Examen de Teoría de (Introducción al) Reconocimiento de Formas

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Examen de Teoría de (Introducción al) Reconocimiento de Formas"

Transcripción

1 Examen de Teoría de (Introducción al) Reconocimiento de Formas Facultad de Informática, Departamento de Sistemas Informáticos y Computación Universidad Politécnica de Valencia, Enero de 007 Apellidos: Cuestiones (3 puntos, hora, sin apuntes) Nombre: Marca cada recuadro con una única opción de entre las dadas. C Sea x un objeto (vector de características o cadena de símbolos) a clasificar en una clase de C posibles. Indica cuál de los siguientes clasificadores no es de error mínimo: A) c(x) = argmax c=,...,c B) c(x) = argmax c=,...,c C) c(x) = argmax c=,...,c D) c(x) = argmax c=,...,c p(x)p(c x) p(x)p(x, c) p(c)p(c x) p(c)p(x c) B Considérese una familia de clasificadores caracterizada mediante un vector de parámetros Θ; por ejemplo, en el caso de clasificadores lineales, Θ estaría compuesto por los vectores de pesos y pesos umbrales de todas las clases. El aprendizaje estadístico de un clasificador de la familia consiste en adoptar y optimizar un criterio de aprendizaje dependiente de Θ y de las muestras de aprendizaje disponibles (las cuales se consideran fijas durante la optimización). Indica cuál de las siguientes afirmaciones es falsa: A) Un criterio natural consiste en escoger como criterio de aprendizaje el error empírico (número de muestras de aprendizaje mal clasificadas). Sin embargo, este criterio no suele ser fácil de optimizar. B) Una alternativa al error empírico es el error teórico, que además presenta la ventaja de no requerir muestras de aprendizaje. Sin embargo, este criterio no suele emplearse por dificultades de cálculo analítico. C) Un alternativa más popular al error empírico es el criterio de máxima verosimilitud (conjunta). A lo largo del temario se han visto diversos ejemplos de aprendizaje basados en máxima verosimilitud. Un (posible) inconveniente de este criterio es que los parámetros de una clase suelen aprenderse a partir de muestras de la misma clase, sin tener en cuenta las clases rivales. Se trata, por tanto, de un criterio no discriminativo. D) Existen múltiples alternativas al criterio de máxima verosimilitud (conjunta), que sí son discriminativos. Por ejemplo, máxima verosimilitud condicional y mínimo error cuadrático. A El clasificador de Bernoulli se define como el clasificador de Bayes particularizado al caso en el que las funciones de probabilidad condicionales de las clases son distribuciones de Bernoulli. Indica cuál de las siguientes afirmaciones es verdadera: A) Es un clasificador lineal. B) Es un clasificador cuadrático. C) No es lineal ni cuadrático, pero puede hacerse lineal mediante suavizado de parámetros. D) Ninguna de las anteriores. C La figura a la derecha muestra las bolas de confianza al 95 % de dos densidades condicionales de clase Gaussianas, así como algunas muestras de ambas clases. Indica el tipo de frontera óptima entre ambas clases asumiendo que sus probabilidades a priori son idénticas: A) Lineal. B) Elipse. C) Hipérbola. D) Ninguna de las anteriores.

2 A La figura a la derecha muestra 00 muestras en el plano y un modelo de distribución de las mismas de tipo mixtura de 3 Gaussianas, las cuales se describen mediante bolas de confianza al 95 %. Indica cuál de las siguientes afirmaciones sobre estas Gaussianas es cierta: A) Comparten una matriz de covarianzas común y completa. B) Comparten una matriz de covarianzas común y digonal. C) Sus matrices de covarianzas son diferentes y completas. D) Sus matrices de covarianzas son diferentes y diagonales A Indica cuál de las siguientes afirmaciones sobre clustering es incorrecta: A) El criterio de clustering particional suma de errores cuadráticos permite descubrir agrupamientos naturales de los datos siempre y cuando éstos formen nubes hiperesféricas compactas y bien separadas, de cualquier tamaño. B) El algoritmo C-medias estándar (no la versión de Duda y Hart) puede verse como un límite particular del algoritmo EM para mixturas de Gaussianas (haciendo Σ = ǫ I y haciendo tender ǫ a cero). C) Uno de los algoritmos de clústering jerárquico aglomerativo más popular es el algoritmo de enlazado simple (SLINK). La distancia entre dos clústers según este algoritmo es la correspondiente a los objetos más cercanos entre ambos clústers (según alguna función distancia dada para comparar objetos individuales). D) La recurrencia de Lance y Williams permite implementar diversos algoritmos de clustering jerárquico aglomerativo de manera sencilla y eficiente. D Dadas las cadenas abb y aba y los costes de edición c(a, a) = c(b, b) = 0 y c(a, b) = c(b, a) = c(ǫ, a) = c(ǫ, b) = c(a, ǫ) = c(b, ǫ) =, la distancia de edición entre ellas es: A),5 B) 3 C) 4 D) B Indica cuál de las siguientes afirmaciones es cierta: A) La distancia de edición y la distancia de edición normalizada entre dos cadenas coindice siempre. B) El coste temporal de la distancia de edición normalizada entre dos cadenas x e y es O( x y mín( x, y )). C) El coste temporal de la distancia de edición y la distancia de edición normalizada es el mismo. D) El coste temporal de la distancia de edición entre dos cadenas x e y es O( x ). B Indica cuál de las siguientes afirmaciones es cierta: A) Un modelo oculto de Markov (MOM) siempre define una distribución de probabilidad sobre un conjunto de cadenas. B) Dado un MOM Θ y una cadena x, puede cumplirse que Pr Θ (x) = Pr Θ (x). C) Cualquier lenguaje estocástico siempre puede ser representado por un MOM. D) Cualquier lenguaje estocástico siempre puede ser representado por una gramática incontextual estocástica. D Indica cuál de las siguientes afirmaciones es falsa. Dado un MOM Θ: A) El algoritmo forward permite calcular Pr Θ (x). B) El algoritmo backward permite calcular Pr Θ (x). C) El algoritmo forward permite calcular Pr Θ (x) y el algoritmo backward también. D) El algoritmo backward permite calcular Pr Θ (x) pero el algoritmo forward no. D En el marco de la máxima entropía, las funciones de distribución de probabilidad son de la forma: A) p(y, x) = Z(x) exp( i λ if i (x, y)) donde Z(x) = y exp( i λ if i (x, y)). B) p(y x) = Z(x)exp( i λ if i (x, y)) donde Z(x) = y exp( i λ if i (x, y)). C) p(y x) = Z(x) exp( i λ i) donde Z(x) = y exp( i λ i). D) p(y x) = Z(x) exp( i λ if i (x, y)) donde Z(x) = y exp( i λ if i (x, y)). C En el algoritmo IIS el incremento δ i a aplicar a cada λ i en cada iteración es: A) δ i = log ep(x,y) B) δ i = M p λ (x,y). ep(x,y) log C) δ i = M D) δ i = log ep(fi) p λ (f. i) p λ (x,y) donde M = f# (x, y). ep(fi) log p λ (f donde M = i) f# (x, y).

3 Examen de Teoría de (Introducción al) Reconocimiento de Formas Facultad de Informática, Departamento de Sistemas Informáticos y Computación Universidad Politécnica de Valencia, Enero de 007 Apellidos: Problemas (4 puntos, horas, con apuntes) Nombre:. ( punto) Sea un problema de clasificación en tres clases; A, B y C; de probabilidades a priori p(a) = p(b) = 4 y p(c) = ; y funciones de densidad de probabilidad condicional uniformes: p(x A) U(, 0) p(x B) U(, ) p(x C) U(, 3) a) Calcula la función de densidad de probabilidad incondicional p(x). p(x A) p(x B) p(x C) p(x, A) p(x, B) p(x, C) p(x) 0 3 < x < 3 < x < 0 p(x) = p(x, A) + p(x, B) + p(x, C) = 0 < x < < x < 3 b) Calcula las probabilidades a posteriori de las clases, p(a x), p(b x) y p(c x), para todo x.

4 p(a x) p(c x) p(b x) p(a x) = p(x, A) p(x) < x < = 3 < x < < x < 0 p(b x) = 0 < x < 3 < x < 0 p(c x) = 0 < x < < x < 3 c) Determina las regiones de decisión de las clases. R A = {x : p(a x) > máx{p(b x), p(c x)}} = (, ) R B = {x : p(b x) > máx{p(a x), p(c x)}} = R C = {x : p(c x) > máx{p(a x), p(b x)}} = (, 3) d) Cómo procede el clasificador de Bayes para x (, )? En (, 0) puede optar por cualquiera de las tres clases; la probabilidad de error es siempre 3. En (0, ) puede optar por B o C; la probabilidad de error es siempre. e) Determina la probabilidad de error en cada x, p(error x). f ) Halla el error de Bayes, p(error). 3 x 0 p(error x) = máx(p(a x), p(b x), p(c x)) = 0 x p(error x) = p(x)p(error x)dx = dx + 0 dx = + = 3 = = 37.5 %. ( punto) Sean A y B dos clases de probabilidades a priori idénticas y densidades condicionales Gaussianas, ( ( )) 0 / 0 p(x A) N (µ A =, Σ 0) A = and p(x B) N 0 /4 (µ B = ( 0 ), Σ B = a) Halla el clasificador Gaussiano correspondiente en términos de funciones discriminantes (simplificadas). ( )) /4 0 0 / g A (x) = 4 x x + 5 log g B (x) = x x + 4 x log b) Calcula la frontera inducida por el clasificador hallado. x + x + 4 x 4 log = 0

5 c) Determina el tipo de frontera hallada. con (x 0) + (x + ) = + log (x c ) r + (x c ) r = c = 0 r = c = 4 + log r = + log =.0 =.95 que corresponde a una elipse. ( ( ) d) Clasifica los puntos y. 3) g A (, 3) = log = + 5 log = 0.3 ( g B (, 3) = log = log =.0 B 3) g A (, ) = 4 ( ) ( ) + 5 log = log = 4.3 g B (, ) = ( ) ( ) + 4 ( ) log = + 3 log = 0.0 ( ) A 3. ( puntos) Sea M un modelo oculto de Markov de tres estados de izquierda a derecha sobre Σ = {a, b}, definido por las matrices de transición y emisión A y B, respectivamente: A 0 F B a b a) Calcula y escribe el trellis resultante de aplicar el algoritmo forward para la cadena aab. b) Calcula y escribe el trellis resultante de aplicar el algoritmo backward para la cadena aab. c) Calcula y escribe el modelo resultante de realizar una iteración con el algoritmo forward-backward suponiendo que la muestra de aprendizaje contiene únicamente la cadena aab. d) Calcula y escribe el trellis resultante de aplicar el algoritmo de Viterbi para la cadena aab. e) Calcula y escribe el modelo resultante de realizar una iteración con el algoritmo de estimación basado en Viterbi suponiendo que la muestra de aprendizaje contiene únicamente la cadena aab.

6 ( ) ( ) ( ) a b F a) Resultado del algoritmo forward: a a b F 0.07 Este resultado corresponde a la suma de las probabilidades de las dos secuencias de estados que permite derivar la cadena aab : b) Resultado del algoritmo backward: B(0, a)a(0, 0)B(0, a)a(0, )B(, b)a(, F) = B(0, a)a(0, )B(, a)a(, )B(, b)a(, F) = 0.06 a a b F.0 c) Los valores de las matrices A y B para el nuevo modelo será: d) Resultado del algoritmo de Viterbi: S N((0, 0), S)Pr(x, S) A(0, 0) = S N(0, S)Pr(x, S) = = A(0, ) = = A(, ) = = A(, F) = = 0.59 S N((0, a), S)Pr(x, S) B(0, a) = S N(0, S)Pr(x, S) = =.0 B(0, b) = B(, a) = = B(, b) = = 0.59 a a b F 0.06 Este resultado corresponde a la probabilidad de la secuencia de estados que con mayor probabilidad genera la cadena aab : B(0, a)a(0, )B(, a)a(, )B(, b)a(, F) = 0.06 c) Los valores de las matrices A y B para el nuevo modelo será:

7 N((0, 0), Ŝ) A(0, 0) = N(0, Ŝ) = 0 = 0.0 A(0, ) = =.0 A(, ) = = 0.5 A(, F) = = 0.5 B(0, a) = B(0, b) = 0.0 B(, a) = = 0.5 B(, b) = = 0.5 N((0, a), Ŝ) N(0, Ŝ) = =.0

MÉTODOS AVANZADOS EN APRENDIZAJE ARTIFICIAL: TEORÍA Y APLICACIONES A PROBLEMAS DE PREDICCIÓN

MÉTODOS AVANZADOS EN APRENDIZAJE ARTIFICIAL: TEORÍA Y APLICACIONES A PROBLEMAS DE PREDICCIÓN MÉTODOS AVANZADOS EN APRENDIZAJE ARTIFICIAL: TEORÍA Y APLICACIONES A PROBLEMAS DE PREDICCIÓN Manuel Sánchez-Montañés Luis Lago Ana González Escuela Politécnica Superior Universidad Autónoma de Madrid Teoría

Más detalles

Clasificación estadística de patrones

Clasificación estadística de patrones Clasificación estadística de patrones Clasificador gaussiano César Martínez cmartinez _at_ fich.unl.edu.ar Tópicos Selectos en Aprendizaje Maquinal Doctorado en Ingeniería, FICH-UNL 19 de setiembre de

Más detalles

Sistemas Inteligentes. Tema B2T7: Algoritmo de Viterbi. Estimación de modelos de Markov.

Sistemas Inteligentes. Tema B2T7: Algoritmo de Viterbi. Estimación de modelos de Markov. Sistemas Inteligentes Escuela Técnica Superior de Informática Universitat Politècnica de València Tema BT7: Algoritmo de Viterbi. Estimación de modelos de Markov. DSIC UPV: Octubre, 8 SIN-TemaBT7 índice

Más detalles

Análisis de Datos. Clasificación Bayesiana para distribuciones normales. Profesor: Dr. Wilfrido Gómez Flores

Análisis de Datos. Clasificación Bayesiana para distribuciones normales. Profesor: Dr. Wilfrido Gómez Flores Análisis de Datos Clasificación Bayesiana para distribuciones normales Profesor: Dr. Wilfrido Gómez Flores 1 Funciones discriminantes Una forma útil de representar clasificadores de patrones es a través

Más detalles

PRÁCTICA I. Ejercicios Teóricos

PRÁCTICA I. Ejercicios Teóricos PRÁCTICA I TEORÍA DE LA DECISIÓN BAYESIANA Ejercicios Teóricos Ejercicio. En el caso de dos categorías, en la regla de decisión de Bayes el error condicional está dado por la ecuación (7). Incluso si las

Más detalles

Clasificación. Aurea Grané. Análisis Discriminante

Clasificación. Aurea Grané. Análisis Discriminante Diplomatura en Estadística 1 Diplomatura en Estadística 2 Análisis discriminante Análisis Discriminante y Clasificación Aurea Grané Departamento de Estadística Universidad Carlos III de Madrid Supongamos

Más detalles

Etiquetación con modelos de máxima entropía

Etiquetación con modelos de máxima entropía Etiquetación con modelos de máxima entropía Miguel A. Alonso Departamento de Computación, Facultad de Informática, Universidade da Coruña 1 / 26 Índice 1 Introducción 2 Regresión Regresión lineal Regresión

Más detalles

Introducción. Distribución Gaussiana. Procesos Gaussianos. Eduardo Morales INAOE (INAOE) 1 / 47

Introducción. Distribución Gaussiana. Procesos Gaussianos. Eduardo Morales INAOE (INAOE) 1 / 47 Eduardo Morales INAOE (INAOE) 1 / 47 Contenido 1 2 3 (INAOE) 2 / 47 Normalmente, en los algoritmos de aprendizaje que hemos visto, dado un conjunto de ejemplos de entrenamiento se busca encontrar el mejor

Más detalles

Procesamiento de voz - Reconocimiento de voz II

Procesamiento de voz - Reconocimiento de voz II Procesamiento de voz - Reconocimiento de voz II Marc S. Reßl Roxana Saint-Nom 2009 Ingeniería Electrónica Instituto Tecnológico de Buenos Aires Reconocimiento de voz Las técnicas que vimos hasta ahora

Más detalles

Cadenas de Markov Ocultas

Cadenas de Markov Ocultas Nicolás Carrère Análisis Inteligente de Datos Departamento de Informática Universidad Técnica Federico Santa María Valparaíso, 24 de Noviembre de 2005 1 2 3 4 Temario Las cadenas de Markov pueden ser representadas

Más detalles

Introducción. Existen dos aproximaciones para resolver el problema de clasificación: Aproximación Generativa (vista en el Tema 3) Basada en:

Introducción. Existen dos aproximaciones para resolver el problema de clasificación: Aproximación Generativa (vista en el Tema 3) Basada en: Introducción Eisten dos aproimaciones para resolver el problema de clasificación: Aproimación Generativa (vista en el Tema 3) Basada en: Modelar p(,w)=p( w)p(w) p( w) es la distribución condicional de

Más detalles

Bases Formales de la Computación: Sesión 1. Probabilidad Discreta

Bases Formales de la Computación: Sesión 1. Probabilidad Discreta Bases Formales de la Computación: Sesión 1. Probabilidad Discreta Prof. Gloria Inés Alvarez V. Departamento de Ciencias e Ingeniería de la Computación Pontificia Universidad Javeriana Cali 11 de abril

Más detalles

Maestría en Bioinformática Probabilidad y Estadística: Clase 13

Maestría en Bioinformática Probabilidad y Estadística: Clase 13 Maestría en Bioinformática Probabilidad y Estadística: Clase 13 Gustavo Guerberoff gguerber@fing.edu.uy Facultad de Ingeniería Universidad de la República Mayo de 2010 Contenidos 1 Hidden Markov Models

Más detalles

Sistemas Inteligentes. Tema B2T4: Aprendizaje no supervisado: algoritmo k-medias.

Sistemas Inteligentes. Tema B2T4: Aprendizaje no supervisado: algoritmo k-medias. Sistemas Inteligentes Escuela Técnica Superior de Informática Universitat Politècnica de València Tema B2T4: Aprendizaje no supervisado: algoritmo k-medias. Índice 1 Introducción 1 2 Agrupamientos particionales

Más detalles

Repaso de Estadística

Repaso de Estadística Teoría de la Comunicación I.T.T. Sonido e Imagen 25 de febrero de 2008 Indice Teoría de la probabilidad 1 Teoría de la probabilidad 2 3 4 Espacio de probabilidad: (Ω, B, P) Espacio muestral (Ω) Espacio

Más detalles

Examen de Teoría de Autómatas y Lenguajes Formales

Examen de Teoría de Autómatas y Lenguajes Formales Examen de Teoría de Autómatas y Lenguajes Formales TAL 16 de Septiembre de 2008 (I) CUESTIONES: (Justifique formalmente las respuestas) 1. Pronúnciese acerca de la veracidad o falsedad de los siguientes

Más detalles

Prueba Integral Lapso /6

Prueba Integral Lapso /6 Prueba Integral Lapso 2 009-2 76 - /6 Universidad Nacional Abierta Probabilidad y Estadística I (76) Vicerrectorado Académico Cód. Carrera: 06-20 - 508 Fecha: 2-2 - 2 009 MODELO DE RESPUESTAS Objetivos,

Más detalles

Probabilidad, Variables Aleatorias y Distribuciones

Probabilidad, Variables Aleatorias y Distribuciones GRUPO A Prueba de Evaluación Continua 5-XII-.- Tres plantas de una fábrica de automóviles producen diariamente 00, 00 y 000 unidades respectivamente. El porcentaje de unidades del modelo A es 60%, 0% y

Más detalles

Sistemas de Reconocimiento de Patrones

Sistemas de Reconocimiento de Patrones Sistemas de Reconocimiento de Patrones p. 1/33 Sistemas de Reconocimiento de Patrones Luis Vázquez GTI - IIE Facultad de Ingeniería Universidad de la República Sistemas de Reconocimiento de Patrones p.

Más detalles

Análisis de imágenes digitales

Análisis de imágenes digitales Análisis de imágenes digitales SEGMENTACIÓN DE LA IMAGEN Segmentación basada en color INTRODUCCIÓN La segmentación de imágenes a color se puede realizar mediante técnicas de clasificación supervisada.

Más detalles

Bases estadísticas del reconocimiento de patrones

Bases estadísticas del reconocimiento de patrones Bases estadísticas del reconocimiento de patrones César Martínez cmartinez _AT_ fich.unl.edu.ar Inteligencia Computacional FICH-UNL Percepción humana Tarea muuuuy simple: Cuántas llaves hay? Inteligencia

Más detalles

Aprendizaje Automático

Aprendizaje Automático Regresión Lineal: Descenso de Gradiente Árboles de Regresión: M5 Ingeniería Informática Fernando Fernández Rebollo y Daniel Borrajo Millán Grupo de Planificación y Aprendizaje (PLG) Departamento de Informática

Más detalles

Modelos Gráficos Probabilistas L. Enrique Sucar INAOE. Sesión 5: Modelos Ocultos de Markov

Modelos Gráficos Probabilistas L. Enrique Sucar INAOE. Sesión 5: Modelos Ocultos de Markov Modelos Gráficos Probabilistas L. Enrique Sucar INAOE Sesión 5: Modelos Ocultos de Markov Modelos Ocultos de Markov Cadenas de Markov Preguntas básicas Aplicación: orden en Google Modelos Ocultos de Markov

Más detalles

Análisis de Datos. Regresión logística. Profesor: Dr. Wilfrido Gómez Flores

Análisis de Datos. Regresión logística. Profesor: Dr. Wilfrido Gómez Flores Análisis de Datos Regresión logística Profesor: Dr. Wilfrido Gómez Flores 1 Regresión logística Supóngase que se tiene una variable binaria de salida Y, y se desea modelar la probabilidad condicional P(Y=1

Más detalles

Curso de Inteligencia Artificial

Curso de Inteligencia Artificial Curso de Inteligencia Artificial Modelos Ocultos de Markov Gibran Fuentes Pineda IIMAS, UNAM Redes Bayesianas Representación gráfica de relaciones probabilísticas Relaciones causales entre variables aleatorias

Más detalles

Tema 9. Análisis factorial discriminante

Tema 9. Análisis factorial discriminante Máster en Técnicas Estadísticas Análisis Multivariante. Año 2008 2009. Profesor: César Sánchez Sellero. 9.1. Introducción. Tema 9. Análisis factorial discriminante Supongamos que están denidos I grupos,

Más detalles

Reconocimiento de Formas

Reconocimiento de Formas Reconocimiento de Formas Técnicas no Supervisadas: clustering José Martínez Sotoca Objetivo: Estudio de la estructura de un conjunto de datos, división en agrupaciones. Características: Homogeneidad o

Más detalles

Introducción Clustering jerárquico Clustering particional Clustering probabilista Conclusiones. Clustering. Clasificación no supervisada

Introducción Clustering jerárquico Clustering particional Clustering probabilista Conclusiones. Clustering. Clasificación no supervisada Clustering Clasificación no supervisada Javier G. Sogo 10 de marzo de 2015 1 Introducción 2 Clustering jerárquico 3 Clustering particional 4 Clustering probabilista 5 Conclusiones Introducción Objetivos

Más detalles

Tema 4 - Introducción

Tema 4 - Introducción Tema 4 - Introducción 1 Tema 3. Estimación puntual Criterios de comparación de estimadores: Insesgadez. Estimadores de mínima varianza. Error cuadrático medio. Consistencia. Cómo obtener estimadores? Tema

Más detalles

Estadística Bayesiana

Estadística Bayesiana Universidad Nacional Agraria La Molina 2017-1 Teoría de la decisión Riesgo de Bayes La teoría de decisión es un área de suma importancia en estadística ya que muchos problemas del mundo real pueden tomar

Más detalles

Expresa en lenguaje matemático los siguientes conjuntos:

Expresa en lenguaje matemático los siguientes conjuntos: universidad de valladolid facultad de cc ee y ee matemáticas 1 1. Expresa en lenguaje matemático los siguientes conjuntos: (a) El conjunto S 1 de los vectores de IR 3 que tienen las dos primeras componentes

Más detalles

Modelos de Markov Ocultos (HMM)

Modelos de Markov Ocultos (HMM) Modelos de Markov Ocultos (HMM) Miguel A. Alonso Jorge Graña Jesús Vilares Departamento de Computación, Facultad de Informática, Universidade da Coruña Miguel A. Alonso, Jorge Graña, Jesús Vilares (Departamento

Más detalles

Bases Formales de la Computación: Sesión 3. Modelos Ocultos de Markov

Bases Formales de la Computación: Sesión 3. Modelos Ocultos de Markov Bases Formales de la Computación: Sesión 3. Prof. Gloria Inés Alvarez V. Departamento de Ciencias e Ingeniería de la Computación Pontificia Universidad Javeriana Cali Periodo 2008-2 Contenido 1 Introducción

Más detalles

SOLUCIONES AL EXAMEN DE SEPTIEMBRE DE ESTADÍSTICA EXAMEN DE MATEMÁTICAS II

SOLUCIONES AL EXAMEN DE SEPTIEMBRE DE ESTADÍSTICA EXAMEN DE MATEMÁTICAS II SOLUCIONES AL EXAMEN DE SEPTIEMBRE DE 4. ESTADÍSTICA EXAMEN DE MATEMÁTICAS II Estadística (primer parcial). Septiembre de 4.- El coeficiente de determinación R nos determina a) el % de la varianza de Y

Más detalles

Estadística. Tema 2. Variables Aleatorias Funciones de distribución y probabilidad Ejemplos distribuciones discretas y continuas

Estadística. Tema 2. Variables Aleatorias Funciones de distribución y probabilidad Ejemplos distribuciones discretas y continuas Estadística Tema 2 Variables Aleatorias 21 Funciones de distribución y probabilidad 22 Ejemplos distribuciones discretas y continuas 23 Distribuciones conjuntas y marginales 24 Ejemplos distribuciones

Más detalles

TÉCNICAS DE AGRUPAMIENTO

TÉCNICAS DE AGRUPAMIENTO TÉCNICAS DE AGRUPAMIENTO José D. Martín Guerrero, Emilio Soria, Antonio J. Serrano PROCESADO Y ANÁLISIS DE DATOS AMBIENTALES Curso 2009-2010 Page 1 of 11 1. Algoritmo de las C-Medias. Algoritmos de agrupamiento

Más detalles

Análisis de Datos. Teoría de decisión Bayesiana. Profesor: Dr. Wilfrido Gómez Flores

Análisis de Datos. Teoría de decisión Bayesiana. Profesor: Dr. Wilfrido Gómez Flores Análisis de Datos Teoría de decisión Bayesiana Profesor: Dr. Wilfrido Gómez Flores 1 Teoría de decisión Bayesiana La teoría de probabilidad provee un marco teórico para los procesos de cuantificación y

Más detalles

Métodos Estadísticos Multivariados

Métodos Estadísticos Multivariados Métodos Estadísticos Multivariados Victor Muñiz ITESM Victor Muñiz (ITESM) Métodos Estadísticos Multivariados Agosto-Diciembre 2011 1 / 34 Álgebra matricial y vectores aleatorios Una matriz es un arreglo

Más detalles

IDENTIFICACIÓN DE SISTEMAS ESTIMACIÓN ESTOCÁSTICA

IDENTIFICACIÓN DE SISTEMAS ESTIMACIÓN ESTOCÁSTICA IDENTIFICACIÓN DE SISTEMAS ESTIMACIÓN ESTOCÁSTICA Ing. Fredy Ruiz Ph.D. ruizf@javeriana.edu.co Maestría en Ingeniería Electrónica Pontificia Universidad Javeriana 2013 Problema de la estima θ(t): magnitud

Más detalles

Sistemas de Percepción Visión por Computador

Sistemas de Percepción Visión por Computador Nota: Algunas de las imágenes que aparecen en esta presentación provienen del libro: Visión por Computador: fundamentos y métodos. Arturo de la Escalera Hueso. Prentice Hall. Sistemas de Percepción Visión

Más detalles

Simulación. La mayoría de los procesos de simulación tiene la misma estructura básica:

Simulación. La mayoría de los procesos de simulación tiene la misma estructura básica: Simulación La mayoría de los procesos de simulación tiene la misma estructura básica: 1 Indentificar una variable de interés y escribir un programa para simular dichos valores Generar una muestra independiente

Más detalles

Tema 5. Variables Aleatorias Conjuntas.

Tema 5. Variables Aleatorias Conjuntas. Tema 5. Variables Aleatorias Conjuntas. Objetivo: El alumno conocerá el concepto de variables aleatorias conjuntas podrá analizar el comportamiento probabilista, conjunta e individualmente, de las variables

Más detalles

ANALISIS DISCRIMINANTE, ESTADISTICA GERENCIAL

ANALISIS DISCRIMINANTE, ESTADISTICA GERENCIAL UNIVERSIDAD DE PUERTO RICO Recinto de Río Piedras Facultad de Administración de Empresas Instituto de Estadística ANALISIS DISCRIMINANTE, HERRAMIENTA EN ESTADISTICA GERENCIAL José C. Vega Vilca, PhD Presentación

Más detalles

Un canal de comunicación puede ser definido como el medio a través del cual la señal del mensaje se propaga desde la fuente hasta el destino.

Un canal de comunicación puede ser definido como el medio a través del cual la señal del mensaje se propaga desde la fuente hasta el destino. Un canal de comunicación puede ser definido como el medio a través del cual la señal del mensaje se propaga desde la fuente hasta el destino. Se dice que un canal es ruidoso si la lectura de los datos

Más detalles

Tema 4: Variables aleatorias multidimensionales

Tema 4: Variables aleatorias multidimensionales 1 Tema 4: Variables aleatorias multidimensionales En este tema: Distribución conjunta de probabilidad Probabilidad/densidad marginal Probabilidad/densidad condicionada Esperanza, varianza, desviación típica

Más detalles

ESTIMACIÓN Estas transparencias contienen material adaptado del curso de PATTERN RECOGNITION AND MACHINE LEARNING de Heikki Huttunen y del libro Duda.

ESTIMACIÓN Estas transparencias contienen material adaptado del curso de PATTERN RECOGNITION AND MACHINE LEARNING de Heikki Huttunen y del libro Duda. ESTIMACIÓN Estas transparencias contienen material adaptado del curso de PATTERN RECOGNITION AND MACHINE LEARNING de Heikki Huttunen y del libro Duda. APRENDIZAJE AUTOMÁTICO, ESTIMACIÓN Y DETECCIÓN Introducción

Más detalles

Métodos de Inteligencia Artificial

Métodos de Inteligencia Artificial Métodos de Inteligencia Artificial L. Enrique Sucar (INAOE) esucar@inaoep.mx ccc.inaoep.mx/esucar Tecnologías de Información UPAEP Agentes que Aprenden: Clasificador Bayesiano Clasificación Clasificador

Más detalles

Probabilidad y Procesos Aleatorios

Probabilidad y Procesos Aleatorios y Dr. Héctor E. Poveda P. hector.poveda@utp.ac.pa www.hpoveda7.com.pa @hpoveda7 Plan del curso Probabilidad Múltiples 1. Probabilidad Espacios probabilísticos Probabilidad condicional 2. 3. Múltiples 4.

Más detalles

Tópicos Selectos en Aprendizaje Maquinal. Algoritmos para Reconocimiento de Patrones

Tópicos Selectos en Aprendizaje Maquinal. Algoritmos para Reconocimiento de Patrones Tópicos Selectos en Aprendizaje Maquinal Guía de Trabajos Prácticos N 1 Algoritmos para Reconocimiento de Patrones 18 de septiembre de 2014 1. Objetivos Introducir conceptos básicos de aprendizaje automático.

Más detalles

Análisis multivariante II

Análisis multivariante II Análisis multivariante II Tema 1: Introducción Pedro Galeano Departamento de Estadística Universidad Carlos III de Madrid pedro.galeano@uc3m.es Curso 2016/2017 Grado en Estadística y Empresa Pedro Galeano

Más detalles

Material introductorio

Material introductorio Material introductorio Nombre del curso: Teoría Moderna de la Detección y Estimación Autores: Vanessa Gómez Verdejo Índice general. Variables aleatorias unidimensionales..................................

Más detalles

Introducción a la Teoría de la Información

Introducción a la Teoría de la Información Introducción a la Teoría de la Información Tasa de Entropía de un Proceso Estocástico. Facultad de Ingeniería, UdelaR (Facultad de Ingeniería, UdelaR) Teoría de la Información 1 / 13 Agenda 1 Procesos

Más detalles

Sesión 2: Teoría de Probabilidad

Sesión 2: Teoría de Probabilidad Modelos Gráficos Probabilistas L. Enrique Sucar INAOE Sesión 2: Teoría de Probabilidad Considero que la probabilidad representa el estado de la mente con respecto a una afirmación, evento u otra cosa para

Más detalles

Modelos Ocultos de Markov Continuos

Modelos Ocultos de Markov Continuos Modelos Ocultos de Markov Continuos José Antonio Camarena Ibarrola Modelos Ocultos de Markov Continuos p.1/15 Idea fundamental Los Modelos Ocultos de Markov Discretos trabajan con secuencias de observaciones

Más detalles

Resumen de Probabilidad

Resumen de Probabilidad Definiciones básicas * Probabilidad Resumen de Probabilidad Para calcular la probabilidad de un evento A: P (A) = N o decasosfavorables N o decasosposibles * Espacio muestral (Ω) Es el conjunto de TODOS

Más detalles

Pérdida Esperada. Pérdida Esperada (PE): Valor esperado de pérdida por riesgo crediticio en un horizonte de tiempo determinado.

Pérdida Esperada. Pérdida Esperada (PE): Valor esperado de pérdida por riesgo crediticio en un horizonte de tiempo determinado. Pérdida Esperada Uno de los objetivos de este estudio es construir una función de pérdidas para el portafolio de la cartera de préstamos que ofrece la entidad G&T Continental, basados en el comportamiento

Más detalles

Análisis de Datos. Conceptos básicos de probabilidad y teorema de Bayes. Profesor: Dr. Wilfrido Gómez Flores

Análisis de Datos. Conceptos básicos de probabilidad y teorema de Bayes. Profesor: Dr. Wilfrido Gómez Flores Análisis de Datos Conceptos básicos de probabilidad y teorema de Bayes Profesor: Dr. Wilfrido Gómez Flores 1 Introducción Los fenómenos del mundo real se pueden clasificar en dos tipos: Determínistico:

Más detalles

Cálculo de Probabilidades II Preguntas Tema 1

Cálculo de Probabilidades II Preguntas Tema 1 Cálculo de Probabilidades II Preguntas Tema 1 1. Suponga que un experimento consiste en lanzar un par de dados, Sea X El número máximo de los puntos obtenidos y Y Suma de los puntos obtenidos. Obtenga

Más detalles

Técnicas de agrupamiento (clustering)

Técnicas de agrupamiento (clustering) Técnicas de agrupamiento (clustering) Introducción al Reconocimiento de Patrones IIE - FING - UdelaR 2015 Duda, Hart, Stork. Pattern Classification, capítulo 10. Jain, Duin, Mao. Statistical Pattern Recognition:

Más detalles

Sesión 2: Teoría de Probabilidad

Sesión 2: Teoría de Probabilidad Modelos Gráficos Probabilistas L. Enrique Sucar INAOE Sesión 2: Teoría de Probabilidad las reglas mátemáticas de la probabilidad no son simplemente reglas para calcular frecuencias de variables aleatorias;

Más detalles

Departamento de Teoría de la Señal y Comunicaciones Universidad Carlos III de Madrid

Departamento de Teoría de la Señal y Comunicaciones Universidad Carlos III de Madrid COMUNICACIONES DIGITALES AVANZADAS 4 DISEÑO DE RECEPTORES DE COMUNICACIONES MARCELINO LÁZARO Departamento de Teoría de la Señal y Comunicaciones Universidad Carlos III de Madrid mlazaro@tscuc3mes Igualación

Más detalles

Unidad 3. Probabilidad. Javier Santibáñez (IIMAS, UNAM) Inferencia Estadística Semestre / 22

Unidad 3. Probabilidad. Javier Santibáñez (IIMAS, UNAM) Inferencia Estadística Semestre / 22 Unidad 3. Probabilidad Javier Santibáñez (IIMAS, UNAM) Inferencia Estadística Semestre 2018-1 1 / 22 Espacios de probabilidad El modelo matemático para estudiar la probabilidad se conoce como espacio de

Más detalles

Cálculo de probabilidad. Tema 3: Variables aleatorias continuas

Cálculo de probabilidad. Tema 3: Variables aleatorias continuas Cálculo de probabilidad Tema 3: Variables aleatorias continuas Guión Guión 3.1. La función de densidad de probabilidad Definición 3.1 Sea P una medida de probabilidad en un espacio muestral Ω. Se dice

Más detalles

SOLUCIÓN: Al realizar el histograma de frecuencias, se obtiene:

SOLUCIÓN: Al realizar el histograma de frecuencias, se obtiene: UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA DIVISIÓN DE CIENCIAS BÁSICAS COORDINACIÓN DE CIENCIAS APLICADAS DEPARTAMENTO DE PROBABILIDAD Y ESTADÍSTICA SOLUCIÓN SEGUNDO EXAMEN FINAL A

Más detalles

Ejercicio 1. Ejercicio 2

Ejercicio 1. Ejercicio 2 Guía de Ejercicios Ejercicio. Calcular los momentos de primer y segundo orden (media y varianza) de una variable aleatoria continua con distribución uniforme entre los límites a y b.. Sabiendo que la función

Más detalles

Facultad de Ingeniería Facultad de Tecnología Informática. Matemática Números reales Elementos de geometría analítica. Profesora: Silvia Mamone

Facultad de Ingeniería Facultad de Tecnología Informática. Matemática Números reales Elementos de geometría analítica. Profesora: Silvia Mamone Facultad de Ingeniería Facultad de Tecnología Informática Matemática Números reales Elementos de geometría analítica 0 03936 Profesora: Silvia Mamone UB Facultad de Ingeniería Facultad de Tecnología Informática

Más detalles

Departamento de Matemática Aplicada a las T.I.C. SOLUCIONES

Departamento de Matemática Aplicada a las T.I.C. SOLUCIONES Departamento de Matemática Aplicada a las T.I.C. ASIGNATURA: ESTADÍSTICA Y PROCESOS ESTOCÁSTICOS EAMEN FINAL Otoño 25-6 FECHA: 5 de Enero de 26 Fecha publicación notas: 22 de Enero de 26 Fecha revisión

Más detalles

Estadística aplicada al Periodismo

Estadística aplicada al Periodismo Estadística aplicada al Periodismo Temario de la asignatura Introducción. Análisis de datos univariantes. Análisis de datos bivariantes. Series temporales y números índice. Probabilidad y Modelos probabilísticos.

Más detalles

Teoría Moderna de Decisión y Estimación, Notas Introductorias: Cálculo de probabilidades y

Teoría Moderna de Decisión y Estimación, Notas Introductorias: Cálculo de probabilidades y Profesores de TMDE Teoría Moderna de Decisión y Estimación, Notas Introductorias: Cálculo de probabilidades y estadística Monograph 9 de septiembre de 23 Springer Índice general. Variables aleatorias

Más detalles

Teoría de Lenguajes. Gramáticas incontextuales

Teoría de Lenguajes. Gramáticas incontextuales Teoría de Lenguajes Gramáticas incontextuales José M. Sempere Departamento de Sistemas Informáticos y Computación Universidad Politécnica de Valencia Gramáticas incontextuales 1. Definiciones básicas.

Más detalles

Departamento de Matemática Aplicada a la I.T.T.

Departamento de Matemática Aplicada a la I.T.T. Departamento de Matemática Aplicada a la I.T.T. ASIGNATURA: ESTADÍSTICA Y PROCESOS ESTOCÁSTICOS EXAMEN FINAL Duración: horas Fecha: de Julio de Fecha publicación notas: -7- Fecha revisión examen: 8-7-

Más detalles

Introducción. Las gramáticas definen las reglas que definen a los lenguajes Las reglas pueden tener una diversa variedad de esquemas

Introducción. Las gramáticas definen las reglas que definen a los lenguajes Las reglas pueden tener una diversa variedad de esquemas Gramáticas Introducción Las gramáticas definen las reglas que definen a los lenguajes Las reglas pueden tener una diversa variedad de esquemas En algunos lenguajes, una sucesión de símbolos depende del

Más detalles

Aprendizaje no supervisado

Aprendizaje no supervisado OPENCOURSEWARE REDES DE NEURONAS ARTIFICIALES Inés M. Galván José M. Valls Tema 4 1 Introducción Aprendizaje competitvo Otros algoritmos de agrupación 2 1 Introducción Características principales de las

Más detalles

Tema 6: Introducción a la Inferencia Bayesiana

Tema 6: Introducción a la Inferencia Bayesiana Tema 6: Introducción a la Inferencia Bayesiana Conchi Ausín Departamento de Estadística Universidad Carlos III de Madrid concepcion.ausin@uc3m.es CESGA, Noviembre 2012 Contenidos 1. Elementos básicos de

Más detalles

3. Variables aleatorias

3. Variables aleatorias 3. Variables aleatorias Estadística Ingeniería Informática Curso 2009-2010 Estadística (Aurora Torrente) 3. Variables aleatorias Curso 2009-2010 1 / 33 Contenidos 1 Variables aleatorias y su distribución

Más detalles

TEMA 1 INTRODUCCIÓN AL MODELADO Y LA SIMULACIÓN

TEMA 1 INTRODUCCIÓN AL MODELADO Y LA SIMULACIÓN TEMA 1 INTRODUCCIÓN AL MODELADO Y LA SIMULACIÓN 1.1. Introducción 1.2. Conceptos fundamentales 1.3. Modelado y simulación de tiempo discreto 1.4. Modelado y simulación de eventos discretos 1.5. Pasos en

Más detalles

Matemáticas para la Empresa

Matemáticas para la Empresa Matemáticas para la Empresa 1 o L. A. D. E. Curso 2008/09 Relación 1. Espacios Vectoriales 1. a) En IR 2 se consideran las operaciones habituales: (x, y) + (x, y ) = (x + x, y + y ) λ(x, y) = (λx, λy)

Más detalles

El Algoritmo E-M. José Antonio Camarena Ibarrola

El Algoritmo E-M. José Antonio Camarena Ibarrola El Algoritmo E-M José Antonio Camarena Ibarrola Introducción Método para encontrar una estimación de máima verosimilitud para un parámetro ѳ de una distribución Ejemplo simple 24 Si tiene las temperaturas

Más detalles

TEMA V. Espacios vectoriales

TEMA V. Espacios vectoriales TEMA V. Espacios vectoriales 1 1. Demostrar que cada uno de los siguientes conjuntos tiene estructura de espacio vectorial sobre el cuerpo de los reales: a El conjunto (R 2, +,, R. b El conjunto (R 3,

Más detalles

Milton Orlando Sarria Paja

Milton Orlando Sarria Paja Universidad Nacional de Colombia Sede Manizales Maestría en Ingeniería - Automatización Industrial Facultad de Ingeniería y Arquitectura Departamento de Ingeniería Eléctrica, Electrónica y Computación

Más detalles

Repaso de Probabilidad y Estadística

Repaso de Probabilidad y Estadística Repaso de Probabilidad y Estadística Área de Estadística e Investigación Operativa Licesio J. Rodríguez-Aragón Febrero 2011 Probabilidad 2 Definición.............................................................

Más detalles

Econometría 1. Karoll GOMEZ Segundo semestre 2017

Econometría 1. Karoll GOMEZ   Segundo semestre 2017 Econometría 1 Karoll GOMEZ kgomezp@unal.edu.co http://karollgomez.wordpress.com Segundo semestre 2017 II. El modelo de regresión lineal Esperanza condicional I Ejemplo: La distribución de los salarios

Más detalles

APRENDIZAJE PROBABILÍSTICO NAIVE BAYES

APRENDIZAJE PROBABILÍSTICO NAIVE BAYES 1 APRENDIZAJE PROBABILÍSTICO NAIVE BAYES Bases de Datos Masivas 9 de Noviembre de 2016 2 Razonamiento Probabilístico Es una herramienta de aprendizaje estadístico. Se trata de razonar en un contexto incierto;

Más detalles

Distribución Gaussiana Multivariable

Distribución Gaussiana Multivariable Distribución Gaussiana Multivariable Carlos Belaustegui Goitia, Juan Augusto Maya 8 de Agosto de Resumen En este documento presentamos la deducción de la expresión de la función densidad de probabilidad

Más detalles

UNIVERSIDAD AUTÓNOMA DE MADRID PRUEBA DE ACCESO A LA UNIVERSIDAD PARA MAYORES DE 25 AÑOS Convocatoria 2017

UNIVERSIDAD AUTÓNOMA DE MADRID PRUEBA DE ACCESO A LA UNIVERSIDAD PARA MAYORES DE 25 AÑOS Convocatoria 2017 INSTRUCCIONES GENERALES Y VALORACIÓN INSTRUCCIONES: Escoja entre una de las dos opciones A o B. Lea con atención y detenimiento los enunciados de las cuestiones y responda de manera razonada a los puntos

Más detalles

(x) = 1 si P (Y = 1 X = x) P (Y = 0 X = x) P (Y = 0 X = x) > P (Y = 1 X = x) P (X = x Y = 0)P (Y = 0) > P (X = x Y = 1)P (Y = 1)

(x) = 1 si P (Y = 1 X = x) P (Y = 0 X = x) P (Y = 0 X = x) > P (Y = 1 X = x) P (X = x Y = 0)P (Y = 0) > P (X = x Y = 1)P (Y = 1) 1 1. Conceptos generales de clasificación 2. Clasificador k-vecino más cercano 3. Clasificador Bayesiano óptimo 4. Análisis discriminante lineal (LDA) 5. Clasificadores lineales y el Modelo perceptrón

Más detalles

ENUNCIADO y SOLUCIONES. Problema 1

ENUNCIADO y SOLUCIONES. Problema 1 Ingeniería Industrial Métodos estadísticos de la Ingeniería Examen Junio 007. ENUNCIADO y SOLUCIONES Problema La memoria RAM para un ordenador se puede recibir de dos fabricantes A y B con igual probabilidad.

Más detalles

GUÍA DOCENTE: Sistemas Basados en Conocimiento y Minería de Datos (SBC)

GUÍA DOCENTE: Sistemas Basados en Conocimiento y Minería de Datos (SBC) GUÍA DOCENTE: Sistemas Basados en Conocimiento y Minería de Datos (SBC) Curso Académico: 2015-2016 Programa: Centro: Universidad: Máster Universitario en Ingeniería Informática Escuela Politécnica Superior

Más detalles

ANÁLISIS DE DATOS. Jesús García Herrero

ANÁLISIS DE DATOS. Jesús García Herrero ANÁLISIS DE DATOS Jesús García Herrero ANALISIS DE DATOS EJERCICIOS Una empresa de seguros de automóviles quiere utilizar los datos sobre sus clientes para obtener reglas útiles que permita clasificar

Más detalles

Matemáticas II. Prácticas: Matrices y Determinantes ; C = 1 3 5

Matemáticas II. Prácticas: Matrices y Determinantes ; C = 1 3 5 Matemáticas II Prácticas: Matrices y Determinantes. Sean las matrices cuadradas siguientes: 4 5 6 B = 9 8 7 6 5 4 C = 5 7 9 0 7 8 9 Se pide calcular: a A B + C. b A AB + AC. c A B AB + ACB.. Sean las matrices:

Más detalles

Asignaturas Temas Asignaturas Temas

Asignaturas Temas Asignaturas Temas 1 Datos de la Asignatura Nombre de la asignatura: Carrera: Clave de la asignatura: Reconocimiento de Patrones Ingeniería en Sistemas CIE-0701 Horas teoría / práctica / Créditos: 2 2 6 2 Historia del Programa

Más detalles

Teoría de Lenguajes. Propiedades y caracterizaciones de los lenguajes incontextuales

Teoría de Lenguajes. Propiedades y caracterizaciones de los lenguajes incontextuales Teoría de Lenguajes Propiedades y caracterizaciones de los lenguajes incontextuales José M. empere Departamento de istemas Informáticos y Computación Universidad Politécnica de Valencia Propiedades y caracterizaciones

Más detalles

PROGRAMA DE CURSO. Código Nombre MA3403 Probabilidades y Estadística Nombre en Inglés Probability and Statistics SCT

PROGRAMA DE CURSO. Código Nombre MA3403 Probabilidades y Estadística Nombre en Inglés Probability and Statistics SCT PROGRAMA DE CURSO Código Nombre MA3403 Probabilidades y Estadística Nombre en Inglés Probability and Statistics SCT Unidades Horas de Horas Docencia Horas de Trabajo Docentes Cátedra Auxiliar Personal

Más detalles

MATEMÁTICAS II Examen del 28/06/2007 Solución Importante

MATEMÁTICAS II Examen del 28/06/2007 Solución Importante MATEMÁTICAS II Eamen del 8/06/007 Solución Importante Las calificaciones se harán públicas en la página web de la asignatura y en el tablón de anuncios del Dpto. de Métodos Cuantitativos en Economía y

Más detalles

Examen de Matemáticas Aplicadas a las CC. Sociales II (Septiembre 2010) Selectividad-Opción A Tiempo: 90 minutos

Examen de Matemáticas Aplicadas a las CC. Sociales II (Septiembre 2010) Selectividad-Opción A Tiempo: 90 minutos Examen de Matemáticas Aplicadas a las CC. Sociales II (Septiembre 200) Selectividad-Opción A Tiempo: 90 minutos Problema (3 puntos) Se considera el siguiente sistema lineal de ecuaciones dependiente de

Más detalles