Distribuciones habituales

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Distribuciones habituales"

Transcripción

1 Distribuciones habituales Tema 5 Eponencial Ignacio Cascos Depto. Estadística, Univerdad Carlos III 1 Ignacio Cascos Depto. Estadística, Univerdad Carlos III 2 Objetivos Adquirir soltura con el manejo de funciones de distribución, probabilidad y dendad. Reconocer los modelos bácos de distribución: Binomial, Geométrica, etc. Reconocer el papel central que juega la distribución Normal. Aplicar con soltura el Teorema Central del Límite. Eponencial Ignacio Cascos Depto. Estadística, Univerdad Carlos III 3 Ignacio Cascos Depto. Estadística, Univerdad Carlos III 4

2 Distribución de Bernoulli Una variable aleatoria que describe el número de éitos en 1 realización de un eperimento, en el que la probabilidad de éito es p decimos que gue distribución de Bernoulli de parámetro p. X ~ B(1, p) X número de éitos en 1 realización Distribución de Bernoulli Función de probabilidad: P(X = 1) = p ; P(X = ) = 1 p Función de distribución: F( ) = 1 p 1 < < 1 1 Parámetros: E[X] = p ; Var[X] = p(1 p) Ignacio Cascos Depto. Estadística, Univerdad Carlos III 5 Ignacio Cascos Depto. Estadística, Univerdad Carlos III 6 Distribución de Bernoulli Bernoulli('8) Bernoulli('8) Eponencial Ignacio Cascos Depto. Estadística, Univerdad Carlos III 7 Ignacio Cascos Depto. Estadística, Univerdad Carlos III 8

3 Distribución Binomial Una variable aleatoria que describe el número de éitos en n realizaciones independientes de un eperimento, en el que la probabilidad de éito en cada realización es p decimos que gue distribución binomial de parámetros n y p. X ~ B(n, p) X número de éitos en los n intentos indep. Ignacio Cascos Depto. Estadística, Univerdad Carlos III 9 Distribución Binomial Función de probabilidad: n k n k P( X = k) = p (1 p), k {,1, K, n}. k Podemos escribir X=X 1 + +X n donde las X i son variables de Bernoulli e independientes. Parámetros: E[X] = np ; Var[X] = np(1 p) Si X~B(n 1, p) e Y~B(n 2, p) son independientes, entonces X+Y~B(n 1 +n 2, p) Ignacio Cascos Depto. Estadística, Univerdad Carlos III 1 Distribución Binomial B(5,'7) B(5,'7) Eponencial Ignacio Cascos Depto. Estadística, Univerdad Carlos III 11 Ignacio Cascos Depto. Estadística, Univerdad Carlos III 12

4 Distribución Geométrica Una variable aleatoria que describe el número de realizaciones independientes de un eperimento para el que la probabilidad de obtener éito en cada realización es p hasta obtener el primer éito, gue distribución Geométrica o de Pascal de parámetro p. X ~ G(p) X número de veces que hay que repetir el eperimento hasta conseguir el primer éito Distribución Geométrica Función de probabilidad: P( X = k) = (1 p) k 1 p, k {1,2,3, K}. Parámetros: E[X] = 1/p ; Var[X] = (1 p)/p 2 Ignacio Cascos Depto. Estadística, Univerdad Carlos III 13 Ignacio Cascos Depto. Estadística, Univerdad Carlos III 14 Distribución Geométrica G('5) G('3) Eponencial Ignacio Cascos Depto. Estadística, Univerdad Carlos III 15 Ignacio Cascos Depto. Estadística, Univerdad Carlos III 16

5 Distribución de Poisson Una variable aleatoria que describe el número de sucesos ocurridos en una región, de tal modo que dichos sucesos ocurren independientemente y con una tasa constante decimos que gue distribución de Poisson de parámetro λ. X ~ (λ) X número de sucesos ocurridos en una región Distribución de Poisson Función de probabilidad: k λ λ P( X = k) = e, k {,1,2, K}. k! Parámetros: E[X] = λ ; Var[X] = λ Si X~ (λ 1 ) e Y~ (λ 2 ) son independientes, entonces X+Y~ (λ 1 +λ 2 ) Ignacio Cascos Depto. Estadística, Univerdad Carlos III 17 Ignacio Cascos Depto. Estadística, Univerdad Carlos III 18 Distribución de Poisson P(1) P(3) Eponencial Ignacio Cascos Depto. Estadística, Univerdad Carlos III 19 Ignacio Cascos Depto. Estadística, Univerdad Carlos III 2

6 Distribución Uniforme (continua) Una variable aleatoria X con distribución uniforme entre a y b (a<b) representa un número elegido al azar entre los valores a y b, de tal modo que la probabilidad de que dicho número esté en cualquier subconjunto del intervalo (a,b) depende ecluvamente del tamaño de dicho conjunto, X~U(a,b) Distribución Uniforme (continua) Función de dendad: 1 b a f ( ) = Función de distribución: F( ) a = b a 1 ( a, b) ( a, b) a a < < b b Parámetros: E[X] = (a+b)/2 ; Var[X] = (b a) 2 /12 Ignacio Cascos Depto. Estadística, Univerdad Carlos III 21 Ignacio Cascos Depto. Estadística, Univerdad Carlos III 22 denty Distribución Uniforme (continua) 1,9,8,7,6,5,4,3,2,1 Uniform Distribution,4,8 1,2 1,6 2 2,4 2,8 3,2 3,6 4 Lower limit,upper limit 1,3 cumulative probability 1,8,6,4,2 Uniform Distribution,4,8 1,2 1,6 2 2,4 2,8 3,2 3,6 4 Lower limit,upper limit 1,3 Eponencial Ignacio Cascos Depto. Estadística, Univerdad Carlos III 23 Ignacio Cascos Depto. Estadística, Univerdad Carlos III 24

7 Distribución Eponencial Si el número de sucesos que ocurren en un tiempo t gue distribución de Poisson proporcional a dicho tiempo (λt), entonces la variable aleatoria X tiempo entre sucesos gue distribución eponencial de parámetro λ. X ~ Ep(λ) Distribución Eponencial Función de dendad: λe f ( ) = Función de distribución: 1 e F( ) = > Parámetros: E[X] = λ 1 ; Var[X] = λ 2 λ λ > Ignacio Cascos Depto. Estadística, Univerdad Carlos III 25 Ignacio Cascos Depto. Estadística, Univerdad Carlos III 26 denty Distribución Eponencial,1,8,6,4,2 Eponential Distribution Mean 1 cumulative probability 1,8,6,4,2 Eponential Distribution Mean 1 Distribución Eponencial La distribución eponencial no tiene memoria. Dados t 1,t 2 > y una variable aleatoria T con distribución eponencial P(T > t 1 +t 2 T > t 1 ) = P(T > t 2 ) Ignacio Cascos Depto. Estadística, Univerdad Carlos III 27 Ignacio Cascos Depto. Estadística, Univerdad Carlos III 28

8 Eponencial Ignacio Cascos Depto. Estadística, Univerdad Carlos III 29 Distribución Normal La distribución Normal o de Gauss es el modelo probabilístico más importante. Se utiliza para modelar gran número de fenómenos aleatorios, entre ellos el ruido y los errores en la medida. Aparece además como distribución límite en el Teorema Central del Límite. Sus parámetros son la media µ y la desviación típica σ, X ~ N(µ,σ) Ignacio Cascos Depto. Estadística, Univerdad Carlos III 3 Distribución Normal Función de dendad normal estándar N(,1): 2 1 f ( ) = ep 2π 2 Función de dendad N(µ,σ): f ( ) 1 ( µ ) ep σ 2π 2σ = 2 Parámetros: E[X] = µ ; Var[X] = σ 2 2 denty Distribución Normal,4,3,2,1 Normal Distribution Mean,Std. dev1,1,8 cumulative probability,6,4,2 Normal Distribution Mean,Std. dev,1 Ignacio Cascos Depto. Estadística, Univerdad Carlos III 31 Ignacio Cascos Depto. Estadística, Univerdad Carlos III 32

9 Distribución Normal N(,'5) rojo, N(,1) negro, N(,2) azul r N(,1) negro, N(2,1) rojo r Ignacio Cascos Depto. Estadística, Univerdad Carlos III Distribución Normal Propiedades de la Normal. 1. Si X ~ N(µ,σ), para cualesquiera a y b, ax+b ~ N(aµ+b, a σ) 2. Si X ~N(µ 1,σ 1 )ey ~N(µ 2,σ 2 ) indep,paraa, b ax+by ~ N(aµ 1 +bµ 2, (a 2 σ 12 +b 2 σ 22 ) 1/2 ) Tipificación. Dada X~N(µ,σ), la variable aleatoria (X µ)/σ gue distribución N(,1). A esta transformación se le llama tipificación Ignacio Cascos Depto. Estadística, Univerdad Carlos III 34 Tabla de la normal Teorema Central de Límite Dada X 1,X 2,,X n n variables aleatorias independientes, con medias y varianzas finitas E[X i ]=µ i y Var[X i ]=σ i2, su suma gue aproimadamente distribución normal X 1 +X 2 + +X n N(Σ i=1,n µ i, (Σ i=1,n σ i2 ) 1/2 ) Buena aproimación n > 3. Si las variables son discretas, para aproimar su suma por una continua, realizamos corrección por continuidad. Ignacio Cascos Depto. Estadística, Univerdad Carlos III 35 Ignacio Cascos Depto. Estadística, Univerdad Carlos III 36

10 Aproimaciones con la Normal Aproimación Binomial-Normal. Una binomial B(n,p) puede construirse como suma de n variables de Bernoulli independientes. Aplicando el TCL, n > 3 y np(1 p) > 5, aproimamos una B(n,p) por una N ( np, np (1 p) ) B(5,'7) y N(35,3'24) Ignacio Cascos Depto. Estadística, Univerdad Carlos III 37 Aproimaciones con la Normal Aproimación Poisson-Normal. Una Poisson (λ) con λ > 5 puede aproimarse por una normal N(λ, λ 1/2 )..2.4 P(49) y N(49,7) Ignacio Cascos Depto. Estadística, Univerdad Carlos III 38 Eponencial Ignacio Cascos Depto. Estadística, Univerdad Carlos III 39 Chi cuadrado Si X 1,X 2,,X n son n variables aleatorias independientes con distribución N(,1), entonces Y=X 12 +X X n2 es una variable aleatoria con distribución chi cuadrado con n grados de libertad, Y ~ χ 2 n E[Y] = n ; Var[Y] = 2n Ignacio Cascos Depto. Estadística, Univerdad Carlos III 4

11 Chi cuadrado t de Student denty,1,8,6,4,2 Chi-Square Distribution Deg. of freedo1 1,8 cumulative probability,6,4,2 Chi-Square Distribution Deg. of freedo 1 Si X es una variable aleatoria normal estándar e Y es independiente de ella con distribución chi cuadrado con n grados de libertad, entonces X/(Y/n) 1/2 gue distribución t con n grados de libertad X Z = ~ t n Y / n E[Z] = n 2 ; Var[Z] = n/(n 2) n 3 Ignacio Cascos Depto. Estadística, Univerdad Carlos III 41 Ignacio Cascos Depto. Estadística, Univerdad Carlos III 42 t de Student F de Fisher denty Student's t Distribution Student's t Distribution,4 Deg. of freedo 1 Deg. of freedo 1 1,3,8,2, cumulative probability,6,4, Si X es una variable aleatoria chi cuadrado con n 1 grados de libertad e Y es independiente de ella con distribución chi cuadrado con n 2 grados de libertad, entonces (X/n 1 )/(Y/n 2 ) gue distribución F con n 1 y n 2 grados de libertad X Z = Y / / n n 1 ~ Fn 1, n 2 2 Ignacio Cascos Depto. Estadística, Univerdad Carlos III 43 Ignacio Cascos Depto. Estadística, Univerdad Carlos III 44

12 F de Fisher F (variance ratio) Distribution denty,8 Numerator d.f,denominator d.f. 1 Numerator d.f,denominator d.f. 1,1 1,1,6,4, cumulative probability,8,6,4, Ignacio Cascos Depto. Estadística, Univerdad Carlos III 45

Modelos de distribuciones discretas y continuas

Modelos de distribuciones discretas y continuas Ignacio Cascos Fernández Departamento de Estadística Universidad Carlos III de Madrid Modelos de distribuciones discretas y continuas Estadística I curso 2008 2009 1. Distribuciones discretas Aquellas

Más detalles

I. Distribuciones discretas

I. Distribuciones discretas Probabilidades y Estadística (M) Funciones de densidad o probabilidad puntual, esperanzas, varianzas y funciones características de las variables aleatorias más frecuentes I. Distribuciones discretas Distribución

Más detalles

ESTADÍSTICA I. Unidad 4: Resumen de Contenidos Teóricos 1. Mariano Lanza DISTRIBUCIONES DE PROBABILIDAD COMÚNMENTE UTILIZADAS

ESTADÍSTICA I. Unidad 4: Resumen de Contenidos Teóricos 1. Mariano Lanza DISTRIBUCIONES DE PROBABILIDAD COMÚNMENTE UTILIZADAS ESTADÍSTICA I Unidad 4: Resumen de Contenidos Teóricos Mariano Lanza DISTRIBUCIONES DE PROBABILIDAD COMÚNMENTE UTILIZADAS. VARIABLES ALEATORIAS DISCRETAS. Distribución Binomial Definición previa: Prueba

Más detalles

Tema 4: Variables aleatorias. Tema 4: Variables Aleatorias. Tema 4: Variables aleatorias. Objetivos del tema:

Tema 4: Variables aleatorias. Tema 4: Variables Aleatorias. Tema 4: Variables aleatorias. Objetivos del tema: Tema 4: Variables aleatorias Tema 4: Variables Aleatorias Distribución de Bernouilli Distribución Binomial Distribución de Poisson Distribución Exponencial Objetivos del tema: Al final del tema el alumno

Más detalles

10/04/2015. Ángel Serrano Sánchez de León

10/04/2015. Ángel Serrano Sánchez de León 0/04/05 Ángel Serrano Sánchez de León 0/04/05 Índice Distribuciones discretas de probabilidad Discreta uniforme Binomial De Poisson Distribuciones continuas de probabilidad Continua uniforme Normal o gaussiana

Más detalles

Part VI. Distribuciones notables. Estadística I. Mario Francisco. Principales distribuciones unidimensionales. discretas. Principales distribuciones

Part VI. Distribuciones notables. Estadística I. Mario Francisco. Principales distribuciones unidimensionales. discretas. Principales distribuciones Part VI notables El proceso de Bernoulli En cada observación se clasifica el elemento de la población en una de las dos posibles categorías, correspondientes a la ocurrencia o no de un suceso. Llamaremos

Más detalles

Modelos de probabilidad. Modelos de probabilidad. Modelos de probabilidad. Proceso de Bernoulli. Objetivos del tema:

Modelos de probabilidad. Modelos de probabilidad. Modelos de probabilidad. Proceso de Bernoulli. Objetivos del tema: Modelos de probabilidad Modelos de probabilidad Distribución de Bernoulli Distribución Binomial Distribución de Poisson Distribución Exponencial Objetivos del tema: Al final del tema el alumno será capaz

Más detalles

Tema 5. MODELOS DE DISTRIBUCIONES CONTINUOS.

Tema 5. MODELOS DE DISTRIBUCIONES CONTINUOS. Estadística Tema 5 Curso 6/7 Tema 5. MODELOS DE DISTRIBUCIONES CONTINUOS. Objetivos Conceptos: Conocer los siguientes modelos continuos de probabilidad: uniforme, normal, eponencial, gamma y Pareto. De

Más detalles

TEMA 2.- VARIABLES ALEATORIAS UNIDIMENSIONALES.- CURSO 17/18

TEMA 2.- VARIABLES ALEATORIAS UNIDIMENSIONALES.- CURSO 17/18 TEMA 2.- VARIABLES ALEATORIAS UNIDIMENSIONALES.- CURSO 17/18 2.1. Concepto de variable aleatoria. Tipos de variables aleatorias: discretas y continuas. 2.2. Variables aleatorias discretas. Diagrama de

Más detalles

Tema 3: Cálculo de Probabilidades Unidad 4: Algunas Distribuciones Notables de Variables Aleatorias

Tema 3: Cálculo de Probabilidades Unidad 4: Algunas Distribuciones Notables de Variables Aleatorias Estadística Tema 3: Cálculo de Probabilidades Unidad 4: Algunas Distribuciones Notables de Variables Aleatorias Área de Estadística e Investigación Operativa Licesio J. Rodríguez-Aragón Noviembre 2010

Más detalles

Percentiles. El percentil p de una variable aleatoria X es número más pequeño, que denominaremos x u que cumple:

Percentiles. El percentil p de una variable aleatoria X es número más pequeño, que denominaremos x u que cumple: Percentiles 130 El percentil p de una variable aleatoria X es número más pequeño, que denominaremos x u que cumple: el percentil es, por tanto, el valor de la variable aleatoria para el cual la función

Más detalles

Estadís5ca. María Dolores Frías Domínguez Jesús Fernández Fernández Carmen María Sordo. Tema 4. Distribuciones comunes

Estadís5ca. María Dolores Frías Domínguez Jesús Fernández Fernández Carmen María Sordo. Tema 4. Distribuciones comunes Estadís5ca Tema 4. Distribuciones comunes María Dolores Frías Domínguez Jesús Fernández Fernández Carmen María Sordo Departamento de Matemá.ca Aplicada y Ciencias de la Computación Este tema se publica

Más detalles

Distribuciones de probabilidad más usuales

Distribuciones de probabilidad más usuales Tema 5 Distribuciones de probabilidad más usuales En este tema se estudiarán algunas de las distribuciones discretas y continuas más comunes, que se pueden aplicar a una gran diversidad de problemas y

Más detalles

TEMA 3. Algunos modelos de probabilidad de tipo discreto. 3.1 Al finalizar el tema el alumno debe conocer...

TEMA 3. Algunos modelos de probabilidad de tipo discreto. 3.1 Al finalizar el tema el alumno debe conocer... TEMA 3. Algunos modelos de probabilidad de tipo discreto En este capítulo se abordan «familias» muy específicas de probabilidad, que con cierta frecuencia se nos presentan en el mundo real. Van a ser distribuciones

Más detalles

Técnicas Cuantitativas para el Management y los Negocios I

Técnicas Cuantitativas para el Management y los Negocios I Técnicas Cuantitativas para el Management y los Negocios I Licenciado en Administración Módulo II: ESTADÍSTICA INFERENCIAL Contenidos Módulo II Unidad 4. Probabilidad Conceptos básicos de probabilidad:

Más detalles

Tema 6: Modelos de probabilidad.

Tema 6: Modelos de probabilidad. Estadística 60 Tema 6: Modelos de probabilidad. 6.1 Modelos discretos. (a) Distribución uniforme discreta: La variable aleatoria X tiene una distribución uniforme discreta de parámetro n,que denoteramos

Más detalles

Métodos Matemá6cos en la Ingeniería Tema 8. Distribuciones comunes

Métodos Matemá6cos en la Ingeniería Tema 8. Distribuciones comunes Métodos Matemá6cos en la Ingeniería Tema 8. Distribuciones comunes Jesús Fernández Fernández Carmen María Sordo García DEPARTAMENTO DE MATEMÁTICA APLICADA Y CIENCIAS DE LA COMPUTACIÓN UNIVERSIDAD DE CANTABRIA

Más detalles

Distribuciones unidimensionales continuas

Distribuciones unidimensionales continuas Estadística II Universidad de Salamanca Curso 2011/2012 Outline 1 Distribución uniforme continua 2 Estándar 3 Distribución χ 2 de Pearson 4 Distribución uniforme continua Definición Es una variable continua

Más detalles

Estadística Grupo V. Tema 10: Modelos de Probabilidad

Estadística Grupo V. Tema 10: Modelos de Probabilidad Estadística Grupo V Tema 10: Modelos de Probabilidad Algunos modelos de distribuciones de v.a. Hay variables aleatorias que aparecen con frecuencia en las Ciencias Sociales y Económicas. Experimentos dicotómicos

Más detalles

Tema 4: Probabilidad y Teoría de Muestras

Tema 4: Probabilidad y Teoría de Muestras Tema 4: Probabilidad y Teoría de Muestras Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 4: Probabilidad y Teoría de Muestras Curso 2008-2009

Más detalles

Resumen de Probabilidad

Resumen de Probabilidad Definiciones básicas * Probabilidad Resumen de Probabilidad Para calcular la probabilidad de un evento A: P (A) = N o decasosfavorables N o decasosposibles * Espacio muestral (Ω) Es el conjunto de TODOS

Más detalles

TEMA 6. Distribuciones

TEMA 6. Distribuciones TEMA 6. Distribuciones Alicia Nieto Reyes BIOESTADÍSTICA Alicia Nieto Reyes (BIOESTADÍSTICA) TEMA 6. Distribuciones 1 / 16 Probabilidad= Distribución= Distribución de Probabilidad Cuando queremos conocer

Más detalles

Tema 4. MODELOS DE DISTRIBUCIONES DISCRETOS.

Tema 4. MODELOS DE DISTRIBUCIONES DISCRETOS. Estadística Tema 4 Curso /7 Tema 4. MODELOS DE DISTRIBUCIONES DISCRETOS. Objetivos Conceptos: Conocer los siguientes modelos discretos de probabilidad: uniforme, binomial, geométrico y Poisson. De cada

Más detalles

Tema 3. Probabilidad y variables aleatorias

Tema 3. Probabilidad y variables aleatorias 1 Tema 3. Probabilidad y variables aleatorias En este tema: Probabilidad: Experimentos aleatorios, espacio muestral, sucesos. Interpretaciones de la probabilidad. Propiedades de la probabilidad. Probabilidad

Más detalles

Probabilidad II Algunas distribuciones notables. Antonio Cuevas Departamento de Matemáticas Universidad Autónoma de Madrid

Probabilidad II Algunas distribuciones notables. Antonio Cuevas Departamento de Matemáticas Universidad Autónoma de Madrid Probabilidad II Algunas distribuciones notables Antonio Cuevas Departamento de Matemáticas Universidad Autónoma de Madrid La distribución normal f (x; µ, σ) = 1 σ 2π e 1 2( x µ σ ) 2, x R, µ R, σ > 0 E(X

Más detalles

Teoría Estadística Elemental I Teoría (resumida) del 2 do Tema

Teoría Estadística Elemental I Teoría (resumida) del 2 do Tema Teoría Estadística Elemental I Teoría (resumida) del 2 do Tema Raúl Jiménez Universidad Carlos III de Madrid Noviembre 2011 Consideremos el lanzamiento de un dado, Ω = {1, 2, 3, 4, 5, 6}, y supongamos

Más detalles

JUEGO DE BASKETBALL. Repaso de Distribuciones de Probabilidad Discretas y Continuas

JUEGO DE BASKETBALL. Repaso de Distribuciones de Probabilidad Discretas y Continuas JUEGO DE BASKETBALL Repaso de Distribuciones de Probabilidad Discretas y Continuas PREGUNTA #1 Qué es una variable aleatoria uniforme discreta? Cómo es su distribución? Qué es una variable aleatoria uniforme

Más detalles

Modelos de distribuciones discretas y continuas

Modelos de distribuciones discretas y continuas Tema 6 Modelos de distribuciones discretas y continuas 6.1. Modelos de distribuciones discretas 6.1.1. Distribución uniforme sobre n puntos Definición 6.1.2 Se dice que una v.a. X sigue una distribución

Más detalles

Universidad Nacional de La Plata

Universidad Nacional de La Plata Universidad Nacional de La Plata Facultad de Ciencias Agrarias y Forestales CÁLCULO ESTADÍSTICO STICO Y BIOMETRÍA CONTENIDOS UNIDAD 3: Introducción al Cálculo de Probabilidades. Experimento aleatorio.

Más detalles

Introducción al Tema 8. Tema 6. Variables aleatorias unidimensionales Distribución. Características: media, varianza, etc. Transformaciones.

Introducción al Tema 8. Tema 6. Variables aleatorias unidimensionales Distribución. Características: media, varianza, etc. Transformaciones. Introducción al Tema 8 1 Tema 6. Variables aleatorias unidimensionales Distribución. Características: media, varianza, etc. Transformaciones. V.A. de uso frecuente Tema 7. Modelos probabiĺısticos discretos

Más detalles

Tema 5 Modelos de distribuciones de Probabilidad

Tema 5 Modelos de distribuciones de Probabilidad Tema 5 Modelos de distribuciones de Probabilidad Variable aleatoria unidimensional Dado un espacio de Probabilidad (E, F, P), una variable aleatoria es una aplicación del espacio muestral E al conjunto

Más detalles

Distribuciones de probabilidad Discretas

Distribuciones de probabilidad Discretas Distribuciones de probabilidad Discretas Distribución Uniforme Discreta Definición Una variable aleatoria X, tiene una distribución uniforme discreta, si cada uno de los valores x 1, x 2,.. x n, tiene

Más detalles

Estadística Aplicada

Estadística Aplicada Estadística Aplicada Distribuciones de Probabilidad Variables aleatorias Toman un valor numérico para cada resultado de un espacio muestral Discretas. Sus valores posibles constituyen un conjunto discreto.

Más detalles

Tema 3. Tema 3 La Distribución Normal y los Puntajes Estándar. Profa. María Fátima Dos Santos

Tema 3. Tema 3 La Distribución Normal y los Puntajes Estándar. Profa. María Fátima Dos Santos Tema 3 Tema 3 La Distribución Normal y los Puntajes Estándar Profa. María Fátima Dos Santos 1 TEMARIO Concepto de distribución. Algunas distribuciones. Distribución normal. Características Distribución

Más detalles

Cuando la distribución viene dada por una tabla: 2. DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA.

Cuando la distribución viene dada por una tabla: 2. DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. 1. DISTRIBUCIONES ESTADÍSTICAS. El siguiente grafico corresponde a una distribución de frecuencias de variable cuantitativa y discreta pues solo puede tomar valores aislados (0, 1, 2, 3, 10). Se trata

Más detalles

VARIABLES ALEATORIAS CONTINUAS

VARIABLES ALEATORIAS CONTINUAS VARIABLES ALEATORIAS CONTINUAS El zoo binomial: las probabilidades en la distribución binomial. Tutorial 5, sección 2 X = número de éxitos al repetir n veces un experimento con probabilidaf de éxito p

Más detalles

VARIABLES ALEATORIAS CONTINUAS

VARIABLES ALEATORIAS CONTINUAS VARIABLES ALEATORIAS CONTINUAS M. en C. Juan Carlos Gutiérrez Matus Instituto Politécnico Nacional Primavera 2004 IPN UPIICSA c 2004 Juan C. Gutiérrez Matus Definición de una V.A.C. Definición de una V.A.C.

Más detalles

Distribuciones de Probabilidad

Distribuciones de Probabilidad Distribuciones de Probabilidad Experimento aleatorio Probabilidad Definición variable aleatoria: discretas y continuas Función de distribución y medidas Distribución Binomial Distribución de Poisson Distribución

Más detalles

Distribuciones Probabilísticas. Curso de Estadística TAE,2005 J.J. Gómez Cadenas

Distribuciones Probabilísticas. Curso de Estadística TAE,2005 J.J. Gómez Cadenas Distribuciones Probabilísticas Curso de Estadística TAE,005 J.J. Gómez Cadenas Distribución Binomial Considerar N observaciones independientes tales que: El resultado de cada experimento es acierto o fallo

Más detalles

Algunas Distribuciones Continuas de Probabilidad. UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides

Algunas Distribuciones Continuas de Probabilidad. UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides Algunas Distribuciones Continuas de Probabilidad UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides Introducción El comportamiento de una variable aleatoria queda

Más detalles

Variables aleatorias. Descripción breve del tema. Objetivos. Descripción breve del tema. Tema 4

Variables aleatorias. Descripción breve del tema. Objetivos. Descripción breve del tema. Tema 4 Descripción breve del tema Variables aleatorias Tema 4 Ignacio Cascos Depto. Estadística, Universidad Carlos III 1 Ignacio Cascos Depto. Estadística, Universidad Carlos III 2 Objetivos Descripción breve

Más detalles

Algunos conceptos de probabilidad

Algunos conceptos de probabilidad Algunos conceptos de probabilidad Variables Aleatorias Al realizar un experimento aleatorio muchas veces, esperamos que los resultados obtenidos sean gobernados por sus probabilidades. Así las probabilidades

Más detalles

Introducción al Diseño de Experimentos.

Introducción al Diseño de Experimentos. Introducción al Diseño de Experimentos www.academia.utp.ac.pa/humberto-alvarez Introducción Una población o universo es una colección o totalidad de posibles individuos, especímenes, objetos o medidas

Más detalles

Modelos Básicos de Distribuciones Discretas y Continuas

Modelos Básicos de Distribuciones Discretas y Continuas Modelos de Distribuciones Discretas y Continuas 1/27 Modelos Básicos de Distribuciones Discretas y Continuas Departamento de Estadística e Investigación Operativa Universidad de Sevilla Contenidos Modelos

Más detalles

Cap. 5 : Distribuciones muestrales

Cap. 5 : Distribuciones muestrales Cap. 5 : Distribuciones muestrales Alexandre Blondin Massé Departamento de Informática y Matematica Université du Québec à Chicoutimi 18 de junio del 2015 Modelado de sistemas aleatorios Ingeniería de

Más detalles

Probabilidad, Variable Aleatoria Pag 1 de 26 PROBABILIDAD

Probabilidad, Variable Aleatoria Pag 1 de 26 PROBABILIDAD Probabilidad, Variable Aleatoria Pag 1 de 6 PROBABILIDAD Actualmente la teoría de probabilidades desempeña un papel importante en el campo de los negocios, la investigación, específicamente en la toma

Más detalles

478 Índice alfabético

478 Índice alfabético Índice alfabético Símbolos A, suceso contrario de A, 187 A B, diferencia de los sucesos A y B, 188 A/B, suceso A condicionado por el suceso B, 194 A B, intersección de los sucesos A y B, 188 A B, unión

Más detalles

Métodos Estadísticos de la Ingeniería Práctica 5: Distribuciones de Probabilidad y el Teorema Central del

Métodos Estadísticos de la Ingeniería Práctica 5: Distribuciones de Probabilidad y el Teorema Central del Métodos Estadísticos de la Ingeniería Práctica 5: Distribuciones de Probabilidad y el Teorema Central del Límite Área de Estadística e Investigación Operativa Mariano Amo Salas y Licesio J. Rodríguez-Aragón

Más detalles

Variables aleatorias continuas y Teorema Central del Limite

Variables aleatorias continuas y Teorema Central del Limite Variables aleatorias continuas y Teorema Central del Limite FaMAF 17 de marzo, 2015 Variables aleatorias continuas Definición Una variable aleatoria X se dice (absolutamente continua) si existe f : R R

Más detalles

Bioestadística: Variables Aleatorias. Distribuciones de Probabilidad II

Bioestadística: Variables Aleatorias. Distribuciones de Probabilidad II Bioestadística: Variables Aleatorias. Distribuciones de Probabilidad II M. González Departamento de Matemáticas. Universidad de Extremadura 3. El periodo de incubación de una determinada enfermedad se

Más detalles

Estadística I Tema 5: Modelos probabiĺısticos

Estadística I Tema 5: Modelos probabiĺısticos Estadística I Tema 5: Modelos probabiĺısticos Tema 5. Modelos probabiĺısticos Contenidos Variables aleatorias: concepto. Variables aleatorias discretas: Función de probabilidad y función de distribución.

Más detalles

M. Wiper Estadística 1 / 17. Variables discretas. Michael Wiper Departamento de Estadística Universidad Carlos III de Madrid

M. Wiper Estadística 1 / 17. Variables discretas. Michael Wiper Departamento de Estadística Universidad Carlos III de Madrid M. Wiper Estadística 1 / 17 Variables discretas Michael Wiper Departamento de Estadística Universidad Carlos III de Madrid M. Wiper Estadística 2 / 17 Objetivo Intropducir las variables discretas más importantes

Más detalles

Definición Se dice que una variable aleatoria X es continua si su conjunto de posibles valores es todo un intervalo (finito o infinito) de números

Definición Se dice que una variable aleatoria X es continua si su conjunto de posibles valores es todo un intervalo (finito o infinito) de números IV. Variables Aleatorias Continuas y sus Distribuciones de Probabilidad 1 Variable Aleatoria Continua Definición Se dice que una variable aleatoria X es continua si su conjunto de posibles valores es todo

Más detalles

PROBABILIDAD Y ESTADÍSTICA

PROBABILIDAD Y ESTADÍSTICA FACULTAD DE INGENIERÍA U N A M PROBABILIDAD Y ESTADÍSTICA Irene Patricia Valdez y Alfaro irenev@unam.mx T E M A S DEL CURSO 1. Análisis Estadístico de datos muestrales. 2. Fundamentos de la Teoría de la

Más detalles

Curso de Probabilidad y Estadística

Curso de Probabilidad y Estadística Curso de Probabilidad y Estadística Distribuciones de Probabilidad Dr. José Antonio Camarena Ibarrola camarena@umich.mx Universidad Michoacana de San Nicolás de Hidalgo Facultad de Ingeniería Eléctrica

Más detalles

CONCEPTO Y DEFINICIÓN PROPIEDADES PROBABILIDAD CONDICIONADA INDEPENDENCIA DE SUCESOS DAGOBERTO SALGADO HORTA

CONCEPTO Y DEFINICIÓN PROPIEDADES PROBABILIDAD CONDICIONADA INDEPENDENCIA DE SUCESOS DAGOBERTO SALGADO HORTA PROBABILIDAD CONCEPTO Y DEFINICIÓN PROPIEDADES PROBABILIDAD CONDICIONADA INDEPENDENCIA DE SUCESOS DAGOBERTO SALGADO HORTA PROBABILIDAD: CONCEPTOS CONCEPTOS Experiencia aleatoria: aquella experiencia afectada

Más detalles

Muestreo de variables aleatorias

Muestreo de variables aleatorias Estadística II Universidad de Salamanca Curso 2011/2012 Outline 1 Introducción 2 Distribución de la muestra 3 4 5 Distribuciones de la media y la varianza en poblaciones normales Introducción Tiene como

Más detalles

B0. Distribuciones de probabilidad

B0. Distribuciones de probabilidad B0. Distribuciones de probabilidad Prof, Dr. Jose Jacobo Zubcoff Departamento de Ciencias del Mar y Biología Aplicada Distribución Normal X N( µ, σ ) Dada una variable aleatoria caracterizado por la función

Más detalles

Cálculo de probabilidad. Tema 3: Variables aleatorias continuas

Cálculo de probabilidad. Tema 3: Variables aleatorias continuas Cálculo de probabilidad Tema 3: Variables aleatorias continuas Guión Guión 3.1. La función de densidad de probabilidad Definición 3.1 Sea P una medida de probabilidad en un espacio muestral Ω. Se dice

Más detalles

Probabilidad y Estadística

Probabilidad y Estadística Probabilidad y Estadística Grado en Ingeniería Informática Tema 6 Teoremas ĺımite Javier Cárcamo Departamento de Matemáticas Universidad Autónoma de Madrid javier.carcamo@uam.es Javier Cárcamo PREST. Tema

Más detalles

Tema 2 Modelos de probabilidad

Tema 2 Modelos de probabilidad Tema 2 Modelos de probabilidad José R. Berrendero Departamento de Matemáticas Universidad Autónoma de Madrid Estructura de este tema Conceptos básicos de probabilidad. Modelos discretos: la distribución

Más detalles

Estadistica II Tema 0. Repaso de conceptos básicos. Curso 2009/10

Estadistica II Tema 0. Repaso de conceptos básicos. Curso 2009/10 Estadistica II Tema 0. Repaso de conceptos básicos Curso 2009/10 Tema 0. Repaso de conceptos básicos Contenidos Variables aleatorias y distribuciones de probabilidad La distribución normal Muestras aleatorias,

Más detalles

Procesos estocásticos

Procesos estocásticos Procesos estocásticos Enrique Miranda Universidad of Oviedo Máster Universitario en Análisis de Datos para la Inteligencia de Negocios Contenidos del curso 1. Introducción. 2. Procesos a tiempo discreto:

Más detalles

Modelado de la aleatoriedad: Distribuciones

Modelado de la aleatoriedad: Distribuciones Modelado de la aleatoriedad: Distribuciones Begoña Vitoriano Villanueva Bvitoriano@mat.ucm.es Facultad de CC. Matemáticas Universidad Complutense de Madrid I. Distribuciones Discretas Bernoulli (p) Aplicaciones:

Más detalles

Universidad Técnica de Babahoyo DISTRIBUCIONES DE PROBABILIDAD

Universidad Técnica de Babahoyo DISTRIBUCIONES DE PROBABILIDAD Universidad Técnica de Babahoyo DISTRIBUCIONES DE PROBABILIDAD Ateneo Ruperto P. Bonet Chaple UTB-Julio 2016 Variable aleatoria El resultado de un experimento aleatorio puede ser descrito en ocasiones

Más detalles

FORMULARIO DE DISTRIBUCIONES DE PROBABILIDAD

FORMULARIO DE DISTRIBUCIONES DE PROBABILIDAD FORMULARIO DE DISTRIBUCIONES DE PROBABILIDAD Jorge M. Galbiati pág. DISTRIBUCION BINOMIAL 2 DISTRIBUCION POISSON 4 DISTRIBUCION HIPERGEOMETRICA 5 DISTRIBUCION GEOMETRICA 7 DISTRIBUCION NORMAL 8 DISTRIBUCION

Más detalles

Nº Hermanos 30 Alumnos X i f i P(X i ) 0 8 0, , , , , ,00

Nº Hermanos 30 Alumnos X i f i P(X i ) 0 8 0, , , , , ,00 U.D.3: Distribuciones Discretas. La Distribución Binomial 3.1 Variable Aleatoria Discreta. Función o Distribución de Probabilidad. Variable Aleatoria: - En un experimento aleatorio, se llama variable aleatoria

Más detalles

Muchas variables aleatorias continuas presentan una función de densidad cuya gráfica tiene forma de campana.

Muchas variables aleatorias continuas presentan una función de densidad cuya gráfica tiene forma de campana. Página 1 de 7 DISTRIBUCIÓN NORMAL o campana de Gauss-Laplace Esta distribución es frecuentemente utilizada en las aplicaciones estadísticas. Su propio nombre indica su extendida utilización, justificada

Más detalles

Variables aleatorias

Variables aleatorias Análisis de datos y gestión veterinaria Variables aleatorias discretas y distribuciones Departamento de Producción Animal Facultad de Veterinaria Universidad de Córdoba Córdoba, 3 de Noviembre de 2011

Más detalles

Variables aleatorias continuas

Variables aleatorias continuas Variables aleatorias continuas VARIABLE ALEATORIA UNIFORME Definición Se dice que una variable X tiene una distribución uniforme en el intervalo [a;b] si la fdp de X es: 1 si a x b f(x)= b-a 0 en otro

Más detalles

Probabilidad y Procesos Aleatorios

Probabilidad y Procesos Aleatorios y Dr. Héctor E. Poveda P. hector.poveda@utp.ac.pa www.hpoveda7.com.pa @hpoveda7 Plan del curso Probabilidad Múltiples 1. Probabilidad Espacios probabilísticos Probabilidad condicional 2. 3. Múltiples 4.

Más detalles

Variables aleatorias

Variables aleatorias Variables aleatorias DEFINICIÓN En temas anteriores, se han estudiado las variables estadísticas, que representaban el conjunto de resultados observados al realizar un experimento aleatorio, presentando

Más detalles

Estadística LTA - Principios de estadística 2017

Estadística LTA - Principios de estadística 2017 Estadística Probabilidad Experimento: Desde el punto de vista de probabilidades será "cualquier acto que pueda repetirse en igualdad de condiciones". Ej. Arrojar una vez un dado. Espacio Muestral: Es el

Más detalles

Objetivo: Comprender la diferencia entre valor esperado, varianza y desviación estándar. Poner en práctica el teorema de Chebyshev

Objetivo: Comprender la diferencia entre valor esperado, varianza y desviación estándar. Poner en práctica el teorema de Chebyshev PROBABILIDAD Y ESTADÍSTICA Sesión MODELOS ANALÍTICOS DE FENÓMENOS ALEATORIOS CONTINUOS. Definición de variable aleatoria continua. Función de densidad y acumulatíva. Valor esperado, varianza y desviación

Más detalles

Definición de variable aleatoria

Definición de variable aleatoria Variables aleatorias Instituto Tecnológico Superior de Tepeaca Agosto-Diciembre 2015 Ingeniería en Sistemas Computacionales M.C. Ana Cristina Palacios García Definición de variable aleatoria Las variables

Más detalles

Transformaciones y esperanza

Transformaciones y esperanza Capítulo 3 Transformaciones y esperanza 3.1. Introducción Por lo general estamos en condiciones de modelar un fenómeno en términos de una variable aleatoria X cuya función de distribución acumulada es

Más detalles

Repaso de Estadística

Repaso de Estadística Teoría de la Comunicación I.T.T. Sonido e Imagen 25 de febrero de 2008 Indice Teoría de la probabilidad 1 Teoría de la probabilidad 2 3 4 Espacio de probabilidad: (Ω, B, P) Espacio muestral (Ω) Espacio

Más detalles

Variables aleatorias continuas

Variables aleatorias continuas //2 Análisis de datos y gestión veterinaria Variables aleatorias continuas y distribuciones Departamento de Producción Animal Facultad de Veterinaria Universidad de Córdoba Córdoba, 8 de Noviembre de 2

Más detalles

Esperanza Condicional

Esperanza Condicional Esperanza Condicional Podemos obtener la esperanza de una distribución condicional de la misma manera que para el caso unidimensional: 129 Caso 2 v.a. discretas X e Y: Caso 2 v.a. continuas X e Y: Percentiles

Más detalles

CI 41C HIDROLOGÍA HIDROLOGÍA PROBABILÍSTICA

CI 41C HIDROLOGÍA HIDROLOGÍA PROBABILÍSTICA CI 41C HIDROLOGÍA HIDROLOGÍA PROBABILÍSTICA alcantarilla Puente? Badén http://www.disasternews.net/multimedia/files/drought5_9412.jpg Fenómenos en Ingeniería (según certeza de ocurrencia) determinísticos

Más detalles

Dónde estamos? MODELOS DE PROBABILIDAD

Dónde estamos? MODELOS DE PROBABILIDAD Dónde estamos? MODELOS DE PROBABILIDAD DESCR. 98 CÁLC. P. Probabilidad INFERENCIA 988 MODELOS DISCRETOS MODELOS CONTINUOS TEOREMA CENTRAL DEL LÍMITE Variables aleatorias Modelos de robabilidad 994 999

Más detalles

TEMA 2: DISTRIBUCIONES DE PROBABILIDAD

TEMA 2: DISTRIBUCIONES DE PROBABILIDAD ESTADÍSTICA, CURSO 008 009 TEMA : DISTRIBUCIONES DE PROBABILIDAD LEYES DE PROBABILIDAD. SUCESOS ALEATORIOS Experimetos aleatorios, espacio muestral. Sucesos elemetales y compuestos. Suceso imposible Ø,

Más detalles

Tema 4: Probabilidad y Teoría de Muestras

Tema 4: Probabilidad y Teoría de Muestras Tema 4: Probabilidad y Teoría de Muestras Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 4: Probabilidad y Teoría de Muestras Curso 2008-2009

Más detalles

Distribuciones de probabilidad con R Commander

Distribuciones de probabilidad con R Commander Distribuciones de probabilidad con R Commander En el menú Distribuciones podemos seleccionar Distribuciones discretas Distribuciones continuas Las distribuciones discretas que aparecen en R Commander son

Más detalles

Estadística Grado en Nutrición Humana y Dietética

Estadística Grado en Nutrición Humana y Dietética Estadística Grado en Nutrición Humana y Dietética Tema 3: Probabilidad y variables aleatorias Francisco M. Ocaña Peinado http://www.ugr.es/local/fmocan Departamento de Estadística e Investigación Operativa

Más detalles

Introducción al Tema 7. Tema 6. Variables aleatorias unidimensionales Distribución. Características: media, varianza, etc. Transformaciones.

Introducción al Tema 7. Tema 6. Variables aleatorias unidimensionales Distribución. Características: media, varianza, etc. Transformaciones. Introducción al Tema 7 1 Tema 6. Variables aleatorias unidimensionales Distribución. Características: media, varianza, etc. Transformaciones. V.A. de uso frecuente Tema 7. Modelos probabiĺısticos discretos

Más detalles

ESTADÍSTICA. Facultad Nacional de Ingeniería Oruro - Bolivia

ESTADÍSTICA. Facultad Nacional de Ingeniería Oruro - Bolivia ESTADÍSTICA Facultad Nacional de Ingeniería Oruro - Bolivia José Luis Zamorano Escalante Universidad Técnica de Oruro Presentación El termino estadística proviene del latín statisticum collegium ( consejo

Más detalles

TEMA 3: Probabilidad. Modelos. Probabilidad

TEMA 3: Probabilidad. Modelos. Probabilidad TEM 3: Probabilidad. Modelos Probabilidad Fenómeno aleatorio: es aquel cuyos resultados son impredecibles. Ejemplos: Lanzamiento de una moneda: Resultados posibles: cara, cruz. Selección al azar de un

Más detalles

Variables aleatorias

Variables aleatorias Variables aleatorias Ignacio Cascos Fernández Departamento de Estadística Universidad Carlos III de Madrid Estadística I curso 2008 2009 Una variable aleatoria es un valor numérico que se corresponde con

Más detalles

ESTADÍSTICA I. A continuación se presentan los Modelos Probabilísticos Continuos más importantes.

ESTADÍSTICA I. A continuación se presentan los Modelos Probabilísticos Continuos más importantes. 1 ESTADÍSTICA I Capítulo 6: MODELOS PROBABILÍSTICOS CONTINUOS. Contenido: Distribución Uniforme Continua. Distribución Triangular. Distribución Normal. Distribuciones Gamma, Exponencial, Erlang y Chi Cuadrado.

Más detalles

Vectores aleatorios (distribuciones multivariantes)

Vectores aleatorios (distribuciones multivariantes) Vectores aleatorios (distribuciones multivariantes) Tema 9. Distribución conjunta de un vector aleatorio. Distribuciones marginales y condicionadas Ignacio Cascos Depto. Estadística, Universidad Carlos

Más detalles

Cálculo de Probabilidades II Preguntas Tema 2

Cálculo de Probabilidades II Preguntas Tema 2 Cálculo de Probabilidades II Preguntas Tema 2 1. Demuestre que la suma de n v.a. Bernuolli(p) independientes tiene una distribución Binomial con parametros (n, p). 2. Se dice que una v.a tiene una distribución

Más detalles

Población. Conjunto completo de individuos sobre el que estamos interesados en obtener conclusiones.

Población. Conjunto completo de individuos sobre el que estamos interesados en obtener conclusiones. Análisis de datos y gestión veterinaria Muestreo Departamento de Producción Animal Facultad de Veterinaria Universidad de Córdoba Córdoba, 16 de Noviembre de 011 Población y muestra Predecir los resultados

Más detalles

Capítulo 5: Probabilidad e inferencia

Capítulo 5: Probabilidad e inferencia Capítulo 5: Probabilidad e inferencia estadística (Fundamentos Matemáticos de la Biotecnología) Departamento de Matemáticas Universidad de Murcia Contenidos Principios de la probabilidad Conceptos básicos

Más detalles