Curvatura. t Rdt = Rt s = Rt t = s R. y r (s) =

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Curvatura. t Rdt = Rt s = Rt t = s R. y r (s) ="

Transcripción

1 Introducción a las Funciones Vectoriales Funciones de R R n ) Curvatura En una recta, el vector unitario tangente T no cambia su dirección y por tanto T =. Si la curva no es una linea recta, la derivada T mide la tendencia de la tangente a cambiar su diracción. El coeficiente de variación o derivada de la tangente unitaria respecto a la longitud de arco se denomina vector curvatura de la curva. Se designa por dt/ds donde s representa la longitud de arco. Definición. Sea f : I R R n una camino dos veces diferenciable parametrizado por longitud de arco. Al número κ = f s) se le llama curvatura de f es s. Ejemplo: Calcule la curvatura en todo punto de la recta rt) = x, y, z ) + tu, u u, u 3 ) donde u = tenemos: r t) = u, u, u 3 ) y r t) = u = la curva esta parametrizada por longitud de arco κ = r t) =, por lo tanto k =. Ejemplo: Curvatura de una circunferencia. Para un círculo de radio R dado por la ecuación rt) = R cos t, R sen t) tenemos: La parametrizacion por longitud de arco es: s = de esta manera se tiene r s) = f u) du = R = Rt s = Rt t = s R s ) s ) s )) rt) = r = R cos, R sen R R R s ) s )) sen, cos R R y r s) = s ) R cos, s ) ) R R sen R κ = r s) = R. Esto prueba que una circunferencia tiene curvatura constante y el reciproco de la curvatura es el radio de la circunferencia cuando kt), su inverso se denomina radio de curvatura y se designa por ρ.

2 Introducción a las Funciones Vectoriales Funciones de R R n ) Ejemplo Sea f : [, 3] R dada por ft) = t, t + ), en este caso vamos a reparametrizar por longitud de arco s = ϕt) = = = f u) du, u) + u du vamos a intentar el cambio de variable u = sinhx) donde u = sinhx) de manera que + u du = + sinh x) coshx)dx = cosh x) dx = + coshx)) dx Por lo que = x + sinhx)) = x + coshx) sinhx)) = arcsenhu) + cosharcsenhu)) sinharcsenhu)) = arcsenhu) + u + cosharcsenhu))) cosharcsenhu)) = + sinh arcsenhu)) = + u arcsenhu) + u + cosharcsenhu))) = arcsenhu) + u ) + u = arcsenhu) + u ) + u y = arcsenhu) sinhy) = u ey e y e y = u ± 6u + e y = u ± u + y = ln arcsenhu) + u ) + u = = u e y e y = u ey e y u = u ± ) u + ln u ± )) u + + u ) + u

3 Introducción a las Funciones Vectoriales Funciones de R R n ) 3 Regresando a nuestra integral por longitud de arco + u du = ln u ± )) u + + u ) + u t = ln t ± )) t + + t ) + t en este caso s = ϕt) = ln t ± )) t + + t ) + t se observa que no es posible hallar t = ϕ s) de manera explicita. Por lo que si se quisiera calcular la curvatura κs), deberemos recurrir a una expresión para la curvatura que dependa del parámetro t. Vector Tangente Definición. Dada una curva ft), el vector unitario tangente T es otra función vectorial asociada a la curva, y está definida por: T t) = f t) f t) siempre que f t). Observese que: T t) = f t) f t) = f t) f t) = por lo tanto T es de magnitud constante, en cuyo caso se tiene T T =. Vector Normal Principal Definición 3. Si T el vector unitario que tiene la misma dirección que T se llama Normal Principal a la curva y se designa por Nt). Asi pues Nt) es una nueva función vectorial asociada a la curva y esta dada por la ecuación: Nt) = T t) T t) siempre que T t) La regla de la cadena y la fórmula s t) = f t) permite relacionar el vector curvatura dt/ds con la derivada T respecto al tiempo mediante la ecuación: dt ds = dt y puesto que T t) = T t) Nt), obtenemos: ds = T ds = T f t) dt ds = f t) T Nt)

4 Introducción a las Funciones Vectoriales Funciones de R R n ) que dice que el vector curvatura tiene la misma dirección que la normal principal Nt). El factor de escala que multiplica a Nt) es un número no negativo llamado curvatura de la curva en t, y se designa por kt). Asi la curvatura de kt) definida como la longitud del vector curvatura esta dado por la fórmula siguiente: kt) = dt ds = f t) T t) Nt) = T t) f t) Vamos ahora a desarrollar una fórmula que nos permita calcular la curvatura. Si T = T t) f t) T f t) = f t) T ds = f t) Haciendo el producto cruz En cosecuencia sustituimos en f f = T ds f f = T ds ds T = f = T d s + ds T T d s + ds ) T ) ds T = T ds T d s + T ds ds T ) ds T sent, T ) = f f ) = T T = f f f ds kt) = T t) f t) kt) = f f f f t) kt) = f f f t) 3 Vector Binormal ) ds T Un tercer vector definido mediante B = T xn recibe el nombre de Vector binormal. Notese que Bs) = T s) Ns) = T s) Ns) sent, N) = Los tres vectores unitarios T, N y B forman un conjunto de vectores mutuamente ortogonales de orientación derecha llamado Triedo de Frenet. Para el caso especial de una curva plana con ecuación y = fx) podemos escoger x como el parámetro y escribir rx) = xî + fx)ĵ entonces r x) = î + f x)ĵ y r x) = f x)ĵ y al efectuar: î ĵ ˆk r x) x r x) = f x) = f x)ˆk f x)

5 Introducción a las Funciones Vectoriales Funciones de R R n ) 5 r x) x r x) = f x). Por otro lado f x) = + [f x)]., para una curva plana kx) = f x) + [f x)] ) 3/ Ejemplo: Determine los vectores T y N, la curvatura k y el centro de la curvatura de la parábola y = x en el punto, ) Solución. Si la parábola esta parametrizada por x = t y por y = t, entonces su vector de posición es ft) = t, t ), por lo tanto f t) =, t) f t) = + t, y f t) =, ), por lo tanto: T t) = perpendicular a T,, t) + t T ) = ) 5, 5 Nt) = ), 5 5 k = f t) ) 3 = ) + [f t)] 3 k) = + t 5 5 ρ = 5 5 el centro de la curvatura es ct) = f, ) , ) =, 7 ) 5 Y la ecuación del círculo osculador a la parábola es, por tanto: x + ) + y ) 7 5 ) 5 = = 5 Ejemplo: Calcule la curvatura k de la hélice xt) = a coswt), yt = a sinwt)), zt) = bt Solución. Tenemos que: f t) = wa sinwt), aw coswt), b) f t) = a w + b T = aw sinwt), aw coswt), b) a w + b k = T f = aw coswt), aw sinwt), a w + b =

6 Introducción a las Funciones Vectoriales Funciones de R R n ) 6 En resumen: = aw ) cos wt) + sin wt)) ˆB = ˆT x ˆN y por tanto ˆB = ˆN x ˆT ˆN = ˆB x ˆT ˆN = ˆT x ˆB ˆT = ˆN x ˆB ˆT = ˆB x ˆN a w + b = aw a w + b Dado que Bs) = T s) x Ns) se tiene que B s) = T s) x Ns) + T s) x N s) }{{} * Este sumando es igual a cero ya que T s) = f s) es un vector en la dirección de Ns) y por tanto son colineales por lo que su producto cruz es cero, por lo tanto B s) = T s) x N s). Ahora como B s) es un vector ortogonal a T s) podemos concluir que B s) es un vector en el plano osculador. Por lo que si B s) es un vector paralelo a Ns), entonces existe un escalar zs) tal que B s) = zs)ns). Por otro lado N s) es ortogonal a Ns). se puede escribir como N s)µs)t s) + zs)bs).

Función Longitud de Arco

Función Longitud de Arco Función Longitud de Arco Si al extremo final de la curva Lt = t f t dt e deja variable entonce el límite uperior de la a integral depende del parámetro t y e tiene que la longitud de arco de una curva

Más detalles

DEF. Una curva parametrizada diferenciable es una función vectorial diferenciable:

DEF. Una curva parametrizada diferenciable es una función vectorial diferenciable: Curvas DEF. Una curva parametrizada diferenciable es una función vectorial diferenciable: α : I R R 3 t α(t) = (x(t), y(t), z(t)) donde I es un intervalo (puede no ser acotado). t es el parámetro de la

Más detalles

CURVAS Y SUPERFICIES Hoja 1: Curvas

CURVAS Y SUPERFICIES Hoja 1: Curvas CURVAS Y SUPERFICIES Hoja 1: Curvas 1. Sea σ (t) = (cos t, sen t, t) con t [0, π] y sea f(x, y, z) = x + y + z. Evaluar la integral σ fdσ. (Sol.: π 3 (3 + 4π )).. Sea σ : [0, π/] R 3 la curva σ(t) = (30

Más detalles

Funciones Vectoriales

Funciones Vectoriales Funciones Vectoriales Hermes Pantoja Carhuavilca Facultad de Ingeniería Mecánica Universidad Nacional de Ingenieria Calculo Vectorial Hermes Pantoja Carhuavilca 1 de 27 CONTENIDO Longitud de Arco Reparametrización

Más detalles

Problemas resueltos del Boletín 1

Problemas resueltos del Boletín 1 Boletines de problemas de Matemáticas II Problemas resueltos del Boletín Problema. Dada la curva r (t) = t [0, π], parametrizarla naturalmente. ( (cos t + t sen t), (sen t t cos t), t ), con En primer

Más detalles

CURVAS Y SUPERFICIES, S.L. Rueda CURVAS. 1.2 Longitud de una curva. Parámetro arco.

CURVAS Y SUPERFICIES, S.L. Rueda CURVAS. 1.2 Longitud de una curva. Parámetro arco. CURVAS. 1.2 Longitud de una curva. Parámetro arco. 1.1 Definición de curva parametrizada espacial. Representación implícita. 1.2 Longitud de una curva. Parámetro arco. 1.3 Curvatura y torsión. Triedro

Más detalles

Tema 3: Cinemática del punto

Tema 3: Cinemática del punto Tema 3: Cinemática del punto FISICA I, 1º Grado en Ingeniería Civil Escuela Técnica Superior de Ingeniería Universidad de Sevilla 1 Índice Introducción Ecuaciones de una curva Velocidad y aceleración Movimientos

Más detalles

1.3 Curvatura y torsión. Triedro de Frenet.

1.3 Curvatura y torsión. Triedro de Frenet. 1.3 Curvatura y torsión. Triedro de Frenet. Sonia L. Rueda ETS Arquitectura. UPM Curvas y Superficies, 2015 Curvas y superficies 1. Curvas 2. Superficies 3. Superficies Regladas Curvas 1.1 Definición de

Más detalles

OCW-Universidad de Málaga, (2014). Bajo licencia. Creative Commons Attribution- NonComercial-ShareAlike 3.

OCW-Universidad de Málaga,  (2014). Bajo licencia. Creative Commons Attribution- NonComercial-ShareAlike 3. OCW-Universidad de Málaga, http://ocw.uma.es 14. Bajo licencia Creative Commons Attribution- NonComercial-ShareAlike 3. Spain Matemáticas III Relación de ejercicios Tema 3 Ejercicios Ej. 1 Reparametriza

Más detalles

CAMPOS VECTORIALES. Presenta: M.E.M. Enrique Arenas Sánchez. 21 de septiembre de 2016

CAMPOS VECTORIALES. Presenta: M.E.M. Enrique Arenas Sánchez. 21 de septiembre de 2016 Presenta: M.E.M. Enrique Arenas Sánchez 21 de septiembre de 2016 Definición de Campo Escalar. Se llama campo escalar a una función que asocia a cada punto del dominio de una función un valor escalar. Ejemplo:

Más detalles

Tema 4: Movimiento en 2D y 3D

Tema 4: Movimiento en 2D y 3D Tema 4: Movimiento en 2D y 3D FISICA I, 1º Grado en Civil Escuela Técnica Superior de Ingeniería Universidad de Sevilla Física I, GIC, Dpto. Física Aplicada III, ETSI, Universidad de Sevilla, 2017/18 1

Más detalles

Relación de ejercicios del tema 1

Relación de ejercicios del tema 1 Relación de ejercicios del tema Asignatura: Curvas y Superficies. Grado en Matemáticas. Grupo: 2 0 -B Profesor: Rafael López Camino. Encontrar una parametrización α(t) de la curva cuya traza es la circunferencia

Más detalles

1 Estudio local de curvas

1 Estudio local de curvas E.T.S. Arquitectura. Curvas y Super cies.1 1 Estudio local de curvas Sea una curva C R 3 con representación paramétrica regular ~r(t), t 2 I R, de clase mayor o igual a 3 y sea s = s(t) = Z t t 0 k~r 0

Más detalles

Tema 4: Movimiento en 2D y 3D

Tema 4: Movimiento en 2D y 3D Tema 4: Movimiento en 2D y 3D FISICA I, 1º Grado en Ingeniería Electrónica, Robótica y Mecatrónica Departamento de Física Aplicada III Escuela Técnica Superior de Ingeniería Universidad de Sevilla Índice

Más detalles

SEMANA 12: CURVAS EN EL ESPACIO. ds v(t) = d r (t) =

SEMANA 12: CURVAS EN EL ESPACIO. ds v(t) = d r (t) = FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Diferencial e Integral 8-2 Basado en el apunte del ramo Matemáticas Aplicadas, de Felipe Álvarez, Juan Diego Dávila, Roberto Cominetti

Más detalles

VELOCIDAD Y ACELERACION. RECTA TANGENTE.

VELOCIDAD Y ACELERACION. RECTA TANGENTE. VELOCIDAD Y ACELERACION. RECTA TANGENTE. 3. Describir la trayectoria y determinar la velocidad y aceleración del movimiento descrito por las curvas siguientes: (a) r (t) = i 4t 2 j + 3t 2 k. (b) r (t)

Más detalles

3 Curvas alabeadas. Solución de los ejercicios propuestos.

3 Curvas alabeadas. Solución de los ejercicios propuestos. 3 Curvas alabeadas. Solución de los ejercicios propuestos.. Se considera el conjunto C = {(x, y, z R 3 : x y + z = x 3 y + z = }. Encontrar los puntos singulares de la curva C. Solución: Llamemos f (x,

Más detalles

Relación de ejercicios de los temas 1 y 2

Relación de ejercicios de los temas 1 y 2 Asignatura: Curvas y Superficies Grado en Matemáticas Grupo: 3 0 -B Profesor: Rafael López Camino Relación de ejercicios de los temas 1 y 2 (Do Carmo, sección 1.2) 1. Encontrar una parametrización α(t)

Más detalles

ETSI de Topografía, Geodesia y Cartografía

ETSI de Topografía, Geodesia y Cartografía Grupo A Examen de Evaluación Continua de Geometría Diferencial Curso 2011-12 El examen consta de dos partes y tiene un valor de 2/3 de la nota de Geometría Diferencial que supone el 10% de la nota total

Más detalles

Geometría Diferencial. Curva

Geometría Diferencial. Curva Curva La curva en el espacio representa intuitivamente la trayectoria de un punto en movimiento. Por ejemplo, la trayectoria de un planeta en el espacio, nos sugieren la idea de curva. También la forma

Más detalles

Resumen de Geometría Diferencial de Curvas y Supercies

Resumen de Geometría Diferencial de Curvas y Supercies Resumen de Geometría Diferencial de Curvas y Supercies E: Espacio euclídeo de dimensión 2 ó 3 (R n, δ) con δ como producto escalar euclídeo Norma de un vector u E: u = u, u 1 2 1. Curvas planas C o diferenciable:

Más detalles

GEOMETRÍA DIFERENCIAL DE CURVAS REGULARES: NOTACIÓN Y FORMULARIO

GEOMETRÍA DIFERENCIAL DE CURVAS REGULARES: NOTACIÓN Y FORMULARIO GEOMETRÍA DIFERENCIAL DE CURVAS REGULARES: NOTACIÓN Y FORMULARIO F. Navarrina, L. Ramírez & GMNI GMNI GRUPO DE MÉTODOS NUMÉRICOS EN INGENIERÍA Departamento de Métodos Matemáticos y de Representación Escuela

Más detalles

CÁLCULO III (0253) PRIMER PARCIAL (33.33%) SECCIONES 02 Y 04 27/03/09. . π

CÁLCULO III (0253) PRIMER PARCIAL (33.33%) SECCIONES 02 Y 04 27/03/09. . π UCV FIUCV CÁLCULO III (05) PRIMER PARCIAL (%) SECCIONES 0 Y 04 7/0/09 Una curva C está definida por y = sen(x) x 0 y = x x 0 x + (y + ) = x 0 a Parametrice la curva C en sentido horario ( puntos) b Encuentre

Más detalles

Análisis II Análisis matemático II Matemática 3.

Análisis II Análisis matemático II Matemática 3. 1 Análisis II Análisis matemático II Matemática 3. 1er. cuatrimestre de 2008 Práctica 1 - urvas, integral de longitud de arco e integrales curvilíneas. urvas Definición 1. Una curva R 3 es un conjunto

Más detalles

3 Curvas alabeadas (curvas en R 3 )

3 Curvas alabeadas (curvas en R 3 ) 3 Curvas alabeadas (curvas en R 3 ) El estudio de curvas en el espacio es, en varios aspectos, similar al de curvas en el plano. En este capítulo consideraremos como parametrización (I, α) a un par formado

Más detalles

1 Parametrización de curvas

1 Parametrización de curvas Dpto. Matemática Aplicada E.T.S. Arquitectura, U.P.M. Curvas y Super cies HOJA DE PROBLEMAS: CURVAS 1 Parametrización de curvas 1. Obtener una parametrización de cada una de las siguientes cónicas: (a

Más detalles

MATEMÁTICAS II Geometría diferencial Curso de las curvas en el espacio

MATEMÁTICAS II Geometría diferencial Curso de las curvas en el espacio 1.- a) Se denomina cicloide a la curva descrita por un punto P de una circunferencia que rueda, sin deslizar, a lo largo de una recta. Si P está inicialmente en el origen O(,) y a es el radio de la circunferencia,

Más detalles

PONTIFICIA UNIVERSIDAD CATÓLICA DEL PERÚ ESTUDIOS GENERALES CIENCIAS. Cálculo 3 Práctica N 3 Semestre Académico

PONTIFICIA UNIVERSIDAD CATÓLICA DEL PERÚ ESTUDIOS GENERALES CIENCIAS. Cálculo 3 Práctica N 3 Semestre Académico Práctica N 3 Semestre Académico 014-1 1. a. Parametrizar la curva : b. Dadas las curvas: x 1 y z y x ; z 0. pts C 1 : Ft e t, 1, lnt 1, t 0, y 1 t C : Gr r, 9 r, ln r, r 0,. Hallar la ecuación de la recta

Más detalles

MAT 1620 Cálculo II Examen

MAT 1620 Cálculo II Examen Pontificia Universidad Católica de Chile Facultad de Matemáticas Departamento de Matemática Primer Semestre de MAT 6 Cálculo II Examen. Determinar el área de la superficie generada al hacer girar la curva

Más detalles

MATE1207 Primer parcial - Tema B MATE-1207

MATE1207 Primer parcial - Tema B MATE-1207 MATE7 Primer parcial - Tema B MATE-7. Si su respuesta y justificación son correctas obtendrá el máximo puntaje. Si su respuesta es incorrecta podrá obtener créditos parciales de acuerdo a su justificación.

Más detalles

CURVAS Y SUPERFICIES. RELACIÓN 1

CURVAS Y SUPERFICIES. RELACIÓN 1 CURVAS Y SUPERFICIES. RELACIÓN 1 CURVAS EN EL PLANO Y EN EL ESPACIO Curso 2015-16 1. En R 2 se considera la circunferencia C de centro (0,1) y radio 1. Sea R la recta afín tangente a C en (0,2). Para cada

Más detalles

Tarea 1 - Vectorial

Tarea 1 - Vectorial Tarea - Vectorial 2050. Part :. - 3.2.. Un cerro se queda en las montañas en la altura de 6 mil metros. El cerro tiene la forma del gráfico de la función z = f(x, y) = x 2 y 2. Observamos que plaquitas

Más detalles

(x 1) + y = 1 y 1, y = (x 2) y 0,1

(x 1) + y = 1 y 1, y = (x 2) y 0,1 CÁLCULO III (053) SECCIÓN 05 6/03/09. Una curva C está definida por y tg(x) x 0, (x ) + y y, 0. y (x ) y 0, 8 a. Parametrice la curva C en sentido antihorario. ( puntos) b. En el punto (, ) determine las

Más detalles

AVANCE DE CONCEPTOS GEOMETRÍA DIFERENCIAL

AVANCE DE CONCEPTOS GEOMETRÍA DIFERENCIAL AVANCE DE CONCEPTOS GEOMETRÍA DIFERENCIAL Índice 1. Introducción a las curvas en E 3 2 1.1. Definición matemática de curva.............................. 2 1.2. Cambio de parámetro....................................

Más detalles

Parcial I Cálculo Vectorial

Parcial I Cálculo Vectorial Parcial I Cálculo Vectorial Febrero 8 de 1 ( Puntos) I. Responda falso o verdadero justificando matematicamente su respuesta. (i) La gráfica de la ecuación cos ϕ = 1, en coordenadas esféricas en R3, es

Más detalles

Función diferenciable Regla de la cadena (2 variables) Regla de la cadena (vectorial) Diferenciabilidad

Función diferenciable Regla de la cadena (2 variables) Regla de la cadena (vectorial) Diferenciabilidad Diferenciabilidad 1 Función diferenciable 2 Regla de la cadena (2 variables) 3 Regla de la cadena (vectorial) OBJETIVO Generalizar el concepto de diferenciabilidad (conocido ya para funciones de una variable)

Más detalles

10. Geometría diferencial de curvas y superficies.

10. Geometría diferencial de curvas y superficies. 10. Geometría diferencial de curvas y superficies. Manuel Palacios Departamento de Matemática Aplicada Centro Politécnico Superior Universidad de Zaragoza Otoño 2010 Contents 10 Geometría diferencial

Más detalles

Coordenadas Generalizadas en el Espacio

Coordenadas Generalizadas en el Espacio Capítulo 3 Coordenadas Generalizadas en el Espacio Las coordenadas cartesianas usuales en R 3 pueden verse también como un sistema de tres familias de superficies en el espacio, de modo que cada punto

Más detalles

sea a lo largo de la curva solución de la ecuación diferencial xy, = 5x

sea a lo largo de la curva solución de la ecuación diferencial xy, = 5x 1. Hallar κ de manera que el flujo saliente del campo f ( x, = (x + y + z, 6y a través de la frontera del cuerpo x + y + z 16 x + y κ, 0 < k < 4 f : R R un campo vectorial definido por:. Sea γ ( t ) =

Más detalles

1.1 El caso particular de las curvas planas.

1.1 El caso particular de las curvas planas. Chapter 1 Complementos de teoría de curvas 1.1 El caso particular de las curvas planas. Una curva en el espacio cuya torsión se anula está contenida en algún plano. Supongamos que ese plano es el z = 0,

Más detalles

ACTIVIDADES GA ACTIVIDAD

ACTIVIDADES GA ACTIVIDAD ACTIVIDADES GA ACTIVIDAD 1: (Mié-12-Feb-14) a) Conteste Qué es y para qué sirve un Sistema de referencia? b) Conteste Qué es y para qué sirve un Sistema de coordenadas? c) Conteste Es lo mismo 'sistema

Más detalles

SERIE # 2 CÁLCULO VECTORIAL

SERIE # 2 CÁLCULO VECTORIAL SERIE # CÁLCULO VECTORIAL SERIE 1) Calcular las coordenadas del punto P de la curva: en el que el vector P 1, 1, r t es paralelo a r t Página 1 t1 r t 1 t i ( t ) j e k ) Una partícula se mueve a lo largo

Más detalles

Capítulo 3. Funciones con valores vectoriales

Capítulo 3. Funciones con valores vectoriales Capítulo 3. Funciones con valores vectoriales 3.1. Curvas: recta tangente y longitud de arco 3.2. Superficies parametrizadas 3.3. Campos vectoriales, campos conservativos Capítulo 3. Funciones con valores

Más detalles

Capítulo 5. Integrales sobre curvas y superficies

Capítulo 5. Integrales sobre curvas y superficies Capítulo 5. Integrales sobre curvas y superficies 5.1. Integrales de funciones escalares sobre curvas 5.2. Integrales de campos vectoriales sobre curvas 5.3. Teorema de Green 5.4. Integrales sobre superficies

Más detalles

1.5. Integral de línea de un campo Vectorial.

1.5. Integral de línea de un campo Vectorial. .5. Integral de línea de un campo Vectorial. Sea F ( xyz,, un campo vectorial continuo sobre R donde F representa un campo de fuerzas aplicado sobre una partícula cuya trayectoria puede ser descrita por

Más detalles

CINEMÁTICA DEL PUNTO P O' 2.1 Sistemas de referencia

CINEMÁTICA DEL PUNTO P O' 2.1 Sistemas de referencia Capítulo 2 CINEMÁTICA DEL PUNT 2.1 Sistemas de referencia Se dice que un cuerpo en el espacio está enmovimiento relativo respecto a otro cuerpo u objeto cuando su posición relativa a éste varía con el

Más detalles

Superficies. Primera Forma Fundamental

Superficies. Primera Forma Fundamental Tema Superficies. Primera Forma Fundamental Dpto. Matemática Aplicada I E.T.S. de Arquitectura Universidad de Sevilla Curso 005 006 Tema. Superficies. Primera Forma Fundamental 1. Curvas sobre superficies

Más detalles

UNIVERSIDAD DIEGO PORTALES. FACULTAD DE INGENIERIA. INSTITUTO DE CIENCIAS BASICAS.

UNIVERSIDAD DIEGO PORTALES. FACULTAD DE INGENIERIA. INSTITUTO DE CIENCIAS BASICAS. UNIVERSIDAD DIEGO PORTALES. FACULTAD DE INGENIERIA. INSTITUTO DE CIENCIAS BASICAS. Cálculo III, Examen Final. Semestre Primavera 1 Tiempo: 11 min. Problema 1 [1,5 puntos] La curvatura de una trayectoria

Más detalles

MA-1003: Apuntes de Cálculo III

MA-1003: Apuntes de Cálculo III MA-1003: Apuntes de Cálculo III Joseph C. Várilly Marzo del 2015 1 Superficies y Curvas 1.1 Rectas y planos, superficies cuadráticas Este es un breve repaso de la geometría analítica básica del plano R

Más detalles

Temas 1 y 2: Cálculo Diferencial y Optimización ENUNCIADO Y RESPUESTA AL EJERCICIO: ENUNCIADO

Temas 1 y 2: Cálculo Diferencial y Optimización ENUNCIADO Y RESPUESTA AL EJERCICIO: ENUNCIADO CÁLCULO II. Ejercicio de Examen Final Temas 1 y : Cálculo Diferencial y Optimización FECHA: 1/07/1 TIEMPO RECOMENDADO: 40 m Puntuación/TOTAL:,5/10 ENUNCIADO Y RESPUESTA AL EJERCICIO: ENUNCIADO w w 1. Dada

Más detalles

f(x(t), y(t), z(t)) = k

f(x(t), y(t), z(t)) = k Plano tangente a cuádrica Cada una de las supercies cuádricas es el lugar geométrico de los punto del espacio que satisfacen una ecuación polinomial en tres variables, el problema de dar un método para

Más detalles

Ejercicios de Fundamentos Matemáticos I. Rafael Payá Albert. Ingeniería de Telecomunicaciones. Departamento de Análisis Matemático

Ejercicios de Fundamentos Matemáticos I. Rafael Payá Albert. Ingeniería de Telecomunicaciones. Departamento de Análisis Matemático Ejercicios de Fundamentos Matemáticos I Ingeniería de Telecomunicaciones Rafael Payá Albert Departamento de Análisis Matemático Universidad de Granada FUNDAMENTO MATEMÁTICO I Relación de Ejercicios N o

Más detalles

CÁLCULO II Funciones de varias variables

CÁLCULO II Funciones de varias variables CÁLCULO II Funciones de varias variables Facultad de Informática (UPM) Facultad de Informática (UPM) () CÁLCULO II Funciones de varias variables 1 / 36 Funciones de varias variables Función vectorial de

Más detalles

Soluciones de los ejercicios del segundo examen parcial

Soluciones de los ejercicios del segundo examen parcial Matemáticas II (GIC, curso 5 6 Soluciones de los ejercicios del segundo examen parcial EJERCICIO. Halla el área que encierra la curva C dada en polares por r = + sen(θ. Solución: Primero debemos hallar

Más detalles

1.4. Teoría local de curvas en el espacio.

1.4. Teoría local de curvas en el espacio. 18 1.4. Teoría local de curvas en el espacio. En esta sección vamos a hacer un estudio similar al realizado en la sección anterior, pero en el caso de que α : I R 3 es una curva parametrizada diferenciable

Más detalles

Parametrización de curvas Integrales de linea. h"p://www.sc.ehu.es/sqwpolim/metodos_matema6cos/

Parametrización de curvas Integrales de linea. hp://www.sc.ehu.es/sqwpolim/metodos_matema6cos/ Parametrización de curvas Integrales de linea h"p://www.sc.ehu.es/sqwpolim/metodos_matema6cos/ Curvas en el espacio En el espacio, una curva se define por el corte de dos superficies. La forma más general

Más detalles

Cinemática del sólido rígido

Cinemática del sólido rígido Cinemática del sólido rígido Teoría básica para el curso Cinemática del sólido rígido, ejercicios comentados α δ ω B B A A P r B AB A ω α O Ramírez López-Para, Pilar Loizaga Garmendia, Maider López Soto,

Más detalles

Matemáticas III Andalucía-Tech

Matemáticas III Andalucía-Tech Matemáticas III Andalucía-Tech Tema 3 Geometría diferencial Índice 1. Curvas regulares en R 2 y R 3 1 1.1. Curvas diferenciables.................................. 3 1.2. Curvas regulares....................................

Más detalles

Rotacional, Divergencia, Gradiente, Laplaciano

Rotacional, Divergencia, Gradiente, Laplaciano Rotacional, Divergencia, Gradiente, Laplaciano Denición 1. Rotacional Supongamos un campo F : U R 3 R 3, F, y, z = F 1, y, z, F, y, z, F 3, y, z diferenciable denido en el conjunto abierto U de R 3. Se

Más detalles

LA CIRCUNFERENCIA. La circunferencia es la sección producida por un plano perpendicular al eje.

LA CIRCUNFERENCIA. La circunferencia es la sección producida por un plano perpendicular al eje. LA CIRCUNFERENCIA La circunferencia es la sección producida por un plano perpendicular al eje. β = 90º La circunferencia es un caso particular de elipse. Se llama circunferencia al lugar geométrico de

Más detalles

Integrales Curvilíneas.

Integrales Curvilíneas. CAPÍTULO 8 Integrales Curvilíneas. Este capítulo abre la segunda parte de la materia : el cálculo integral vectorial. Las integrales de línea de campos escalares y vectoriales tienen aplicaciones a la

Más detalles

Plano tangente a una superficie y a una superficie de nivel, derivada direccional y regla de la cadena

Plano tangente a una superficie y a una superficie de nivel, derivada direccional y regla de la cadena 1 Universidad Simón Bolívar. Preparaduría nº 3. christianlaya@hotmail.com ; @ChristianLaya Plano tangente a una superficie y a una superficie de nivel, derivada direccional y regla de la cadena Derivada

Más detalles

Problemas de Geometría Diferencial Clásica, Grupo B

Problemas de Geometría Diferencial Clásica, Grupo B Problemas de Geometría Diferencial Clásica, Grupo B.- a) Sean p =(p,p )yq =(q,q ) dos puntos distintos de IR. Encontrar la expresión de una curva parametrizada, α, cuya traza sea la recta que pasa por

Más detalles

9. Diferenciación de funciones reales de varias variables reales Diferenciación DERIVADAS PARCIALES

9. Diferenciación de funciones reales de varias variables reales Diferenciación DERIVADAS PARCIALES 9.1. Diferenciación 9.1.1. DERIVADAS PARCIALES Derivadas parciales de una función de dos variables Se llaman primeras derivadas parciales de una función f(x, y) respecto de x e y a las funciones: f x (x,

Más detalles

I Examen Parcial Cálculo Vectorial

I Examen Parcial Cálculo Vectorial I Examen Parcial Cálculo Vectorial Nombre 1. Considere el punto P(0,1, 2), la recta l: r (t) = (2, 1,3) + t(1,0, 1), el plano α: 2x y + 3z = 5 y la superficie S: z = x 2 2y 2. a. Halle la ecuación del

Más detalles

GUÍA DE CÁLCULO VECTORIAL Academia de Matemáticas y Física I.C.

GUÍA DE CÁLCULO VECTORIAL Academia de Matemáticas y Física I.C. 1. Considere los siguientes vectores a = (2,3,1), b = (4, 1,3). Calcule: a) a + b b) 2a + 3b c) 3a b d) a + b e) 3a 2b f) 2 a + b 2. Halle las longitudes de los lados del triángulo ABC y determine si son

Más detalles

Soluciones Matemáticas II Examen Final 2º Parcial 3-Julio-07. 1) La temperatura en un punto (x, y) de una lámina metálica es T(x, y) =.

Soluciones Matemáticas II Examen Final 2º Parcial 3-Julio-07. 1) La temperatura en un punto (x, y) de una lámina metálica es T(x, y) =. Soluciones Matemáticas II Examen Final º Parcial 3-Julio-07 3x 1) La temperatura en un punto (x, y) de una lámina metálica es T(x, y) =. x + y a) Hallar la curva de nivel (isoterma) que pasa por el punto

Más detalles

Soluciones de los ejercicios del del examen final de febrero

Soluciones de los ejercicios del del examen final de febrero Matemáticas II (GIC, curso 5 6) Soluciones de los ejercicios del del examen final de febrero EJERCICIO. Determina el ángulo polar de los puntos con tangente horizontal y los puntos con tangente vertical

Más detalles

Si cálculamos el límite de estas pendiente cuando t tiende a t 0 f 2 (t) f 2 (t 0 )

Si cálculamos el límite de estas pendiente cuando t tiende a t 0 f 2 (t) f 2 (t 0 ) ANÁLISIS MATEMÁTICO BÁSICO. TANGENTES A CURVAS PARAMÉTRICAS. La forma más general de representar un curva en el plano no es a través de una gráfica sino de una curva paramétrica (ver Apéndice al tema de

Más detalles

Integrales Curvilíneas.

Integrales Curvilíneas. CAPÍTULO 7 Integrales Curvilíneas. Este capítulo abre la segunda parte de la materia : el cálculo integral vectorial. Las integrales de línea de campos escalares y vectoriales tienen aplicaciones a la

Más detalles

INGENIERÍA DE TELECOMUNICACIÓN PRÁCTICA 8

INGENIERÍA DE TELECOMUNICACIÓN PRÁCTICA 8 Laboratorio: Curvas paramétricas En el applet de la figura siguiente puedes representar curvas dadas en paramétricas. Los valores a introducir son: xt: La expresión de x(t) yt: La expresión de y(t) x1t:

Más detalles

Relación de ejercicios del tema 3

Relación de ejercicios del tema 3 Relación de ejercicios del tema 3 Asignatura: Curvas y Superficies. Grado en Matemáticas. Grupo: 3 0 -B Profesor: Rafael López Camino (Do Carmo, sección 2.2) 1. Demostrar que el cilindro {(x, y, z) R 3

Más detalles

TEORÍA DE HILOS FLEXIBLES: CATENARIAS

TEORÍA DE HILOS FLEXIBLES: CATENARIAS TEORÍA DE HILOS FLEXIBLES. APLICACIÓN A LAS CATENARIAS 1. INTRODUCCION La flexibilidad de los hilos hace que su estudio difiera en cierto modo de los sistemas discretos considerados hasta ahora en el curso

Más detalles

Grado en Ingeniería de Tecnologías de Telecomunicación. Universidad de Sevilla. Matemáticas I. Departamento de Matemática Aplicada II.

Grado en Ingeniería de Tecnologías de Telecomunicación. Universidad de Sevilla. Matemáticas I. Departamento de Matemática Aplicada II. Grado en Ingeniería de Tecnologías de Telecomunicación Universidad de Sevilla Matemáticas I. Departamento de Matemática Aplicada II. Tema 1. Curvas Paramétricas. Nota Informativa: Para explicar en clase

Más detalles

Lugar Geométrico. Se llama lugar geométrico a un conjunto de puntos que cumplen una determinada propiedad. Mediatriz

Lugar Geométrico. Se llama lugar geométrico a un conjunto de puntos que cumplen una determinada propiedad. Mediatriz 1 Lugar Geométrico Se llama lugar geométrico a un conjunto de puntos que cumplen una determinada propiedad. Mediatriz Mediatriz de un segmento es el lugar geométrico de los puntos del plano que equidistan

Más detalles

Guía de Estudio para la Sección de Matemáticas del Examen de Admisión

Guía de Estudio para la Sección de Matemáticas del Examen de Admisión 1 Guía de Estudio para la Sección de Matemáticas del Examen de Admisión 215-1 El material relativo al temario puede ser consultado en la amplia bibliografía que allí se menciona o en alguno de los muchísimos

Más detalles

1 Estudio local de una super cie

1 Estudio local de una super cie 1 Estudio local de una super cie Sea S R 3 una super cie con parametrización regular: Se tiene ~r : D R 2! R 3 ; ~r(u; v) = (x(u; v); y(u; v); z(u; v)) : ~r u (u; v) = (x u (u; v); y u (u; v); z u (u;

Más detalles

SEPTIEMBRE 2003 PRUEBA A

SEPTIEMBRE 2003 PRUEBA A PROBLEMAS SEPTIEMBRE 003 PRUEBA A 1.- a) Discutir en función de los valores de m: x 3y 0 x y+ z 0 x + y + mz m b) Resolver en los casos de compatibilidad el sistema anterior..- Calcular el área de la región

Más detalles

3. Cinemática de la partícula: Sistemas de referencia

3. Cinemática de la partícula: Sistemas de referencia 3. Cinemática de la partícula: Sistemas de referencia 3.1.- Cinemática de la partícula 3.2.- Coordenadas intrínsecas y polares 3.3.- Algunos casos particulares de especial interés 3.1.- Cinemática de la

Más detalles

Geometría Diferencial

Geometría Diferencial 1.- a) Se denomina cicloide a la curva descrita por un punto P de una circunferencia que rueda, sin deslizar, a lo largo de una recta. Si P está inicialmente en el origen O(,) y a es el radio de la circunferencia,

Más detalles

Geodesia Matemática. E. Calero Versión Madrid Parte II Geometría del elipsoide de revolución II-1

Geodesia Matemática. E. Calero Versión Madrid Parte II Geometría del elipsoide de revolución II-1 Geodesia Matemática. E. Calero Versión 1.0 31-01-2005 Madrid Parte II Geometría del elipsoide de revolución II-1 2.- GEOMETRÍA DEL ELIPSOIDE DE REVOLUCIÓN. ECUACIONES 2.1 Ecuaciones paramétricas 2.2 Ecuación

Más detalles

Análisis Matemático I (Ing. de Telecomunicación), Examen final, 26 de enero de 2010 RESPUESTAS A AMBOS MODELOS

Análisis Matemático I (Ing. de Telecomunicación), Examen final, 26 de enero de 2010 RESPUESTAS A AMBOS MODELOS Análisis Matemático I (Ing. de Telecomunicación), 29-1 Examen final, 26 de enero de 21 RESPUESTAS A AMBOS MODELOS Primera Parte Las preguntas 1 14 son de tipo test. Se pide elegir una única respuesta en

Más detalles

Integrales de Línea. Sabemos que una curva cerrada C paramétrica para a t b (en donde t es el parámetro), se representa por:

Integrales de Línea. Sabemos que una curva cerrada C paramétrica para a t b (en donde t es el parámetro), se representa por: r (t) =x (t) î + y (t) ĵ + z (t) ˆk dr (t) =dx (t) î + dy (t) ĵ + dz (t) ˆk Las integrales que incluyen vectores de desplazamiento diferencial d r se llaman integrales de línea. onsideremos las siguientes

Más detalles

Análisis II Análisis matemático II Matemática 3.

Análisis II Análisis matemático II Matemática 3. 1 Análisis II Análisis matemático II Matemática 3. 1er. cuatrimestre de 2015 Práctica 1 - urvas, integral de longitud de arco e integrales curvilíneas. urvas Ejercicio 1 1. Probar que x 1 (t) = r cos(2πt),

Más detalles

Integrales de Superficie.

Integrales de Superficie. CAPÍTULO 10 Integrales de Superficie. Este capítulo cierra los tipos de integrales que estudiamos en el curso. Se practica el concepto de integral de superficie y se dan aplicaciones geométricas y físicas.

Más detalles

UNIDAD II. 2 Cinemática. 2.1 Movimiento rectilíneo. 2.2 Movimiento bajo aceleración constante. 2.3 Movimiento circular

UNIDAD II. 2 Cinemática. 2.1 Movimiento rectilíneo. 2.2 Movimiento bajo aceleración constante. 2.3 Movimiento circular 42 UNIDAD II 2 Cinemática 2.1 Movimiento rectilíneo 2.2 Movimiento bajo aceleración constante 2.3 Movimiento circular 2.4 Movimiento curvilíneo general 43 UNIDAD II 2 CINEMATICA. La Cinemática (del griego

Más detalles

y = x x 0, 4 π 2 π π

y = x x 0, 4 π 2 π π UCV FIUCV CÁLCULO III (053) PRIMER PARCIAL (3333%) SECCIONES 01 Y 03 7/03/09 1 Una curva C está definida por y cos(x) x, y x x 0, x + y y,0 16 a Parametrice la curva C en sentido antihorario ( puntos)

Más detalles

Geometría Diferencial Preguntas de la teoría para el examen

Geometría Diferencial Preguntas de la teoría para el examen Geometría Diferencial - 2015 Preguntas de la teoría para el examen Observaciones: Una pregunta del examen puede ser sólo una parte de una de las preguntas siguientes. Si en esta lista una pregunta tiene

Más detalles

Práctica 3: Diferenciación I

Práctica 3: Diferenciación I Análisis I Matemática I Análisis II (C) Cuat II - 009 Práctica 3: Diferenciación I Derivadas parciales y direccionales. Sea f una función continua en x = a. Probar que f es derivable en x = a si y solo

Más detalles

Integrales de Superficie.

Integrales de Superficie. CAPÍTULO 9. Integrales de Superficie. Este capítulo cierra los tipos de integrales que estudiamos en el curso. Se practica el concepto de integral de superficie y se dan aplicaciones geométricas y físicas.

Más detalles

Ejercicios de Curvas y Superficies

Ejercicios de Curvas y Superficies Ejercicios de Curvas y Superficies 10 de Febrero del 2006 1. Una cicloide es una curva plana, trayectoria de un punto fijo en una circunferencia, que rueda, sin deslizarse, sobre una recta. Establecer

Más detalles

F. Geometría y Geometría Computacional Fundamentos de Geometría y Geometría Computacional

F. Geometría y Geometría Computacional Fundamentos de Geometría y Geometría Computacional Fundamentos de Geometría y Geometría Computacional 1 Geometría 1. Elementos geométricos en 2D. Rectas. Triángulos. Polígonos. Curvas. 2. Problemas geométricos 2D. Distancia. Intersección. 3. Elementos

Más detalles

Derivada de una función

Derivada de una función Derivada de una función Se llama cociente incremental o razón de cambio, a la razón entre el incremento de f y el de la variable x, cuya expresión es: f f(x + ) f(x) = x Definición: f(x La función f es

Más detalles

Expresiones de velocidad y aceleración en distintas coordenadas

Expresiones de velocidad y aceleración en distintas coordenadas Apéndice B Expresiones de velocidad y aceleración en distintas coordenadas Índice B.1. Coordenadas cartesianas............... B.1 B.2. Coordenadas cilíndricas y polares......... B.2 B.3. Coordenadas esféricas................

Más detalles

3 Aplicaciones de primer orden

3 Aplicaciones de primer orden CAPÍTULO 3 Aplicaciones de primer orden 3.7.1 Traectorias ortogonales Si consideramos la familia de curvas C c; con c > 0; podemos decir que esta familia es el conjunto de las circunferencias de radio

Más detalles

Escuela Universitaria Politécnica Examen de Cálculo - Febrero - Curso 01/02

Escuela Universitaria Politécnica Examen de Cálculo - Febrero - Curso 01/02 Escuela Universitaria Politécnica Examen de Cálculo - Febrero - Curso 0/02 x 2 + y 4. (a) Comprueba que el siguiente límite no existe lim (x,y) (0,0) x 2 + y. 2 (b) Busca una trayectoria a través de la

Más detalles