelo 1) Soluciones Germán-Jesús Rubio Luna. Opción A

IES Fco Ayala de Granada Sobrantes del 2015 (Modelo 1) Soluciones Germán-Jesús Rubio Luna. Opción A IES Fco Ayala de Granada Sobrantes del 05 (Modelo ) Soluciones Germán-Jesús Rubio Luna Opción A Ejercicio opción A, modelo del 05 [ 5 puntos] Sea f : R R la función dada por f(x) = ax 3 + bx + cx + d Halla

Más detalles

PRUEBA DE ACCESO A LA UNIVERSIDAD MATEMÁTICAS II DE ANDALUCÍA CURSO Opción A

PRUEBA DE ACCESO A LA UNIVERSIDAD MATEMÁTICAS II DE ANDALUCÍA CURSO Opción A IES Fco Ayala de Granada Modelo 1 del 1999. Germán-Jesús Rubio Luna PRUEBA DE ACCESO A LA UNIVERSIDAD MATEMÁTICAS II DE ANDALUCÍA CURSO 1998999. Opción A Ejercicio 1, Opción A, Modelo 1 de 1999. x si x

Más detalles

Matemáticas Nivel Medio Matemáticas Ap.CC.SS.II

Matemáticas Nivel Medio Matemáticas Ap.CC.SS.II Matemáticas Nivel Medio Matemáticas Ap.CC.SS.II Martes, 7 de abril de 08 hora y 5 minutos. NOMBRE Y APELLIDOS CALIFICACIÓN. Se considera el sistema lineal de ecuaciones, dependiente del parámetro real

Más detalles

Solución. Restando estas dos últimas ecuaciones tenemos 9a = 9 de donde a = 1

Solución. Restando estas dos últimas ecuaciones tenemos 9a = 9 de donde a = 1 Ejercicio n º 1 de la opción A de junio de 2005 [2'5 puntos] De la función f : R R definida por f (x) = ax 3 + bx 2 + cx + d se sabe que tiene un máximo en x = -1, y que su gráfica corta al eje OX en el

Más detalles

Ejercicio 1 de la Opción A del modelo 6 de Solución

Ejercicio 1 de la Opción A del modelo 6 de Solución Ejercicio 1 de la Opción A del modelo 6 de 2007 [2 5 puntos] Determina la función f : R R sabiendo que f (x) = x 2 1 y que la recta tangente a la gráfica de f en el punto de abscisa x = 0 es la recta y

Más detalles

Preparando Selectividad Solución Selectividad - Modelo 03

Preparando Selectividad Solución Selectividad - Modelo 03 página 1/17 Preparando Selectividad Solución Selectividad - Modelo 03 Modelo 03. Opción A. Ejercicio 1 Sea f (x)=. x 5 x+6 a) Estudia el dominio y las asíntotas de la función. b) Estudia la monotonía c)

Más detalles

Pruebas de acceso a enseñanzas universitarias oficiales de grado Castilla y León

Pruebas de acceso a enseñanzas universitarias oficiales de grado Castilla y León Selectividad Junio 14 Pruebas de acceso a enseñanzas universitarias oficiales de grado Castilla y León MATEMÁTICAS II EJERCICIO Nº páginas: INDICACIONES: 1.- OPTATIVIDAD: El alumno deberá escoger una de

Más detalles

PROPUESTA A. f(x) = x 3 + ax 2 + bx + c,

PROPUESTA A. f(x) = x 3 + ax 2 + bx + c, PROPUESTA A 1A. Dada la función f(x) = x 3 + ax 2 + bx + c, calcula los parámetros a, b, c R sabiendo que: La recta tangente a la gráfica de f(x) en el punto de abcisa x = 1 tiene pendiente 3. f(x) tiene

Más detalles

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás Problemas de Selectividad de Matemáticas II Comunidad de Madrid Resueltos) Isaac Musat Hervás 22 de mayo de 2013 Capítulo 5 Año 2004 5.1. Modelo 2004 - Opción A Problema 5.1.1 2 puntos) a) 1 punto) Calcular

Más detalles

IES Fco Ayala de Granada Junio de 2016 (Modelo 2) Soluciones Germán-Jesús Rubio Luna. Opción A. a g(x)

IES Fco Ayala de Granada Junio de 2016 (Modelo 2) Soluciones Germán-Jesús Rubio Luna. Opción A. a g(x) IES Fco Ayala de Granada Junio de 06 (Modelo ) Soluciones Germán-Jesús Rubio Luna germanjss@gmailcom Opción A Ejercicio opción A, modelo Junio 06 ln( + ) - a sen() + cos(3) ['5 puntos] Sabiendo que lim

Más detalles

PAU Madrid. Matemáticas II. Año Examen de junio. Opción A. Ejercicio 1. Valor: 2 puntos.

PAU Madrid. Matemáticas II. Año Examen de junio. Opción A. Ejercicio 1. Valor: 2 puntos. Opción A. Ejercicio 1. Valor: 2 puntos. Calcular las edades actuales de una madre y sus dos hijos sabiendo que hace 14 años la edad de la madre era 5 veces la suma de las edades de los hijos en aquel momento,

Más detalles

Ejercicio 2 opción A, modelo 5 Septiembre 2010

Ejercicio 2 opción A, modelo 5 Septiembre 2010 Opción A Ejercicio 1 opción A, modelo 5 Septiembre 2010 [2 5 puntos] Una hoja de papel tiene que contener 18 cm 2 de texto Los márgenes superior e inferior han de ser de 2 cm cada uno y los laterales 1

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO - MATEMÁTICAS II Instrucciones: a) Duración: hora y minutos. b) Tienes que elegir entre realizar únicamente los cuatro ejercicios de la

Más detalles

M a t e m á t i c a s I I 1

M a t e m á t i c a s I I 1 Matemáticas II Matemáticas II CANTABRIA CONVOCATORIA JUNIO 009 SOLUCIÓN DE LA PRUEBA DE ACCESO AUTOR: José Luis Pérez Sanz Bloque I A a) No es cierto que el producto de matrices sea conmutativo. Por ejemplo,

Más detalles

CÁLCULO DE PARÁMETROS DE FUNCIONES 2º Bachillerato

CÁLCULO DE PARÁMETROS DE FUNCIONES 2º Bachillerato Cálculo de Parámetros Ejemplo 1: Determinar a,b y c para que la función f(x)= x 3 +ax 2 +bx+c tenga un máximo para x=-4, un mínimo para x=0 y tome el valor 1 para x=1 valor 1 para x=1 (1,1) f(1)=11=1 3

Más detalles

Examen de Matemáticas II (Modelo 2018) Selectividad-Opción A Tiempo: 90 minutos

Examen de Matemáticas II (Modelo 2018) Selectividad-Opción A Tiempo: 90 minutos Examen de Matemáticas II (Modelo 208) Selectividad-Opción A Tiempo: 90 minutos 0 Problema (2,5 puntos) Dadas las matrices A = 0 0, y I = 0 0 0 0 0 se pide: 0 0 a) (,5 puntos) Obtener los valores de m para

Más detalles

OPCIÓN A. rga < rga S. I. rga = m 0 m m = 0 Habrá que estudiarlo. rga. z

OPCIÓN A. rga < rga S. I. rga = m 0 m m = 0 Habrá que estudiarlo. rga. z San Blas, 4, entreplanta. 98 0 70 54 OPCIÓN A m + y + z = 0 E.-a) Discutir, en función del valor de m, el sistema de ecuaciones y my + mz = resolverlo para m = b) Para m = añadir una ecuación al sistema

Más detalles

Ejercicio 1 de la Opción A del modelo 6 de Solución

Ejercicio 1 de la Opción A del modelo 6 de Solución Ejercicio 1 de la Opción A del modelo 6 de 2003 [2'5 puntos] Sea la función f : R R definida por f(x) = 2x 3-6x + 4. Calcula el área del recinto limitado por la gráfica de f y su recta tangente en el punto

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD Opción A Ejercicio 1.- Sea la función f: (0,+ ) R definida por f(x) = ln(x), donde ln denota logaritmo x neperiano. a) [1 punto] Estudia y determina las asíntotas de la gráfica de f. b) [1 5 puntos] Halla

Más detalles

Preparando Selectividad Solución Selectividad - Modelo 06

Preparando Selectividad Solución Selectividad - Modelo 06 página 1/11 Preparando Selectividad Solución Selectividad - Modelo 06 Modelo 06. Opción A. Ejercicio 1 a) Realiza un dibujo aproximado de la gráfica de la función f (x)= { 4 x+12 si x 1 x 2 4 x+3 si x>

Más detalles

Preparando Selectividad Solución Selectividad - Modelo 05

Preparando Selectividad Solución Selectividad - Modelo 05 página 1/14 Preparando Selectividad Solución Selectividad - Modelo 05 Modelo 05. Opción A. Ejercicio 1 Sea la función a x si x 1 f b (x)={ } x +ln( x) si x >1 continua y derivable en x=1. a) Obtener a

Más detalles

Ejercicio 1 de la Opción A del modelo 3 de Solución

Ejercicio 1 de la Opción A del modelo 3 de Solución Ejercicio 1 de la Opción A del modelo 3 de 2004 [2 5 puntos] Calcula Para calcular determinamos primero las raíces del denominador, para descomponerlo en producto de factores y aplicarle la técnica de

Más detalles

Observaciones del profesor:

Observaciones del profesor: INSTRUCCIONES GENERALES Y VALORACIÓN El alumno contestará a los cuatro ejercicios de una de las dos opciones (A o B) que se le ofrecen. Nunca deberá contestar a unos ejercicios de una opción y a otros

Más detalles

, donde denota la matriz traspuesta de B.

, donde denota la matriz traspuesta de B. Pruebas de acceso a enseñanzas universitarias oficiales de grado Castilla y León MATEMÁTICAS II EJERCICIO Nº Páginas: INDICACIONES:.- OPTATIVIDAD: El alumno deberá escoger una de las dos opciones, pudiendo

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD Opción A Ejercicio 1.- Sea f la función definida por f(x) = ex x 1 a) [1 punto] Estudia y calcula las asíntotas de la gráfica de f. para x 1. b) [1 5 puntos] Halla los intervalos de crecimiento y de decrecimiento

Más detalles