Capítulo 7 Bucles. Bucle For-Next. Informática

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Capítulo 7 Bucles. Bucle For-Next. Informática"

Transcripción

1 Capítulo 7 Bucles Bucle For-Net Un procedmento más práctco para controlar varables que deben tomar valores numércos entre un valor ncal hasta un valor fnal, con un ncremento determnado, es el sguente: donde: Var = V.I., V.F., H Var: Nombre de la varable. V.I.: Valor ncal que tomará la varable. V.F.: Valor fnal que tomará la varable. H: Incremento. S no se especfca un ncremento H, el valor por defecto Var del ncremento es 1. El ncremento H tambén puede ser negatvo, tenendo la precaucón de ajustar correctamente el valor ncal y el valor fnal de la repetcón. El prmer gráfco de este proceso repettvo declara la varable de conteo que se utlzará para efectuar la repetcón, además declara el valor ncal, el valor fnal y el salto o ncremento que se adconará en cada repetcón. El segundo gráfco debe llevar el msmo nombre de la varable que se colocó en el gráfco ncal y en este punto se ejecutan dos accones: La prmera es el ncremento de la varable, y la segunda es la comparacón del nuevo valor almacenado en la varable de conteo con el límte superor o valor fnal declarado en el prmer gráfco. S el valor de la varable de conteo supera o ecede el valor fnal, el flujo segurá haca abajo, en cambo, mentras el valor de la varable de conteo permanezca dentro del ntervalo, el flujo segurá haca la zquerda y subrá en busca de una nueva repetcón. Ejemplo 1: = 1, 5 La varable tomará los sguentes valores: = 1,, 3, 4, 5, 6 Ejemplo : = 0, 7, La varable tomará los sguentes valores: = 0,, 4, 6, 8 Págna 53

2 Ejemplo 3: = 5, 0, -1 La varable tomará los sguentes valores: = 5, 4, 3,, 1, 0, -1 Ejemplo 4: = 1, N La varable tomará los sguentes valores: = 1,, 3, 4,, N, N+1 Ejemplo 5: c = A, B La varable c tomará los sguentes valores: c = A, A+1, A+,, B-1, B, B+1 c Ejemplo 6: =, f, h La varable tomará los sguentes valores: =, +h, +h, +3h,, f-h, f-h, f, f+h Este gráfco del dagrama de flujo se puede aplcar en muchos de los programas vstos en los capítulos 4 y 5, por lo que a contnuacón se transcrbrán esos msmos ejemplos, ahora resueltos con el bucle For-Net. Págna 54

3 Ejercco 7.1: Efectuar el dagrama de flujo de un programa que permta calcular e mprmr la suma de los prmeros n números naturales. Ac = 0 N c = 1, N Ac = Ac + c N c Ac Salda por pantalla Total: 10 c "Total", Ac Ejercco 7.: Efectuar el dagrama de flujo de un programa que permta calcular e mprmr los prmeros n números naturales, sus cuadrados y sus cubos. N = 1, N cuad = ^ cubo = ^ 3, cuad, cubo Prueba de escrtoro: n cuad cubo Salda por pantalla Págna 55

4 Ejercco 7.3: Efectuar el dagrama de flujo de un programa que sume los números mpares comprenddos en el ntervalo (a,b) e mprma el resultado. Ac = 0 a, b Resto( a / ) = 0 S Prueba de escrtoro: a b c Ac No c = a c = a + 1 Salda por pantalla Total: 15 = c, b, Ac = Ac + "Total", Ac La prmera parte del dagrama de flujo se encarga de defnr s el valor de a ngresado es par o mpar, almacenando en c entonces el prmer valor mpar del ntervalo. A contnuacón se utlza la varable como varable de control en el bucle For-Net, la cual va almacenando los valores mpares comprenddos entre c y b, y los acumula en la varable Ac, hasta que el valor de supere el valor de b. Págna 56

5 Ejercco 7.4: Tabular la funcón: y = a. + b. + c para valores de comprenddos en el ntervalo a f, con un ncremento h. Imprmr los resultados. a, b, c, f, h =, f, h y = a * ^ + b * + c, y Prueba de escrtoro: a b c f h y Salda por pantalla Ejercco 7.5: Tabular la funcón: y = seno() para valores de comprenddos en el ntervalo a f, con un ncremento h, ngresados en grados seagesmales., f, h alf a =, f, h alf ar = alf a * / 180 y = seno ( alf ar ) alf a, y Prueba de escrtoro: f h alfa alfar y Salda por pantalla Págna 57

6 Ejercco 7.6: Tabular la funcón: y = tg( ) para valores de comprenddos en el ntervalo a f, con un ncremento, ngresados en grados seagesmales. seno( ) Se debe salvar la ndetermnacón tenendo en cuenta que tg( ), por lo tanto, cada cos eno( ) vez que encontremos que coseno( ) = 0 la funcón dará un valor. En la computadora se producrá un error s ntentamos calcular el funcón tg( ) en esos casos, entonces debemos nterceptar el flujo del programa y selecconar una rama de salda dferente para salvar el error de cálculo. alf a, alf af, delta alf a = alf a, alf af, delta alf ar = alf a * / 180 cos ( alf ar ) = 0 S No y = tan ( alf ar ) alf a, " " alf a, y alf a Págna 58

7 Ejercco 7.7: Tabular la funcón: ncremento h. y para valores de comprenddos en el ntervalo a f, con un, f, h =, f, h = S No y = ^ / ( - ), " ", y Como se ve en el ejercco, en el momento en que tome el valor se producrá una dvsón por cero, que en la computadora provocará un error por desbordamento. Se debe comparar entonces s = para poder nterceptar esta dscontnudad, mprmendo un mensaje para luego contnuar la tabla con los prómos valores de. En los casos en que no se puede despejar fáclmente la varable en el denomnador, es aconsejable preguntar drectamente s el denomnador es cero: ( ) = 0. Esta es una regla general que permte evtar en todos los casos el error por desbordamento que produce una dvsón por cero.. Págna 59

8 Ejerccos Capítulo 7: 1. Realzar el dagrama de flujo de un programa que efectúe la suma de los números pares hasta 00 nclusve, e mprma la suma calculada.. Realzar el dagrama de flujo de un programa que determne el menor valor y el mayor valor de una lsta de 5 números leídos desde el teclado. Imprmr los resultados obtendos. 3. Realzar el dagrama de flujo de un procedmento que genere 10 números aleatoros entre 1 y 6 nclusve, smulando 10 tradas de un dado. 4. Realzar el dagrama de flujo de un proceso que calcule e mprma una tabla con los cuadrados y los cubos de los números enteros varando de 0 a N. 5. Realzar el dagrama de flujo de un programa que calcule e mprma una tabla de valores para la sguente funcón, para valores de entre 10 y 10 con un ncremento gual a 0.5 y 1 6. Realzar el dagrama de flujo de un programa que permta calcular el promedo de tres notas de cada alumno e mprma una tabla con las tres notas dadas por teclado y el promedo obtendo medante el proceso. El proceso debe termnar cuando las tres notas ngresadas sean guales a cero. 7. Realzar el dagrama de flujo de un proceso que calcule e mprma una tabla de valores de la sguente funcón, para valores de que varían entre 1 y, con un ncremento h. y Realzar el dagrama de flujo de un proceso que calcule e mprma una tabla de valores de la sguente funcón, para valores de que varían entre 1 y, con un ncremento h. 1. y sen( ) 9. Realzar el dagrama de flujo de un proceso que calcule e mprma una tabla de valores de la sguente funcón, para valores de que varían entre 1 y, con un ncremento h. y 3 10 Págna 60

Capítulo 5 Tablas de funciones

Capítulo 5 Tablas de funciones Capítulo 5 Tablas de funciones Tablas de funciones La impresión de tablas en la computadora se obtiene mediante un proceso repetitivo, en el cual se calculan los diferentes valores de las variables para

Más detalles

Utilizar sumatorias para aproximar el área bajo una curva

Utilizar sumatorias para aproximar el área bajo una curva Cálculo I: Guía del Estudante Leccón 5 Apromacón del área bajo la curva Leccón 5: Apromacón del área bajo una curva Objetvo: Utlzar sumatoras para apromar el área bajo una curva Referencas: Stewart: Seccón

Más detalles

SEGUNDA PARTE RENTAS FINANCIERAS

SEGUNDA PARTE RENTAS FINANCIERAS SEGUNDA PARTE RENTAS FINANCIERAS 5 INTRODUCCIÓN A LA TEORÍA DE RENTAS 5.1 CONCEPTO: Renta fnancera: conjunto de captales fnanceros cuyos vencmentos regulares están dstrbudos sucesvamente a lo largo de

Más detalles

VII. Solución numérica de ecuaciones diferenciales

VII. Solución numérica de ecuaciones diferenciales VII. Solucón numérca de ecuacones derencales VII. Antecedentes Sea dv dt una ecuacón derencal de prmer orden : g c m son constantes v es una varable dependente t es una varable ndependente c g v I m Las

Más detalles

Objetivos El alumno conocerá y aplicará diversas técnicas de derivación e integración numérica. Al final de esta práctica el alumno podrá:

Objetivos El alumno conocerá y aplicará diversas técnicas de derivación e integración numérica. Al final de esta práctica el alumno podrá: Objetvos El alumno conocerá y aplcará dversas técncas de dervacón e ntegracón numérca. Al fnal de esta práctca el alumno podrá:. Resolver ejerccos que contengan dervadas e ntegrales, por medo de métodos

Más detalles

Métodos específicos de generación de diversas distribuciones discretas

Métodos específicos de generación de diversas distribuciones discretas Tema 3 Métodos específcos de generacón de dversas dstrbucones dscretas 3.1. Dstrbucón de Bernoull Sea X B(p). La funcón de probabldad puntual de X es: P (X = 1) = p P (X = 0) = 1 p Utlzando el método de

Más detalles

FE DE ERRATAS Y AÑADIDOS AL LIBRO FUNDAMENTOS DE LAS TÉCNICAS MULTIVARIANTES (Ximénez & San Martín, 2004)

FE DE ERRATAS Y AÑADIDOS AL LIBRO FUNDAMENTOS DE LAS TÉCNICAS MULTIVARIANTES (Ximénez & San Martín, 2004) FE DE ERRATAS Y AÑADIDOS AL LIBRO FUNDAMENTOS DE LAS TÉCNICAS MULTIVARIANTES (Xménez & San Martín, 004) Capítulo. Nocones báscas de álgebra de matrces Fe de erratas.. Cálculo de la transpuesta de una matrz

Más detalles

CARTAS DE CONTROL. Han sido difundidas exitosamente en varios países dentro de una amplia variedad de situaciones para el control del proceso.

CARTAS DE CONTROL. Han sido difundidas exitosamente en varios países dentro de una amplia variedad de situaciones para el control del proceso. CARTAS DE CONTROL Las cartas de control son la herramenta más poderosa para analzar la varacón en la mayoría de los procesos. Han sdo dfunddas extosamente en varos países dentro de una ampla varedad de

Más detalles

Estadística Unidimensional: SOLUCIONES

Estadística Unidimensional: SOLUCIONES 4ª SesónFecha: Estadístca Undmensonal: SOLUCIOES Varables estadístca dscreta 1 Con los datos del ejercco de Pág 19 nº 3 determna: a) Tabla de Frecuencas b) Dagrama de barras Gráfco acumulado c) Meddas

Más detalles

UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS. Métodos multivariantes en control estadístico de la calidad

UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS. Métodos multivariantes en control estadístico de la calidad UNIVERSIDAD NAIONAL MAYOR DE SAN MAROS FAULTAD DE IENIAS MATEMÁTIAS E.A.P. DE ESTADÍSTIA Métodos multvarantes en control estadístco de la caldad apítulo IV. Gráfcos de control MUSUM TRABAJO MONOGRÁFIO

Más detalles

Ejercicios y Talleres. puedes enviarlos a

Ejercicios y Talleres. puedes enviarlos a Ejerccos y Talleres puedes envarlos a klasesdematematcasymas@gmal.com www.klasesdematematcasymas.com EJERCICIOS DE REGRESIONES Y ANALISIS DE COVARIANZA Analzar la nformacón recoplada por medo de los dferentes

Más detalles

Apéndice A. Obtención y representación de forma.

Apéndice A. Obtención y representación de forma. Apéndce A. Obtencón y representacón de forma. A.1. Algortmo de deteccón de contorno. El algortmo de segumento de contorno se puede resumr en los sguentes pasos: 1. Se recorre la magen, desde la esquna

Más detalles

CLAVE - Laboratorio 1: Introducción

CLAVE - Laboratorio 1: Introducción CLAVE - Laboratoro 1: Introduccón ( x )( x ) x ( xy) x y a b a b a a a ( x ) / ( x ) x ( x ) x a b a b a b ab n! n( n 1)( n 2) 1 0! 1 x x x 1 0 1 (1) Smplfque y evalúe las sguentes expresones: a. 10 2

Más detalles

2 Dos tipos de parámetros estadísticos

2 Dos tipos de parámetros estadísticos Dos tpos de parámetros estadístcos Págna 198 1. Calcula la meda, la medana y la moda de cada una de estas dstrbucones estadístcas: a) 4, 5, 6, 6, 6, 6, 7, 11, 1, 17 b), 1, 6, 9,, 8, 9,, 14, c), 3, 3, 3,

Más detalles

50,000 50,000 22,000 22,000. Ahora si calculamos el valor presente del ingreso neto anual con la siguiente fórmula: Sustituimos:

50,000 50,000 22,000 22,000. Ahora si calculamos el valor presente del ingreso neto anual con la siguiente fórmula: Sustituimos: 100,000 0,000 0,000 0,000 0,000 0,000 1.- Grúas CBA está consderando comprar una buena grúa para amplar su servco en la cudad. Se le presentan tres modelos dferentes. Usando el método de la TIR, cuál es

Más detalles

Tema 9: Otros temas de aplicación

Tema 9: Otros temas de aplicación Tema 9: Otros temas de aplcacón. Introduccón Exsten muchos elementos nteresantes y aplcacones del Matlab que no se han comentado a lo largo de los temas. Se nvta al lector a que nvestgue sobre ellos según

Más detalles

APLICACIONES DE LOS SISTEMAS LINEALES 1. MODELACION DE POLINOMIOS CONOCIENDO UN NUMERO DETERMINADO DE PUNTOS DEL PLANO.

APLICACIONES DE LOS SISTEMAS LINEALES 1. MODELACION DE POLINOMIOS CONOCIENDO UN NUMERO DETERMINADO DE PUNTOS DEL PLANO. APLICACIONES DE LOS SISTEMAS LINEALES 1. MODELACION DE POLINOMIOS CONOCIENDO UN NUMERO DETERMINADO DE PUNTOS DEL PLANO. Dado un numero n de puntos del plano ( a, b ) es posble encontrar una funcón polnómca

Más detalles

CASO 1: Variable CONTINUA con idéntica probabilidad de ocurrencia para los infinitos valores comprendidos entre dos extremos (inferior y superior)

CASO 1: Variable CONTINUA con idéntica probabilidad de ocurrencia para los infinitos valores comprendidos entre dos extremos (inferior y superior) DIFERENTES TIOS DE DISTRIBUCIÓN UTILIZACIÓN DE FUNCIONES DE EXCEL EN MODELOS DE SIMULACIÓN Utlzacón ndvdual y conjunta de funcones para la representacón del comportamento de varables bajo las alternatvas

Más detalles

Matemáticas II. Segundo Curso, Grado en Ingeniería Electrónica Industrial y Automática Grado en Ingeniería Eléctrica. 17 de febrero de

Matemáticas II. Segundo Curso, Grado en Ingeniería Electrónica Industrial y Automática Grado en Ingeniería Eléctrica. 17 de febrero de Matemátcas II Segundo Curso, Grado en Ingenería Electrónca Industral y Automátca Grado en Ingenería Eléctrca 7 de febrero de 0. Conteste las sguentes cuestones: Ã! 0 (a) (0.5 ptos.) Escrba en forma bnómca

Más detalles

Histogramas: Es un diagrama de barras pero los datos son siempre cuantitativos agrupados en clases o intervalos.

Histogramas: Es un diagrama de barras pero los datos son siempre cuantitativos agrupados en clases o intervalos. ESTADÍSTICA I. Recuerda: Poblacón: Es el conjunto de todos los elementos que cumplen una determnada propedad, que llamamos carácter estadístco. Los elementos de la poblacón se llaman ndvduos. Muestra:

Más detalles

Tema 11: Estadística.

Tema 11: Estadística. Tema 11: Estadístca. Ejercco 1. Un fabrcante de tornllos desea hacer un control de caldad. Para ello, recoge 1 de cada 100 tornllos producdos y lo analza. a) Cuál es la poblacón? b) Cuál es la muestra?

Más detalles

ESTADISTÍCA. 1. Población, muestra e individuo. 2. Variables estadísticas. 3. El proceso que se sigue en estadística

ESTADISTÍCA. 1. Población, muestra e individuo. 2. Variables estadísticas. 3. El proceso que se sigue en estadística ESTADISTÍCA. Poblacón, muestra e ndvduo Las característcas de una dstrbucón se pueden estudar drectamente sobre la poblacón o se pueden nferr a partr de l estudo de una muestra. Poblacón estadístca es

Más detalles

16/02/2015. Ángel Serrano Sánchez de León

16/02/2015. Ángel Serrano Sánchez de León Ángel Serrano Sánchez de León Índce Introduccón Varables estadístcas Dstrbucones de frecuencas Introduccón a la representacón gráfca de datos Meddas de tendenca central: meda (artmétca, geométrca, armónca,

Más detalles

Instrucciones: Leer detenidamente los siete enunciados y resolver seis de los siete problemas propuestos. Frecuencia absoluta (f i )

Instrucciones: Leer detenidamente los siete enunciados y resolver seis de los siete problemas propuestos. Frecuencia absoluta (f i ) UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉICO FACULTAD DE INGENIERÍA DIVISIÓN DE CIENCIAS BÁSICAS COORDINACIÓN DE CIENCIAS APLICADAS DEPARTAMENTO DE PROBABILIDAD Y ESTADÍSTICA PRIMER EAMEN FINAL RESOLUCIÓN SEMESTRE

Más detalles

Capitalización y descuento simple

Capitalización y descuento simple Undad 2 Captalzacón y descuento smple 2.1. Captalzacón smple o nterés smple 2.1.1. Magntudes dervadas 2.2. Intereses antcpados 2.3. Cálculo de los ntereses smples. Métodos abrevados 2.3.1. Método de los

Más detalles

Análisis de Resultados con Errores

Análisis de Resultados con Errores Análss de Resultados con Errores Exsten dos tpos de errores en los expermentos Errores sstemátcos errores aleatoros. Los errores sstemátcos son, desde lejos, los más mportantes. Errores Sstemátcos: Exsten

Más detalles

Teléfonos Avaya T3 para conexión a Integral 5 Configurar y utilizar la sala de conferencias Apéndice del Manual del usuario

Teléfonos Avaya T3 para conexión a Integral 5 Configurar y utilizar la sala de conferencias Apéndice del Manual del usuario Teléfonos Avaya T3 para conexón a Integral 5 Confgurar y utlzar la sala de conferencas Apéndce del Manual del usuaro Issue 1 Integral 5 Software Release 2.6 Septembre 2009 Utlzar la sala de conferencas

Más detalles

OCION elegr opcones) Ejercco 1 EJERCICIOS Un rombo tene 30 m de superfce su ángulo menor es de 4º, Calcule la longtud de su lado. Ejercco S sumamos uno a un número calculamos su raíz cuadrada postva, se

Más detalles

, x es un suceso de S. Es decir, si :

, x es un suceso de S. Es decir, si : 1. Objetvos: a) Aprender a calcular probabldades de las dstrbucones Bnomal y Posson usando EXCEL. b) Estudo de la funcón puntual de probabldad de la dstrbucón Bnomal ~B(n;p) c) Estudo de la funcón puntual

Más detalles

Tema 1: Estadística Descriptiva Unidimensional

Tema 1: Estadística Descriptiva Unidimensional Fenómeno determnsta: al repetrlo en déntcas condcones se obtene el msmo resultado. Fenómeno aleatoro: no es posble predecr el resultado. La estadístca se ocupa de aquellos fenómenos no determnstas donde

Más detalles

1º. a) Deducir la expresión de la fórmula de derivación numérica de tipo x,x,x,x,.

1º. a) Deducir la expresión de la fórmula de derivación numérica de tipo x,x,x,x,. º. a Deducr la expresón de la fórmula de dervacón numérca de tpo x,x,x,x,. nterpolatoro que permte aproxmar f (x* con el soporte { } 3 x 4 b Demostrar que en el caso de que el soporte sea de la forma:

Más detalles

EJERCICIOS RESUELTOS TEMA 2

EJERCICIOS RESUELTOS TEMA 2 EJERCICIOS RESUELTOS TEMA.1. La Moda, para el grupo de Varones de la Tabla 1, es: A) 4,5; B) 17; C) 60.. Con los datos de la Tabla 1, la meda en para las Mujeres es: A) gual a la meda para los Varones;

Más detalles

CAPÍTULO 4 MARCO TEÓRICO

CAPÍTULO 4 MARCO TEÓRICO CAPÍTULO 4 MARCO TEÓRICO Cabe menconar que durante el proceso de medcón, la precsón y la exacttud de cualquer magntud físca está lmtada. Esta lmtacón se debe a que las medcones físcas sempre contenen errores.

Más detalles

Regresión y Correlación Métodos numéricos

Regresión y Correlación Métodos numéricos Regresón y Correlacón Métodos numércos Prof. Mguel Hesquo Garduño. Est. Mrla Benavdes Rojas Depto. De Ingenería Químca Petrolera ESIQIE-IPN hesquogm@yahoo.com.mx mbenavdesr5@gmal.com Regresón lneal El

Más detalles

Diferencias Finitas. 4.1 Introducción. 4.2 Método de las Diferencias Finitas. 4. Diferencias Finitas

Diferencias Finitas. 4.1 Introducción. 4.2 Método de las Diferencias Finitas. 4. Diferencias Finitas . Dferencas Fntas Dferencas Fntas. Introduccón La técnca de las dferencas fntas fue la prmera técnca ue surgó para resolver problemas práctcos en ngenería. Ho en día ésta técnca a está obsoleta con lo

Más detalles

PRÁCTICA NÚMEROS REALES Y COMPLEJOS CURSO Práctica 1 (30- IX-2015)

PRÁCTICA NÚMEROS REALES Y COMPLEJOS CURSO Práctica 1 (30- IX-2015) PRÁCTICA NÚMEROS REALES Y COMPLEJOS CURSO 015-016 Práctcas Matlab Práctca 1 (30- IX-015) Objetvos Incarse en el uso de Matlab. Conocer comandos báscos de Matlab para realzar cálculos con números reales

Más detalles

Capitalización y descuento simple

Capitalización y descuento simple Undad 2 Captalzacón y descuento smple 2.1. Captalzacón smple o nterés smple 2.1.1. Magntudes dervadas 2.2. Intereses antcpados 2.3. Cálculo de los ntereses smples. Métodos abrevados 2.3.1. Método de los

Más detalles

Examen de Física-1, 1 del Grado en Ingeniería Química Examen final. Septiembre de 2014 Cuestiones (Un punto por cuestión).

Examen de Física-1, 1 del Grado en Ingeniería Química Examen final. Septiembre de 2014 Cuestiones (Un punto por cuestión). Examen de Físca-, del Grado en Ingenería Químca Examen fnal. Septembre de 204 Cuestones (Un punto por cuestón. Cuestón (Prmer parcal: Un satélte de telecomuncacones se mueve con celerdad constante en una

Más detalles

Ejercicios y problemas (páginas 131/133)

Ejercicios y problemas (páginas 131/133) 7 Calcula el opuesto y el conjugado de los sguentes números complejos, expresándolos en forma polar: a) z b) z (cos 00 sen 00 ) c) z Expresamos en prmer lugar los números complejos en forma Calcula las

Más detalles

CAPÍTULO 1: VARIABLES ALEATORIAS Y SUS DISTRIBUCIONES

CAPÍTULO 1: VARIABLES ALEATORIAS Y SUS DISTRIBUCIONES CAÍTULO : VARIABLES ALEATORIAS SUS DISTRIBUCIONES En este capítulo el alumno debe abordar el conocmento de un mportante concepto el de VARIABLE ALEATORIA tpos de varables aleatoras cómo se dstrbue la funcón

Más detalles

ENUNCIADOS DE LOS EJERCICIOS PROPUESTOS EN 2011 EN MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES. 3 y

ENUNCIADOS DE LOS EJERCICIOS PROPUESTOS EN 2011 EN MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES. 3 y ENUNCADOS DE LOS EJERCCOS PROPUESTOS EN 011 EN MATEMÁTCAS APLCADAS A LAS CENCAS SOCALES. EJERCCO 1 a (5 puntos Raconalce las epresones y. 7 b (5 puntos Halle el conjunto de solucones de la necuacón EJERCCO

Más detalles

En el panel de navegación, haga doble clic en el nombre de la tabla o de la consulta a la que desee agregar registros.

En el panel de navegación, haga doble clic en el nombre de la tabla o de la consulta a la que desee agregar registros. Regstros Regstros Access 2013 - Funcónes báscas Introducr regstros en la hoja de datos En el panel de navegacón, haga doble clc en el nombre de la tabla o de la consulta a la que desee agregar regstros.

Más detalles

Vida Util, características de la Fiabilidad e Inviabilidad y distribuciones teóricas en el terreno de la fiabilidad

Vida Util, características de la Fiabilidad e Inviabilidad y distribuciones teóricas en el terreno de la fiabilidad Vda Utl, característcas de la Fabldad e Invabldad y dstrbucones teórcas en el terreno de la fabldad Realzado por: Mgter. Leandro D. Torres Vda Utl Este índce se refere a una vda útl meda nomnal y se puede

Más detalles

Tablas de Vida (Intervalos)

Tablas de Vida (Intervalos) Tablas de Vda (Intervalos) Resumen El procedmento Tablas de Vda (Intervalos) está dseñado para analzar datos que contengan tempos de vda o de falla, donde se sabe que el valor del tempo de vda cae en un

Más detalles

Para dos variables x1 y x2, se tiene el espacio B 2 el que puede considerarse definido por: {0, 1}X{0, 1} = {(00), (01), (10), (11)}

Para dos variables x1 y x2, se tiene el espacio B 2 el que puede considerarse definido por: {0, 1}X{0, 1} = {(00), (01), (10), (11)} Capítulo 4 1 N-cubos 4.1. Representacón de una funcón booleana en el espaco B n. Los n-cubos representan a las funcones booleanas, en espacos n-dmensonales dscretos, como un subconjunto de los vértces

Más detalles

EJERCICIO 1 DEPURAR. Sintaxis switch (selector) { Case: etiqueta, : sentencias,; Sintaxis con break switch ( select or) {

EJERCICIO 1 DEPURAR. Sintaxis switch (selector) { Case: etiqueta, : sentencias,; Sintaxis con break switch ( select or) { Sntaxs swtch (selector) Case: etqueta, : sentencas,; Case: etqueta, : sentencas,; Case: etqueta, : sentencas,; default: sentencas; /* opconal. */ Sntaxs con break swtch ( select or) Case: etqueta, : sentencas,;

Más detalles

LECTURA 03: DISTRIBUCIONES DE FRECUENCIAS (PARTE II)

LECTURA 03: DISTRIBUCIONES DE FRECUENCIAS (PARTE II) LECTURA 03 DISTRIBUCIONES DE FRECUENCIAS (PARTE II) DISTRIBUCIONES DE FRECUENCIAS EN INTERVALOS DE CLASE Y DISTRIBUCIONES DE FRECUENCIAS POR ATRIBUTOS O CATEGORÍAS TEMA 6 DISTRIBUCIÓN DE FRECUENCIAS EN

Más detalles

7ª SESIÓN: Medidas de concentración

7ª SESIÓN: Medidas de concentración Curso 2006-2007 7ª Sesón: Meddas de concentracón 7ª SESIÓN: Meddas de concentracón. Abrr el rograma Excel. 2. Abrr el lbro utlzado en las ráctcas anterores. 3. Insertar la Hoja7 al fnal del lbro. 4. Escrbr

Más detalles

Medidas de centralización

Medidas de centralización 1 Meddas de centralzacón Meda Datos no agrupados = x X = n = 0 Datos agrupados = x X = n = 0 Medana Ordenamos la varable de menor a mayor. Calculamos la columna de la frecuenca relatva acumulada F. Buscamos

Más detalles

CAPÍTULO IV. MEDICIÓN. De acuerdo con Székely (2005), existe dentro del período información

CAPÍTULO IV. MEDICIÓN. De acuerdo con Székely (2005), existe dentro del período información IV. Base de Datos CAPÍTULO IV. MEDICIÓN De acuerdo con Székely (2005), exste dentro del período 950-2004 nformacón representatva a nvel naconal que en algún momento se ha utlzado para medr la pobreza.

Más detalles

ESTADÍSTICA. Definiciones

ESTADÍSTICA. Definiciones ESTADÍSTICA Defncones - La Estadístca es la cenca que se ocupa de recoger, contar, organzar, representar y estudar datos referdos a una muestra para después generalzar y sacar conclusones acerca de una

Más detalles

IDENTIFICACIÓN Y MODELADO DE PLANTAS DE ENERGÍA SOLAR

IDENTIFICACIÓN Y MODELADO DE PLANTAS DE ENERGÍA SOLAR IDENTIFICACIÓN Y MODELADO DE PLANTAS DE ENERGÍA SOLAR En esta práctca se llevará a cabo un estudo de modelado y smulacón tomando como base el ntercambador de calor que se ha analzado en el módulo de teoría.

Más detalles

Unidad Nº III Unidad Aritmética-Lógica

Unidad Nº III Unidad Aritmética-Lógica Insttuto Unverstaro Poltécnco Santago Marño Undad Nº III Undad Artmétca-Lógca Undad Artmétca-Lógca Es la parte del computador que realza realmente las operacones artmétcas y lógcas con los datos. El resto

Más detalles

Números Reales y Complejos

Números Reales y Complejos Apéndce C Números Reales Complejos Ejerccos resueltos Halla los números reales que cumplen la condcón a a S a 0 : a a a 0 No este solucón S a < 0 : a a a a Halla todos los números r tales que r < a) S

Más detalles

Introducción a la Física. Medidas y Errores

Introducción a la Física. Medidas y Errores Departamento de Físca Unversdad de Jaén Introduccón a la Físca Meddas y Errores J.A.Moleón 1 1- Introduccón La Físca y otras cencas persguen la descrpcón cualtatva y cuanttatva de los fenómenos que ocurren

Más detalles

INTRODUCCIÓN. Técnicas estadísticas

INTRODUCCIÓN. Técnicas estadísticas Tema : Estadístca Descrptva Undmensonal ITRODUCCIÓ Fenómeno determnsta: al repetrlo en déntcas condcones se obtene el msmo resultado. (Ejemplo: lómetros recorrdos en un ntervalo de tempo a una velocdad

Más detalles

COLEGIO INGLÉS MEDIDAS DE DISPERSIÓN

COLEGIO INGLÉS MEDIDAS DE DISPERSIÓN COLEGIO IGLÉS DEPARTAMETO IVEL: CUARTO MEDIO PSU. UIDAD: ESTADISTICA 3 PROFESOR: ATALIA MORALES A. ROLADO SAEZ M. MIGUEL GUTIÉRREZ S. JAVIER FRIGERIO B. MEDIDAS DE DISPERSIÓ Las meddas de dspersón dan

Más detalles

Medidas de Variabilidad

Medidas de Variabilidad Meddas de Varabldad Una medda de varabldad es un ndcador del grado de dspersón de un conjunto de observacones de una varable, en torno a la meda o centro físco de la msma. S la dspersón es poca, entonces

Más detalles

Tema 1.3_A La media y la desviación estándar

Tema 1.3_A La media y la desviación estándar Curso 0-03 Grado en Físca Herramentas Computaconales Tema.3_A La meda y la desvacón estándar Dónde estudar el tema.3_a: Capítulo 4. J.R. Taylor, Error Analyss. Unv. cence Books, ausalto, Calforna 997.

Más detalles

Un estimado de intervalo o intervalo de confianza ( IC

Un estimado de intervalo o intervalo de confianza ( IC Un estmado puntual, por ser un sólo número, no proporcona por sí msmo nformacón alguna sobre la precsón y confabldad de la estmacón. Debdo a la varabldad que pueda exstr en la muestra, nunca se tendrá

Más detalles

sea un nº real. Hallar su cociente. Solución. Se multiplica numerador y denominador por el conjugado del denominador.

sea un nº real. Hallar su cociente. Solución. Se multiplica numerador y denominador por el conjugado del denominador. . Hallar "a" para que el complejo : a a) sea real puro b) sea magnaro puro Lo prmero de todo es hacer la dvsón en forma bnómca, multplcando numerador y denomnador por el conjugado del denomnador, de esta

Más detalles

ANEXO B SISTEMAS NUMÉRICOS

ANEXO B SISTEMAS NUMÉRICOS ANEXO B SISTEMAS NUMÉRICOS Sstema Decmal El sstema ecmal emplea ez ferentes ígtos (,,,, 4, 5, 6, 7, 8 y 9). Por esto se ce que la base el sstema ecmal es ez. Para representar números mayores a 9, se combnan

Más detalles

315 M/R Versión 1 Integral 1/ /1 UNIVERSIDAD NACIONAL ABIERTA VICERRECTORADO ACADÉMICO ÁREA INGENIERÍA

315 M/R Versión 1 Integral 1/ /1 UNIVERSIDAD NACIONAL ABIERTA VICERRECTORADO ACADÉMICO ÁREA INGENIERÍA 35 M/R Versón Integral / 28/ UNIVERSIDAD NACIONAL AIERTA VICERRECTORADO ACADÉMICO ÁREA INGENIERÍA MODELO DE RESPUESTA ASIGNATURA: Investgacón de Operacones I CÓDIGO: 35 MOMENTO: Prueba Integral FECHA DE

Más detalles

EJERCICIOS RESUELTOS VARIABLE ALEATORIA UNIDIMENSIONAL

EJERCICIOS RESUELTOS VARIABLE ALEATORIA UNIDIMENSIONAL Gestón Aeronáutca: Estadístca Teórca Facultad Cencas Económcas y Empresarales Departamento de Economía Aplcada Profesor: Santago de la Fuente Fernández EJERCICIOS RESUELTOS VARIABLE ALEATORIA UNIDIMENSIONAL

Más detalles

CAPITULO 7. METODOLOGÍA DEL PLAN DE PENSIONES ALTERNATIVO. Como se explica en el capítulo 4, una anualidad es una serie de pagos que se realizan

CAPITULO 7. METODOLOGÍA DEL PLAN DE PENSIONES ALTERNATIVO. Como se explica en el capítulo 4, una anualidad es una serie de pagos que se realizan CAPITULO 7. METODOLOGÍA DEL PLAN DE PENSIONES ALTERNATIVO 7. Anualdad de Vda Como se elca en el caítulo 4, una anualdad es una sere de agos que se realzan durante un temo determnado, nombrándose a esta

Más detalles

Proposiciones. Proposiciones. Bloques de proposiciones. Proposición if. Verdadero o Falso. Diagrama de flujo if-else

Proposiciones. Proposiciones. Bloques de proposiciones. Proposición if. Verdadero o Falso. Diagrama de flujo if-else Proposcones Proposcones Maro Medna C. maromedna@udec.cl Expresones Artmétcas (b + c) De control (f ) De asgnacón (X = Y) Llamadas a funcones (prntf( )) Termnadas por un punto y coma (;) Bloques de proposcones

Más detalles

PROBABILIDAD Y ESTADÍSTICA

PROBABILIDAD Y ESTADÍSTICA FACULTAD DE INGENIERÍA U N A M PROBABILIDAD Y ESTADÍSTICA Irene Patrca Valdez y Alfaro renev@unam.m Versón revsada: uno 08 T E M A S DEL CURSO. Análss Estadístco de datos muestrales.. Fundamentos de la

Más detalles

sea un nº real. Hallar su cociente. Solución. Se multiplica numerador y denominador por el conjugado del denominador.

sea un nº real. Hallar su cociente. Solución. Se multiplica numerador y denominador por el conjugado del denominador. . Hallar "a" para que el complejo : a a) sea real puro b) sea magnaro puro Lo prmero de todo es hacer la dvsón en forma bnómca, multplcando numerador y denomnador por el conjugado del denomnador, de esta

Más detalles

Organización y resumen de datos cuantitativos

Organización y resumen de datos cuantitativos Organzacón y resumen de datos cuanttatvos Contendos Organzacón de datos cuanttatvos: dagrama de tallos y hojas, tablas de frecuencas. Hstogramas. Polígonos. Ojvas ORGANIZACIÓN Y RESUMEN DE DATOS CUANTITATIVOS

Más detalles

Unidad 6-. Números complejos 1

Unidad 6-. Números complejos 1 Undad -. Números complejos ACTIVIDADES FINALES EJERCICIOS Y PROBLEMAS Efectúa las sguentes operacones: aa (-(-(- aa (-(-(- cc ( -(-( bb ( ( - - (- 7 dd ( - - (- / ( - ( ( (. ( Sumamos algebracamente por

Más detalles

CAMPO MAGNÉTICO CREADO POR CORRIENTES RECTILÍNEAS INDEFINIDAS

CAMPO MAGNÉTICO CREADO POR CORRIENTES RECTILÍNEAS INDEFINIDAS Departamento de Físca - UBU enero de 2017 1 CAMPO MAGNÉTICO CREADO POR CORRIENTES RECTILÍNEAS INDEFINIDAS En esta hoja podrán vsualzar el campo magnétco creado por una, dos tres o cuatro correntes rectlíneas

Más detalles

OPENCOURSEWARE REDES DE NEURONAS ARTIFICIALES Inés M. Galván José M. Valls. Examen Final

OPENCOURSEWARE REDES DE NEURONAS ARTIFICIALES Inés M. Galván José M. Valls. Examen Final OPENCOURSEWARE REDES DE NEURONAS ARTIFICIALES Inés M. Galván José M. Valls Examen Fnal Pregunta ( punto) Responda brevemente a las sguentes preguntas: a) Cuál es el obetvo en el aprendzae del Perceptron

Más detalles

3 - VARIABLES ALEATORIAS

3 - VARIABLES ALEATORIAS arte Varables aleatoras rof. María B. ntarell - VARIABLES ALEATORIAS.- Generaldades En muchas stuacones epermentales se quere asgnar un número real a cada uno de los elementos del espaco muestral. Al descrbr

Más detalles

PRIMER PARCIAL (30%) SÁBADO 10/11/12

PRIMER PARCIAL (30%) SÁBADO 10/11/12 PROBBILIDDE PRIMER PRCIL (30%) ÁBDO 0// PROBLEM. Una empresa productora de antenas sateltales tene tres máqunas dedcadas a la produccón de antenas cuyo rado de pantalla debe ser de cm. Debdo a desperfectos

Más detalles

(4 3 i)(4 3 i)

(4 3 i)(4 3 i) E.T.S.I. Industrales y Telecomuncacón Curso 00-0 Grados E.T.S.I. Industrales y Telecomuncacón Asgnatura: Cálculo I Ejerccos resueltos Calcular el valor de a y b para que b a 4 sea real y de módulo undad

Más detalles

3. VARIABLES ALEATORIAS.

3. VARIABLES ALEATORIAS. 3. VARIABLES ALEATORIAS. Una varable aleatora es una varable que toma valores numércos determnados por el resultado de un epermento aleatoro (no hay que confundr la varable aleatora con sus posbles valores)

Más detalles

Trabajo y Energía Cinética

Trabajo y Energía Cinética Trabajo y Energía Cnétca Objetvo General Estudar el teorema de la varacón de la energía. Objetvos Partculares 1. Determnar el trabajo realzado por una fuerza constante sobre un objeto en movmento rectlíneo..

Más detalles

Sumas de potencias de números naturales y los números de Bernoulli

Sumas de potencias de números naturales y los números de Bernoulli Sumas de potencas de números naturales y los números de Bernoull Alexey Beshenov (cadadr@gmal.com 4 de Febrero de 07 La suma de n números naturales consecutvos puede ser calculada medante la fórmula +

Más detalles

Solución. Se multiplica numerador y denominador por el conjugado del denominador.

Solución. Se multiplica numerador y denominador por el conjugado del denominador. . Hallar "a" para que el complejo : a a) sea real puro b) sea magnaro puro Solucón. Lo prmero de todo es hacer la dvsón en forma bnómca, multplcando numerador y denomnador por el conjugado del denomnador,

Más detalles

Reconciliación de datos experimentales. MI5022 Análisis y simulación de procesos mineralúgicos

Reconciliación de datos experimentales. MI5022 Análisis y simulación de procesos mineralúgicos Reconclacón de datos expermentales MI5022 Análss y smulacón de procesos mneralúgcos Balances Balances en una celda de flotacón En torno a una celda de flotacón (o un crcuto) se pueden escrbr los sguentes

Más detalles

SEMANA 13. CLASE 14. MARTES 20/09/16

SEMANA 13. CLASE 14. MARTES 20/09/16 SEMAA 3. CLASE. MARTES 20/09/6. Defncones de nterés.. Estadístca descrptva. Es la parte de la Estadístca que se encarga de reunr nformacón cuanttatva concernente a ndvduos, grupos, seres de hechos, etc..2.

Más detalles

EL MÉTODO DE DIFERENCIAS FINITAS POR GUILLERMO HERNÁNDEZ GARCÍA

EL MÉTODO DE DIFERENCIAS FINITAS POR GUILLERMO HERNÁNDEZ GARCÍA EL MÉTODO DE DIFERENCIAS FINITAS POR GUILLERMO HERNÁNDEZ GARCÍA . El Método de Dferencas Fntas El Método consste en una aproxmacón de las dervadas parcales por expresones algebracas con los valores de

Más detalles

Unidad 2 Representación Algebráica

Unidad 2 Representación Algebráica Undad Representacón lgebráca Gráfcas no drgdas Matrz de Incdenca La matrz de ncdenca de una gráfca G se denota como (G) y se defne como: a, S el vértce v ncde en la línea e n cada columna hay exactamente

Más detalles

TEMA 1.- CONCEPTOS BÁSICOS

TEMA 1.- CONCEPTOS BÁSICOS TEMA 1.- CONCEPTOS BÁSICOS 1.1.- Cuestones tpo test 1.- En las encuestas personales puede codfcarse, por ejemplo, con un cero las que son contestadas por una mujer y con un uno las que lo son por un varón.

Más detalles

Una renta fraccionada se caracteriza porque su frecuencia no coincide con la frecuencia de variación del término de dicha renta.

Una renta fraccionada se caracteriza porque su frecuencia no coincide con la frecuencia de variación del término de dicha renta. Rentas Fnanceras. Renta fracconada 6. RETA FRACCIOADA Una renta fracconada se caracterza porque su frecuenca no concde con la frecuenca de varacón del térmno de dcha renta. Las característcas de la renta

Más detalles

I.E.S. Historiador Chabás -1- Juan Bragado Rodríguez

I.E.S. Historiador Chabás -1- Juan Bragado Rodríguez Problema La sguente tabla epresa la estatura en cm. de soldados: Talla 5 56 60 6 68 6 80 8 88 Soldados 6 86 50 8 95 860 85 6 9 a) Haz un hstograma que represente la estatura en metros de los soldados.

Más detalles

En esta sesión se identificará, definirá y explicarán los diferentes tipos de anualidades tales como las vencidas, anticipadas y diferidas.

En esta sesión se identificará, definirá y explicarán los diferentes tipos de anualidades tales como las vencidas, anticipadas y diferidas. Matemátcas 1 Sesón No. 12 Nombre: Tpos de anualdades y amortzacón. Contextualzacón En esta sesón se dentfcará, defnrá y explcarán los dferentes tpos de anualdades tales como las vencdas, antcpadas y dferdas.

Más detalles

rsums Aproxima la integral de f mediante sumas de Riemann y realiza una representación gráfica de los rectángulos.

rsums Aproxima la integral de f mediante sumas de Riemann y realiza una representación gráfica de los rectángulos. PRÁCTICA INTEGRACIÓN Práctcas Matlab Práctca : Integracón Objetvos o Calcular ntegrales defndas de forma aproxmada, utlzando sumas de Remann. o o o Profundzar en la comprensón del concepto de ntegracón.

Más detalles

LECTURA 07: MEDIDAS DE TENDENCIA CENTRAL (PARTE II) LA MEDIANA Y LA MODA TEMA 17: LA MEDIANA Y LA MODA

LECTURA 07: MEDIDAS DE TENDENCIA CENTRAL (PARTE II) LA MEDIANA Y LA MODA TEMA 17: LA MEDIANA Y LA MODA LECTURA 07: MEDIDAS DE TENDENCIA CENTRAL (PARTE II) LA MEDIANA Y LA MODA TEMA 17: LA MEDIANA Y LA MODA. LA MEDIANA: Es una medda de tendenca central que dvde al total de n observacones debdamente ordenadas

Más detalles

Práctica 12 - Programación en C++ Pág. 1. Practica Nº 12. Prof. Dr. Paul Bustamante. Informática II Fundamentos de Programación - Tecnun

Práctica 12 - Programación en C++ Pág. 1. Practica Nº 12. Prof. Dr. Paul Bustamante. Informática II Fundamentos de Programación - Tecnun Práctca 1 - Programacón en C++ Pág. 1 Práctcas de C++ Practca Nº 1 Informátca II Fundamentos de Programacón Prof. Dr. Paul Bustamante Práctca 1 - Programacón en C++ Pág. 1 INDICE ÍNDICE... 1 1.1 Ejercco

Más detalles

Guía para el Trabajo Práctico N 5. Métodos Estadísticos en Hidrología

Guía para el Trabajo Práctico N 5. Métodos Estadísticos en Hidrología Guía para el Trabajo Práctco 5 Métodos Estadístcos en Hdrología er. PASO) Realzar el ajuste de la funcón de dstrbucón normal a una muestra de datos totales anuales de una varable (caudal, precptacón, etc.)

Más detalles

PRÁCTICA 5 TRABAJO Y ENERGÍA

PRÁCTICA 5 TRABAJO Y ENERGÍA Códgo: Versón: 0 Manual de práctcas del Págna 8/4 Laboratoro de Mecánca Seccón ISO 7.3 Epermental 05 de agosto de 0 emsón Secretaría/Dvsón: Dvsón de Cencas Báscas Laboratoro de Mecánca Epermental La mpresón

Más detalles

INTRODUCCIÓN AL ANÁLISIS DE DATOS SEPTIEMBRE 2014 Código asignatura: EXAMEN TIPO TEST MODELO B DURACION: 2 HORAS.

INTRODUCCIÓN AL ANÁLISIS DE DATOS SEPTIEMBRE 2014 Código asignatura: EXAMEN TIPO TEST MODELO B DURACION: 2 HORAS. eptembre 04 EAMEN MODELO B ág. INTRODUCCIÓN AL ANÁLII DE DATO ETIEMBRE 04 Códgo asgnatura: 60037 EAMEN TIO TET MODELO B DURACION: HORA olucones 0 4 40 30 0 0 0 44 4 39 6 4 36 37 3 8 00 0 0 03 04 Nº de

Más detalles

5. PROGRAMAS BASADOS EN RELACIONES DE RECURRENCIA.

5. PROGRAMAS BASADOS EN RELACIONES DE RECURRENCIA. Programacón en Pascal 5. PROGRAMAS BASADOS EN RELACIONES DE RECURRENCIA. Exsten numerosas stuacones que pueden representarse medante relacones de recurrenca; entre ellas menconamos las secuencas y las

Más detalles

Prof. Dr. Paul Bustamante

Prof. Dr. Paul Bustamante Carnet: Nombre: Practca Calfcada de C++ Informátca II Fundamentos de Programacón Prof. Dr. Paul Bustamante Practca Calfcada - Programacón en C++ Pág. 1 ÍNDICE ÍNDICE... 1 1. Introduccón... 1 1.1 Ejercco

Más detalles

Probabilidad Grupo 23 Semestre Segundo examen parcial

Probabilidad Grupo 23 Semestre Segundo examen parcial Probabldad Grupo 3 Semestre 015- Segundo examen parcal La tabla sguente presenta 0 postulados, algunos de los cuales son verdaderos y otros son falsos. Analza detendamente cada postulado y elge tu respuesta

Más detalles

6.9 El trazador cúbico

6.9 El trazador cúbico 4.9 El trazador cúbco El polnomo de nterpolacón es útl s se usan pocos datos y que además tengan un comportamento polnomal, así su representacón es un polnomo de grado bajo y adecuado. S no se cumplen

Más detalles