Elementos finitos en la industria. Sesión III

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Elementos finitos en la industria. Sesión III"

Transcripción

1 Elementos finitos en l indstri III. SÓLIDOS D III.. EJEMPLOS III.. EORÍA BÁSICA III.. FORMA DE LA IERPOLACIÓ Y SU SUBSIUCIÓ III.. IERPOLACIÓ Y DISEÑO DEL ELEMEO III..5 MARICES DEL ELEMEO III..6 EXPRESIOES DERIADAS III..7 ALIDACIÓ III. SÓLIDOS D III.. EJEMPLOS III.. EORÍA BÁSICA III.. FORMA DE LA IERPOLACIÓ Y SU SUBSIUCIÓ III.. IERPOLACIÓ Y DISEÑO DEL ELEMEO III..5 MARICES DEL ELEMEO III..6 EXPRESIOES DERIADAS III..7 ALIDACIÓ Dr. Sergio Gllegos Cáres --

2 Elementos finitos en l indstri III. SÓLIDOS D III.. EJEMPLOS Los problems qe nliremos en est sección tienen ls sigientes crcterístics. Un volmen de mteril con geometrí complicd Crgs: Fers de cerpo en el volmen rcciones sobre l sperficie Apoos: Sjeción sobre l sperficie del cerpo qe control los desplmientos Ejemplos de estrctrs sólids se mestrn continción: Dr. Sergio Gllegos Cáres --

3 Elementos finitos en l indstri Conectores Engrnes Dr. Sergio Gllegos Cáres --

4 Elementos finitos en l indstri Motores Pies mecánics: Dr. Sergio Gllegos Cáres --

5 Elementos finitos en l indstri Press: Dr. Sergio Gllegos Cáres -5-

6 Elementos finitos en l indstri III.. EORÍA BÁSICA Modelo básico { t} S { b} Esfero en n pnto S { } τ τ τ τ τ τ τ τ τ Deformción Configrción inicil R Q R * Q * P * P { } Configrción finl Dr. Sergio Gllegos Cáres -6-

7 Elementos finitos en l indstri Deformción norml Distorsión Relción constittiv elástic linel { τ } [ D ]{ } τ τ τ τ τ τ En términos del módlo de Yong E el coeficiente de Poisson ν ν ν ν ν ν ν E ν ( ν)( ν) + Sim ν ν Eqilibrio por trbjo virtl δ W { δ} { τ} { δ } { } + { δ } { } d b d t ds S Dr. Sergio Gllegos Cáres -7-

8 Elementos finitos en l indstri III.. FORMA DE LA IERPOLACIÓ Y SU SUBSIUCIÓ L form estándr de l interpolción es Desplmiento virtl { } [ ]{ } ˆ { δ } [ ]{ δ} Se define l deformción rel virtl ˆ { ˆ } [ ]{ ˆ } [ ][ ]{} [ B]{} { δ } [ B]{ δ} ˆ Sbstitendo en el trbjo virtl { δ} { τ} { δ } { } + { δ } { } d b d t ds { δ} [ B] [ D]{ } d { δ} [ ] {} b d + { δ} [ ] {} t { δ} [ B] [ D][ B]{ δ} d [ ] {} b d + [ ] {} t ds S S S ds Fer intern Fer Por tnto, l ección de eqilibrio es { F } { F } int et Dr. Sergio Gllegos Cáres -8-

9 Elementos finitos en l indstri [ B] [ D]{ B} d{ } [ ] {} + [ ] {} + [ ] [ ]{ } [ ] { τ } b d t ds B D d B d S En formto mtricil [ K]{ } { f } Con [ K] [ B] [ D][ B] d { f } [ ] {} b d + [ ] {} t ds S III.. IERPOLACIÓ Y DISEÑO DEL ELEMEO Se define el tipo de elemento Se define l interpolción de elementos finitos correspondiente Dr. Sergio Gllegos Cáres -9-

10 Elementos finitos en l indstri Form nodl pr el componente : [ ]{ } [ ] () ( ) ( ) ( ) δ α δ α δ α δ α δ α δ α -- Dr. Sergio Gllegos Cáres

11 Elementos finitos en l indstri δ α δ α se interpoln en form nálog III..5 MARICES DEL ELEMEO Arreglo de componentes de desplmiento {} [ ]{} ˆ {} ˆ {} { } {} { } [ ] Deformciones -- Dr. Sergio Gllegos Cáres

12 Elementos finitos en l indstri {} []{} ˆ ˆ ˆ ˆ ˆ Mtri de rigide [ ] [ ][ ] [ ] [ ] [ ] [ ] [ ] B B B B B [ ] B [ ] B δ δ δ 6 Por tnto [ ] [ ] [ ][ ] [ ] [ ][ ] B D B B d D B K -- Dr. Sergio Gllegos Cáres

13 Elementos finitos en l indstri [ K ] [ K] [ K ] [ K ] [ K ] [ K ] [ ] [ ] [ ] K K K [ K ] [ K ] [ K ] [ K ] [ K ] [ K ] [ K ] [ K ] [ K ] [ B ] [ D][ B ] b b ector de fers nodles eqivlentes { f } [ ] {} b d + [ ] {} t ds S Ejemplo con fer de cerpo constnte: { f } [ b b b b b b b b b b b b ] rcción constnte sobre l cr (En form nálog pr ls otrs crs) S { f } [ t t t t t t t t t ] III..6 EXPRESIOES DERIADAS Este es el postprocesmiento de l informción Deformción: Esfero: { } [ B]{ } ˆ { ˆ τ } [ D ]({ ˆ } { }) + { τ } Dr. Sergio Gllegos Cáres --

14 Elementos finitos en l indstri Esfero de on Mises: (Clibrdo con preb de tensión) σ σ σ + σ σ + σ σ + σ + σ + σ ( ) ( ) ( ) ( ) M Esferos principles: σ σ σ σ ν σ σ σ σ ν σ ν σ σ σ τ σ σ σ σ n Esfero Cortnte Máimo (resc): (Clibrdo con preb de tensión) σ σ σ III..7 ALIDACIÓ Ejercicio : Probet en tensión Ejemplo : Soporte Dr. Sergio Gllegos Cáres --

15 Elementos finitos en l indstri III. EORÍA DE ELASICIDAD E D III.. CLASIFICACIÓ Y EJEMPLOS Los problems qe nliremos son csos especiles de l teorí de elsticidd en D. enemos tres csos diferentes: Deformción pln Esfero plno Aisimetrí Ejemplos de problems de deformción pln son: úneles Dr. Sergio Gllegos Cáres -5-

16 Elementos finitos en l indstri Press: Dr. Sergio Gllegos Cáres -6-

17 Elementos finitos en l indstri Ejemplos de problems de esfero plno son: igs gnchos Dr. Sergio Gllegos Cáres -7-

18 Elementos finitos en l indstri Mros de corte igs corts: Dr. Sergio Gllegos Cáres -8-

19 Elementos finitos en l indstri Coneiones Ejemplos de problems de isimetrí son: nqes: Dr. Sergio Gllegos Cáres -9-

20 Elementos finitos en l indstri Domos Dr. Sergio Gllegos Cáres --

21 Elementos finitos en l indstri III.. EORÍA BÁSICA Deformción pln Restricciones l teorí en D: Relciones esfero-deformción τ τ τ E ( + ν)( ν) ν ν ν ν ν El esfero norml en qed fijo por Dr. Sergio Gllegos Cáres --

22 Elementos finitos en l indstri τ Eν ( )( ) ( ) ν ν + + Relciones de comptibilidd sobrntes + Esfero plno Restricciones l teorí en D: τ, τ τ Relciones esfero-deformción τ ν E τ ν τ ( ν ) ν L deformción norml en qed fij por ν ν + ( ) Relciones de comptibilidd sobrntes + Aisimetrí Eje de revolción r Dr. Sergio Gllegos Cáres --

23 Elementos finitos en l indstri Restricciones l teorí en D: r θ θ Relciones esfero-deformción τ r τ θ τ τ r E ( + ν)( ν) ν ν ν r ν ν ν θ ν ν ν ν r Relciones de comptibilidd sobrntes r r + r r θ ( ) r + dθ rdθ rdθ r III.. FORMA DE LA IERPOLACIÓ Y SU SUBSIUCIÓ Es idéntic l de teorí en D Dr. Sergio Gllegos Cáres --

24 Elementos finitos en l indstri III.. IERPOLACIÓ Y DISEÑO DEL ELEMEO Se define el tipo de elemento (, ) (, ) (, ) Se define l interpolción de elementos finitos correspondiente Form nodl () ( ) [ ]{ } [ ] ( ) α + + α + + α + + A A A A ) ( ) + ( ) + ( Dr. Sergio Gllegos Cáres --

25 Elementos finitos en l indstri α α α se interpoln en form nálog III..5 MARICES DEL ELEMEO Arreglo de componentes de desplmiento {} [ ]{} ˆ {} ˆ ˆ ˆ { } { } { } { } { } [ ] Deformciones { } [ ]{ } B ˆ {} θ Mtri de rigide [ ] [ ][ ] [ ] [ ] [ ] [ ] B B B B -5- Dr. Sergio Gllegos Cáres

26 Elementos finitos en l indstri [ ] [ ] [ ] [ ] A A B A A B A A B Mtri de constittiv [ ] [ ] [ ] [ ] D D D D D [ ] D + + λ µ λ λ λ µ µ [ ] D λ λ D + λ µ Pr deformción pln esfero plno [ ] [ ] D D demás pr esfero plno λ λµ λ µ + El volmen se clcl medinte tdd d -6- Dr. Sergio Gllegos Cáres

27 Elementos finitos en l indstri con t π Cso isimétrico t Cso de deformción pln t t Cso de esfero plno Mtri de rigide De est form, pr esfero deformción plnos se tiene [ K ] [ B] [ D ][ B] t dd [ B] [ D ][ B] A t A [ K] [ K ] [ K ] [ K ] [ K ] [ K ] [ ] [ ] [ ] K K K [ K ] b t A ( λ + µ ) + µ b λ + µ b b b λ + µ b b ( λ + µ ) + µ b b Mientrs qe pr el cso isimétrico, se evlún ls integrles l centro del elemento c c [ K ] [ B] [ D][ B] t dd [ B] c [ D][ B] A c t c A [ K ] [ K ] [ K ] [ K ] [ K ] [ K ] [ ] [ ] [ ] K K K [ K b ] π c A[ B ] [ D][ B b ] c c ector de fers nodles eqivlentes { f} [ ] {} b d + [ ] { t} ds + [ B] [ D]{ } d [ B] { τ } S d Dr. Sergio Gllegos Cáres -7-

28 Elementos finitos en l indstri Pr esfero deformción plnos, bjo fer de cerpo constnte { } f b b b b b b bjo trcción constnte sobre el ldo L { f} t t t t t A Pr el cso isimétrico, bjo fer de cerpo constnte { } f b b b b b b bjo trcción constnte sobre el ldo { } π c A L f π Lc t t t t III..6 EXPRESIOES DERIADAS Igl l teorí en D III..7 ALIDACIÓ Ejercicio 5: Plc perford Dr. Sergio Gllegos Cáres -8-

RESISTENCIA DE MATERIALES I CURSO EXAMEN DE JUNIO

RESISTENCIA DE MATERIALES I CURSO EXAMEN DE JUNIO RESISTENI DE MTERILES I URSO 007-08 EXMEN DE JUNIO 6-6-008.- (3 puntos) L plc de l figur (E = 0 G, ν = 0,3) tiene 0 mm de espesor está sometid un estdo tensionl plno homogéneo bjo l solicitción indicd

Más detalles

PLACAS DELGADAS MEDIANTE

PLACAS DELGADAS MEDIANTE PLACAS DELGADAS MEDIANTE MÉTODOS CLÁSICOS ANÁLISIS DE ESTRUCTURAS II 4 O DE I.C.C.P. Por R. Gllego Sevill, G. Rus Crlorg A. E. Mrtíne Cstro Deprtmento de Mecánic de Estructurs e Ingenierí Hidráulic, Universidd

Más detalles

Generalización del PTV

Generalización del PTV pítulo Generlizción del TV.1. ontenido Trbjo virtul debido flexión y torsión. álculo de desplzmientos. Esfuerzos en estructurs reticulds. Resolución de hiperesttismos... Objetivos Generlizr el TV pr esfuerzos

Más detalles

W = 2 B A = B W-a = B h1 = 0.65 B r = 0.25 B h2 = 0.30 B

W = 2 B A = B W-a = B h1 = 0.65 B r = 0.25 B h2 = 0.30 B Progrm de Doctordo en Ingenierí Aeronáutic Cpítulo VIII. Norm ASTM E-399 Medid de l tencidd en régimen elástico-linel según l norm ASTM E-399. En l norm ASTM E-399 se plnte l metodologí pr relizr l medición

Más detalles

Electromagnetismo I. +q" #2q" d" 2d"

Electromagnetismo I. +q #2q d 2d Electromgnetismo I Semestre: 215-2 Prof. Alejndro Reyes Corondo Ayud. Crlos Alberto Mciel Escudero Ayud. Christin Esprz López Solución l Tre 4 Solución por Christin Esprz López 1.- Problem: (2pts Clcul

Más detalles

Electromagnetismo II

Electromagnetismo II Electromgnetismo II Semestre: 25- TAREA 4 Y SU SOLUCIÓN Dr. A. Reyes-Corondo Por: Pedro Edurdo Romn Tbod.- Problem: (5pts Clcul l fuerz sobre l crg +q de l figur que se muestr continución. El plno XY represent

Más detalles

a) La percusión que recibe la varilla viene dada por De las leyes de la dinámica impulsiva se sigue:

a) La percusión que recibe la varilla viene dada por De las leyes de la dinámica impulsiva se sigue: . Un vrill uniforme de longitud l y ms m cuelg verticlmente y está sujet por un rticulción en su extremo superior. L vrill se golpe en su extremo inferior con un fuerz orizontl F que dur un tiempo muy

Más detalles

Problema 1 El estado de tensiones de un punto de un sólido viene definido por el siguiente tensor:

Problema 1 El estado de tensiones de un punto de un sólido viene definido por el siguiente tensor: CAPÍULO - 8 Problem El estdo de tensiones de un punto de un sólido viene definido por el siguiente tensor: 7 6 ( ) 6 8 N / m XYZ 76 Hllr: ) ensiones direcciones principles sí como l mtri de pso entre el

Más detalles

EJERCICIOS DE INTEGRAL DOBLE PROPUESTOS EN EXÁMENES

EJERCICIOS DE INTEGRAL DOBLE PROPUESTOS EN EXÁMENES TUTORÍA DE MATEMÁTICAS III (º A.D.E.) e-mil: imozs@elx.ned.es º) Obtener el lor de l integrl doble I ( y)( x y) R x dxdy efectndo el sigiente cmbio de rible: x ; y, siendo R l región del plno limitd por

Más detalles

DINÁMICA DE FLUIDOS. Flujo Potencial. Potencial de velocidades. Función de corriente. Ejemplos.

DINÁMICA DE FLUIDOS. Flujo Potencial. Potencial de velocidades. Función de corriente. Ejemplos. DINÁMIC DE FLUIDOS Propiedades de los Flidos. Concepto de flido. Flido ideal. Viscosidad Tensión sperficial. Capilaridad Estática. Presión en n pnto. Ecación general de la estática. Teoremas de Pascal

Más detalles

Transformaciones en 2D. Sistemas de coordenadas. 2 dimensiones: traslación. 2 dimensiones: escalado

Transformaciones en 2D. Sistemas de coordenadas. 2 dimensiones: traslación. 2 dimensiones: escalado Trnsformciones Contenido Sistems de coordends Trnsformciones en D Trnsformciones en 3 dimensiones Composición de trnsformciones Rotción lrededor de un pivot Rotción lrededor de un eje Agrdecimientos: A

Más detalles

1: El producto escalar de un vector consigo mismo coincide con el cuadrado de su módulo

1: El producto escalar de un vector consigo mismo coincide con el cuadrado de su módulo UNIDAD : Geometrí eclíde. Prodcto esclr. PRODUCTO ESCALAR DE DOS VECTORES LIBRES Definición: Se llm prodcto esclr de los ectores y y se not por l nº rel qe se obtiene de l sigiente form: = es decir el

Más detalles

Electricidad y Magnetismo - FIS1533 Interrogación 1 Martes 10 de Abril de 2012 Profesores: María Cristina Depassier, Max Bañados y Sebastián A.

Electricidad y Magnetismo - FIS1533 Interrogación 1 Martes 10 de Abril de 2012 Profesores: María Cristina Depassier, Max Bañados y Sebastián A. Electricidd y Mgnetismo - FIS1533 Interrogción 1 Mrtes 10 de Abril de 2012 Profesores: Mrí Cristin Depssier, Mx Bñdos y Sebstián A Reyes - Instrucciones -Tiene dos hors pr resolver los siguientes problems

Más detalles

INTEGRAL DEFINIDA. ln ln ln dx 3. t t. 1 5 ln t t 5t 1 ln 1 7 ln 1. [7.1] Calcular: Solución. [7.2] Calcular: Solución INTEGRAL DEFINIDA

INTEGRAL DEFINIDA. ln ln ln dx 3. t t. 1 5 ln t t 5t 1 ln 1 7 ln 1. [7.1] Calcular: Solución. [7.2] Calcular: Solución INTEGRAL DEFINIDA INTEGRAL DEFINIDA INTEGRAL DEFINIDA [7.] Clclr: d 5 dt t d t t dt 5 5t t / t 5t t 5t / / t d dt 5 t t t dt 5 5 5 5 ln t t 5t ln 7 ln 5 / 9 t 7 7 7 7 7 7 ln ln ln 5 5 7 9 6 [7.] Clclr: ln 5 e e e d e t

Más detalles

Física y Química 1º Bach.

Física y Química 1º Bach. Físic Químic º Bch. I.E.S. Elviñ Problems Recuperción del tercer trimestre 8/06/0 Nombre: Tipo A Tipo B. Un muchcho intent hcer psr un pelot sobre un muro situdo 4,0 m de distnci lnzándol con un velocidd

Más detalles

E.T.S. DE INGENIERÍA (I.C.A.I.) TERCER CURSO. ELASTICIDAD Y RESISTENCIA DE MATERIALES Ejercicios complementarios 1

E.T.S. DE INGENIERÍA (I.C.A.I.) TERCER CURSO. ELASTICIDAD Y RESISTENCIA DE MATERIALES Ejercicios complementarios 1 E.T.S. DE INGENIERÍ (I...I.) TERER URSO. ELSTIIDD Y RESISTENI DE MTERILES Ejercicios complementrios 1 1.- ) uáles de los estdos de tensión representdos son posiles?. Rzonr l respuest. En el supuesto de

Más detalles

Electromagnetismo Auxiliar: 27 de agosto, Método de Imágenes en Electrostática

Electromagnetismo Auxiliar: 27 de agosto, Método de Imágenes en Electrostática Electromgnetismo Auxilir: 27 de gosto, 2008 Método de Imágenes en Electrostátic Nuestro objetivo es clculr el cmpo electrostático en el espcio considerndo l presenci de un conductor, ue está expuesto l

Más detalles

CAMBIO DE VARIABLES EN LA INTEGRAL DOBLE.

CAMBIO DE VARIABLES EN LA INTEGRAL DOBLE. CAMBIO E VAIABLES EN LA INEGAL OBLE. 7. Se = [, ] [, ] se define : como (, ) = ( +, ). Encontrr = ( ). Es inecti? Cd n de ls componentes = +, =, es fnción de n sol rible. Pr er qe es inecti, bst comprobr

Más detalles

Integral de línea de campos escalares.

Integral de línea de campos escalares. Integrl de líne de cmpos esclres. Sen f : R n R un cmpo esclr y un curv prmetrizd por σ : [, b] R n de modo que i) σ (1) [, b]. ii) σ([, b]) D(f). iii) f σ es continu en [, b]. Se define l integrl de f

Más detalles

2do Semestre 2011 AUTOEVALUACIÓN # 3. NOMBRE: RUT: PROFESOR:

2do Semestre 2011 AUTOEVALUACIÓN # 3. NOMBRE: RUT: PROFESOR: 2 do Semestre 211 Físic Generl II FIS12: FÍSICA GENERAL II 2do Semestre 211 AUTOEVALUACIÓN # 3. NOMBRE: RUT: PROFESOR: INSTRUCCIONES: L entreg es opttiv, no tiene not y tmpoco se relizrá un corrección

Más detalles

Dadas las matrices: y. a) Hallar A 10. b) Hallar la matriz inversa de B. c) En el caso particular de k=0, halla B 10. (PAU Septiembre )

Dadas las matrices: y. a) Hallar A 10. b) Hallar la matriz inversa de B. c) En el caso particular de k=0, halla B 10. (PAU Septiembre ) Dds ls mtrices: ) Hllr A. b) Hllr l mtri invers de B. c) En el cso prticulr de k=, hll B. (PAU Septiembre 4-5) ) A = = A = = = O A 4 = A A= O A = O ; lo mismo A 5, A 6 por tnto A = b) B = = ; Es un mtri

Más detalles

1 a. 1 a. dq πε

1 a. 1 a. dq πε .94 L crg positiv Q está distribuid uniformemente lrededor de un semicírculo de rdio. Hlle el cmpo eléctrico (mgnitud y dirección) en el centro de curvtur P. + + + + + Q + d x d P dθ y d y dl + θ dθ dq

Más detalles

geometria proyectiva primer cuatrimestre 2003 Práctica 5

geometria proyectiva primer cuatrimestre 2003 Práctica 5 geometri proyectiv primer cutrimestre 2003 Práctic 5 1. Encontrr un curv prmetrizd α cuy trz se el círculo x 2 + y 2 = 1, que lo recorr en el sentido de ls gujs del reloj y tl que α(0) = (0, 1). 2. Se

Más detalles

UT3 Analisis de esfuerzos en un Punto 3A Metodo Grafico. MC. Daniel Ramirez Villarreal. Ingenieria de Materiales. FIME-UANL + =

UT3 Analisis de esfuerzos en un Punto 3A Metodo Grafico. MC. Daniel Ramirez Villarreal. Ingenieria de Materiales. FIME-UANL + = UT3 Anlisis de esfuerzos en un Punto 3A Metodo Grfico Método Grfico. irculo de Mohr 3.5 Método grfico. irculo de Mohr Eiste un interpretción grfic de ls ecuciones nteriores hech por el ingeniero lemán

Más detalles

*************************************************************************

************************************************************************* 5.- figur reresent un estdo lno de deformciones; es decir: sólo son osibles ls deformciones según X e Y, siendo nuls en Z. Son dtos:, coeficiente de oisson (µ); y 4. ) Hllr l tensión según el eje Z. b)

Más detalles

Examen de Admisión a la Maestría 8 de Enero de 2016

Examen de Admisión a la Maestría 8 de Enero de 2016 Exmen de Admisión l Mtrí 8 de Enero de 1 Nombre: Instruccion: En cd rectivo seleccione l rput correct encerrndo en un círculo l letr corrpondiente. Puede hcer cálculos en ls hojs que se le proporcionron.

Más detalles

CAPÍTULO 3 DEFINICIÓN DE LAS PROPIEDADES PARA UNA PARED COMPUESTA SOMETIDA A TENSIÓN

CAPÍTULO 3 DEFINICIÓN DE LAS PROPIEDADES PARA UNA PARED COMPUESTA SOMETIDA A TENSIÓN CPÍTULO 3 DEFINICIÓN DE LS PROPIEDDES PR UN PRED COMPUEST SOMETID TENSIÓN Los términos de rigidez de un pred compuest, vn depender de l configurción de está, que su vez v depender de l configurción de

Más detalles

LEE ATENTAMENTE ANTES DE COMENZAR!

LEE ATENTAMENTE ANTES DE COMENZAR! UNIVERSIDAD ONTIFICIA COILLAS ESCUELA TÉCNICA SUERIOR DE INGENIERÍA (ICAI) Emen finl LEE ATENTAENTE ANTES DE COENZAR! El emen const de vrios ejercicios, que se reprtirán sucesivmente, con un tiempo máimo

Más detalles

TEMA 11: PROBLEMAS MÉTRICOS

TEMA 11: PROBLEMAS MÉTRICOS Alonso Fernánde Glián TEMA PROBLEMAS MÉTRICOS Finlmente vmos ocprnos de clclr ánglos distncis entre rects plnos de resolver problems relciondos con estos conceptos.. ÁNGULOS ENTRE RECTAS Y PLANOS Vemos

Más detalles

Cálculo Diferencial e Integral II 31 de octubre de Aplicaciones de la Integral. Mommentos y Centros de Masa

Cálculo Diferencial e Integral II 31 de octubre de Aplicaciones de la Integral. Mommentos y Centros de Masa Cálculo Diferencil e Integrl II 3 de octubre de 23 Aplicciones de l Integrl Mommentos y Centros de Ms Supong que tiene un vrill de ms pequeñ y en ell se fijn dos mss m y m 2 en ldos opuestos de un punto

Más detalles

5.2 Integral Definida

5.2 Integral Definida 80 CÁLCULO / CIENCIAS AMBIENTALES / TEMA 5 5.2 Integrl Definid Definición de Integrl Definid El concepto de integrl definid se construye prtir de l ide de psr l límite un sum cundo el número de sumndos

Más detalles

Héctor Palma Valenzuela. Dpto. de Matemática UdeC Definición e interpretación geométrica

Héctor Palma Valenzuela. Dpto. de Matemática UdeC Definición e interpretación geométrica Héctor Plm Vlenzuel. Dpto. de Mtemátic UdeC. L Integrl.-. Definición e interpretción geométric Dd un función continu f :[, b] R ynonegtiv (f (), [, b]), vmos considerr l región del plno bjo l gráfic de

Más detalles

Universidad Antonio Nariño Matemáticas Especiales

Universidad Antonio Nariño Matemáticas Especiales Universidd Antonio Nriño Mtemátics Especiles Guí N 4: Integrción omplej Grupo de Mtemátics Especiles Resumen Se estudi el concepto de integrción tnto pr funciones de vrible rel y vlor complejo, como pr

Más detalles

Sesión I. Elementos finitos en la industria -1- I.1 Introducción. I.2 El método de rigideces. I.3 Estructura de los programas

Sesión I. Elementos finitos en la industria -1- I.1 Introducción. I.2 El método de rigideces. I.3 Estructura de los programas I. Introdcción I. El método de rigideces I. Estrctra de los programas I. Principios variacionales -- I. INTRODUCCIÓN El modelo básico de n cerpo en mecánica debe representar a calqier cerpo posible. Consideremos

Más detalles

Apuntes de A. Cabañó Matemáticas II SISTEMAS DE ECUACIONES LINEALES

Apuntes de A. Cabañó Matemáticas II SISTEMAS DE ECUACIONES LINEALES puntes de. Cbñó Mtemátics II SISTEMS DE ECUCIONES LINELES 8. Epresión mtricil de un sistem.clsificción de un sistem en términos del número de soluciones. 8. Teorem de RouchéFrobenius. 8. El método de eliminción

Más detalles

55 EJERCICIOS DE VECTORES

55 EJERCICIOS DE VECTORES 55 EJERCICIOS DE VECTORES 1. ) Representr en el mismo plno los vectores: = (3,1) b = ( 1,5) c = (, 4) d = ( 3, 1) i = (1,0) j = (0,1) e = (3,0) f = (0, 5) b) Escribir ls coordends de los vectores fijos

Más detalles

a) De la Tabla 1 del catálogo de FOXBORO 81A Turbine Flowmeters, para un diámtero de 1 pulg. (que es el diámetro de nuestra cañería), los caudales

a) De la Tabla 1 del catálogo de FOXBORO 81A Turbine Flowmeters, para un diámtero de 1 pulg. (que es el diámetro de nuestra cañería), los caudales PROBLEMA En un instlción se mide cudles de un líquido de densidd 1 g/cc y 1 cp de viscosidd con un turbin Serie 81A de Foxboro de 1 pulg de diámetro. () Cuánto vle el cudl mínimo que es cpz de medir el

Más detalles

Curvas en el espacio.

Curvas en el espacio. Curvs en el espcio. Tod curv en el espcio R n se puede considerr como l imgen de un función vectoril r : [, b] R n, r(t) = (x 1 (t),..., x n (t)), que recibe el nombre de prmetrizción de l curv. Los puntos

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID Tempertur (ºC) UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Modelo Tecnologí Industril II. 21-211 Opción A Cuestión nº1 (2 puntos)

Más detalles

Integración numérica por Monte-Carlo

Integración numérica por Monte-Carlo Integrción numéric por onte-crlo Ptrici Svedr Brrer 1 16 de julio de 28 1 Deprtmento de temátics, Universidd Autónom etropolitn-iztplp, psb@xnum.um.mx 2 Introducción Se X un vrible letori continu que tom

Más detalles

Modelo Lineal General. Prof. Susana Martín ndez

Modelo Lineal General. Prof. Susana Martín ndez Modelo Linel Generl Prof. Susn Mrtín Fernández ndez Índice Introducción Modelo Linel Generl Análisis de l Vrinz Regresión n Linel Introducción Un Un modelo linel es un relción entre vribles mtemátics tics

Más detalles

La Elipse. Distancia Focal : F 1 F 2 = 2 c Eje mayor o focal : AB = 2 a Focos : F 1 y F 2 Eje menor : CD = 2 b. Además se cumple que a

La Elipse. Distancia Focal : F 1 F 2 = 2 c Eje mayor o focal : AB = 2 a Focos : F 1 y F 2 Eje menor : CD = 2 b. Además se cumple que a L Elipse L elipse es el lugr geométrico de los puntos del plno cuy sum de distncis dos puntos fijos es constnte. Estos dos puntos fijos se llmn focos de l elipse. Elementos de l Elipse Vértices : A, B,

Más detalles

PROBLEMAS DE ELASTICIDAD Y RESISTENCIA DE MATERIALES Complementarios 2

PROBLEMAS DE ELASTICIDAD Y RESISTENCIA DE MATERIALES Complementarios 2 ROES DE ESTIIDD Y RESISTENI DE TERIES omplementrios 2 1. r el estdo de tensiones definido en l figur, se pide: 200 ) Vlores de ls tensiones priciples. b) Representción del círculo de ohr tridimensionl,

Más detalles

GF4006, Métodos de Exploración Geofísica. Profesor Emilio Vera. Guía de Ejercicios Gravimetría. g z =2π G ρ h. (Corrección de Bouguer)

GF4006, Métodos de Exploración Geofísica. Profesor Emilio Vera. Guía de Ejercicios Gravimetría. g z =2π G ρ h. (Corrección de Bouguer) GF4006, Métodos de Explorción Geofísic Profesor Emilio Ver Guí de Ejercicios Grvimetrí 1) Usndo l integrl de contorno vist en clses: g z = 2 G z dθ Demuestre que l trcción grvittori de un plc orizontl

Más detalles

Relación 3. Sistemas de ecuaciones

Relación 3. Sistemas de ecuaciones Relción. Sistes de ecuciones Ejercicio. Consider el siste de ecuciones ) Eiste un solución del iso en l que? ) Resuelve el siste hoogéneo socido l siste ddo. c) H un interpretción geoétric tnto del siste

Más detalles

EJERCICIO RESUELTO. El muro de gravedad de la figura sostiene un terreno granular cuyos datos son conocidos.

EJERCICIO RESUELTO. El muro de gravedad de la figura sostiene un terreno granular cuyos datos son conocidos. JRCICIO RSULTO l muro de gredd de l figur sostiene un terreno grnulr cuyos dtos son conocidos. Se pide:. Utilindo l teorí de Rnkine, clculr y dibujr el digrm de presiones del terreno sobre el muro.. Utilindo

Más detalles

TEORÍA DE CÁLCULO II PARA GRADOS DE INGENIERÍA Elaborada por Domingo Pestana y José Manuel Rodríguez 4. INTEGRALES DE LÍNEA Y DE SUPERFICIE

TEORÍA DE CÁLCULO II PARA GRADOS DE INGENIERÍA Elaborada por Domingo Pestana y José Manuel Rodríguez 4. INTEGRALES DE LÍNEA Y DE SUPERFICIE TEORÍA E CÁLCULO II PARA GRAOS E INGENIERÍA Elbord por omingo Pestn y José Mnuel Rodríguez 4.1. INTEGRALES E LÍNEA 4. INTEGRALES E LÍNEA Y E SUPERFICIE Hbitulmente suele identificrse un tryectori : [,

Más detalles

Junio 2010 (Prueba General) JUNIO 2010 OPCIÓN A

Junio 2010 (Prueba General) JUNIO 2010 OPCIÓN A Junio 00 (Prueb Generl) JUNIO 00 OPCIÓN A.- ) Dds ls funciones f () = ln () y g() =, hllr el áre del recinto plno limitdo por ls rects =, = y ls gráfics de f () y g (). b) Dr un ejemplo de función continu

Más detalles

Funciones de variable compleja

Funciones de variable compleja Funciones de vrible complej Integrles impropis. Mrí Eugeni Torres Universidd Ncionl de Entre Ríos Fcultd de Ingenierí Funciones de Vrible Complej (Bioingenierí, Pln 28) Myo 29 Integrles impropis Alcnce

Más detalles

Apuntes de frenos y embragues

Apuntes de frenos y embragues Apuntes de frenos y embrgues FREOS DE ZAPATA EXTERO Cundo el ángulo de contcto del mteril de fricción con el tmbor es pequeño se puede considerr que l fuerz de rozmiento es tngente en el centro del ngulo

Más detalles

Tenemos 2 cargas puntuales q separadas por una distancia 2a: 1) Determine el campo eléctrico E en un punto P cualquiera de la recta mediatriz del

Tenemos 2 cargas puntuales q separadas por una distancia 2a: 1) Determine el campo eléctrico E en un punto P cualquiera de la recta mediatriz del Tenemos crgs puntules q seprds por un distnci : ) Determine el cmpo eléctrico E en un punto P culquier de l rect meditri del segmento de rect comprendido entre ls crgs; ) Determine el punto P en el que

Más detalles

FUNDAMENTOS DE PROGRAMACIÓN LINEAL

FUNDAMENTOS DE PROGRAMACIÓN LINEAL 18 de Septiembre de 2017 FUNDAMENTOS DE PROGRAMACIÓN LINEAL Ingenierí Industril Ingenierí Informátic Fcultd de Ingenierí Universidd Ctólic Andrés Bello Progrmción Linel José Luis Quintero 1 Puntos trtr

Más detalles

Integrales de Fourier

Integrales de Fourier Integrles de Fourier Otro grupo de integrles que pueden ser evluds medinte el Teorem de Residuos son ls integrles de Fourier. Integrles que involucrn funciones rcionles, f(, que stisfcen ls condiciones

Más detalles

XII.- TRANSMISIÓN DE CALOR POR CONVECCIÓN FLUJO EN CONDUCTOS

XII.- TRANSMISIÓN DE CALOR POR CONVECCIÓN FLUJO EN CONDUCTOS XII.- TANSMISIÓN DE CALO PO CONVECCIÓN FLUJO EN CONDUCTOS XII.1.- FLUJO ISOTÉMICO EN CONDUCTOS CICULAES; ECUACIÓN DE POISEUI- LLE En un flujo lminr l corriente es reltivmente lent y no es perturbd por

Más detalles

CONCEPTOS CLAVE DE LA UNIDAD 1. longitud del cateto opuesto al A longitud de la hipotenusa. longitud del cateto adyacente al longitud de la hipotenusa

CONCEPTOS CLAVE DE LA UNIDAD 1. longitud del cateto opuesto al A longitud de la hipotenusa. longitud del cateto adyacente al longitud de la hipotenusa CONCEPTOS CLAVE DE LA UNIDAD. Rzones trigonométrics Si A es n ánglo interior gdo de n triánglo rectánglo y s medid es θ, entonces: sen θ longitd del cteto opesto l A longitd de l hipotens cos θ longitd

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE MADRID JUNIO Tiempo máximo: 1 hora y 30 minutos OPCIÓN A

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE MADRID JUNIO Tiempo máximo: 1 hora y 30 minutos OPCIÓN A IES STELR BDJOZ PRUEB DE ESO (LOGSE) UNIVERSIDD DE MDRID JUNIO MTEMÁTIS II Tiempo máimo: hor minutos El lumno contestrá los cutro ejercicios de un de ls dos opciones ( o B) que se le ofrecen Nunc deberá

Más detalles

m m = -1 = μ - 1. Halla la Apellidos: Nombre: Curso: 2º Grupo: A Día: 27 - IV - 15 CURSO Opción A

m m = -1 = μ - 1. Halla la Apellidos: Nombre: Curso: 2º Grupo: A Día: 27 - IV - 15 CURSO Opción A S Instrucciones: EXAMEN DE MATEMATICAS II 3ª EVALUACIÓN Apellidos: Nobre: Curso: º Grupo: A Dí: 7 - IV - 5 CURSO 4-5 ) Durción: HORA y 3 MINUTOS. b) Debes elegir entre relizr únicente los cutro ejercicios

Más detalles

Vectores. Bases. Producto escalar, vectorial y mixto; y aplicaciones

Vectores. Bases. Producto escalar, vectorial y mixto; y aplicaciones Mtemátics II Geometí del espcio Vectoes. Bses. Podcto escl vectoil mixto; plicciones Obsevción: L moí de los poblems eseltos continción se hn popesto en los exámenes de Selectividd.. Ddos los vectoes (

Más detalles

Examen con soluciones

Examen con soluciones Cálculo Numérico I. Grdo en Mtemátics. Exmen con soluciones. Decidir rzondmente si ls siguientes firmciones son verdders o flss, buscndo un contrejemplo en el cso de ser flss (.5 puntos): () Si f(x) cmbi

Más detalles

Tema 11: Integral definida. Aplicaciones al cálculo de áreas

Tema 11: Integral definida. Aplicaciones al cálculo de áreas Tem : Integrl definid. Aplicciones l cálculo de áres. Introducción Ls integrles no vn permitir clculr áres de figurs no geométrics. En nuestro cso, nos limitremos clculr el áre jo un curv y el áre encerrd

Más detalles

Integración Numérica

Integración Numérica Métodos Numéricos: Integrción Numéric Edurdo P. Serrno Versión previ br 1 1. L integrl. Considermos el problem de clculr l integrl: If) = fx) dx donde f es un función continu. El vlor If) puede clculrse,

Más detalles

Tema 10: Integral definida. Aplicaciones al cálculo de áreas

Tema 10: Integral definida. Aplicaciones al cálculo de áreas Tem : Integrl definid. Aplicciones l cálculo de áres. Introducción Ls integrles nos vn permitir clculr áres de figurs no geométrics. En nuestro cso, nos limitremos clculr el áre jo un curv y el áre encerrd

Más detalles

Física II. Potencial Eléctrico. Ing. Alejandra Escobar UNIVERSIDAD FERMÍN TORO VICE RECTORADO ACADÉMICO FACULTAD DE INGENIERÍA

Física II. Potencial Eléctrico. Ing. Alejandra Escobar UNIVERSIDAD FERMÍN TORO VICE RECTORADO ACADÉMICO FACULTAD DE INGENIERÍA Físic II Potencil Eléctrico UNIVERSIDAD FERMÍN TORO VICE RECTORADO ACADÉMICO FACULTAD DE INGENIERÍA Ing. Alejndr Escor Energí Potencil Eléctric Se puede socir un energí potencil todo un sistem en el que

Más detalles

b c Ejercicios Desarrollados: Ley de Gauss Ejercicio 1 Solución

b c Ejercicios Desarrollados: Ley de Gauss Ejercicio 1 Solución : Ley de Guss jercicio 1 Un cscrón delgdo esférico de rdio, se encuentr rodedo concéntricmente por un cscrón metálico grueso de rdio interno b y externo c. Se sbe que el cscrón grueso tiene crg nul y el

Más detalles

DERIVADAS PARCIALES DE UNA FUNCIÓN N DE VARIAS VARIABLES

DERIVADAS PARCIALES DE UNA FUNCIÓN N DE VARIAS VARIABLES DERIVADAS PARCIALES DE UNA FUNCIÓN N DE VARIAS VARIABLES Deinición de derivd prcil en un punto lim + Se : A R con A R se un punto interior de A. Se denominn derivds prciles de respecto ls vriles e en el

Más detalles

La Integral Multiplicativa

La Integral Multiplicativa Universidd del Pís Vsco Mtemátic Aplicd y Estdístic L Integrl Multiplictiv Jun-Miguel Grci Extrcto: Se nliz l relción de l integrl multiplictiv de Volterr con l derivd logrítmic y los sistems diferenciles

Más detalles

TEMA 8. EMPUJES DEL TERRENO.

TEMA 8. EMPUJES DEL TERRENO. -- lementos de contención: n: definiciones y tipologís (I) Pntlls. Se emplen pr relizr excciones erticles, fundmentlmente en zons urbns. Se construyen desde l superficie del terreno preimente l ejecución

Más detalles

I.C.A.I.-E.T.S. DE INGENIEROS INDUSTRIALES RESISTENCIA DE MATERIALES. Ejercicios propuestos

I.C.A.I.-E.T.S. DE INGENIEROS INDUSTRIALES RESISTENCIA DE MATERIALES. Ejercicios propuestos I...I.-E.T.S. DE INGENIEROS INDUSTRILES RESISTENI DE MTERILES. Ejercicios propuestos 1.-Un brr de sección circulr, de 25 mm de diámetro, está sometid un fuerz de trcción de 5000 kg, ue se supone distribuid

Más detalles

Electromagnetismo. es nula. Encuentre el campo eléctrico en todo el espacio.

Electromagnetismo. es nula. Encuentre el campo eléctrico en todo el espacio. Electromgnetismo olución Prueb 1 de Cátedr Profesor: José ogn C. 17 de Abril del 24 Ayudntes: Pmel Men. Felipe Asenjo Z. 1. Un distribución de crg esféricmente simétric de rdio tiene un densidd interior

Más detalles

Fórmulas de Derivación. Fórmulas de Integración

Fórmulas de Derivación. Fórmulas de Integración Integrl Inefini A l operción e clclr l ntieriv (primitiv) e n fnción se le llm integrción se enot con el símbolo qe es l inicil e l plbr sm. Si F( es n fnción primitiv e f( se epres: f ( F( C si sólo si

Más detalles

1º (junio 1994) i) Estudiar, para los diferentes valores del parámetro a, la existencia de

1º (junio 1994) i) Estudiar, para los diferentes valores del parámetro a, la existencia de Sistems de ecuciones lineles SISTEMAS DE ECUACIONES LINEALES EJERCICIOS DE SELECTIVIDAD º (junio 994) i) Estudir, pr los diferentes vlores del prámetro, l eistenci de soluciones del sistem resolverlo cundo

Más detalles

5.-CÁLCULO DE VOLÚMENES DE ROTACIÓN.

5.-CÁLCULO DE VOLÚMENES DE ROTACIÓN. 65 ) Clculr el áre interior de l stroide = cos t = sen t, t De l figur, el áre totl uscd A será cutro veces el áre curd: A = (sen t)(cos t)( sent) dt A = sen t cos t dt. Pero: cos sen = ; + cos cos =,

Más detalles

6. APLICACIONES DE LA INTEGRAL.

6. APLICACIONES DE LA INTEGRAL. Tem 6. Aplicciones de l intergrl. Curso 217/18 6. APLCACONES DE LA NTEGRAL. 6.1. ntegrles impropis: convergenci. Se debe Cuchy l primer extensión de l integrl pr funciones denids en un intervlo no cotdo

Más detalles

, y el plano Π forma un ángulo β con el eje del cono, se pueden presentar los siguientes casos:

, y el plano Π forma un ángulo β con el eje del cono, se pueden presentar los siguientes casos: Águed Mt Miguel Rees, Dpto. de Mtemátic Aplicd, FI-UPM 9 Cónics 9. Cónics Se llm cónic culquier de ls secciones plns que se producen l cortr en el espcio un doble cono recto por un plno. Si el doble cono

Más detalles

5. Aplicación de la Integral de Riemann

5. Aplicación de la Integral de Riemann Ingenierí Mtemátic FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Diferencil e Integrl 8-2 Ingenierí Mtemátic Universidd de Chile SEMANA 9: APLICACIONES DE LA INTEGRAL 5. Aplicción

Más detalles

1.- El producto escalar de un vector consigo mismo coincide con el cuadrado de su módulo

1.- El producto escalar de un vector consigo mismo coincide con el cuadrado de su módulo UNIDAD.- Geometrí eclíde. Prodcto esclr (tem 6 del libro). PRODUCTO ESCALAR DE DOS VECTORES LIBRES Definición: Se llm prodcto esclr de los ectores se not por sigiente form: del ánglo qe formn dichos ectores.

Más detalles

CAPITULO I INTRODUCCIÓN A LA RESISTENCIA DE MATERIALES GUIA TRABAJOS PRACTICOS AÑO 2007

CAPITULO I INTRODUCCIÓN A LA RESISTENCIA DE MATERIALES GUIA TRABAJOS PRACTICOS AÑO 2007 SILI II IULO I INROUIÓN L RSISNI MRILS GUI RJOS RIOS ÑO 007..N 0.: ) lculr l tensión l que est sometido el lmbre de cero de l figur. b) lculr l deformción específic del cero de l figur c) lculr el corrimiento

Más detalles

Elementos finitos en la industria. Sesión II

Elementos finitos en la industria. Sesión II II.1 BARRAS Y ARMADURAS II.1.1 CASIFICACIÓN Y EJEMPOS II.1. TEORÍA BÁSICA II.1.3 FORMA DE A INTERPOACIÓN Y SU SUBSTITUCIÓN II.1.4 INTERPOACIÓN Y DISEÑO DE EEMENTO II.1.5 MATRICES DE EEMENTO II.1.6 EXPRESIONES

Más detalles

Aplicaciones de la integral.

Aplicaciones de la integral. Tem 10 Aplicciones de l integrl. 10.1. Áre de figurs plns. 10.1.1. Áre encerrd entre un curv y el eje de bsciss. Se f : [, b] R un función integrble, tl que f(x 0 x [, b]. El áre del recinto C = {(x, y

Más detalles

VECTORES, PLANOS Y RECTAS EN R 2 Y R 3

VECTORES, PLANOS Y RECTAS EN R 2 Y R 3 Profesionl en Técnics de Ingenierí VECTORES, PLANOS Y RECTAS EN R Y R 3 1. Puntos en R y R 3 Un pr ordendo (, ) y un tern ordend (,, c) representn puntos de IR y IR 3, respectivmente.,, c, se denominn

Más detalles

Integrales dobles y triples

Integrales dobles y triples Integrles dobles y triples 1 Integrles dobles Integrles triples 3 Cmbios de vrible R: retángulo R = [, b [, d f : R R: mpo eslr e dos vribles. Si f es ontinu en R f x : [, d R y f y : [, b R son funiones

Más detalles

7 Integral triple de Riemann

7 Integral triple de Riemann Miguel eyes, pto. de Mtemátic Aplicd, FI-UPM 1 7 Integrl triple de iemnn 7.1 efinición Llmremos rectángulo cerrdo de 3 (prlelepípedo) l producto de tres intervlos cerrdos y cotdos de, es decir = [, b]

Más detalles

MÉTODOS DE INTEGRACIÓN

MÉTODOS DE INTEGRACIÓN Mtemátics II LE.Tem 4: Introducción l teorí de integrción Integrles inmedits MÉTODOS DE INTEGRACIÓN x α = xα+ α+ + C, si α - (f(x)) α f '(x) = (f(x))α+ + C, si α - α + x = x + C f '(x) = f(x) + C f(x)

Más detalles

Aprendizaje de lenguajes incontextuales (II) Autómatas de árboles y gramáticas incontextuales

Aprendizaje de lenguajes incontextuales (II) Autómatas de árboles y gramáticas incontextuales prendizje de lengujes incontextules (II) utómts de ároles y grmátics incontextules José M. Sempere Deprtmento de Sistems Informáticos y omputción Universidd Politécnic de Vlenci onceptos ásicos de los

Más detalles

Electromagnetismo I. Semestre: TAREA 4 Y SU SOLUCIÓN Dr. A. Reyes-Coronado

Electromagnetismo I. Semestre: TAREA 4 Y SU SOLUCIÓN Dr. A. Reyes-Coronado Electromgnetismo I Semestre: 24-2 TAREA 4 Y SU SOLUCIÓN Dr. A. Reyes-Corondo Solución por Crlos Andrés Escobr Ruíz.- Problem: (25pts) Un esfer de rdio R, centrd en el origen, posee un densidd de crg ρ(r,

Más detalles

ELIPSE. Las componentes principales de la elipse se pueden obtener de la figura anterior, las cuales son: Focos: Vértices: Pág. 1

ELIPSE. Las componentes principales de la elipse se pueden obtener de la figura anterior, las cuales son: Focos: Vértices: Pág. 1 ELIPSE. Es el conjunto de todos los puntos con l propiedd de que l sum de ls distncis de los puntos del conjunto dos puntos fijos ddos es un constnte, myor que l distnci entre los dos puntos. L elipse

Más detalles

Las integrales que vamos a tratar de resolver numéricamente son de la forma I = f(x)dx

Las integrales que vamos a tratar de resolver numéricamente son de la forma I = f(x)dx Cpítulo 3 Integrción Numéric 3.1. Introducción Ls integrles que vmos trtr de resolver numéricmente son de l form f(x)dx donde [, b] es un intervlo finito. Sbemos que l integrl definid (de Riemnn) de un

Más detalles

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos)

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos) .0. Problems de plicciones de máximos y mínimos En est sección se muestr como usr l primer y segund derivd de un función en l búsqued de vlores extremos en los llmdos: problems de plicciones o problems

Más detalles

6. Variable aleatoria continua

6. Variable aleatoria continua 6. Vrile letori continu Un diálogo entre C3PO y Hn Solo, en El Imperio Contrtc, cundo el Hlcón Milenrio se dispone entrr en un cmpo de steroides: - C3PO: Señor, l proilidd de sorevivir l pso por el cmpo

Más detalles

Gestión de inventarios

Gestión de inventarios Gestión de inventrios José Mrí Ferrer Cj Universidd Pontifici Comills Introducción Inventrio (stock): Conjunto de bienes lmcendos pr su posterior uso Tipos de bienes del inventrio: Mteris prims en esper

Más detalles

Integración de funciones reales de una variable real. 24 de octubre de 2014

Integración de funciones reales de una variable real. 24 de octubre de 2014 Cálculo Integrción de funciones reles de un vrible rel 24 de octubre de 2014 c Dpto. de Mtemátics UDC Integrción de funciones reles de un vrible rel L integrl indefinid. Cálculo de primitivs L integrl

Más detalles

E.T.S. DE INGENIERÍA (I.C.A.I.) TERCER CURSO. ELASTICIDAD Y RESISTENCIA DE MATERIALES Ejercicios complementarios 1

E.T.S. DE INGENIERÍA (I.C.A.I.) TERCER CURSO. ELASTICIDAD Y RESISTENCIA DE MATERIALES Ejercicios complementarios 1 E.T.S. DE INGENIERÍ (I...I.) TERER URSO. ELSTIIDD Y RESISTENI DE MTERILES Ejercicios complementrios 1 1.- ) uáles de los estdos de tensión representdos son posiles?. Rzonr l respuest. En el supuesto de

Más detalles

HIPÉRBOLA. Ecuación de la hipérbola

HIPÉRBOLA. Ecuación de la hipérbola Mtemátic 014 HIPÉRBOLA Definición: Se llm hipérol l conjunto de puntos del plno que cumplen con l condición de que l diferenci de ls distncis dos puntos fijos, llmdos focos, es constnte. pf p f ' = constnte

Más detalles

Primitiva de una función.

Primitiva de una función. Primitiv de un función. 1 / 29 Definición. Un función derivble F es primitiv de l función f en el intervlo I si F (x) = f(x), pr todo x I. Ejemplos 2 / 29 Ejemplo. Se f : R R tl que f(x) = 4x 3. i) F(x)

Más detalles

3 de marzo de 2011 DSIC - UPV. Tema 5: Expresiones Regulares. U.D. Computación. Definiciones. Propiedades. Construcciones. AFs a partir de ERs

3 de marzo de 2011 DSIC - UPV. Tema 5: Expresiones Regulares. U.D. Computación. Definiciones. Propiedades. Construcciones. AFs a partir de ERs UD AFs Lem de UD DSIC - UPV 3 de mrzo de 2011 UD (DSIC - UPV) 3 de mrzo de 2011 1 / 40 Índice UD AFs Lem de sore expresiones regulres utómts finitos utómts finitos UD (DSIC - UPV) 3 de mrzo de 2011 2 /

Más detalles

Curso 2017/18, PEC 3 Fecha: 25/10/2017

Curso 2017/18, PEC 3 Fecha: 25/10/2017 E.T.S.I. Industriles Amplición de Resistenci de Mteriles Curso 2017/18, PEC 3 Fech: 25/10/2017 Nombre y pellidos: N o de mtrícul: 1 L estructur de l figur está formd por tres brrs rticulds de sección A,

Más detalles

( ) ( ) ρ ρ

( ) ( ) ρ ρ UNIDD 5 - PROBLEM 47 L presión reltiv del s en el primer piso del edificio es 100 mm c.. (mm de column de u). Determine l presión reltiv del s en el octvo piso, un ltur 3 m respecto el primero. sum que

Más detalles

una cuarta carga para que la fuerza eléctrica sobre esta q 4 sea nula? Cual debería ser su valor? q 1 q 3 q 2 Fig. 1 (b) (c) Fig.

una cuarta carga para que la fuerza eléctrica sobre esta q 4 sea nula? Cual debería ser su valor? q 1 q 3 q 2 Fig. 1 (b) (c) Fig. Físic III Práctic N 0 : Crg eléctric Problem. Clcule el cociente q/m entre l crg l ms e os prtículs iéntics cu fuerz e repulsión electrostátic tiene l mism mgnitu que l fuerz e trcción grvittori. Compre

Más detalles