EJERCICIOS DE LA UNIDAD DIDÁCTICA 3

Tamaño: px
Comenzar la demostración a partir de la página:

Download "EJERCICIOS DE LA UNIDAD DIDÁCTICA 3"

Transcripción

1 UNIVERSIDAD NACIONAL DE EDUCACIÓN A DISTANCIA Deprtmento de Ingenierí Eléctric, Electrónic de Control ASIGNATURA: TÉCNICAS AVANZADAS DE CONTROL E3. INTRODUCCIÓN EJERCICIOS DE LA UNIDAD DIDÁCTICA 3 Los ejercicios que se proponen tienen como objeto ilustrr l plicción práctic de los conceptos en los que está bsdo el diseño de sistems dpttivos desde l perspectiv de l estbilidd desrrolld en est Unidd Didáctic. Los ejercicios considerrán l operción de sistems dpttivos, bjo control mnul o bjo control dpttivo predictivo (AP) del proceso, tnto en el cso idel como en el cso rel sin diferenci de estructurs. El lumno deberá disponer de un entorno de progrmción similr l considerdo en ls Uniddes Didáctics nteriores. Como en dichs Uniddes Didáctics, el progrm tipo de simulción que se utilizrá en los ejercicios consistirá en un bucle for cuo índice representrá el tiempo de simulción, medido en períodos de control, cuo vlor inferior será 0 vlor superior l durción del experimento. En cd ejecución de dicho bucle, l secuenci de operciones, será l siguiente:. Ejecución de l ecución del proceso pr obtener l correspondiente slid.. Ejecución del sistem dpttivo, clculndo el error de estimción priori dptndo los prámetros del proceso según l ecución (5.0) en el cso idel ls ecuciones (6.3) (6.4) en el cso rel. En l ecución (5.0) el lumno puede elegir l mtriz B igul l mtriz identidd o culquier otr mtriz que desee experimentr. En l ecución (6.4) el vlor del límite b será oportunmente definido en el ejercicio en cuestión. 3. Bjo control mnul, determinción de l cción de control plicr en el instnte siguiente. 4. Bjo control predictivo, cálculo de l slid desed en k + emplendo pr ello l ecución (3.9), posteriormente cálculo de l cción de control predictivo medinte l ecución (3.0). Es decir, en estos ejercicios utilizremos únicmente l plicción de l estrtegi básic de control predictivo. Pr permitir el correspondiente nálisis, el progrm tipo deberá simismo proveer el lmcenmiento l relizción de gráfics, en el intervlo de durción de los ejercicios, de ls vribles de entrd slid del proceso, de l slid predich (bjo control mnul) o de l slid desed (bjo control utomático), los prámetros del modelo AP, de ls funciones f (k) f (k) que definimos continución: - f (k) es l sum de los cudrdos de los errores de estimción posteriori en los instntes en los que se produce dptción de los prámetros del modelo AP,

2 donde e(k k) = 0 k en el que no se ejecute l estimción prmétric. f - f (k) es igul un medio del cudrdo de l norm del error de estimción prmétric, es decir: ~ ( k) = θ ( k) En los ejercicios de est Unidd Didáctic se utilizrá un escenrio de simulción estándr, que se define con l ud de l Gráfic E3.. s(k) k Gráfic E 3..- Escenrio de simulción En l Gráfic E3., el eje de bsciss represent el instnte simuldo de control, el eje de ordends, l vrible s(k), que bjo control mnul será igul l señl de control plicr l proceso u(k), bjo control AP será igul l consign sp (k). Cundo se plique control mnul, los ejercicios pueden considerr como lterntiv el generr l señl de control por medio de un pseo letorio, hciendo l señl de control igul l integrl de un ruido blnco gussino, tl como se indic en el ejercicio en cuestión. E3. EJERCICIOS EN EL CASO IDEAL E3..Control Mnul f ( k) = k i= e( k k) Los ejercicios E3. E3.8 que se proponen continución pretenden ilustrr, en el cso idel, l operción del mecnismo de dptción frente diferentes tipos de señl de entrd.

3 Ejercicio E3.. Aplicr un sistem dpttivo en el escenrio de simulción estándr bjo control mnul, un proceso definido por l ecución ( k) = ( k ) + ( k ) + b u( k ) + b u( k ) cuos prámetros reciben los siguientes vlores:,008; = -0,534; b 0,738; b = 0,388. donde los vlores iniciles de los prámetros del modelo dpttivo son: â = ; â = 0; bˆ 0,; bˆ 0. Ejercicio E3.. Aplicr un sistem dpttivo l cso descrito en el ejercicio E 3., pero donde los vlores iniciles de los prámetros del modelo dpttivo tengn los siguientes vlores iniciles: â = ; â = 0,; bˆ 0,; bˆ 0,. Ejercicio E3.3. Aplicr un sistem dpttivo l cso descrito en el ejercicio E 3., pero donde l señl de control se un pseo letorio generdo por un ruido blnco gussino de medi cero desvición tipo 0,. Ejercicio E3.4. Aplicr un sistem dpttivo l cso descrito en el ejercicio E 3., pero donde l señl de control se un pseo letorio generdo por un ruido blnco gussino de medi cero desvición tipo 0,. Ejercicio E3.5. Aplicr un sistem dpttivo l cso descrito en el ejercicio E 3., pero cmbindo l gnnci del proceso de en el instnte 50. Ejercicio E3.6. Aplicr un sistem dpttivo l cso descrito en el ejercicio E 3., pero cmbindo l gnnci del proceso de en el instnte 50. Ejercicio E3.7. Aplicr un sistem dpttivo l cso descrito en el ejercicio E 3.3, pero donde l gnnci del proceso cmbie de en el instnte 90. Ejercicio E3.8. Aplicr un sistem dpttivo l cso descrito en el ejercicio E 3.4, pero donde l gnnci del proceso cmbie de en el instnte 90. 3

4 E3..Control dpttivo predictivo Los ejercicios E3.9 E3.4 que se proponen continución pretenden ilustrr, en el cso idel, l operción del mecnismo de dptción bjo control AP, cundo l slid del proceso se proxim l consign cundo se estbiliz en ell. Ejercicio E3.9. Aplicr control dpttivo predictivo en el escenrio de simulción estándr pr control utomático, l proceso considerdo en el ejercicio E3., signndo los prámetros del modelo AP los mismos vlores iniciles que en dicho ejercicio definiendo l dinámic desed por un polo doble igul 0,6. Ejercicio E3.0. Aplicr control dpttivo predictivo, tl como se h indicdo en el ejercicio E3.9, pero signndo los prámetros del modelo AP los siguientes vlores iniciles: = ; â = 0,; bˆ = 0,05; bˆ 0,05; â = Ejercicio E3.. Aplicr control predictivo sin dptción, en un ejercicio equivlente l E3.0, pero en el cul el sistem dpttivo no está en operción. Ejercicio E3.. Aplicr control dpttivo predictivo en un ejercicio equivlente l E3.9, pero en el que l gnnci del proceso cmbie de en el instnte 50. Ejercicio E3.3. Aplicr control dpttivo predictivo en un ejercicio equivlente l E3.0, pero en el que l gnnci del proceso cmbie de en el instnte 50. Ejercicio E3.4. Aplicr control predictivo sin dptción, en un ejercicio equivlente l E3., pero en el que l gnnci del proceso cmbie de en el instnte 50, signndo los prámetros del modelo predictivo los siguientes vlores: â = ; â = 0,; bˆ 0,; bˆ 0,; E3.3 EJERCICIOS EN EL CASO REAL SIN DIFERENCIA DE ESTRUCTURAS E3.3. Control Mnul Los ejercicios E3.5 E3.8 que se proponen continución pretenden ilustrr, en el cso rel sin diferenci de estructurs, bjo control mnul, l operción del mecnismo de dptción l influenci de l elección del prámetro b. Ejercicio E3.5. Se el proceso definido medinte ls ecuciones: 4

5 ( k) = ( k ) + ( k ) + b u( k ) + b u( k ) ( k) = ( k) + n ( k) cuos prámetros reciben los siguientes vlores:,008; = -0,534; b 0,738; b = 0,388. el ruido de medid n (k) es un ruido blnco gussino de medi nul de desvición estándr 0,0. Aplicr, en el escenrio de simulción estándr bjo control mnul, un sistem dpttivo definido por los lgoritmos (6.3) (6.4), donde b se le sign un vlor igul dos veces l desvición estándr de (k) los vlores iniciles del modelo AP son: â = ; â = 0; bˆ 0,; bˆ 0; Ejercicio E3.6. Repetir el ejercicio E3.5, pero eligiendo un vlor de b igul 3 veces l desvición estándr de (k). Ejercicio E3.7. Repetir el ejercicio E3.5 eligiendo experimentlmente un vlor conveniente pr b. Ejercicio E3.8. Repetir el ejercicio E3.7 pero plicndo como entrd l proceso un pseo letorio generdo por un ruido blnco gussino de medi cero desvición tipo 0,. E3.3. Control dpttivo predictivo Los ejercicios E3.9 E3. que se proponen continución pretenden ilustrr, en el cso rel sin diferenci de estructurs,, l operción del mecnismo de dptción bjo control AP con un prámetro b convenientemente elegido. Ejercicio E3.9. Se el proceso definido medinte ls ecuciones: ( k ) = ( k ) + ( k ) + b u ( k ) + b u ( k ) ( k ) = ( k ) + n ( k ) cuos prámetros reciben los siguientes vlores: Pr relizr este cálculo, debe tenerse en cuent que (k) está definid, se relcion con el ruido de medid n (k), medinte l ecución (.8), que l vrinz de l sum de vribles letoris independientes es igul l sum de l vrinzs. 5

6 ,008; = -0,534; b 0,738; b = 0,388. el ruido de medid n (k) es un ruido blnco gussino de medi nul de desvición estándr 0,0. Aplicr este proceso, en el escenrio de simulción estándr, control AP, en el que l dinámic desed está definid por un polo doble igul 0,6, el sistem dpttivo por los lgoritmos (6.3) (6.4), eligiendo experimentlmente un vlor conveniente pr b, los vlores iniciles del modelo AP son: â = ; â = 0; bˆ 0,; bˆ 0; Ejercicio E3.0. Repetir el ejercicio E3.9 pero eligiendo como vlores iniciles del modelo AP los siguientes: â = ; â = 0,; bˆ 0,; bˆ 0,; Ejercicio E3.. Repetir el ejercicio E3.9 pero cmbindo l gnnci del proceso de en el instnte 50. Ejercicio E3.. Repetir el ejercicio E3.0 pero cmbindo l gnnci del proceso de en el instnte 50. E3.4 COMENTARIOS A LOS EJERCICIOS Los relizción de los ejercicios conllev l generción de ls gráfics de ls funciones f (k) f (k), que son indictivs del rendimiento del sistem dpttivo predictivo nos permiten interpretr su operción. EjerciciosE3. E3.8: En el cso idel, bjo control mnul, podemos observr que en ls trnsiciones de l señl de control se producen errores de estimción posteriori, que hcen crecer l función f (k). Sin embrgo, cundo l señl de control se estbiliz, el error posteriori tiende cero rápidmente, en consecuenci, l función f (k) no continú incrementándose. En consecuenci, l función f (k) es no decreciente v creciendo intervlos. Por su prte, l función f (k), que es indictiv del error de estimción prmétrico, es un función con evolución exctmente invers l función f (k), es decir, en los intervlos en los que el error de estimción posterior es diferente de cero, decrecerá, indicndo que el error de identificción prmétric decrece; en los intervlos en los que el error de estimción se cero, permnecerá constnte. Ejercicios E3.9 E3.4: En el cso idel, bjo control AP, podemos observr que en ls trnsiciones de l slid del proceso hci l consign, se producen errores de estimción posteriori, mientrs que un vez estbilizd l slid del proceso en l consign, el error de estimción se hce rápidmente cero l vrición en los prámetros estimdos ces. Cd un de ests trnsiciones se reflej en un cercmiento 6

7 de los prámetros del modelo los prámetros del proceso en términos de un reducción del cudrdo de l norm del error de identificción prmétric. A medid que este prendizje ocurre, l trectori de slid del proceso se proxim cd vez más l trectori desed. El funcionmiento del mecnismo de dptción que podemos observr en los ejercicios, pone de relieve que, en pocos períodos, el sistem puede lcnzr un rendimiento de control stisfctorio, que este resultdo se consigue pesr de que exist un error de identificción prmétric significtivo. Es decir, no es necesri un identificción precis del proceso pr obtener un rendimiento de control stisfctorio l operción del mecnismo de dptción tiende reducir el error de estimción hci cero de mner eficz estbilizr el vlor de los prámetros estimdos, verificándose estrictmente ls condiciones de l Conjetur estblecid en el cpítulo, lo que grntiz el menciondo rendimiento de control. El comportmiento de ls funciones f f es nálogo l que hemos observdo en los experimentos bjo control mnul, previmente comentdos. Ejercicios E3.5 E3.: En el cso rel sin diferenci de estructurs, l elección de un prámetro b reltivmente grnde con respecto l señl de perturbción (k), conllevrá un menor número de ejecuciones del mecnismo de dptción. Ello puede rlentizr el proceso de identificción, simismo, cundo l vrible del proceso se estbiliz en l consign l dptción ces, resultrá en un error de predicción, en consecuenci, en un error de control, de mor mgnitud, de cuerdo con (6.4). En este cso l función f crecerá con ls ejecuciones del mecnismo de dptción, l función f generlmente decrecerá con dichs ejecuciones, l mismo tiempo que se reduce el error de identificción prmétric ls condiciones de l Conjetur se verificrán después de cd trnsición. Por el contrrio, si el prámetro b es reltivmente pequeño con respecto l señl de perturbciones, el número de ejecuciones del mecnismo de dptción será mor, pero no podemos segurr que en todos los csos el error de identificción prmétric se reduzc l función f puede eventulmente crecer. El lumno debe comentr los resultdos obtenidos l signr diferentes vlores l prámetro b, evlur l convenienci de elegir un vlor, ni reltivmente grnde, ni reltivmente pequeño, pr optimizr el rendimiento del mecnismo de dptción. 7

Integración numérica por Monte-Carlo

Integración numérica por Monte-Carlo Integrción numéric por onte-crlo Ptrici Svedr Brrer 1 16 de julio de 28 1 Deprtmento de temátics, Universidd Autónom etropolitn-iztplp, psb@xnum.um.mx 2 Introducción Se X un vrible letori continu que tom

Más detalles

CONTROL DE PROCESOS FACET UNT TEMA 1 Nota Auxiliar B ÁLGEBRA DE BLOQUES

CONTROL DE PROCESOS FACET UNT TEMA 1 Nota Auxiliar B ÁLGEBRA DE BLOQUES Digrms en Bloques Un sistem de control puede constr de ciert cntidd de componentes. Pr mostrr ls funciones que reliz cd componente se costumr usr representciones esquemátics denominds Digrm en Bloques.

Más detalles

Tema 3. DETERMINANTES

Tema 3. DETERMINANTES Tem. DETERMINNTES Definición de determinnte El determinnte de un mtriz cudrd es un número. Pr l mtriz, su determinnte se denot por det() o por. Pr un mtriz de orden,, se define: Ejemplo: Pr un mtriz de

Más detalles

FUNDAMENTOS DE PROGRAMACIÓN LINEAL

FUNDAMENTOS DE PROGRAMACIÓN LINEAL 18 de Septiembre de 2017 FUNDAMENTOS DE PROGRAMACIÓN LINEAL Ingenierí Industril Ingenierí Informátic Fcultd de Ingenierí Universidd Ctólic Andrés Bello Progrmción Linel José Luis Quintero 1 Puntos trtr

Más detalles

Capítulo 5. Medición de la Distancia por Medio de Triangulación

Capítulo 5. Medición de la Distancia por Medio de Triangulación Cpítulo 5. Medición de l Distnci por Medio de Tringulción 5.1 Introducción Hemos visto cómo medir l distnci de un objeto un cámr cundo dicho objeto es cptdo por un sol cámr; sin embrgo, cundo el objeto

Más detalles

5.2 Integral Definida

5.2 Integral Definida 80 CÁLCULO / CIENCIAS AMBIENTALES / TEMA 5 5.2 Integrl Definid Definición de Integrl Definid El concepto de integrl definid se construye prtir de l ide de psr l límite un sum cundo el número de sumndos

Más detalles

Apellido 1 Apellido 2 Nombre DNI Calificación. 1. Considere la asociación de cuadripolos de la siguiente figura: R G a Cuadripolo A 1:1.

Apellido 1 Apellido 2 Nombre DNI Calificación. 1. Considere la asociación de cuadripolos de la siguiente figura: R G a Cuadripolo A 1:1. Apellido Apellido Nomre DNI Clificción. Considere l socición de cudripolos de l siguiente figur: R G Cudripolo A c v G (t) R [ Z ] = R L : Cudripolo B [ Z ] = d Se pide: ) Clculr l mtri de prámetros Z

Más detalles

Integrales Impropias. Capítulo Introducción Integrales de Funciones No Acotadas

Integrales Impropias. Capítulo Introducción Integrales de Funciones No Acotadas Cpítulo 8 Integrles Impropis 8.. Introducción L integrl de Riemnn tl como l hemos estudido, está definid únicmente pr funciones cotds y definids sobre intervlos cerrdos y cotdos. En este cpítulo estudiremos

Más detalles

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos)

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos) .0. Problems de plicciones de máximos y mínimos En est sección se muestr como usr l primer y segund derivd de un función en l búsqued de vlores extremos en los llmdos: problems de plicciones o problems

Más detalles

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 6 Curso preprtorio de l prueb de cceso l universidd pr myores de 5 ños curso 1/11 Nuri Torrdo Robles Deprtmento de Estdístic Universidd Crlos III de Mdrid

Más detalles

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos)

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos) .. Problems de plicciones de máimos y mínimos En est sección se muestr como usr l primer y segund derivd de un función en l búsqued de vlores etremos en los llmdos: problems de plicciones o problems de

Más detalles

3.- Matrices y determinantes.

3.- Matrices y determinantes. 3.- Mtrices y determinntes. 3.. Definición de mtriz, notción y orden. Se define un mtriz de orden m x n, un reunión de m x n elementos colocdos en m fils y n columns. Cd elemento que form l mtriz se denot

Más detalles

Grado en Biología Tema 3 Integración. La regla del trapecio.

Grado en Biología Tema 3 Integración. La regla del trapecio. Grdo en Biologí Tem Integrción Sección.: Aproximción numéric de integrles definids. Hy funciones de ls que no se puede hllr un primitiv en términos de funciones elementles. Esto sucede, por ejemplo, con

Más detalles

Matemáticas Empresariales I. Integral Definida

Matemáticas Empresariales I. Integral Definida Mtemátics Empresriles I Lección 8 Integrl Definid Mnuel León Nvrro Colegio Universitrio Crdenl Cisneros M. León Mtemátics Empresriles I 1 / 31 Construcción de l integrl definid Se f un función definid

Más detalles

UNI DAD 2 TRIGONOMETRÍA ANALÍTICA. Objetivos

UNI DAD 2 TRIGONOMETRÍA ANALÍTICA. Objetivos UNI DAD 2 TRIGONOMETRÍA ANALÍTICA Objetivos Geometrí nlític Introducción funciones trigonométrics Vribles: dependientes independientes Constnte: numéric bsolut rbitrri, y z., b, c, Funciones: función

Más detalles

CAPÍTULO 2. , para 0 p 1. [] x

CAPÍTULO 2. , para 0 p 1. [] x CAPÍTULO LAS CURVAS DE LORENZ Y EL SISTEMA DE PEARSON RAFAEL HERRERÍAS PLEGUEZUELO FEDERICO PALACIOS GONZÁLEZ JOSÉ CALLEJÓN CÉSPEDES Deprtmento de Métodos Cuntittivos pr l Economí y l Empres Fcultd de

Más detalles

Estudio de funciones exponenciales y logarítmicas

Estudio de funciones exponenciales y logarítmicas FUNCIÓN EXPONENCIAL Recomendciones l Docente: L ctividd proponer debe puntr que los lumnos puedn nlizr los siguientes spectos: 1. Cómo vrí el gráfico de l función eponencil y de qué depende su monotoní.

Más detalles

UNIDAD N 3: EXPRESIONES ALGEBRAICAS POLINOMIOS

UNIDAD N 3: EXPRESIONES ALGEBRAICAS POLINOMIOS Mtemátic Unidd - UNIDAD N : EXPRESIONES ALGEBRAICAS POLINOMIOS ÍNDICE GENERAL DE LA UNIDAD Epresiones Algebrics Enters...... Polinomios..... Actividdes... 4 Vlor Numérico del polinomio........ 4 Concepto

Más detalles

INTEGRALES IMPROPIAS INTRODUCCION

INTEGRALES IMPROPIAS INTRODUCCION INTEGRALES IMPROPIAS INTRODUCCION Cundo intentmos explicr que er un integrl hicimos vris suposiciones: l función dentro de l integrl estb definid en un intervlo FINITO [,b], l función no tení discontinuiddes.

Más detalles

Para demostrar la primera igualdad, se supondrá que la región D puede ser definida de la siguiente manera

Para demostrar la primera igualdad, se supondrá que la región D puede ser definida de la siguiente manera .7. Teorem de Green en el Plno. Se un curv cerrd, simple, suve trozos positivmente orientd en el plno, se l región limitd por l curv, e incluendo. Si F ( ) F ( ),, son continus tiene primers derivds prciles

Más detalles

Función Cuadrática. 1. Si f ( x) x x 2, determine su forma canónica

Función Cuadrática. 1. Si f ( x) x x 2, determine su forma canónica Función Cudrátic. Si f ( ), determine su form cnónic. Determine el ámbito de l función ( 4). Hlle l ecución de l prábol que tiene vértice V (,) y cort l eje y en el punto (0,5). 4. Grfique l función f

Más detalles

3º) (Andalucía, Junio, 00) Determina una matriz A simétrica (A coincide con su traspuesta) sabiendo que:

3º) (Andalucía, Junio, 00) Determina una matriz A simétrica (A coincide con su traspuesta) sabiendo que: PROLEMS SORE MTRICES. PROFESOR: NTONIO PIZRRO. http://ficus.pntic.mec.es/pis NDLUCÍ-MTEMÁTICS PLICDS LS CCSSII: º) (ndlucí, Junio, 98) Si son dos mtrices culquier, es correct l siguiente cden de igulddes?:

Más detalles

REVISTA COLOMBIANA DE FISICA, VOL. 33, No

REVISTA COLOMBIANA DE FISICA, VOL. 33, No REVISTA COLOMBIANA DE FISICA, VOL. 33, No.. 00 DISEÑO, CONSTRUCCION DE UNA CUBETA ELECTROLITICA Y DESARROLLO DE SOFTWARE PARA EL TRAZADO DE LINEAS EQUUIPOTENCIALES EN UNA CONFIGURACION RECTANGULAR Y EN

Más detalles

FUNCIONES. Analíticamente, la correspondencia anterior se escribe del modo siguiente:

FUNCIONES. Analíticamente, la correspondencia anterior se escribe del modo siguiente: FUNCIONES.- CONCEPTO DE FUNCIÓN Se dice que un correspondenci f definid entre dos conjuntos A B es un función (o plicción), si cd elemento del conjunto A le sign un elemento sólo uno del conjunto B. De

Más detalles

Determinantes y la Regla de Cramer

Determinantes y la Regla de Cramer Determinntes y l Regl de Crmer Mtriz Invers Not: un mtriz cudrd que no tiene invers se llm mtriz singulr. Ejemplo: Hllr l invers de A. A 4 Si l plicr el método de Guss se obtiene ceros en los elementos

Más detalles

Funciones de variable compleja

Funciones de variable compleja Funciones de vrible complej Integrles impropis. Mrí Eugeni Torres Universidd Ncionl de Entre Ríos Fcultd de Ingenierí Funciones de Vrible Complej (Bioingenierí, Pln 28) Myo 29 Integrles impropis Alcnce

Más detalles

DERIVADA DE LA FUNCIÓN LOGARITMO DE CUALQUIER BASE Y LA DERIVACIÓN LOGARÍTMICA

DERIVADA DE LA FUNCIÓN LOGARITMO DE CUALQUIER BASE Y LA DERIVACIÓN LOGARÍTMICA DERIVADA DE LA FUNCIÓN LOGARITMO DE CUALQUIER BASE Y LA DERIVACIÓN LOGARÍTMICA Sugerencis pr quien imprte el curso: Se esper que con l propuest didáctic presentd en conjunción con los prendizjes logrdos

Más detalles

Circuitos de Corriente Continua

Circuitos de Corriente Continua Fundmentos Físicos y Tecnológicos de l Informátic ircuitos de orriente ontinu -pcidd. ondensdores. Agustín Álvrez Mrquin Deprtmento de Arquitectur y Tecnologí de Sistems Informáticos Universidd Politécnic

Más detalles

Funciones de una variable real II Integrales impropias

Funciones de una variable real II Integrales impropias Universidd de Murci Deprtmento Mtemátics Funciones de un vrible rel II Integrles impropis B. Cscles, J. M. Mir y L. Oncin Deprtmento de Mtemátics Universidd de Murci Grdo en Mtemátics 202-203 (22/04/203??/05/203)

Más detalles

DISTRIBUCIONES COMUNMENTE USADAS

DISTRIBUCIONES COMUNMENTE USADAS DISTRIBUCIONES COMUNMENTE USADAS A continución se presentn lgoritmos de generción de vribles letoris de distribuciones comúnmente usds.. BERNOULLI Est es l más simple de ls distribuciones discrets. Tom

Más detalles

Límite y Continuidad de Funciones

Límite y Continuidad de Funciones CAPÍTULO 6 Límite Continuidd de Funciones 6.1. Límite de un función L noción de ite es l bse del cálculo. Decir que f) = L signific que es posible hcer que los vlores de f) sen tn cercnos l número L como

Más detalles

04) Vectores. 0402) Operaciones Vectoriales

04) Vectores. 0402) Operaciones Vectoriales Págin 1 04) Vectores 040) Operciones Vectoriles Desrrolldo por el Profesor Rodrigo Vergr Rojs Octubre 007 Octubre 007 Págin A) Notción Vectoril El vector cero o nulo (0 ) es quel vector cuy mgnitud es

Más detalles

Límite - Continuidad

Límite - Continuidad Nivelción de Mtemátic MTHA UNLP Límite Definición (informl) Límite - Continuidd L función f tiende hci el ite L cerc de, si se puede hcer que f() esté tn cerc como quermos de L hciendo que esté suficientemente

Más detalles

Aplicaciones de la derivada

Aplicaciones de la derivada 1 CAPÍTULO 8 Aplicciones de l derivd 8.1 Derivilidd monotoní 1 Como se se, si f es un función derivle en 0, entonces l derivd de f en 0 es un número rel fijo f 0. 0 /, el cul puede ser f 0. 0 / > 0 o ien

Más detalles

Curvas en el espacio.

Curvas en el espacio. Curvs en el espcio. Tod curv en el espcio R n se puede considerr como l imgen de un función vectoril r : [, b] R n, r(t) = (x 1 (t),..., x n (t)), que recibe el nombre de prmetrizción de l curv. Los puntos

Más detalles

CÁLCULO. Ingeniería Industrial. Curso Departamento de Matemática Aplicada II. Universidad de Sevilla.

CÁLCULO. Ingeniería Industrial. Curso Departamento de Matemática Aplicada II. Universidad de Sevilla. CÁLCULO Ingenierí Industril. Curso 9-1. Deprtmento de Mtemátic Aplicd II. Universidd de Sevill. Lección. Métodos numéricos en un vrible. Resumen de l lección..1. Método de Newton pr l resolución de ecuciones.

Más detalles

MATE3012 Lección 2.2. Solución de Sistemas Lineales por Matrices. 18/02/2013 Prof. José G. Rodríguez Ahumada 1 de 26

MATE3012 Lección 2.2. Solución de Sistemas Lineales por Matrices. 18/02/2013 Prof. José G. Rodríguez Ahumada 1 de 26 MATE Lección. Solución de Sistems Lineles por Mtrices 8// Prof. José G. odrígue Ahumd de 6 Actividdes. Teto: Cpítulo 8 - Sección 8. Solución de Sistems Lineles por educción de englones. Ejercicios de Práctic:

Más detalles

Tema 10: Integral definida. Aplicaciones al cálculo de áreas

Tema 10: Integral definida. Aplicaciones al cálculo de áreas Tem : Integrl definid. Aplicciones l cálculo de áres. Introducción Ls integrles nos vn permitir clculr áres de figurs no geométrics. En nuestro cso, nos limitremos clculr el áre jo un curv y el áre encerrd

Más detalles

Junio 2010 (Prueba General) JUNIO 2010 OPCIÓN A

Junio 2010 (Prueba General) JUNIO 2010 OPCIÓN A Junio 00 (Prueb Generl) JUNIO 00 OPCIÓN A.- ) Dds ls funciones f () = ln () y g() =, hllr el áre del recinto plno limitdo por ls rects =, = y ls gráfics de f () y g (). b) Dr un ejemplo de función continu

Más detalles

Integración numérica: Regla del trapecio Método de Romberg

Integración numérica: Regla del trapecio Método de Romberg Clse No. 18: Integrción numéric: Regl del trpecio Método de Romberg MAT 251 Dr. Alonso Rmírez Mnznres CIMAT A.C. e-mil: lrm@ cimt.mx web: http://www.cimt.mx/ lrm/met_num/ Dr. Joquín Peñ Acevedo CIMAT A.C.

Más detalles

Análisis de Señales en Geofísica

Análisis de Señales en Geofísica Análisis de Señles en Geofísic 6 Clse Fcultd de Ciencis Astronómics y Geofísics, Universidd Ncionl de L Plt, Argentin Trnsformd Integrl de Fourier Recordemos que un función f( t), definid en un dominio

Más detalles

Examen con soluciones

Examen con soluciones Cálculo Numérico I. Grdo en Mtemátics. Exmen con soluciones. Decidir rzondmente si ls siguientes firmciones son verdders o flss, buscndo un contrejemplo en el cso de ser flss (.5 puntos): () Si f(x) cmbi

Más detalles

LÍMITES CONCEPTO INTUITIVO DE LÍMITE

LÍMITES CONCEPTO INTUITIVO DE LÍMITE Mrí Teres Szostk Ingenierí Comercil Mtemátic II Clse Nº, LÍMITES El concepto de ite, es uno de los pilres en que se bs el Análisis Mtemático, se encontrb en 8 en estdo potencil, ern más principios intuitivos

Más detalles

Para estudiar la traslación horizontal, se debe fijar primero el valor del parámetro a y después variar el valor del parámetro b.

Para estudiar la traslación horizontal, se debe fijar primero el valor del parámetro a y después variar el valor del parámetro b. TRASLACIÓN HORIZONTAL (DESPLAZAMIENTO HORIZONTAL) Pr estudir l trslción horizontl, se debe fijr primero el vlor del prámetro y después vrir el vlor del prámetro b. Veremos que l función b es el resultdo

Más detalles

PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO

PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO PROBLEMAS RESUELTOS SUMA DE VECTORES METODO GEOMÉTRICO 1. Los vectores mostrdos en l figur tienen l mism mgnitud (10 uniddes) El vector (+c) + (d+) - c, es de mgnitud: c ) 0 ) 0 c) 10 d) 0 e) 10 d Este

Más detalles

TEMA 1: MATRICES. Una matriz de orden mxn es un conjunto de m n números reales dispuestos en m filas y n columnas ...

TEMA 1: MATRICES. Una matriz de orden mxn es un conjunto de m n números reales dispuestos en m filas y n columnas ... Deprtmento de Mtemátics TEM : MTRICES Un mtriz de orden mxn es un conjunto de m n números reles dispuestos en m fils y n columns... n... n... m m m... mn los números reles ij se les llm elementos de l

Más detalles

(Ésta es una versión preliminar de la teoría del tema.)

(Ésta es una versión preliminar de la teoría del tema.) Estudio de funciones periódics Ést es un versión preliminr de l teorí del tem. Un función fx se dice que es periódic de periodo cundo fx = fx +, x. Si se conoce fx en el intervlo [, ] su ciclo, se l conoce

Más detalles

Integral Definida. Tema 6. 6.1 Introducción. 6.2 Definición de Integral Definida

Integral Definida. Tema 6. 6.1 Introducción. 6.2 Definición de Integral Definida Tem 6 Integrl Definid 6.1 Introducción En este tem estudiremos l Integrl Definid o Integrl de Riemnn, un concepto mtemático que esencilmente puede describirse como el límite de un sum cundo el número de

Más detalles

5. Integral y Aplicaciones

5. Integral y Aplicaciones Métodos Mtemáticos (Curso 203 204) Grdo en Óptic y Optometrí 29 5. Integrl y Aplicciones Primitiv de un función Un función F es un primitiv de f, en un intervlo I, si F (x) = f(x) pr todo x en I. Observción

Más detalles

Tarea Número 4. MA0501 Análisis Numérico I Prof: Oldemar Rodríguez Rojas Fecha de entrega: Viernes 14 de octubre del 2014.

Tarea Número 4. MA0501 Análisis Numérico I Prof: Oldemar Rodríguez Rojas Fecha de entrega: Viernes 14 de octubre del 2014. MA0501 Análisis Numérico I Pro: Oldemr Rodríguez Rojs Fech de entreg: Viernes 1 de octubre del 01 Tre Número 1 Desrrolle unciones itertivs y recursivs en Mthemtic pr los lgoritmos de los métodos de: iterción

Más detalles

3º.- Junio i) Producto de matrices: definición, condiciones para su realización. Si A M m n. (la matriz A tiene m filas y n columnas), B M n p

3º.- Junio i) Producto de matrices: definición, condiciones para su realización. Si A M m n. (la matriz A tiene m filas y n columnas), B M n p IES EL PILES SELECTIVIDD OVIEDO DPTO. MTEMÁTICS Mtrices deterinntes Mtrices deterinntes. Ejercicios de Selectividd. º.- Junio 99. i) Define rngo de un triz. ii) Un triz de tres fils tres coluns tiene rngo

Más detalles

TEMA 0: CONCEPTOS BÁSICOS.

TEMA 0: CONCEPTOS BÁSICOS. TEMA : CONCEPTOS BÁSICOS.. Intervlos:. Intervlos. 2. Propieddes de ls potencis.. Propieddes de los rdicles. Operciones con rdicles. Rcionlizción. 4. Conceptos de un polinomio. Fctorizción de polinomios..

Más detalles

TEMA 3 RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES Matemáticas CCSSII 2º Bachillerato 1

TEMA 3 RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES Matemáticas CCSSII 2º Bachillerato 1 TEMA RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES Mtemátics CCSSII 2º Bchillerto 1 TEMA RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES.1 DETERMINANTES DE ORDEN 2.1.1 DEFINICIÓN: El determinnte de un mtriz

Más detalles

FUNCIONES ELEMENTALES

FUNCIONES ELEMENTALES Unidd didáctic 7. Funciones reles de vrible rel Autors: Glori Jrne, Espernz Minguillón, Trinidd Zbl CONCEPTOS BÁSICOS Se llm función rel de vrible rel culquier plicción f : D R con D Œ R, es decir, culquier

Más detalles

f(x) dx = F (x) + C, siendo F (x) una antiderivada de f(x), es decir, siendo F (x) tal que F (x) = f(x)

f(x) dx = F (x) + C, siendo F (x) una antiderivada de f(x), es decir, siendo F (x) tal que F (x) = f(x) Cálculo de primitivs: f(x) dx = F (x) + C, siendo F (x) un ntiderivd de f(x), es decir, siendo F (x) tl que F (x) = f(x) L constnte C se denomin constnte de integrción; es un constnte rbitrri porque se

Más detalles

Parte 7. Derivación e integración numérica

Parte 7. Derivación e integración numérica Prte 7. Derivción e integrción numéric Gustvo Montero Escuel Técnic Superior de Ingenieros Industriles Universidd de Ls Plms de Grn Cnri Curso 006-007 Los problems de derivción e integrción numéric El

Más detalles

Tema 11: Integral definida. Aplicaciones al cálculo de áreas

Tema 11: Integral definida. Aplicaciones al cálculo de áreas Tem : Integrl definid. Aplicciones l cálculo de áres. Introducción Ls integrles no vn permitir clculr áres de figurs no geométrics. En nuestro cso, nos limitremos clculr el áre jo un curv y el áre encerrd

Más detalles

DETERMINANTES. det : M nxn

DETERMINANTES. det : M nxn DETERMINNTES L utilidd de los determinntes como representción de reliddes, h sido de grn importnci en ls ciencis sociles, trvés de los modelos mtemáticos, especilmente los formuldos en términos mtriciles.

Más detalles

TEMA 1: FUNCIONES. LÍMITES Y CONTINUIDAD

TEMA 1: FUNCIONES. LÍMITES Y CONTINUIDAD Conceptos preinres TEMA : FUNCIONES. LÍMITES Y CONTINUIDAD Un función es un relción entre dos mgnitudes, de tl mner que cd vlor de l primer le sign un único vlor de l segund. Si A y B son dos conjuntos,

Más detalles

W = 2 B A = B W-a = B h1 = 0.65 B r = 0.25 B h2 = 0.30 B

W = 2 B A = B W-a = B h1 = 0.65 B r = 0.25 B h2 = 0.30 B Progrm de Doctordo en Ingenierí Aeronáutic Cpítulo VIII. Norm ASTM E-399 Medid de l tencidd en régimen elástico-linel según l norm ASTM E-399. En l norm ASTM E-399 se plnte l metodologí pr relizr l medición

Más detalles

Hasta el momento solo hemos trabajado con funciones reales de la forma

Hasta el momento solo hemos trabajado con funciones reales de la forma Función eponencil: Hst el momento solo hemos trbjdo con funciones reles de l form f( ) = P( ) donde P ( ) es un polinomio f ( ) = donde y es un vrible, entre otros pero hor vmos trbjr con funciones donde

Más detalles

Conjuntos numéricos. Intervalos. Operaciones en el conjunto de números reales.

Conjuntos numéricos. Intervalos. Operaciones en el conjunto de números reales. Fich Técnic Conjuntos numéricos Intervlos Operciones en el conjunto de números reles Índice de tems: Conjuntos numéricos Intervlos Operciones y propieddes Módulo o vlor bsoluto de un número rel Conjuntos

Más detalles

MODELOS ALEATORIOS PARA EL TIPO DE INTERÉS REAL

MODELOS ALEATORIOS PARA EL TIPO DE INTERÉS REAL MODELOS ALEATORIOS PARA EL TIPO DE INTERÉS REAL RAFAEL HERRERÍAS PLEGUEZUELO EDUARDO PÉREZ RODRÍGUEZ Deprtmento de Economí Aplicd Universidd de Grnd. INTRODUCCIÓN Se supone que el Sr. Corto dispone de

Más detalles

APUNTES DE MATEMÁTICAS

APUNTES DE MATEMÁTICAS APUNTES DE MATEMÁTICAS TEMA 8: FUNCIONES.LÍMITES º BACHILLERATO FUNCIONES.Límites y continuidd ÍNDICE. LíMITES Y CONTINUIDAD DE FUNCIONES...3. Definición límite de un función en un punto...4 3. Definición

Más detalles

6. Curvas en el espacio

6. Curvas en el espacio FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Diferencil e Integrl 08-2 Bsdo en el punte del rmo Mtemátics Aplicds, de Felipe Álvrez, Jun Diego Dávil, Roberto Cominetti y Héctor

Más detalles

FUNCIONES REALES. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS.

FUNCIONES REALES. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS. FUNCIONES REALES. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS.. CONCEPTO DE FUNCIÓN. Llmmos correspondenci entre dos conjuntos A B culquier form de signr lgunos o todos los elementos de A otros elementos de

Más detalles

ANÁLISIS DE COMPONENTES PRINCIPALES EN LA DETECCIÓN DE DATOS DISCORDANTES

ANÁLISIS DE COMPONENTES PRINCIPALES EN LA DETECCIÓN DE DATOS DISCORDANTES PESQUIMAT, Revist de l F.C.M. de l Universidd Ncionl Myor de Sn Mrcos Vol. 11 N 1 Pgs.77-83 Lim - Perú Ag. 1999 ANÁLISIS DE COMPONENTES PRINCIPALES EN LA DETECCIÓN DE DATOS DISCORDANTES Seier, E.; Cmbil/o

Más detalles

CÁLCULO DIFERENCIAL E INTEGRAL EJERCICIOS PRIMERA FASE

CÁLCULO DIFERENCIAL E INTEGRAL EJERCICIOS PRIMERA FASE CÁLCULO DIFERENCIAL E INTEGRAL EJERCICIOS PRIMERA FASE CONCEPTOS CLAVE: FUNCIONES, GRAFICA DE UNA FUNCIÒN, COMPOSICIÒN DE FUNCIONES, INVERSA DE UNA FUNCIÒN, LIMITE DE UNA FUNCIÒN, LIMITES LATERALES, TEOREMAS

Más detalles

Aplicaciones de la derivada (II)

Aplicaciones de la derivada (II) UNIVERSIDAD DEL CAUCA Fcultd de Ciencis Nturles, Ects de l Educción Deprtmento de Mtemátics CÁLCULO I Ejercicios Rects tngentes Aplicciones de l derivd (II) 1. Se l curv gráfic de l ecución ( ) =. Encuentre

Más detalles

Resolver inecuaciones como las siguientes. Expresar la solución en forma gráfica y algebraica. Comparar las soluciones de los ejercicios e), f) y g).

Resolver inecuaciones como las siguientes. Expresar la solución en forma gráfica y algebraica. Comparar las soluciones de los ejercicios e), f) y g). 64 Tercer Año Medio Mtemátic Ministerio de Educción Actividd 3 Resuelven inecuciones y sistems de inecuciones con un incógnit; expresn ls soluciones en form gráfic y en notción de desigulddes; nlizn ls

Más detalles

Apuntes de A. Cabañó Matemáticas II SISTEMAS DE ECUACIONES LINEALES

Apuntes de A. Cabañó Matemáticas II SISTEMAS DE ECUACIONES LINEALES puntes de. Cbñó Mtemátics II SISTEMS DE ECUCIONES LINELES 8. Epresión mtricil de un sistem.clsificción de un sistem en términos del número de soluciones. 8. Teorem de RouchéFrobenius. 8. El método de eliminción

Más detalles

I Resolución de sistemas de ecuaciones lineales

I Resolución de sistemas de ecuaciones lineales ESCUELA SUPERIOR DE NÁUTICA Y MÁQUINAS NAVALES / NAUTIKAKO ETA ITSASONTZI MAKINETAKO GOI ESKOLA TEKNIKOA FUNDAMENTOS MATEMÁTICOS I Resolución de sistems de ecuciones lineles Objetivo: El lumno deberá tener

Más detalles

+ OH. Para la ionización reversible del agua, como para cualquier otra reacción química, podemos escribir su : + =

+ OH. Para la ionización reversible del agua, como para cualquier otra reacción química, podemos escribir su : + = El gu Clse 7 Aunque grn prte de ls propieddes del gu como disolvente se pueden explicr en función de su molécul sin crg (H 2 O), el pequeño grdo de ionizción del gu en iones hidrógeno e iones hidroxilo

Más detalles

Señales Aleatorias. Dr. Luis Javier Morales Mendoza. FIEC Universidad Veracruzana Poza Rica Tuxpan

Señales Aleatorias. Dr. Luis Javier Morales Mendoza. FIEC Universidad Veracruzana Poza Rica Tuxpan Señles Aletoris Dr. Luis Jvier Morles Mendoz FIEC Universidd Vercruzn Poz Ric Tuxpn Índice.1. Señl letori.. L Medi, Vrinz y Desvición Estándr.3. Momentos de Proilidd.4. Tre01.5. L0 Dr. Luis Jvier Morles

Más detalles

Conceptos básicos de programación

Conceptos básicos de programación prctic2.nb 1 Conceptos básicos de progrmción Vribles y Funciones L signción de dtos vribles se llev cbo en el entorno de trbjo de Mthemtic de un mner nturl, utilizndo el operdor de iguldd. Observe y ejecute

Más detalles

NÚMEROS REALES, R. Es el conjunto de números que se obtiene al unir el conjunto de los números racionales con el conjunto de los números irracionales.

NÚMEROS REALES, R. Es el conjunto de números que se obtiene al unir el conjunto de los números racionales con el conjunto de los números irracionales. NÚMEROS REALES, R CPR. JORGE JUAN Xuvi-Nrón Es el conjunto de números que se obtiene l unir el conjunto de los números rcionles con el conjunto de los números irrcionles. R= QI Los números reles poseen

Más detalles

Signo 2. Signo 1. 9x 6x 8 = 0, se arregla la ecuación así: 3x 1=±

Signo 2. Signo 1. 9x 6x 8 = 0, se arregla la ecuación así: 3x 1=± CAPÍTULO X ECUACIÓN DE º GRADO Y FUNCIÓN CUADRÁTICA 9.. ECUACIÓN DE º GRADO Un ecución de segundo grdo con un incógnit es tod quell que puede ser puest en l form x + bx + c = 0 siendo, b y c coeficientes

Más detalles

TEMA 4 FUNCIONES ELEMENTALES

TEMA 4 FUNCIONES ELEMENTALES TEMA 4 FUNCIONES ELEMENTALES 4.. CONCEPTO DE FUNCIÓN Ls funciones que hbitulmente utilizmos son funciones reles de vrible rel. f es un función de R en R si cd número rel Dom, le hce corresponder otro número

Más detalles

Tema 3: Sistemas de ecuaciones lineales

Tema 3: Sistemas de ecuaciones lineales Tem 3: Sistems de ecuciones lineles 1. Introducción Los sistems de ecuciones resuelven problems relciondos con situciones de l vid cotidin, que tiene que ver con ls Ciencis Sociles. Nos centrremos, por

Más detalles

Teorema fundamental del Cálculo.

Teorema fundamental del Cálculo. Sesión Teorem fundmentl del Cálculo (TFC) Tems Teorem fundmentl del Cálculo. Cpciddes Conocer y comprender el TFC. Aplicr el TFC en el cálculo de derivds e integrles definids.. Introducción I. Brrow Inglés.

Más detalles

En general, si una función f(x) tiene una función primitiva F(x), entonces tiene infinitas primitivas cuyas expresiones serán F k

En general, si una función f(x) tiene una función primitiva F(x), entonces tiene infinitas primitivas cuyas expresiones serán F k º BACHILLERATO MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II INTEGRACIÓN.-INTEGRAL INDEFINIDA. PROPIEDADES El Cálculo Integrl o integrción consiste en hllr l función f() cundo se conoce su derivd f

Más detalles

Clase 2: Expresiones algebraicas

Clase 2: Expresiones algebraicas Clse 2: Expresiones lgebrics Operr expresiones lgebrics usndo ls propieddes lgebrics de ls operciones sum y producto, propieddes de ls potencis, regls de signos y préntesis. Evlur expresiones lgebrics

Más detalles

GUIA DE SISTEMAS DE ECUACIONES LINEALES

GUIA DE SISTEMAS DE ECUACIONES LINEALES Fcultd de Ciencis Deprtmento de Mtemátics y Ciencis de l Computción GUIA DE SISEMAS DE ECUACIONES LINEALES. Resuelv los siguientes sistems de ecuciones usndo el metodo de elimincion gussin, verifique l

Más detalles

I.E.S. PADRE SUÁREZ Álgebra Lineal 1 TEMA I MATRICES. DETERMINANTES.

I.E.S. PADRE SUÁREZ Álgebra Lineal 1 TEMA I MATRICES. DETERMINANTES. I.E.S. PDRE SUÁREZ Álgebr Linel TEM I. Mtrices.. Operciones con mtrices. Determinnte de un mtriz cudrd.. Mtriz invers de un mtriz cudrd. MTRICES. DETERMINNTES.. MTRICES. Llmmos mtriz de números reles,

Más detalles

1 Integrales impropias

1 Integrales impropias Integrles impropis Eliseo Mrtínez Herrer 3 de mrzo del 4 Abstrct Se estudin ls integrles impropis sobre l bse del cálculo de integrles definids y el límite de funciones Integrles impropis b Un integrl

Más detalles

Definición de la función logaritmo natural.

Definición de la función logaritmo natural. L función logritmo Definición de l función logritmo nturl. Se sbe que un primitiv o ntiderivd de l función f() = n es l función F() n / (n+), es decir n n n cte. Est fórmul es válid sólo cundo n. Cundo

Más detalles

Integrales. Jesús García de Jalón de la Fuente. IES Ramiro de Maeztu Madrid

Integrales. Jesús García de Jalón de la Fuente. IES Ramiro de Maeztu Madrid Jesús Grcí de Jlón de l Fuente IES Rmiro de Meztu Mdrid Diferencil de un función Diferencil de un función Definición L diferencil de un función f es igul su derivd por un incremento rbitrrio de l vrible.

Más detalles

Relación entre el cálculo integral y el cálculo diferencial.

Relación entre el cálculo integral y el cálculo diferencial. Relción entre el cálculo integrl y el cálculo diferencil. Por: Miguel Solís Esquinc Profesor de tiempo completo Universidd Autónom de Chips En est sección presentmos l relción que gurdn l función derivd

Más detalles

Escuela de Ciencias Exactas y Naturales (ECEN)Profesor: Allan Gen Palma EL CÁLCULO INTEGRAL EN LA OBTENCIÓN DEL VOLÚMENES DE SÓLIDOS DE REVOLUCIÓN

Escuela de Ciencias Exactas y Naturales (ECEN)Profesor: Allan Gen Palma EL CÁLCULO INTEGRAL EN LA OBTENCIÓN DEL VOLÚMENES DE SÓLIDOS DE REVOLUCIÓN Cálculo Integrl III- Escuel de Ciencis Ects Nturles (ECEN)Profesor: Alln Gen Plm EL CÁLCULO INTEGRAL EN LA OBTENCIÓN DEL VOLÚMENES DE SÓLIDOS DE REVOLUCIÓN Un sólido de revolución es generdo l girr un

Más detalles

Figura 1. Identificación de los elementos de un modelo de PL a partir de una tabla de datos.

Figura 1. Identificación de los elementos de un modelo de PL a partir de una tabla de datos. Progrmción linel por Oliverio Rmírez Debido que los problems de progrmción linel poseen crcterístics generles, en est lectur resctmos lgunos puntos importntes del proceso de solución del ejemplo de l empres

Más detalles

Aplicaciones de la integral.

Aplicaciones de la integral. Cpítulo 6 Aplicciones de l integrl. 6.. Cálculo del áre de un figur pln. En generl, pr clculr el áre de un región pln:. L dividimos en frnjs, infinitmente estrechs, de mner horizontl o verticl,. Suponemos

Más detalles

GUIAS DE ACTIVIDADES Y TRABAJO PRACTICO N 3

GUIAS DE ACTIVIDADES Y TRABAJO PRACTICO N 3 GUIA DE TRABAJO PRACTICO Nº PAGINA Nº 6 GUIAS DE ACTIVIDADES Y TRABAJO PRACTICO N OBJETIVOS: Lorr que el Alumno: Interprete el concepto de Modelos Mtemáticos. Distin modelos mtemáticos epresdos medinte

Más detalles

Universidad del Magdalena Vicerrectoría de Docencia Plan de Trabajo MATEMATICAS. José Francisco Barros Troncoso. Grupo Cupos Horario Salón

Universidad del Magdalena Vicerrectoría de Docencia Plan de Trabajo MATEMATICAS. José Francisco Barros Troncoso. Grupo Cupos Horario Salón Universidd del Mgdlen Vicerrectorí de Docenci Pln de Trbjo 1 Identificción 1.1 Código y Nombre del Curso MATEMATICAS 1.2 Profesor Responsble del Curso 1.3 Dtos del Grupo José Frncisco Brros Troncoso Grupo

Más detalles

2. Derivada: tangente a una curva. Los teoremas de Rolle y Lagrange.

2. Derivada: tangente a una curva. Los teoremas de Rolle y Lagrange. . Derivd: tngente un curv. Los teorems de Rolle y Lgrnge. Se f : x I f( x) un función definid en un intervlo I y se un punto interior del intervlo I. L pendiente de l rect tngente l curv y f( x), f( )

Más detalles

Función no Acotada en uno o en los dos extremos del Intervalo de Integración. f (x) d x = lim

Función no Acotada en uno o en los dos extremos del Intervalo de Integración. f (x) d x = lim Función no Acotd en uno o en los dos etremos del Intervlo de Integrción Si f () está definid sobre (, b] y si f () cundo, se define f () d = lim f () d ε + +ε Si f () está definid sobre [, b) y si f ()

Más detalles

3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL

3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL 3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL INDICE 3.1. Definición de función vectoril de un vrile rel, dominio y grficción.2 3.2. Límites y continuidd..3 3.3. Derivción de funciones vectoriles y sus

Más detalles

Concepto clave. La derivada de una función se define principalmente de dos maneras: 1. Como el límite del cociente de Fermat ( )( )

Concepto clave. La derivada de una función se define principalmente de dos maneras: 1. Como el límite del cociente de Fermat ( )( ) Concepto clve L derivd de un función se define principlmente de dos mners: 1. Como el límite del cociente de Fermt f ( ) lím x f ( x) f ( ) x. Como el límite del cociente de incrementos f ( x) lím x 0

Más detalles

UNIDAD: ÁLGEBRA Y FUNCIONES FUNCIONES

UNIDAD: ÁLGEBRA Y FUNCIONES FUNCIONES C u r s o : Mtemátic Mteril N GUÍA TEÓRICO PRÁCTICA Nº 8 UNIDAD: ÁLGEBRA Y FUNCIONES FUNCIONES DEFINICIÓN Sen A B conjuntos no vcíos. Un función de A en B es un relción que sign cd elemento del conjunto

Más detalles