9Soluciones a los ejercicios y problemas

Tamaño: px
Comenzar la demostración a partir de la página:

Download "9Soluciones a los ejercicios y problemas"

Transcripción

1

2 38 S a todos los datos de una dstrbucón le sumamos un msmo número, qué le ocurre a la meda? Y a la desvacón típca? Y s multplcamos todos los datos por un msmo número? Llamamos a al valor sumado a cada dato de la dstrbucón: MEDIA Pág. 1 ( 1 + a)f 1 + ( + a)f + + ( n + a)f n n 1 f 1 + f + + n f n + a(f 1 + f + + f n ) n + a + a, puesto que n 1 n n n n La nueva meda es el valor de la meda orgnal más el valor que hemos sumado a cada dato. DESVIACIÓN TÍPICA: ( + a) + S f a ( + a) + S f a a a + a + a a a La desvacón típca no se ve alterada al sumar a todos los datos de la dstrbucón un msmo número. Supongamos ahora que todos los datos se multplcan por un msmo valor a: a MEDIA 1 f 1 + a f + + a n f n a n 8 la meda queda multplcada por dcho valor. DESVIACIÓN TÍPICA: ( a) a a a ( a) La varanza quedaría multplcada por a, luego la desvacón típca queda multplcada por a. ( ) 39 Dos dstrbucones estadístcas, A y B, tenen la msma desvacón típca. a) S la meda de A es mayor que la de B, cuál tene mayor coefcente de varacón? b)s la meda de A es el doble que la de B, cómo serán sus coefcentes de varacón?

3 9Solucones a los ejerccos y problemas C.V. q q > 0 7 a) S A > B q q < 8 < A B A B 8 B tene mayor coefcente de varacón. Pág. b) S A B q q C.V. de A 8 A B q C.V. de B 8 B El coefcente de varacón de A es la mtad que el de B. 40 La valdez de la nformacón que nos proporcona una encuesta depende, en gran medda, de la cudadosa elaboracón del cuestonaro. Algunas característcas que deben tener las preguntas son: Ser cortas y con un lenguaje sencllo. Sus esquemas deben presentar opcones no ambguas y equlbradas. Que no requeran esfuerzo de memora. Que no levanten prejucos en los encuestados. Estuda s las sguentes preguntas son adecuadas para formar parte de una encuesta y corrge los errorres que observes: a) Cuánto tempo sueles estudar cada día? Mucho Poco Según el día b) Cuántas veces has do al cne este año? c) Qué opnón tenes sobre la gestón del drector? Muy buena Buena Indferente d) Perden sus hjos el tempo vendo la televsón? Sí No e) En qué grado cree usted que la nstalacón de la planta de recclado afectaría al empleo y a las condcones de salud de nuestra cudad? a) La pregunta es muy subjetva: lo que para un alumno puede ser mucho tempo de estudo, para otro puede ser poco. Sería mejor dar opcones con horas determnadas: Menos de 1 hora Entre 1 y horas Más de horas b) La pregunta requere un gran esfuerzo de memora. Sería mejor preguntar cuántas veces se ha do al cne en el últmo mes.

4 c) Falta la opcón de manfestar que la opnón sobre la gestón del drector es mala. Pág. 3 d) La pregunta es subjetva. Sería mejor preguntar cuántas horas al día ven televsón los hjos de los encuestados: Menos de 1 hora Entre 1 y horas Más de horas e) La pregunta es demasado larga y no ofrece opcones claras de respuesta. Además, mezcla el empleo con las condcones de salud. Sería mejor hacer dos preguntas separadas dando una graduacón adecuada en cada caso. P R O F U N D I Z A 41 En una fábrca se ha meddo la longtud de pezas de las msmas característcas y se han obtendo los datos que puedes ver en esta tabla. L O N G I T U D ( E N mm) N. D E P I E Z A S 67,-7, 7,-77, 9 77,-8, 790 8,-87, 0 87,-9, a) Representa el hstograma correspondente. b)se consderan aceptables las pezas cuya longtud está en el ntervalo [7, 86]. Cuál es el porcentaje de pezas defectuosas? Del. ntervalo habrá que rechazar las que mdan entre 7, y 7. Calcula qué tanto por cento de la ampltud representa la dferenca 7 7, y halla el porcentaje de la frecuenca correspondente. Procede análogamente en el 4. ntervalo. a) Por tener todos los ntervalos la msma longtud, la altura de cada una de las barras concdrá con la frecuenca de cada ntervalo. f , 7, 77, 8, 87, 9, LONGITUD (mm)

5 b) Construmos la tabla de frecuencas absolutas acumuladas: Pág. 4 I N T E RVA L O f F E N % 67, - 7, 7, - 77, 77, - 8, 8, - 87, 87, - 9, , Calculamos el porcentaje de pezas que hay por debajo de 7 mm: 0,%, 7, 7 77, 0, 9,% 9, 8 4,7, Por debajo de 7 mm están el 4,7 + 0,,% de las pezas. Calculamos el porcentaje de pezas que están por debajo de 86 mm: 3, 89% 8, 86 87, % 8 7 3, Por debajo de 86 mm están el % de las pezas. El porcentaje de pezas que hay en el ntervalo [7, 86] es: 96, 90,7% Por tanto, el 0 90,7 9,% de las pezas serán defectuosas. 4 Se ha pasado un test de 80 preguntas a 600 personas. Este es el número de respuestas correctas: R E S P U E S TA S C O R R E C TA S N Ú M E R O D E P E R S O N A S [0-) [-0) [0-30) [30-40) [40-0) [0-60) [60-70) [70-80) a) Comprueba que la medana está en el ntervalo [40-0). Asígnale un valor repartendo homogéneamente los ndvduos que hay en el ntervalo. b)haz lo msmo para los cuartles.

6 a) MEDIANA 8 El 0% se alcanza en el ntervalo 40-0 Pág. I N T E RVA L O f F E N % 0 44,17,83 44,17% 40 Me 0 61,67 44,17 17,% [0, ) [, 0) [0, 30) [30, 40) [40, 0) [0, 60) [60, 70) [70, 80) ,67 16,67 9,17 44,17 61,67 7,83 89, , 8 3,33 8 Luego Me ,33 43,33,83 b) CUARTILES Q 1 8 El % se alcanza en el ntervalo ,67 8,33 9,17 16,67 1,% 16,67% 0 Q ,66 1, 8,33 Q ,66 6,66 Q 3 8 El 7% se alcanza en el ntervalo ,67 13,33% 7,83 61,67 14,16 61,67% 8 9,41 14,16 13,33 Q ,41 9,41 0 Q 3 60

7 43 a) Para estmar la estatura meda de los 934 soldados de un regmento, etraemos una muestra de 3 de ellos. La meda de la muestra es 17,6 cm. Epresa este resultado sabendo que en la fcha técnca se dce que el error mámo es de ±1,8 cm, con una probabldad de 0,90. b)s con el msmo estudo anteror admtmos que se cometa un error de ±,6 cm, el nvel de confanza será superor o nferor al 90%? c) Cómo podríamos aumentar el nvel de confanza mantenendo la cota de error en ±1,8 cm? a) La altura meda de los soldados está en el ntervalo (170,8; 174,4) con un nvel de confanza del 90%. b) El nvel de confanza, al aumentar la longtud del ntervalo, tambén aumenta. Por tanto, será superor al 90%. c) Tendríamos que aumentar el tamaño de la muestra. Es decr, habría que estudar a más de 3 soldados. Pág. 6

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. 1 Págna 0 PRACTICA Meda y desvacón típca 1 Las edades de los estudantes de un curso de nformátca son: 17 17 18 19 18 0 0 17 18 18 19 19 1 0 1 19 18 18 19 1 0 18 17 17 1 0 0 19 0 18 a) Haz una tabla

Más detalles

I.E.S. Historiador Chabás -1- Juan Bragado Rodríguez

I.E.S. Historiador Chabás -1- Juan Bragado Rodríguez Problema La sguente tabla epresa la estatura en cm. de soldados: Talla 5 56 60 6 68 6 80 8 88 Soldados 6 86 50 8 95 860 85 6 9 a) Haz un hstograma que represente la estatura en metros de los soldados.

Más detalles

14 EJERCICIOS RESUELTOS ESTADÍSTICA

14 EJERCICIOS RESUELTOS ESTADÍSTICA 1 EJERCICIOS RESUELTOS ESTADÍSTICA Pág. 1 Meda y desvacón típca 1 El número de faltas de ortografía que cometeron un grupo de estudantes en un dctado fue: 0 1 0 1 0 0 1 1 5 1 5 0 1 0 0 0 0 1 1 0 0 0 5

Más detalles

COLEGIO INGLÉS MEDIDAS DE DISPERSIÓN

COLEGIO INGLÉS MEDIDAS DE DISPERSIÓN COLEGIO IGLÉS DEPARTAMETO IVEL: CUARTO MEDIO PSU. UIDAD: ESTADISTICA 3 PROFESOR: ATALIA MORALES A. ROLADO SAEZ M. MIGUEL GUTIÉRREZ S. JAVIER FRIGERIO B. MEDIDAS DE DISPERSIÓ Las meddas de dspersón dan

Más detalles

INTRODUCCIÓN. Técnicas estadísticas

INTRODUCCIÓN. Técnicas estadísticas Tema : Estadístca Descrptva Undmensonal ITRODUCCIÓ Fenómeno determnsta: al repetrlo en déntcas condcones se obtene el msmo resultado. (Ejemplo: lómetros recorrdos en un ntervalo de tempo a una velocdad

Más detalles

Tema 1: Estadística Descriptiva Unidimensional

Tema 1: Estadística Descriptiva Unidimensional Fenómeno determnsta: al repetrlo en déntcas condcones se obtene el msmo resultado. Fenómeno aleatoro: no es posble predecr el resultado. La estadístca se ocupa de aquellos fenómenos no determnstas donde

Más detalles

ACTIVIDADES ESTADÍSTICA UNIDIMENSIONAL. a) Calcula la temperatura media y la temperatura mediana de la semana.

ACTIVIDADES ESTADÍSTICA UNIDIMENSIONAL. a) Calcula la temperatura media y la temperatura mediana de la semana. Matemátcas Aplcadas a las Cencas Socales I ACTIVIDADES ESTADÍSTICA UNIDIMENSIONAL 1) Se ha meddo la temperatura en grados centígrados la presón atmosférca en mm en una cudad durante una semana obtenéndose

Más detalles

Estadística Unidimensional: SOLUCIONES

Estadística Unidimensional: SOLUCIONES 4ª SesónFecha: Estadístca Undmensonal: SOLUCIOES Varables estadístca dscreta 1 Con los datos del ejercco de Pág 19 nº 3 determna: a) Tabla de Frecuencas b) Dagrama de barras Gráfco acumulado c) Meddas

Más detalles

Ejercicio nº 1. a) Elabora una tabla de frecuencias. b) Representa gráficamente la distribución.

Ejercicio nº 1. a) Elabora una tabla de frecuencias. b) Representa gráficamente la distribución. Ejercco nº En una empresa de teleonía están nteresados en saber cuál es el número de aparatos teleóncos (ncludos teléonos móvles) que se tene en las vvendas. Se hace una encuesta y, hasta ahora, han recbdo

Más detalles

Población 1. Población 1. Población 2. Población 2. Población 1. Población 1. Población 2. Población 2. Frecuencia. Frecuencia

Población 1. Población 1. Población 2. Población 2. Población 1. Población 1. Población 2. Población 2. Frecuencia. Frecuencia MAT-3 Estadístca I Tema : Meddas de Dspersón Facltador: Félx Rondón, MS Insttuto Especalzado de Estudos Superores Loyola Introduccón Las meddas de tendenca central son ndcadores estadístcos que resumen

Más detalles

ESTADÍSTICA. Definiciones

ESTADÍSTICA. Definiciones ESTADÍSTICA Defncones - La Estadístca es la cenca que se ocupa de recoger, contar, organzar, representar y estudar datos referdos a una muestra para después generalzar y sacar conclusones acerca de una

Más detalles

Prueba de Evaluación Continua

Prueba de Evaluación Continua Estadístca Descrptva y Regresón y Correlacón Prueba de Evaluacón Contnua 1-III-18 1.- Dada la varable x y la nueva varable y=a+bx, ndcar (demostrándolo) la expresón exstente entre las respectvas medas

Más detalles

Población: Es el conjunto de todos los elementos cuyo conocimiento nos interesa y serán objeto de nuestro estudio.

Población: Es el conjunto de todos los elementos cuyo conocimiento nos interesa y serán objeto de nuestro estudio. Tema 9 - Estadístca - Matemátcas B 4º E.S.O. 1 TEMA 9 - ESTADÍSTICA 9.1 DOS RAMAS DE LA ESTADÍSTICA 9.1.1 - INTRODUCCIÓN Objetvo: La estadístca tene por objeto el desarrollo de técncas para el conocmento

Más detalles

SEMANA 13. CLASE 14. MARTES 20/09/16

SEMANA 13. CLASE 14. MARTES 20/09/16 SEMAA 3. CLASE. MARTES 20/09/6. Defncones de nterés.. Estadístca descrptva. Es la parte de la Estadístca que se encarga de reunr nformacón cuanttatva concernente a ndvduos, grupos, seres de hechos, etc..2.

Más detalles

Tema 8 - Estadística - Matemáticas CCSSI 1º Bachillerato 1

Tema 8 - Estadística - Matemáticas CCSSI 1º Bachillerato 1 Tema 8 - Estadístca - Matemátcas CCSSI 1º Bachllerato 1 TEMA 8 - ESTADÍSTICA 8.1 NOCIONES GENERALES DE ESTADÍSTICA 8.1.1 INTRODUCCIÓN Objetvo: La estadístca tene por objeto el desarrollo de técncas para

Más detalles

CURSO DE VERANO C.O.U II/ 2º BACHILLERATO I ESTADISTICA

CURSO DE VERANO C.O.U II/ 2º BACHILLERATO I ESTADISTICA ESTADISTICA 1º.- La sguente tabla muestra las frecuencas relatvas de respuestas contestadas en un test por 50 personas. Intervalo Marca de clase Frecuenca Frecuenca absoluta relatva 0-0.1 5-9 0.3 10-1

Más detalles

ESTADISTÍCA. 1. Población, muestra e individuo. 2. Variables estadísticas. 3. El proceso que se sigue en estadística

ESTADISTÍCA. 1. Población, muestra e individuo. 2. Variables estadísticas. 3. El proceso que se sigue en estadística ESTADISTÍCA. Poblacón, muestra e ndvduo Las característcas de una dstrbucón se pueden estudar drectamente sobre la poblacón o se pueden nferr a partr de l estudo de una muestra. Poblacón estadístca es

Más detalles

Población: Es el conjunto de todos los elementos cuyo conocimiento nos interesa y serán objeto de nuestro estudio.

Población: Es el conjunto de todos los elementos cuyo conocimiento nos interesa y serán objeto de nuestro estudio. Tema 9 - Estadístca - Matemátcas B 4º E.S.O. 1 TEMA 9 - ESTADÍSTICA 9.1 DOS RAMAS DE LA ESTADÍSTICA 9.1.1 - INTRODUCCIÓN La estadístca tene por objeto el desarrollo de técncas para el conocmento numérco

Más detalles

2 Dos tipos de parámetros estadísticos

2 Dos tipos de parámetros estadísticos Dos tpos de parámetros estadístcos Págna 198 1. Calcula la meda, la medana y la moda de cada una de estas dstrbucones estadístcas: a) 4, 5, 6, 6, 6, 6, 7, 11, 1, 17 b), 1, 6, 9,, 8, 9,, 14, c), 3, 3, 3,

Más detalles

Universidad de Sonora Departamento de Matemáticas Área Económico Administrativa

Universidad de Sonora Departamento de Matemáticas Área Económico Administrativa Unversdad de onora Departamento de Matemátcas Área Económco Admnstratva Matera: Estadístca I Maestro: Dr. Francsco Javer Tapa Moreno emestre: 016-1 Hermosllo, onora, a 17 de 016. Introduccón En la clase

Más detalles

Medidas de centralización

Medidas de centralización 1 Meddas de centralzacón Meda Datos no agrupados = x X = n = 0 Datos agrupados = x X = n = 0 Medana Ordenamos la varable de menor a mayor. Calculamos la columna de la frecuenca relatva acumulada F. Buscamos

Más detalles

Medidas de Variabilidad

Medidas de Variabilidad Meddas de Varabldad Una medda de varabldad es un ndcador del grado de dspersón de un conjunto de observacones de una varable, en torno a la meda o centro físco de la msma. S la dspersón es poca, entonces

Más detalles

Estas medidas serán más significativas cuanto más homogéneos sean los datos y pueden ser engañosas cuando mezclamos poblaciones distintas.

Estas medidas serán más significativas cuanto más homogéneos sean los datos y pueden ser engañosas cuando mezclamos poblaciones distintas. UIDAD 3: Meddas estadístcas Las meddas estadístcas o parámetros estadístcos son valores representatvos de una coleccón de datos y que resumen en unos pocos valores la normacón del total de datos. Estas

Más detalles

Descripción de una variable

Descripción de una variable Descrpcón de una varable Tema. Defncones fundamentales. Tabla de frecuencas. Datos agrupados. Meddas de poscón Meddas de tendenca central: meda, medana, moda Ignaco Cascos Depto. Estadístca, Unversdad

Más detalles

Tema 1:Descripción de una variable. Tema 1:Descripción de una variable. 1.1 El método estadístico. 1.1 El método estadístico. Describir el problema

Tema 1:Descripción de una variable. Tema 1:Descripción de una variable. 1.1 El método estadístico. 1.1 El método estadístico. Describir el problema Tema :Descrpcón de una varable Tema :Descrpcón de una varable. El método estadístco. Descrpcón de conjuntos de datos Dstrbucones de frecuencas. Representacón gráfca Dagrama de barras Hstograma. Meddas

Más detalles

Unidad 9. Estadística

Unidad 9. Estadística a las Enseñanzas Académcas Págna 9 El valor de las muestras. Un curoso epermento Quénes crees que obtendrán mejores resultados? Es decr, en general las meddas de las muestras de A, se parecerán más a μ

Más detalles

Tema 11: Estadística.

Tema 11: Estadística. Tema 11: Estadístca. Ejercco 1. Un fabrcante de tornllos desea hacer un control de caldad. Para ello, recoge 1 de cada 100 tornllos producdos y lo analza. a) Cuál es la poblacón? b) Cuál es la muestra?

Más detalles

16/02/2015. Ángel Serrano Sánchez de León

16/02/2015. Ángel Serrano Sánchez de León Ángel Serrano Sánchez de León Índce Introduccón Varables estadístcas Dstrbucones de frecuencas Introduccón a la representacón gráfca de datos Meddas de tendenca central: meda (artmétca, geométrca, armónca,

Más detalles

ENUNCIADOS DE LOS EJERCICIOS PROPUESTOS EN 2011 EN MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES. 3 y

ENUNCIADOS DE LOS EJERCICIOS PROPUESTOS EN 2011 EN MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES. 3 y ENUNCADOS DE LOS EJERCCOS PROPUESTOS EN 011 EN MATEMÁTCAS APLCADAS A LAS CENCAS SOCALES. EJERCCO 1 a (5 puntos Raconalce las epresones y. 7 b (5 puntos Halle el conjunto de solucones de la necuacón EJERCCO

Más detalles

5ª Parte: Estadística y Probabilidad

5ª Parte: Estadística y Probabilidad ª Parte: Estadístca y Probabldad. Las notas de los alumnos de una clase son:,,,, 6, 7,,,,,,,, 7,,,, 6,, Haz una tabla de frecuencas. Solucón Varable Frecuencas absolutas Frecuencas relatvas estadístca

Más detalles

Erratas y modificaciones

Erratas y modificaciones Erratas y modfcacones Págna 39 Tabla fnal: Dce: Expermental T Debe decr: Expermental T Págna 40 Tabla comenzo: Dce: T 0 Debe decr: T Dce: 3 T Debe decr: 3 T Págna 05 Párrafo : Debe qutarse el acento de

Más detalles

4) Ahora elaboremos la tabla de distribución de frecuencias: TABLA DE DISTRIBUCIÓN DE FRECUENCIAS DE LOS PESOS DE LOS ESTUDIANTES MERU CALIDAD.

4) Ahora elaboremos la tabla de distribución de frecuencias: TABLA DE DISTRIBUCIÓN DE FRECUENCIAS DE LOS PESOS DE LOS ESTUDIANTES MERU CALIDAD. APELLIDOS Y NOMBRES:... EJERCICIO: Se han regstrado dferentes pesos de los alumnos del segundo grado de una Insttucón Educatva en klogramos. 40 41 42 50 40 48 41 43 39 40 47 46 49 49 50 39 50 48 42 45

Más detalles

Población: Es el conjunto de todos los elementos cuyo conocimiento nos interesa y serán objetos de nuestro estudio.

Población: Es el conjunto de todos los elementos cuyo conocimiento nos interesa y serán objetos de nuestro estudio. TEMA 8 - ESTADÍSTICA 8. NOCIONES GENERALES DE ESTADÍSTICA 8.. INTRODUCCIÓN Objetvo: La estadístca tene por objeto el desarrollo de técncas para el conocmento numérco de un conjunto de datos empírcos (recogdos

Más detalles

Tema 1: Análisis de datos unidimensionales

Tema 1: Análisis de datos unidimensionales Tema : Análss de datos undmensonales. Varables estadístcas undmensonales. Representacones gráfcas.. Característcas de las dstrbucones de frecuencas undmensonales.. Varables estadístcas undmensonales. Representacones

Más detalles

ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR FUNDAMENTOS DE MATEMÁTICAS

ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR FUNDAMENTOS DE MATEMÁTICAS IES ÍTACA ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR FUNDAMENTOS DE MATEMÁTICAS HOJA 18: ESTADÍSTICA 1. El número de hermanos de los alumnos de una clase es el sguente: 1 3 1 1 1 1 1 1 1 1 3 1 3 5 a)

Más detalles

EJERCICIOS RESUELTOS TEMA 2

EJERCICIOS RESUELTOS TEMA 2 EJERCICIOS RESUELTOS TEMA.1. La Moda, para el grupo de Varones de la Tabla 1, es: A) 4,5; B) 17; C) 60.. Con los datos de la Tabla 1, la meda en para las Mujeres es: A) gual a la meda para los Varones;

Más detalles

EJERCICIOS RESUELTOS VARIABLE ALEATORIA UNIDIMENSIONAL

EJERCICIOS RESUELTOS VARIABLE ALEATORIA UNIDIMENSIONAL Gestón Aeronáutca: Estadístca Teórca Facultad Cencas Económcas y Empresarales Departamento de Economía Aplcada Profesor: Santago de la Fuente Fernández EJERCICIOS RESUELTOS VARIABLE ALEATORIA UNIDIMENSIONAL

Más detalles

Agrupa los datos en intervalos de amplitud 8. Elabora una tabla similar a la anterior !!!""#""!!!

Agrupa los datos en intervalos de amplitud 8. Elabora una tabla similar a la anterior !!!#!!! Undad 15 REPASO DE ESTADÍSTICA! 11 Resuelve tú ( Pág "#$ ) sdo: Las puntuacones de una prueba de ntelgenca aplcada a los 75 alumnos anterores han 87 105 88 103 114 15 108 107 118 114 19 100 106 113 105

Más detalles

17/02/2015. Ángel Serrano Sánchez de León

17/02/2015. Ángel Serrano Sánchez de León Ángel Serrano Sánchez de León 1 Índce Introduccón Varables estadístcas Dstrbucones esde frecuencas c Introduccón a la representacón gráfca de datos Meddas de tendenca central: meda (artmétca, geométrca,

Más detalles

OCION elegr opcones) Ejercco 1 EJERCICIOS Un rombo tene 30 m de superfce su ángulo menor es de 4º, Calcule la longtud de su lado. Ejercco S sumamos uno a un número calculamos su raíz cuadrada postva, se

Más detalles

1. Notación y tabulación

1. Notación y tabulación Tema 2: Descrpcón Unvarante. otacón y tabulacón 2. Descrpcón gráfca 3. Descrpcón numérca. Momentos estadístcos. Meddas de poscón. Meddas de dspersón v. Varable tpfcada v. Meddas de forma v. Meddas de concentracón

Más detalles

PROBABILIDAD Y ESTADÍSTICA

PROBABILIDAD Y ESTADÍSTICA PROBABILIDAD Y ESTADÍSTICA 1. S A es un suceso de probabldad 0.3, la probabldad de su suceso contraro es: a) 0. b) 1.0 c) 0.7 (Convocatora juno 006. Eamen tpo H) S A es un suceso, la probabldad de su suceso

Más detalles

Tema 4: Variables aleatorias

Tema 4: Variables aleatorias Estadístca 46 Tema 4: Varables aleatoras El concepto de varable aleatora surge de la necesdad de hacer más manejables matemátcamente los resultados de los expermentos aleatoros, que en muchos casos son

Más detalles

TRABAJO 1: Variables Estadísticas Unidimensionales (Tema 1).

TRABAJO 1: Variables Estadísticas Unidimensionales (Tema 1). TRABAJO 1: Varables Estadístcas Undmensonales (Tema 1). Técncas Cuanttatvas I. Curso 2016/2017. APELLIDOS: NOMBRE: GRADO: GRUPO: DNI (o NIE): A: B: C: D: En los enuncados de los ejerccos que sguen aparecen

Más detalles

DISTRIBUCIONES BIDIMENSIONALES

DISTRIBUCIONES BIDIMENSIONALES Matemátcas 1º CT 1 DISTRIBUCIONES BIDIMENSIONALES PROBLEMAS RESUELTOS 1. a) Asoca las rectas de regresón: y = +16, y = 1 e y = 0,5 + 5 a las nubes de puntos sguentes: b) Asgna los coefcentes de correlacón

Más detalles

Estadística aplicada a las ciencias sociales. Examen Febrero de 2008 primera semana

Estadística aplicada a las ciencias sociales. Examen Febrero de 2008 primera semana Estadístca alcada a las cencas socales. Examen Febrero de 008 rmera semana Ejercco. - En la sguente tabla, se reresentan los datos de las edades de los trabajadores de una gran emresa. Gruos de edad Nº

Más detalles

Histogramas: Es un diagrama de barras pero los datos son siempre cuantitativos agrupados en clases o intervalos.

Histogramas: Es un diagrama de barras pero los datos son siempre cuantitativos agrupados en clases o intervalos. ESTADÍSTICA I. Recuerda: Poblacón: Es el conjunto de todos los elementos que cumplen una determnada propedad, que llamamos carácter estadístco. Los elementos de la poblacón se llaman ndvduos. Muestra:

Más detalles

3. VARIABLES ALEATORIAS.

3. VARIABLES ALEATORIAS. 3. VARIABLES ALEATORIAS. Una varable aleatora es una varable que toma valores numércos determnados por el resultado de un epermento aleatoro (no hay que confundr la varable aleatora con sus posbles valores)

Más detalles

VARIABLE ALEATORIA DISCRETA. DISTRIBUCIÓN BINOMIAL.

VARIABLE ALEATORIA DISCRETA. DISTRIBUCIÓN BINOMIAL. VARIABLE ALEATORIA DISCRETA. DISTRIBUCIÓN BINOMIAL. Concepto de varable aleatora. Se llama varable aleatora a toda aplcacón que asoca a cada elemento del espaco muestral de un epermento, un número real.

Más detalles

Tema 3. Estadísticos univariados: tendencia central, variabilidad, asimetría y curtosis

Tema 3. Estadísticos univariados: tendencia central, variabilidad, asimetría y curtosis Tema. Estadístcos unvarados: tendenca central, varabldad, asmetría y curtoss 1. MEDIDA DE TEDECIA CETRAL La meda artmétca La medana La moda Comparacón entre las meddas de tendenca central. MEDIDA DE VARIACIÓ

Más detalles

Ejercicios y Talleres. puedes enviarlos a

Ejercicios y Talleres. puedes enviarlos a Ejerccos y Talleres puedes envarlos a klasesdematematcasymas@gmal.com www.klasesdematematcasymas.com Hallar: 1. Altura Mayor: 1,93. Altura Menor: 1, 3. Rango: 1,93-1, 0,7 4. Formar ntervalos: m Rango 5.

Más detalles

CAPÍTULO IV. MEDICIÓN. De acuerdo con Székely (2005), existe dentro del período información

CAPÍTULO IV. MEDICIÓN. De acuerdo con Székely (2005), existe dentro del período información IV. Base de Datos CAPÍTULO IV. MEDICIÓN De acuerdo con Székely (2005), exste dentro del período 950-2004 nformacón representatva a nvel naconal que en algún momento se ha utlzado para medr la pobreza.

Más detalles

TEMA 10: ESTADÍSTICA

TEMA 10: ESTADÍSTICA TEMA 10: La Estadístca es la parte de las matemátcas que se ocupa de recoger, organzar y analzar grandes cantdades de datos para estudar alguna característca de un colectvo. 1. VARIABLES S UIDIMESIOALES

Más detalles

Licenciatura en Administración y Dirección de Empresas INTRODUCCIÓN A LA ESTADÍSTICA EMPRESARIAL

Licenciatura en Administración y Dirección de Empresas INTRODUCCIÓN A LA ESTADÍSTICA EMPRESARIAL INTRODUCCIÓN A LA ESTADÍSTICA EMPRESARIAL Relacón de Ejerccos nº 2 ( tema 5) Curso 2002/2003 1) Las cento trenta agencas de una entdad bancara presentaban, en el ejercco 2002, los sguentes datos correspondentes

Más detalles

Bloque 5. Probabilidad y Estadística Tema 2. Estadística descriptiva Ejercicios resueltos

Bloque 5. Probabilidad y Estadística Tema 2. Estadística descriptiva Ejercicios resueltos Bloque 5. Probabldad y Estadístca Tema. Estadístca descrptva Ejerccos resueltos 5.-1 Dada la sguente tabla de ngresos mensuales, calcular la meda, la medana y el ntervalo modal. Ingresos Frecuenca Menos

Más detalles

Ejemplo: Consumo - Ingreso. Ingreso. Consumo. Población 60 familias

Ejemplo: Consumo - Ingreso. Ingreso. Consumo. Población 60 familias Ejemplo: Consumo - Ingreso Ingreso Consumo Poblacón 60 famlas ( YX ) P = x [ YX ] E = x Línea de regresón poblaconal 80 60 Meda Condconal 40 20 00 [ X = 200] EY o o o o [ X = 200] EY 80 o o o 60 o 40 8

Más detalles

INICIACIÓN A LA ESTADÍSTICA. ACTIVIDADES DE AUTOEVALUACIÓN DE LA UNIDAD ESTADÍSTICA. (SOLUCIONES)

INICIACIÓN A LA ESTADÍSTICA. ACTIVIDADES DE AUTOEVALUACIÓN DE LA UNIDAD ESTADÍSTICA. (SOLUCIONES) ACTIVIDADES DE AUTOEVALUACIÓ DE LA UIDAD ESTADÍSTICA. (SOLUCIOES) 1. D, en cada caso, cuál es la varable que se quere estudar y especfca de qué tpo es: Tempo dedcado a las tareas doméstcas por parte de

Más detalles

Tema 1: Estadística Descriptiva Unidimensional Unidad 2: Medidas de Posición, Dispersión y de Forma

Tema 1: Estadística Descriptiva Unidimensional Unidad 2: Medidas de Posición, Dispersión y de Forma Estadístca Tema 1: Estadístca Descrptva Undmensonal Undad 2: Meddas de Poscón, Dspersón y de Forma Área de Estadístca e Investgacón Operatva Lceso J. Rodríguez-Aragón Septembre 2010 Contendos...............................................................

Más detalles

Prueba de Inferencia Estadística y Contraste de Hipótesis. 8 de octubre de 2012 GRUPO A

Prueba de Inferencia Estadística y Contraste de Hipótesis. 8 de octubre de 2012 GRUPO A Prueba de Inferenca Estadístca y Contraste de Hpótess 8 de octubre de 01 GRUPO A 1.- Se ha observado un ángulo cnco veces, obtenéndose los sguentes valores: Se pde: 65º5 ; 65º33 ; 65º3 ; 65º8 ; 65º7 a)

Más detalles

el blog de mate de aida CSI: Estadística unidimensional pág. 1

el blog de mate de aida CSI: Estadística unidimensional pág. 1 el blog de mate de ada CSI: Estadístca undmensonal pág. ESTADÍSTICA La estadístca es la cenca que permte hacer estudos de grandes poblacones escogendo sólo un pequeño grupo de ndvduos, lo que ahorra tempo

Más detalles

ESTADÍSTICA UNIDIMENSIONAL

ESTADÍSTICA UNIDIMENSIONAL ESTADÍSTICA UNIDIMENSIONAL La estadístca undmensonal trata de resumr la nformacón contenda en una tabla que contene nformacón de una sola varable en unos pocos números. Las meddas de poscón pueden ser:

Más detalles

Tema 1 Descripción de datos: Estadística descriptiva unidimensional Estadística descriptiva

Tema 1 Descripción de datos: Estadística descriptiva unidimensional Estadística descriptiva Descrpcón de datos: Estadístca descrptva undmensonal Estadístca descrptva Objetvos: Ordenar, clasfcar, resumr grandes conjuntos de datos de modo que puedan ser fáclmente nterpretables Defncones báscas:

Más detalles

Un estimado de intervalo o intervalo de confianza ( IC

Un estimado de intervalo o intervalo de confianza ( IC Un estmado puntual, por ser un sólo número, no proporcona por sí msmo nformacón alguna sobre la precsón y confabldad de la estmacón. Debdo a la varabldad que pueda exstr en la muestra, nunca se tendrá

Más detalles

VARIABLE ALEATORIA DISCRETA. DISTRIBUCIÓN BINOMIAL.

VARIABLE ALEATORIA DISCRETA. DISTRIBUCIÓN BINOMIAL. VARIABLE ALEATORIA DISCRETA. DISTRIBUCIÓN BINOMIAL. Concepto de varable aleatora. Se llama varable aleatora a toda aplcacón que asoca a cada elemento del espaco muestral de un expermento, un número real.

Más detalles

1 El número de faltas de ortografía que cometieron un grupo de estudiantes en un dictado fue:

1 El número de faltas de ortografía que cometieron un grupo de estudiantes en un dictado fue: Pág. 1 Tablas de frecuencias 1 El número de faltas de ortografía que cometieron un grupo de estudiantes en un dictado fue: 0 3 1 2 0 2 1 3 0 4 0 1 1 4 3 5 3 2 4 1 5 0 2 1 0 0 0 0 2 1 2 1 0 0 3 0 5 3 2

Más detalles

a) Qué población (la de hombres o la de mujeres) presenta un salario medio mayor? b) Qué porcentaje de varones gana más de 900?

a) Qué población (la de hombres o la de mujeres) presenta un salario medio mayor? b) Qué porcentaje de varones gana más de 900? EJERCICIO 1. A contnuacón tene dos dstrbucones por sexo y salaro declarado en el prmer empleo tras obtener la lcencatura de un grupo de ttulados por la UNED. Salaro en Hombres en % Mujeres en % < de 600

Más detalles

EJERCICIOS PROPUESTOS TEMAS 1 Y 2

EJERCICIOS PROPUESTOS TEMAS 1 Y 2 EJERCICIOS PROPUESTOS TEMAS 1 Y 2 1.- Indca para los sguentes caracteres s son varables (dferencando entre dscretas y contnuas) o atrbutos, y la escala de medda a la que pertenecen: a) Nvel de estudos

Más detalles

Unidad 17 Distribuciones de probabilidad. Distribuciones binomial y normal

Unidad 17 Distribuciones de probabilidad. Distribuciones binomial y normal Undad 7 Dstrbucones de probabldad. Dstrbucones bnomal y normal PÁGINA 89 SOLUCIONES. La probabldad es: 4 P(V y M) = = 8. Sabemos que P( Defectuoso) = 0,05. El número de chps que cabe esperar defectuosos

Más detalles

ESTADÍSTICA. x es el cociente entre la frecuencia absoluta del valor

ESTADÍSTICA. x es el cociente entre la frecuencia absoluta del valor el blog de mate de ada: ESTADÍSTICA pág. 1 ESTADÍSTICA La estadístca es la cenca que permte acer estudos de grandes poblacones escogendo sólo un pequeño grupo de ndvduos, lo que aorra tempo y dnero. Poblacón

Más detalles

DATOS AGRUPADOS POR INTERVALOS DE CLASE

DATOS AGRUPADOS POR INTERVALOS DE CLASE 3. Datos agrupados por ntervalo (Varable contnua) Generalmente los datos se agrupan por medo de ntervalos de clase, los cálculos son una aproxmacón a la realdad, se faclta los cálculos. En la agrupacón

Más detalles

Media es la suma de todas las observaciones dividida por el tamaño de la muestra.

Media es la suma de todas las observaciones dividida por el tamaño de la muestra. Estadístcos Los estadístcos son valores calculados con los datos de una varable cuanttatva y que mden alguna de las característcas de la dstrbucón muestral. Las prncpales característcas son: tendenca central,

Más detalles

ESTADÍSTICA (GRUPO 12)

ESTADÍSTICA (GRUPO 12) ESTADÍSTICA (GRUPO 2) CAPÍTULO II.-ANÁLISIS DE UNA CARACTERÍSTICA (DISTRIBUCIONES UNIDIMENSIONALES) TEMA.- DISTRIBUCIONES DE FRECUENCIAS DIPLOMATURA EN CIENCIAS EMPRESARIALES UNIVERSIDAD DE SEVILLA . DISTRIBUCIÓN

Más detalles

Para construir un diagrama de tallo y hoja seguimos los siguientes pasos:

Para construir un diagrama de tallo y hoja seguimos los siguientes pasos: UNIDAD 2: Gráfcos estadístcos Los gráfcos muestran vsualmente y de forma rápda la dstrbucón de los datos y sus prncpales característcas, consttuyen un mportante complemento en la presentacón de la nformacón.

Más detalles

MEDIDAS DESCRIPTIVAS

MEDIDAS DESCRIPTIVAS Tema 2: MEDIDAS DESCRIPTIVAS DE LOS DATOS 1. MEDIDAS DE CETRALIZACIÓ: Meda Medana Moda Cuantles Otras 2. MEDIDAS DE DISPERSIÓ: Desvacón típca Varanza Rango Otras 3. MEDIDAS DE FORMA: Asmetría Apuntamento

Más detalles

TEMA 1.- CONCEPTOS BÁSICOS

TEMA 1.- CONCEPTOS BÁSICOS TEMA 1.- CONCEPTOS BÁSICOS 1.1.- Cuestones tpo test 1.- En las encuestas personales puede codfcarse, por ejemplo, con un cero las que son contestadas por una mujer y con un uno las que lo son por un varón.

Más detalles

Estadísticos muéstrales

Estadísticos muéstrales Estadístcos muéstrales Una empresa dedcada al transporte y dstrbucón de mercancías, tene una plantlla de 50 trabajadores. Durante el últmo año se ha observado que 5 trabajadores han faltado un solo día

Más detalles

EJERCICIOS: Tema 3. Los ejercicios señalados con.r se consideran de conocimientos previos necesarios para la comprensión del tema 3.

EJERCICIOS: Tema 3. Los ejercicios señalados con.r se consideran de conocimientos previos necesarios para la comprensión del tema 3. EJERCICIOS: Tema 3 Los ejerccos señalados con.r se consderan de conocmentos prevos necesaros para la comprensón del tema 3. Ejercco 1.R Dos bblotecas con el msmo fondo bblográfco especalzado ofrecen las

Más detalles

Población y Muestra, Variables Estadísticas, Diagramas y Medidas de Centralización en 3º de ESO

Población y Muestra, Variables Estadísticas, Diagramas y Medidas de Centralización en 3º de ESO 43 ANEXO 1: Tablas facltadas al alumnado Las sguentes tablas serán rellenadas por parte de los grupos de estudantes que se realzarán en el aula, tal y como se comenta en el presente trabajo. Tabla de

Más detalles

Estadístca Edad meda para los ccos: 18+ 8 1+ 1 0+ 10 1+ 5 + 3 1016 = = 0,3años. + 8+ 1+ 10+ 5+ 50 La edad meda para las ccas: 18+ 1+ 6 0+ 1+ 17 + 1 3 1071 = = 1, años. + + 6+ + 17+ 1 50 La edad meda del

Más detalles

Variable Estadística

Variable Estadística Varable Estadístca.- Los afconados al bésbol aprenden de memora las estadístcas de este juego. Por ejemplo, cuántos home runs (golpes que envían la pelota fuera del campo de juego) son necesaros para lderar

Más detalles

I. En un regimiento de 900 soldados, deseamos conocer la estatura de todos ellos.

I. En un regimiento de 900 soldados, deseamos conocer la estatura de todos ellos. Estadístca Dstrbucones Undmensonales Poblacón y Muestra Varables estadístcas Tablas estadístcas Gráfcos estadístcos Parámetros estadístcos Calculadora centífca Caso Problemas resueltos Introduccón La palabra

Más detalles

LECTURA 07: MEDIDAS DE TENDENCIA CENTRAL (PARTE II) LA MEDIANA Y LA MODA TEMA 17: LA MEDIANA Y LA MODA

LECTURA 07: MEDIDAS DE TENDENCIA CENTRAL (PARTE II) LA MEDIANA Y LA MODA TEMA 17: LA MEDIANA Y LA MODA LECTURA 07: MEDIDAS DE TENDENCIA CENTRAL (PARTE II) LA MEDIANA Y LA MODA TEMA 17: LA MEDIANA Y LA MODA. LA MEDIANA: Es una medda de tendenca central que dvde al total de n observacones debdamente ordenadas

Más detalles

VARIABLES ALEATORIAS UNIDIMENSIONALES

VARIABLES ALEATORIAS UNIDIMENSIONALES Gestón Aeronáutca: Estadístca Teórca Facultad Cencas Económcas y Empresarales Departamento de Economía Aplcada Profesor: Santago de la Fuente Fernández VARIABLES ALEATORIAS UNIDIMENSIONALES Gestón Aeronáutca:

Más detalles

4º DE ESO MATEMÁTICAS-B CURSO UNIDAD 14: ESTADÍSTICA

4º DE ESO MATEMÁTICAS-B CURSO UNIDAD 14: ESTADÍSTICA UNIDAD 14: ESTADÍSTICA INTRODUCCIÓN La presenca de la Estadístca es habtual en multtud de contextos de la vda real: encuestas electorales, sondeos de opnón, etc. La mportanca de la Estadístca en la socedad

Más detalles

E.U.I.T.I. Bilbao. Asignatura: MÉTODOS ESTADÍSTICOS DE LA INGENIERÍA

E.U.I.T.I. Bilbao. Asignatura: MÉTODOS ESTADÍSTICOS DE LA INGENIERÍA E.U.I.T.I. Blbao Asgnatura: MÉTODOS ESTADÍSTICOS DE LA INGENIERÍA E.U.I.T.I. Blbao Asgnatura: MÉTODOS ESTADÍSTICOS DE LA INGENIERÍA TEMA 2: ESTADÍSTICA DESCRIPTIVA 1. RESUMEN Métodos para resumr y descrbr

Más detalles

Variable Estadística

Variable Estadística Varable Estadístca 1.- Los afconados al bésbol aprenden de memora las estadístcas de este juego. Por ejemplo, cuántos home runs (golpes que envían la pelota fuera del campo de juego) son necesaros para

Más detalles

Estadísticos muéstrales

Estadísticos muéstrales Estadístcos muéstrales Hemos estudado dferentes meddas numércas correspondentes a conjuntos de datos, entre otras, estudamos la meda, la desvacón estándar etc. Ahora vamos a dstngur entre meddas numércas

Más detalles

unidad 12 Estadística

unidad 12 Estadística undad 1 Estadístca Qué es una tabla de frecuencas Págna 1 Al número de veces que se repte un dato se le denomna frecuenca de ese dato. Una tabla de frecuencas es una tabla en la que cada valor de la varable

Más detalles

Tema 9: Estadística Unidimensional.

Tema 9: Estadística Unidimensional. Tema 9: Estadístca Undmensonal..- Introduccón.- Conceptos Báscos 3.- Tablas estadístcas.- Parámetros Estadístcos De centralzacón. De poscón De dspersón. 5.- Grácos Estadístcos 6.- Ejerccos Resueltos 7.-

Más detalles

Pruebas Estadísticas de Números Pseudoaleatorios

Pruebas Estadísticas de Números Pseudoaleatorios Pruebas Estadístcas de Números Pseudoaleatoros Prueba de meda Consste en verfcar que los números generados tengan una meda estadístcamente gual a, de esta manera, se analza la sguente hpótess: H 0 : =

Más detalles

( ) MUESTREO ALEATORIO SIMPLE SIN REEMPLAZO ( mas ) y Y. N n. S y. MUESTREO ALEATORIO SIMPLE SIN REEMPLAZO ( mas )

( ) MUESTREO ALEATORIO SIMPLE SIN REEMPLAZO ( mas ) y Y. N n. S y. MUESTREO ALEATORIO SIMPLE SIN REEMPLAZO ( mas ) MUETREO ALEATORIO IMPLE I Este esquema de muestreo es el más usado cuando se tene un marco de muestreo que especfque la manera de dentfcar cada undad en la poblacón. Además no se tene conocmento a pror

Más detalles

UNIDAD 12: Distribuciones bidimensionales. Correlación y regresión

UNIDAD 12: Distribuciones bidimensionales. Correlación y regresión Matemátcas aplcadas a las Cencas Socales UNIDAD 1: Dstrbucones bdmensonales. Correlacón regresón ACTIVIDADES-PÁG. 68 1. La meda la desvacón típca son: 1,866 0,065. Los jugadores que se encuentran por encma

Más detalles

Tema 1.3_A La media y la desviación estándar

Tema 1.3_A La media y la desviación estándar Curso 0-03 Grado en Físca Herramentas Computaconales Tema.3_A La meda y la desvacón estándar Dónde estudar el tema.3_a: Capítulo 4. J.R. Taylor, Error Analyss. Unv. cence Books, ausalto, Calforna 997.

Más detalles

ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA DESCRIPTIVA Bachllerato ESTADÍSTICA DESCRIPTIVA Introduccón La estadístca es una rama de las matemátcas que trata de la recogda, ordenacón, análss y presentacón adecuada de datos recogdos sobre certa poblacón (no

Más detalles

4ºB ESO Capítulo 12: Estadística LibrosMareaVerde.tk www.apuntesmareaverde.org.es

4ºB ESO Capítulo 12: Estadística LibrosMareaVerde.tk www.apuntesmareaverde.org.es 4ºB ESO Capítulo 1: Estadístca 350 Índce 1. POBLACIÓ Y MUESTRA. VARIABLES ESTADÍSTICAS 1.1. POBLACIÓ 1.. MUESTRA 1.3. IDIVIDUO 1.4. VARIABLE ESTADÍSTICA. TABLAS DE FRECUECIAS.1. FRECUECIA ABSOLUTA.. FRECUECIA

Más detalles