Teoría de Sistemas y Señales
|
|
- María Rosa Ortiz de Zárate Martínez
- hace 3 años
- Vistas:
Transcripción
1 Torí d istms y ñls Trsprcis: Torm dl Mustro Mustro l domiio rcucil Autor: Dr. Ju Crlos Gómz
2 Mustro d ñls Alógics. Covrsió AD y DA L myorí d ls sñls d itrés so d tipo lógico. Pr procsr sts sñls form digitl s csrio covrtirls u scuci d úmros d prcisió fiit. Covrsió Alógic Digitl (A D) Los dispositivos qu rliz st oprció s domi Covrsors AD. El procso d covrsió AD cost d los siguits psos: (t) () q ().. Mustro Cutizció Codificció ñl Alógic ñl T.D. ñl Cutizd ñl Digitl ig.. Covrsió AlógicDigitl Ty
3 E muchos csos d itrés práctico s csrio rcovrtir l sñl procsd digitlmt l form lógic Covrsió Digitl Alógic (D A) Los dispositivos qu rliz st oprció s domi Covrsors DA. El procso d covrsió DA cost d los siguits psos: Covrsor DA Mustro y osté (H) iltro PB d lisdo ñl Digitl ñl Alógic ñl Alógic ñl Alógic d Etrd co glitch sclr d slid ig.. Covrsió DigitlAlógic Ty 3
4 . Mustro l Domiio Tmporl ñl Alógic (t) () (T) T Mustrdor ig. 3. Mustro Idl ñl TD os limitrmos mustro uiform o priódico () (T) -< < () s obti tomdo mustrs d (t) cd T sgudos (t) () T Mustrdor t ig. 4. Mustro Idl Ty 4
5 Vribl cotiuo: t timpo discrto: t.t rcuci cotiuo: (t) A cos(..t) discrto: f (T) () A cos(.. ) f ω Ω.T Rgo d cotiuo: - < < rcucis discrto: - < f < - < Ω < - < ω < Alizrmos l mustro l domiio frcucil dtrmido l rlció tr l spctro d (t) y l spctro d () Ty 5
6 i (t) s u sñl o priódic co rgí fiit, su Trsformd d ourir s: t () L sñl pud rcuprrs prtir d su spctro () trvés d l trsformd ivrs El spctro d l sñl TD () obtid mustrdo (t) vi ddo por l Trsformd d ourir o quivltmt j t dt () j t t d ( ω) ( f ) jω Ty 6 jf () (3) (4)
7 L sñl () pud rcuprrs prtir d su spctro usdo l trsformd ivrs j ω j f ω dω f df (5) Cosidrdo () y qu () (T), podmos scribir: j s ( T) d Comprdo (5) y (6) podmos cocluir qu: Cosidrdo qu f df d, rsult: (6) j f f df ( ) j s d s s j s d ( ) j s d (7) Ty 7
8 L itgrl l ldo drcho d l iguldd trior pud scribirs como: j s d ( ) Cmbio d vribl -. y lugo s s + s s Comprdo st prsió co l ldo izquirdo d (7) podmos cocluir: + ( ) o s s ( + ) [ ] j s + d Ty 8 j s d j s d ( f ) [( f ) ] +
9 El spctro (f) d l sñl TD cosist d u rptició priódic dl spctro scldo () d l sñl timpo cotiuo. Ejmplo: ñl d bd limitd () pr B ig. 5. b. B o hy lisig E st cso l spctro d l sñl timpo discrto s idético (co l fctor d scl ) l spctro d l sñl lógic l rgo fudmtl d frcucis o f Ty 9
10 ig. 5.c.d. < B lisig L cotiució priódic d () rsult sobrposició d spctros. El spctro ( ) d l sñl TD coti compots d frcuci qu so lis dl spctro d l sñl lógic. L prsci d lisig impid qu l sñl origil pud rcuprrs prtir dl spctro d l sñl mustrd. Ty
11 ( t) ( ). b. ( T ) t B T ( T ) B c. d.. T ( t) T Ty t ( T ) ˆ ( t) ˆ ( ) H ig. 5. Espctros d l sñl lógic y d l sñl mustrd
12 Ty Dd l sñl timpo discrto co spctro ( ) si lisig, l sñl lógic origil pud rcostruirs prtir d l sñl mustrd. E fcto, usci d lisig: por lo qu: > () d d t t j s s t j s s Trsformd Ivrs d ourir
13 Por dfiició: j Rmplzdo l cució trior: s t j s s () [ ] s j ( t ) s d () t ( T ) s s. d Ty 3 ( t T ) ( t T ) T T j t órmul d rcostrucció
14 Dfiimos: g () t s ( t T ) t T ució d itrpolció () t ( T ). g( t T ) órmul d itrpolció idl Torm d Mustro: i l máim frcuci cotid u sñl lógic (t) s m B y l sñl s mustrd co u frcuci > m B, tocs (t) pud sr ctmt rcuprd prtir d ls mustrs (T) mdit l uso d l fórmul d itrpolció idl. Ty 4
15 Itrpolció Idl Torm d Mustro A B s l domi Ts d Mustro d yquist Ty 5
16 E l práctic, s mpl u prfiltro d tilisig ts d mustrr l sñl pr sgurr qu ls compots d frcuci por cim d stá suficitmt tuds y d st form l lisig o produc distorsió prcibl. Ejmplos:.Alisig sñls soidls (t) cos t.mustro d sñls d bd o limitd (t) -A t A> ( ) A A ( ) Ty 6 +
17 3. Mustro l Domiio rcucil Cosidrmos l rprstció d u sñl () TD mdit mustrs d su spctro (ω) DT () sñl priódic d rgí fiit. bmos qu () ti u spctro cotiuo jω ω upomos qu (ω) s mustrd priódicmt frcuci co u spcimito tr mustrs δω. Tommos mustrs quidistts u príodo d (ω) l rgo ω<. Tmos tocs: δω Ty 7
18 Ty 8 Evlumos () ω.: qu pud scribirs:,,,,. j K [ ] m j m j j j m l K K l l l l p () m - l.
19 Ty 9 L sñl p () s obti como u rptició priódic d () cd mustrs. p () s tocs priódic d príodo y pud pdirs sri d ourir co: Comprdo stá prsió co l vist triormt y por lo tto: j j c c p p,,, K,,,, c K,,,, j p K
20 L cució trior prmit rcostruir l sñl priódic p () prtir d ls mustrs dl spctro (ω) d (). i mbrgo, ustro objtivo s rcostruir () o (ω) prtir d ls mustrs d (ω). Dbmos tocs hllr l rlció tr p () y (). Como p () s l rptició priódic d () s clro qu () pud rcuprrs d p () si o hy lisig l domiio tmporl, s dcir si () s d durció fiit mor qu l príodo d p (). Es dcir, si L <, tocs: () p () - E cso cotrrio, < L, o s posibl rcuprr () prtir d p () dbido l lisig l domiio tmporl. Ty
21 Como l cso d sñls timpo cotiuo s posibl prsr l spctro (ω) térmios d ls mustrs () co,,...,-. L fórmul d itrpolció st cso rsult: ( ω). P ω L dod l fució itrpolció P(ω) stá dfiid como: P ( ω) s s ( ω ) ( ω ) jω ( ) Ty
22 4. Trsformd Discrt d ourir (DT) i mustrmos l spctro (ω) frcucis igulmt spcids ω. co,,...,-, dod L (l durció d l sñl () ) ls mustrs rsult. j ω,,, K, dfi tocs l Trsformd Discrt d ourir co putos como j,,, K, DT Vmos tocs qu si l sñl s d logitud L, l trsformd Discrt d ourir co putos pud Ty
23 psrs como mustrs dl spctro (ω) ls frcucis quispcids ω. co,,...,-. otr qu si cmbio o s vrific qu L, tocs l DT co putos d l sñl o pud psrs como mustrs dl spctro (ω). Pr l cso qu L, l sñl () pud rcuprrs prtir d ls mustrs () dfiido l Trsformd Discrt d ourir Ivrs (IDT): j,, K, IDT Ty 3
Teoría de Sistemas y Señales
Torí d istms y ñls Trsprcis: Torm dl Mustro Mustro l domiio rcucil Autor: Dr. Ju Crlos Gómz Mustro d ñls Alógics. Covrsió A/D y D/A L myorí d ls sñls d itrés so d tipo lógico. Pr procsr sts sñls form digitl
Señales y Sistemas. Análisis de Fourier.
Sñals y Sistmas Aálisis d Fourir. Itroducció El foqu d st capítulo s la rprstació d sñals utilizado sos y cosos ( otras palabras, xpocials complas). El studio d sñals y sistmas utilizado xpocials complas
61.1 6.1. SERIES NUMÉRICAS INFINITAS 6.2. SERIES DE TÉRMINOS POSITIVOS 6.3. SERIES ALTERNANTES 6.4. SERIES DE POTENCIAS
Cp. 6 Sris 6. 6.. SERIES NUMÉRICAS INFINITAS 6.. SERIES DE TÉRMINOS POSITIVOS 6.. SERIES ATERNANTES 6.. SERIES DE POTENCIAS Objtivo: S prtd qu l studit: Dtrmi covrgci o divrgci d sris. Empl sris pr rsolvr
Análisis de Fourier para Señales y Sistemas de Tiempo Discreto
Aálii d Fourir pr Sñl y Sitm d impo Dicrto Rput d u itm LI l pocil compl [] h[] y [ ] h [ ] [ ] h [ ] [ ] Si y h h H [ ] [ ] [ ] [ ] ( [ ] ( H Autofució d lo Sitm LI Autovlor ocido y Si r rformd Si rformd
CÁLCULO DE LÍMITES. Por otro lado es importante distinguir en el cálculo de límites, los casos indeterminados de los determinados: = ; = ; =
CÁLCULO DE LÍMITES Propidds d los límits.- ( b ) b.- ( b ) b.- ( b ) b.- ( b ) b b.- ( ) ( ) 6.- k k b Por otro ldo s importt distiguir l cálculo d límits, los csos idtrmidos d los dtrmidos: Csos dtrmidos:
Procesamiento Digital de Señales de Audio Filtros digitales
Procsmito Digitl d Sñls d Audio Filtros digitls Dr. Plo Ctt FILTROS DIGITALES Pricipios d los filtros digitls Los filtros digitls opr sor ls sñls qu rprst l soido, trsformdo sus mustrs trvés d u lgoritmo,
E.T.S.I. Industriales y Telecomunicación Curso Grados E.T.S.I. Industriales y Telecomunicación
E.T.S.I. Idustrils y Tlcomuicció Curso 00-0 Grdos E.T.S.I. Idustrils y Tlcomuicció Asigtur: Cálculo I Tm : Sucsios y Sris Numérics. Sris d Potcis. Ejrcicios propustos Obtr los cutro primros térmios, sí
al siguiente límite si existe: . Se suele representar por ( x )
UNIDAD : DERIVADAS. DERIVADA DE UNA FUNCIÓN EN UN PUNTO. DERIVADAS LATERALES Dfiici.- S llama drivada d ua fuci f u puto d abscisa al siguit it si ist: f f ' sigifica lo mismo. f. S sul rprstar por f D
UNIDAD 9: INTRODUCCIÓN A LAS DERIVADAS
UNIDAD 9: INTRODUCCIÓN A LAS DERIVADAS. DERIVADA DE UNA FUNCIÓN EN UN PUNTO. DERIVADAS LATERALES Dfiici.- S llama drivada d ua fuci f u puto d abscisa al siguit límit si ist: f f ' lím sigifica lo mismo.
MatemáticasI. 1. Basta con mover el cuadrado para ver que el área de la región limitada es la cuarta parte del cuadrado.
MtmáticsI UNIDAD : Límits d fucios. Cotiuidd ACTIVIDADES-PÁG. 76. Podmos dcir lo siguit: ) Pr l gráfic dl prtdo I): f ) tid cudo tid f ) tid + cudo tid por l izquird f ) tid - cudo tid por l drch f ) tid
SEÑALES Y SISTEMAS. PROBLEMAS RESUELTOS. CAPITULO V PROBLEMA 1: Problema Nº 5.34 Oppenheim
SEÑALES Y SISTEMAS. PROBLEMAS RESUELTOS. CAPITULO V PROBLEMA : Problma Nº 5.3 Opphim Obsrv l siguit sistma: Dtrmi y() Solució: El traycto d arriba produc, al multiplicar por Cos(/), traslació dl spctro
es divergente. es divergente.
.- Dtrmir l cráctr d l sri sgú los vlors d = +. Solució: sido = + = Si = = lim = s divrgt. = Si < < lim = s divrgt. = Si = = lim = s divrgt. = Si >, plicdo l critrio d D`Almrt: + ( + ) ( + ) + lim = lim
LÍMITE DE UNA FUNCIÓN EN UN PUNTO
l blog d mt d id: Límits y cotiuidd. M I pág. LÍMITE DE UNA FUNCIÓN EN UN PUNTO c sigiic qu tom vlors cd vz más próimos c. S l tid c. Por jmplo: ;,9;,;,;,8;,;,9;,;,999; Es u scuci d úmros cd vz más próimos.
TEMA 8: LA INTEGRAL DEFINIDA
Mtmátics II TEMA 8: LA INTEGRAL DEFINIDA. INTRODUCCIÓN L itgrl dfiid surg por l csidd frcut d dtrmir árs d cirtos tipos d figurs. S plt vcs l prolm d hllr l ár d l rgió pl A limitd por l curv l j d sciss.
(esta notación fue elegida por el matemático Leonhar Euler) De hecho la función f ( x)
INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMATICAS ASIGNATURA: MATEMATICAS DOCENTE: HUGO HERNAN BEDOYA TIPO DE GUIA: CONCEPTUAL - EJERCITACION PERIODO GRADO FECHA DURACION 9 OCTUBRE
Universidad de Costa Rica. Instituto Tecnológico de Costa Rica. Determinar si las integrales impropias convergen o divergen.
Uivrsidad d Costa Rica Istituto Tcológico d Costa Rica Tma: Itgrals impropias. Objtivos: Clasificar las itgrals impropias sgú su spci: primra, sguda o trcra spci. Calcular itgrals impropias utilizado su
Sobre la integral de línea en un álgebra de dimensión real 2 que no son los complejos
Culcyt// Itgrls Sor l itgrl d lí u álgr d dimsió rl qu o so los compljos Eliflt Lópz Gozlz, Víctor M Crrillo S, Srgio Trrzs Porrs Rsum: Cosidrmos u álgr d Bch A comuttiv uitri d dimsió rl qu o so los úmros
1.- Estudie el carácter de la serie numérica. 1 es divergente, la serie n propuesta será divergente. Solución.- Puesto que, n = 1, 2, 3,...
TUTORÍA DE MATEMÁTICAS III (º A.D.E.) -mil: imozs@lx.ud.s http://tlfoic.t/wb/imm EJERCICIOS DE SERIES NUMÉRICAS PROPUESTOS EN EXÁMENES.- Estudi l cráctr d l sri uméric. (Fbrro 00, x. or.) Solució.- Pusto
3.3. Observar que el punto de acumulación de A no necesariamente pertenece a A.
Escribirmos: f( L ε > δ > / Dom(f, < - < δ f( - L < ε Límit d fucios u vribl rl Lo cuál dic pr qu f( dist dl vlor L u úmro rbitrrimt uño ddo ε dbmos tr qu sté t crc d u rdio mor qu δ. Gométricmt: y L ε
Teoría de Sistemas y Señales
Toría d Sistmas y Sñals Trasparias: Aálisis ruial d sñals TD Autor: Dr. Jua Carlos Gómz Aálisis ruial d Sñals Timpo Disrto. Sri d ourir d Sñals Timpo Disrto Sa () ua sñal priódia o príodo, s dir: ( ) +
Respuesta en frecuencia. Procesado Digital de Señales.4º Ingeniería Electrónica. Universitat de València. Profesor Emilio Soria.
Rspusta frcucia. Procsado Digital d Sñals.4º Igiría Elctróica. Uivrsitat d Valècia. Profsor Emilio Soria. 1 Itrés uso PDS. Ti l mismo uso qu sistmas cotiuos: dtrmiar la salida d u sistma stado stacioario;
Página 76. Página 78. Página 77. Página 79. Y de la primera: 1. Resolvemos por sustitución: a) Despejo x de la primera y la sustituyo en la segunda:
Solucios d ls ctividds Pági 6. Rsolvmos por sustitució: ) Dspjo d l primr l sustituo l sgud: ( ) 8 0 Co lo cul: ( ) b) Si multiplico l primr por -, obtgo: + 8 Co lo cul tgo dos rcts coicidts, s dcir, l
ANÁLISIS DE FOURIER CAPÍTULO CUATRO TIEMPO DISCRETO Introducción
CAPÍTULO CUATRO AÁLISIS DE FOURIER TIEMPO DISCRETO 4. Itroducció Las técicas dl aálisis d Fourir timpo cotiuo dsarrolladas l capítulo atrior ti mucho valor l aálisis d las propidads d sñals y sistmas d
Matemáticas. Si f es una función periódica de período 2T seccionalmente continua, admite la siguiente representación en los puntos de continuidad:
Mmáics Pági dod s coró s iormció hp://www.losskkdos.com ANÁLISIS LINEAL SERIES DE FOURIER Ejrcicios Rsulos CONCEPOS BÁSICOS Ls sris d Fourir prmi rprsr ucios priódics mdi combicios d sos y cosos sri rigooméric
UNIVERSIDAD FRANCISCO DE PAULA SANTANDER FACULTAD DE CIENCIAS BASICAS DEPARTAMENTO DE MATEMATICAS Y ESTADISTICA GUIA No. 1. ECUACIONES DIFERENCIALES
UNIVERSIDAD FRANCISCO DE PAULA SANTANDER FACULTAD DE CIENCIAS BASICAS DEPARTAMENTO DE MATEMATICAS Y ESTADISTICA GUIA No.. ECUACIONES DIFERENCIALES ECUACIONES DIFERENCIALES U cució ircil s u cució l qu
2. Utilizando el método adimensional basado en el factor de calidad Q, determine:
Uivrsidad Simó Bolívar Dpartamto d Covrsió y Trasport d Ergía Autor: Eduardo Albaz. Cart: 06-391 Profsor: J. M. Allr Máquias Eléctricas II CT-311 U motor d iducció coxió strlla d 100 kw, 416 V, rdimito
a a lim i) L< 1 absoluta convergencia absoluta convergencia convergencia condicional divergencia > r.
(Aputs rvisió para oritar l aprdizaj) DESARROLLO DE LAS FUNCIONES LOGARÍTMICA Y EXPONENCIAL EN SERIES DE POTENCIAS Ua Sri d Potcias s dfi como: a a a a a = = + + + la qu s vidt qu covrg si =. Para dtrmiar
Sucesiones de funciones
Tem 7 Sucesioes de fucioes Defiició 7. Se A IR y F A, IR el cojuto de ls fucioes de A e IR. Llmremos sucesió de fucioes de A culquier plicció de IN F A, IR, y l deotremos por f } = ó f } =. 7. Covergeci
UNIDAD 7 SISTEMAS DE ECUACIONES LINEALES. 1. DEFINICIONES. Un sistema de m ecuaciones lineales con n incógnitas es una expresión de la forma:
IES Pdr Povd (Gudi) Mtátics II Dprtto d Mtátics Bloqu II: Álgr il Profsor: Ró ort Nvrro Uidd : Sists d Ecucios ils UNIDD SISTEMS DE ECUCIONES INEES DEFINICIONES U sist d cucios lils co icógits s u prsió
Análisis de Señales Capítulo III: Transformada de Fourier discreta. Profesor: Néstor Becerra Yoma
Aálisis d Sñals Capíulo III: Trasormada d Fourir discra Prosor: ésor Bcrra Yoma 3. Torma dl Musro Gra dsarrollo d la compuació > digializació d sñals mdia musro, posrior rcosrucció d la sñal Codició csaria
OPERACIONES CON LÍMITES DE FUNCIONES Ls oprcios co límits, tto u puto como l ifiito, ti us propidds álogs qu dbmos coocr: PROPIEDADES El límit d l sum o difrci d dos fucios s l sum o difrci d los límits
Potencial periódico Término de corrección Término sin de segundo orden perturbación Término de corrección de primer orden
Bds d rgí otdo Tor d Boch. Torí d ctró cs r.org d ds. Modo d Krog-Py. jo. stdo Sódo Potc áss otc qu s usó áss tror fu u otc tt. s áss d uy u rsutdo s s ctr trs tá us ocurr u tto d ctros. S rgo, otros trs
1.2 INTEGRACION, DIFERENCIACIÓN DE FUNCIONES Y EXPANSIONES EN SERIES. (1.2_CvR_T_062, Revisión: , C2, C3, C4)
. INTEGRACION, DIFERENCIACIÓN DE FUNCIONES Y EXPANSIONES EN SERIES. (._CvR_T_06, Rvisió: 5-0-06, C, C3, C4).. DERIVADA DE UNA FUNCIÓN. Dfiició: f f ( ) f ( ) lim, si l límit ist. 0 Notció: f ', f ( ) E.g.:
UNIDAD 3: SISTEMAS DE ECUACIONES LINEALES. 1. DEFINICIONES. Un sistema de m ecuaciones lineales con n incógnitas es una expresión de la forma:
IE Pdr Povd (Gudi) Mtátics plicds ls CC II Dprtto d Mtátics Bloqu I: Álgr il Profsor: Ró ort Nvrro Uidd : ists d Ecucios ils UNIDD : ITEM DE ECUCIONE INEE DEFINICIONE U sist d cucios lils co icógits s
1.- a) Hallar a y b para que la siguiente función sea continua en x = 1:
.- a) Hallar a y b para qu la siguit fució sa cotiua = : b L( ) < f = a = > L b) Para sos valors d a y b, studiar la drivabilidad d f =. Solució: a) f s cotiua l puto = lim f = f() E st caso f () = a lim
Integral Definida. Aplicaciones
Itegrl Defiid. Apliccioes. Itegrl defiid. Defiició Se f(x u fució cotiu e u itervlo cerrdo [, b] y cosideremos el itervlo dividido e prtes igules x < x < x s < < x b. Pr cd subitervlo [x i, x i ], l fució
SEÑALES Y SISTEMAS I TABLAS. Dpto. Teoría de la Señal y Comunicaciones
SEÑALES Y SISEMAS I ABLAS Dpo. orí d l Sñl y Comuiccios POPIEDADES DE LA ASFOMADA DE LAPLACE Propidd Sñl rsformd OC ( ) ( ) ( ) s () ( s) ( s) Lilidd () + b ( ) ( s) b ( s) Dsplzmio l impo ( ) Dsplzmio
FACULTAD DE INGENIERÍA
FCULD DE INGENIERÍ Uivrdd Nciol uóo d Méico Fculd d Igirí ális d Siss y Sñls Profsor: M.I. Elizh Fosc Chávz SERIE DE FOURIER LUMN: Sáchz Cdillo Vicori GRUPO: 6 SERIE DE FOURIER od sñl priódic s pud prsr
2. ALGEBRA LINEAL (2.1_AL_T_062, Revisión: , C12)
. ALGEBRA LINEAL (._AL_T_06, Rvisió: 8-03-06, C). CONCEPTOS FUNDAMENTALES: ESPACIOS VECTORIALES, BASES, DIMENSIONES... INTRODUCCIÓN. Notació: utilizamos abcdario latio para vctors, grigo para scalars (úmros).
Universidad de Puerto Rico Recinto Universitario de Mayagüez Departamento de Ciencias Matemáticas
Uivrsidad d Purto Rico Rcito Uivrsitario d Mayagüz Dpartamto d Cicias Matmáticas Eam III Mat - Cálculo II d abril d 8 Nombr Númro d studiat Scció Profsor Db mostrar todo su trabajo. Rsulva todos los problmas.
Geodesia Matemática.
Godsi Mtátic Sist d coordds crtsis Sist crtsio triplt ortogol vctors uitrios ls dirccios d los js coorddos O r r r r Distci tr dos putos Trsforcios lils tr sists crtsios X Y Z Trslció c b Giro lrddor dl
MATEMÁTICA D Módulo I: Análisis de Variable Compleja. Teoría de Residuos
Matmática D MATEMÁTIA D Módulo I: Aálisis d Variabl omplja Uidad Toría d siduos Mag. María Iés Baragatti Sigularidads S dic qu s ua sigularidad aislada d f( si f( o s aalítica pro sí s aalítica u toro
SISTEMAS LINEALES TABLAS. Dpto. Teoría de la Señal y Comunicaciones
SISEMAS LIEALES ABLAS Dpo. orí d l Sñl y Comuiccios POPIEDADES DE LA ASFOMADA DE LAPLACE Propidd Sñl rsformd OC ( ) ( ) ( ) s ( s) ( s) Lilidd + b ( ) ( s) b ( s) Dsplmio l impo ( ) Dsplmio l domiio s
TEMA 5: LÍMITE DE FUNCIONES. CONTINUIDAD.ASÍNTOTAS
Dpartamto d Matmáticas. IE.S. Ciudad d Arjoa º Bach Socials. LÍMITES Propidads: TEMA : LÍMITE DE FUNCIONES. CONTINUIDAD.ASÍNTOTAS. LÍMITES. LÍMITE DE UNA FUNCIÓN EN UN PUNTO. LÍMITES. RESOLUCIÓN DE INDETERMINACIONES.
MATEMÁTICAS Y CULTURA B O L E T Í N No. 273 COORDINACIÓN DE MATEMÁTICAS APLICACIONES DEL DETERMINANTE DE VANDERMONDE
MATEMÁTICAS Y CULTURA B O L E T Í N 23.04.20 No. 273 COORDINACIÓN DE MATEMÁTICAS MATEMÁTICAS MATEMÁTICAS APLICACIONES DEL DETERMINANTE DE VANDERMONDE E l Boltí Matmáticas Y Cultura No. 257 dl 23 d abril
1 Realizar los ejercicios resueltos números 1 y 2 del tema 3 de Integración de. 2 Terminar los ejercicios de la práctica realizada este día.
Est documto coti las actividads o prscials propustas al trmiar la clas dl día qu s idica. S sobrtid qu tambié s db ralizar l studio d lo plicado clas auqu o s icluya sa tara st documto. Clas 5 d ovimbr
1.1 FÓRMULAS DE NEWTON-COTES CERRADAS
UNSANGL - MÉTODOS NUMÉRCOS Prof. g. Edgr Romro Rodríguz - F - 7 NTEGRACÓN NUMÉRCA El cálculo s l mtmátic dl cmio. L drivd os d l rzó d cmio d u vril dpdit () co rspcto otr idpdit (f()) lo cul s rprst como:
Tema 5. Análisis de Fourier para Señales y Sistemas Discretos.
Tma 5. Aálisis d Fourir para Sñals y Sistmas Discrtos. E l tma 3 hmos hcho u studio d los sistmas discrtos l domiio tmporal. Esto os ha prmitido ralizar ua caractrizació d los mismos y hacr u studio d
Derivadas: Teoría y ejercicios DERIVADAS. La derivada de una función f en el punto de abscisa x = a, se define como el siguiente límite, si existe:
Drivds: Torí jrcicios Bcillrto DERIVADAS Dinición d drivd. L drivd d un unción n l punto d bscis =, s din como l siuint límit, si ist: lím A l drivd d un unción n un punto s l llm tmbién ts d vrición instntán.
x a es una serie de la forma que el radio de convergencia de la serie geométrica es el intervalo abierto
ERIE DE POTENCIA ERIE DE POTENCIA. Diició. U sri d pocis c s u sri d l orm c c c c... c... Por jmplo. i c y l sri d pocis om l orm....... Por jmplo. i c y l sri d pocis om l orm....... TEOREMA. El cojuo
Variables aleatorias discretas
Probabilidads y stadística Comutació Facultad d Cicias actas y aturals. Uivrsidad d Buos Airs Aa M. Biaco y la J. Martíz 4 Variabls alatorias discrtas istribució Biomial: Muchos rimtos alatorios satisfac
La transformada de Laplace
rormd d plc Y y d { y } Pirr-Simo plc 79-87 "Podmo mirr l do pr dl uivro como l co dl pdo y l cu d u uuro. S podrí codr u ilco qu culquir momo ddo brí od l urz qu im l urlz y l poicio d lo r qu l compo,
DERIVADAS. La derivada de una función f en el punto de abscisa x = a, se define como el siguiente límite, si existe:
DERIVADAS.- BACHILLERATO.- TEORÍA Y EJERCICIOS. Pá. DERIVADAS Dinición d drivd. L drivd d un unción n l punto d bscis, s din como l siuint límit, si ist: lím A l drivd d un unción n un punto s l llm tmbién
SUCESIONES. El límite de una potencia es igual al límite de la base elevado al límite del exponente.
SUCESIONES 1. El it d l sucsió d térmio grl A) B) 1 C) 0 + 1 3 + + 3 vl: (Covoctori juio 001. Exm tipo G) El it d u potci s igul l it d l bs lvdo l it dl xpot. + 1 1 Límit d l bs: 3 + 3 Límit dl xpot:
Introducción. Introducción DECISIONES EN UN MERCADO DE OLIGOPOLIO NO-COOPERATIVO. Dr. Jorge Ibarra Salazar
9 DECISIONES EN UN MERCADO DE OLIGOPOLIO NO-COOPERATIVO Dr. org Ibrr Slzr Dprtmto d Ecoomí Tcológico d Motrry Itroducció Estudimos ls dcisios d firms qu frt l prcio d mrcdo (si podr d mrcdo) y firms co
Análisis I. Sucesiones reales FICHA 3. Curso (Álgebra de límites, equivalentes, infinitésimos, infinitos, órdenes)
Aálisis I Sucsios rls FICHA 3 (Álgr d límits, quivlts, ifiitésimos, ifiitos, órds) Curso 3 C.F.E., Dprtmto d Mtmátic, I.P.A. Sucsios rls, fich 3 - - ) Álgr d límits Ejrcicio : S ( ) π 4 =, N. Clcul,,.
INTEGRAL INDEFINIDA. Derivación. Integración
TEMA 8 Itgral Idfiida INTEGRAL INDEFINIDA FUNCIÓN PRIMITIVA. F() s ua primitiva d f() si F ()= f(). Esto s prsa así: f() = F'() = F() La itgració s la opració ivrsa a la drivació, d modo qu: FUNCIONES
ALGUNAS FÓRMULAS ESTÁNDAR DE CÁLCULO DIFERENCIAL E INTEGRAL. e = log. d dx. d v v dv. d dx. en particular: ( log v) = 1
ALGUNAS FÓRMULAS ESTÁNDAR DE CÁLCULO DIFERENCIAL E INTEGRAL Síolos. E ls tls siguits,, c, y ot costts, itrs qu u, v, w y so vrils, u, v, y w so tos fucios. L s l sist Npirio o tié llo turl logritos s ot
TEMA22. Función Exponencial y Logarítmica.
TEMA 22. Fucios pocil y logrítmic TEMA22. Fució Epocil y Logrítmic.. Itroducció L oció d fució qu ctulmt mjmos mpzó gstrs l siglo XIV cudo los filósofos scolásticos mdivls comzro procuprs por mdir ls vricios
Tema 0 Repaso de Señales y Sistemas Discretos. 4º Ing. Telecomunicación EPS Univ. San Pablo CEU
Tma Rpaso d Sñals y Sistmas Discrtos 4º Ig. Tlcomuicació EPS Uiv. Sa Pablo CEU Lcturas complmtarias Opp., Pro (sólo hasta.: Itroducció a TDS Importacia d TDS la igiría Prspctiva histórica Esquma d u sistma
ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR. Ecuaciones lineales homogéneas con coeficientes constates de orden dos y superior.
Prof Eriqu Mtus Nivs Dotordo Eduió Mtmáti ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR Euios lils homogés o ofiits ostts d ord dos suprior Apliqu l método d rduió pr dtrmir u soluió d l uió o homogé dd los
1 Áreas de regiones planas.
Cálculo Mtemático. (Tem 7) Hoj Escuel Uiversitri de Arquitectur Técic Cálculo Mtemático. Tem 7: L itegrl defiid Curso 8-9 Áres de regioes pls. Defiició.- Se f u fució cotiu y o egtiv e el itervlo [, b].
EXPONENTES Y POTENCIAS Muchos números se expresan en forma más conveniente como potencias de 10. Por ejemplo: m n n 0,2 3 3
Rpaso d Matmáticas E st apédic s hará u brv rpaso d las cuacios y fórmulas básicas d utilidad Química Física gral y Trmodiámica Química particular. EXPONENTES Y POTENCIAS Muchos úmros s xprsa forma más
Tema 8. Derivadas. Teoremas de las funciones derivables. Regla de L Hôpital
Mtmátics II (Bcillrto d Cicis) Aálisis: Drivds 8 Tm 8 Drivds Torms d ls fucios drivbls Rgl d L Hôpitl Drivd d u fució u puto Dfiició U fució f () s drivbl l puto f ( ) f ( ) si ist l it: 0 Est it s dot
A 15 = Para que una matriz tenga inversa, su determinante debe ser distinto de cero. ( ) ( ) ( ) ( ) 1 ( ) =
UNIVRSIDDS PÚLICS D L COUNIDD D DRID PRUD CCSO LS NSÑNZS UNIVRSITRIS OFICILS D GRDO Curso -5 (Sptimbr) TRI: TÁTICS PLICDS LS CINCIS SOCILS II INSTRUCCIONS Y CRITRIOS GNRLS D CLIFICCIÓN Dspués d lr ttmt
Tema 4: Regresiones lineales y no lineales TEMA 4. REGRESIONES LINEALES LINEALES Y NO. 1. 2. 3. Introducción 4. Nomenclatura
T 4: grsos lls o lls TEMA 4. EGEIONE LINEALE LINEALE Y NO.. 3. Itroduccó 4. Nocltur 5. Llzcó Ajust grsó ll ll d últpl cucos 6. 7. 8. grsos EUMEN Progrcó o lls Mtlb Cálculo uérco Igrí T 4: grsos lls o lls.
EJERCICIOS PROPUESTOS. rectángulos obtenidos tomando como base la longitud de cada subintervalo y como altura la ordenada del extremo derecho.
6 Itgral dfiida Ejrcicio rsulto EJERCICIOS PROPUESTOS Obté, co l método visto, l ára dl trapcio limitado por la rcta y +, l j X y las vrticals y Calcula l ára gométricamt y compara los rsultados S divid
TEMA 1: CALCULO DIRECTO DE LÍMITES
INSTITUCION EDUCATIVA DISTRITAL RODRIGO DE BASTIDAS Rsolució Nº 88 d ovimbr.8/ ScrtariaD Educació Distrital REGISTRO DANE Nº-99 Tléfoo Barrio Bastidas Sata Marta DEPARTAMENTO DE MATEMATICAS ACTIVIDAD ESPECIAL
3dx dx 3. dx 1-4x. 7. 3xdx 4+x x 2
MsMtscom Intgrls Clculr l intgrl: ++ + (-) (+) - 7 + 8 ln - cos sn - - - + (+) ln ln 7 8 cos ln + + - +- - - + -+ ++ Ls gráfic (i), (ii) y (iii) corrspondn, no ncsrimnt por s ordn, ls d un función drivbl
UNIVERSIDAD DE CONCEPCIÓN
.5. SERIES DE FOURIER DE SENOS Y DE COSENOS. Es clro que si f SC[-,] es u fució pr, etoces (9) fx ( ) = + cosx, (CM) SERIE DE FOURIER DE COSENOS (SFC) = co () = f ( x )cos x dx, =,,,3,... Si f SC[-,] es
Tema 11: Integrales denidas
Tem : Integrles denids My 9, 7 Denición y propieddes Denición. Si f ) es un función continu en un intervlo [, b] y denid positiv, f ), l integrl denid en ese intervlo l denimos como: f ). Si f ) > l integrl
Se llama sucesión a un conjunto de números dados ordenadamente de modo que se puedan numerar: primero, segundo, tercero,...
TEMA SUCESIONES. CONCEPTO DE SUCESIÓN DEFINICIÓN DE SUCESIÓN S llama sucsió a u cojuto d úmros dados ordadamt d modo qu s puda umrar: primro, sgudo, trcro,... Los lmtos d la sucsió s llama térmios y s
INTEGRAL DEFINIDA ÁREAS Y VOLUMENES
Intgrl indinid. gl d Brrow INTEGA DEFINIDA ÁEAS Y OUMENES siguint rgl, qu s s n l torm undmntl dl cálculo intgrl, rlcion l intgrl dinid con ls intgrls indinids prmit clculr ls intgrls dinids. intgrl dinid
Matemáticas II TEMA 8 Derivadas. Teoremas de las funciones derivables. Regla de L Hôpital
Aálisis Drivds Mtmátics II TEMA 8 Drivds Torms d ls fucios drivbls Rgl d L Hôpitl Drivd d u fució u puto Dfiició U fució f () s drivbl l puto f ( ) f ( ) si ist l límit: lím 0 Est límit s dot por f (),
Métodos Numéricos de Integración. Supóngase que se tiene una función continua en el intervalo [a, b]; entonces para lograr un valor aproximado de
Uiddd Métodos de itegrció y pliccioes.6 Métodos uméricos de itegrció. Métodos Numéricos de Itegrció Supógse que se tiee u ució cotiu e el itervlo [, b]; etoces pr logrr u vlor proximdo de x dx se divide
TEMA 3 LÍMITES Y CONTINUIDAD DE FUNCIONES
3. LÍMITES COLEGIO RAIMUNDO LULIO Frnciscnos T.O.R. Cód. 8367 TEMA 3 LÍMITES Y CONTINUIDAD DE FUNCIONES Dfinición: S dic qu l límit d l función f s igul L, cundo tind, si cundo s proim, f s proim L, sin
11 INTRODUCCIÓN A LA DINÁMICA NO LINEAL (BIFURCACIONES, CAOS)
INTRODUCCIÓN A LA DINÁMICA NO LINEAL (BIFURCACIONES, CAOS) Los sistmas o lials pud llgar a tr comportamitos ralmt sorprdts alguos casos: por u lado pud llgar a tr diámicas totalmt difrts sgú l valor qu
ESTIMACIÓN LINEAL DE ERROR CUADRÁTICO MEDIO MÍNIMO
STIMACIÓ LIAL D RROR CUADRÁTICO MDIO MÍIMO MOTIVACIÓ: Los stmdors óptmos sgún l crtro d Bs son, n gnrl, funcons no lnls d ls obsrvcons. s ncsro conocr l f.d.p. d l vrbl ltor dds ls obsrvcons. Usndo stmdors
f cuando x toma valores cercanos a 2. Si x se aproxima a 2, la función toma valores cercanos a 5. Se escribe: ( ) 5
IES Pdr Povd (Gudi Mtmátics II UNIDAD LÍMITES Y CONTINUIDAD INTRODUCCIÓN Fíjt l comportmito d l fució ( f cudo tom vlors crcos Si s proim, l fució tom vlors crcos S scrib: f y dcimos qu s l it cudo tid
Practica Sistemas electrónicas Practica 1: Aplicaciones lineales de los amplificadores operacionales
Prctic Sistms lctrónics Prctic : Apliccions linls d los mplificdors oprcionls Autor: Profsor rsponsbl: Profsor cuidnd: né Wrnr Ibld Slvdor Brcho dl Pino osrio Csnuv Arpid Objtivo d l práctic: El objtivo
3 - VARIABLES ALEATORIAS
rt roilidds rof. Mrí B. itrlli - VRIBLS LTORIS.- Grlidds muchs situcios rimtls s quir sigr u úmro rl cd uo d los lmtos dl scio mustrl. l dscriir l scio mustrl d u rimto u rsultdo idividul o ti qu sr csrimt
Tema 11. Limite de funciones. Continuidad
Tma. Limit d fucios. Cotiuidad. Límit d ua fució. Fucios covrgts.... Límits latrals.... Distitos tipos d límits.... Límits ifiitos cuado tid a u úmro ral asítota vrtical.... Límits fiitos cuado tid a ifiito
Análisis del caso promedio El plan:
Aálisis dl caso promdio El pla: Probabilidad Aálisis probabilista Árbols biarios d búsquda costruidos alatoriamt Tris, árbols digitals d búsquda y Patricia Listas sip Árbols alatorizados Técicas Avazadas
CAPÍTULO 7: INTEGRALES Actividades de introducción
APÍTULO 7: INTEGRALES Actividds d itroducció lcul l ár d l rgió limitd por l ució tr l orig d coordds y u puto gérico d scis. Si rprstmos l ució y diujmos l suprici tr ll y l j OX, otmos l triágulo rctágulo
SOLUCIONES DE LIMITES
SOLUCIONES DE LIMITES.. Ln Sustituyndo por obtnmos: INDETERMINADO Ln Como s trt d un indtrminción d tipo L Hopitl, plicmos dich rgl: Ln Ln Rsolvmos prt l it Ln INDETERMINACIÓN d tipo L Hopitl otr vz: 6Ln
Cómo es la distribución de los alimentos servidos?
Cómo s l distribució d los limtos srvis? 5 " Co u bu limt ció, p Los iños y iñs s ppr pr cosumir los limtos 6 CUÁL ES EL OBJETIVO? Promovr y forzr buos hábitos d higi los iños y iñs como l lv d mos ts
DERIVADAS. La derivada de una función f en el punto de abscisa x = a, se define como el siguiente límite, si existe:
DERIVADAS Dinición d drivd. L drivd d un unción n l punto d bscis =, s din como l siuint límit, si ist: lím A l drivd d un unción n un punto s l llm tmbién ts d vrición instntán. Intrprtción ométric d
Cap. II: Principios Fundamentales del Flujo de Tránsito
Cap. II: Pricipios Fudamtals dl Flujo d Trásito Diagrama Espacio-Timpo Distacia 1 2 Itralo (i) 3 4 5 6 Espaciamito () Timpo Flujo, q Dsidad, Vlocidad, Tasa horaria quialt a la cual trasita los hículos
ACTIVIDADES FINALES EJERCICIOS. trino grau fernández. x lím. lím. lím. lím. sen x 1. x 1. lím x 0 sen x x. lím. x lím. sen x. x arcsen x lím 11.
L Í M I T E S th ls ACTIVIDADES FINALES EJERCICIOS Ln tg sn sn [ ( )] 5 sn 6 cotg 7 sn sn 8 9 sn rcsn sn b sn sn cotg 5 sn cos 6 sn 7 n 8 Ln 9 Ln trino gru frnándz th ls 5 Clculr pr qu s cumpl: π Ln tg
ERROR EN ESTADO ESTACIONARIO
UNIVESIDAD AUÓNOMA DE NUEVO EÓN FACUAD DE INGENIEÍA MECÁNICA Y EÉCICA EO EN ESADO ESACIONAIO INGENIEÍA DE CONO M.C. EIZABEH GPE. AA HDZ. M.C. OSÉ MANUE OCHA NÚÑEZ UNIVESIDAD AUÓNOMA DE NUEVO EÓN FACUAD
Aproximación de funciones derivables mediante polinomios: Fórmulas de Taylor y Mac-Laurin
Aproimació d ucios drabls mdiat poliomios: Fórmulas d Taylor y Mac-Lauri. Eprsa l poliomio P - - potcias d - Hay qu dtrmiar los coicits a, b, c, d y qu cumpla: P - -a- b- c- d- Drado vcs la iualdad atrior,
! 1 3 <1 la serie converge (y confirma a n! 0 ). a n. x 2 >0; f 0 (x)<0 si x>1; R 1 f (x)dx = 1 2 e x2 1 = 1 2e. ) Convergente. n! 0 ) Convergente.
Solucios d los roblmas d Matmáticas (07-08) {a } acotada ifriormt or 0 (los a so ositivos) y dcrcit us + + )9líma a ) a a ) a0 Como a + a < la sri covrg (y cofirma a 0 ) a) (a ) / Divrgt (O orqu {a
Tarea 11. Integral Impropia
Tr Intgrl Imroi Ers con l límit corrsondint cd un d ls siguints intgrls Mustr un dibujo qu indiqu l ár qu s clculrí (si ist) con l intgrl rsctiv, no clculs l intgrl d ; b) d ; c) d ; d) / cot( ) d En los
TEMA 2. ESPACIOS Y OPERADORES LINEALES CONTENIDO
TEMA. ESPACIOS Y OPERADORES LINEALES CONTENIDO ESPACIOS LINEALES SOBRE UN CAMPO INDEPENDENCIA LINEAL, BASES Y CAMBIOS DE BASES OPERADORES LINEALES Y SUS REPRESENTACIONES SISTEMAS DE ECUACIONES ALGEBRÁICAS
UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE QUÍMICA DEPARTAMENTO DE MATEMÁTICAS Ecuaciones Diferenciales [Guia]
UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE QUÍMICA DEPARTAMENTO DE MATEMÁTICAS Ecucio Difrcil [Gui] E l hoj d orcio or l úmro d rgu, l drrollo qu juifiqu u ru, u ru co i crrd u rcágulo lugo u
7ma Guía de Estudio 2do Parcial Estudio de Series de Potencia SOLUCIONARIO Guía Complementaria No.07
álculo tgrl (MAT, Scc.67 r Trimstr, do Smstr doprcil 7mGuíEstudio Documto lordo : M.Sc. g. Julio ésr Lóz Zró H6 7m Guí d Estudio do Prcil Estudio d Sris d Potci SOLUONAO Guí omlmtri No.7 omtrios Grls Ést
Cátdr Mtátic II Espcilidds Mcáic - Quíic Ejrcicios d Aplicció d l drivd co rcts tgts orls ϕ Dds ls ucios ϕ S Hllr ϕ cos ϕ ϕ cos ϕ cos ϕ Qué águlo or co l j o ls tgts l curv puto cu scis s? θ θ. pr θ θ