Universidad Nacional de Ingeniería



Documentos relacionados
CAPITULO CUARTO. ANÁLISIS DE LABORATORIO E INTERPRETACIÓN DE RESULTADOS. En este capítulo se hace referencia a los resultados obtenidos

Intemperismo y erosión. Geología Física

Universidad Nacional de Ingeniería Fic Cismid

C.B.R. (California Bearing Ratio)

ANEXO Nº 1 SISTEMAS DE CLASIFICACION DE LOS SUELOS

SUPERESTRUCTURA. Prof. Luis F. Almonte L.

CLASIFICACIÓN DE SUELOS Y AGREGADOS PARA LA CONSTRUCCIÓN DE VÍAS.

ENSAYOS DE PERMEABILIDAD USANDO EL PERMEAMETRO DE PARED FLEXIBLE (ASTM D )

(a) disminuir futuros asentamientos (b) aumentar la resistencia al corte (c) disminuir la permeabilidad

5. CLASIFICACIÓN DE SUELOS. Resolver un problema de geotecnia supone conocer y determinar las propiedades del suelo; por ejemplo:

0 a 2 Muy blanda 2 a 4 Blanda 4 a 8 Medianamente compacta 8 a 15 Compacta 15 a 30 Muy compacta

7.2. Características de los suelos

Patricia Vila. Noviembre ( Equipo compactación 8 Mulas de Fuerza.

TRABAJO PRÁCTICO DE LABORATORIO N 4a ENSAYO DE COMPACTACIÓN PROCTOR

Mecánica de Suelos. 2 do Semestre Preparado por: Daniel Farias Brizuela CLASIFICACIÓN DE SUELOS

PROPIEDADES INDICES CARACTERISTICAS O FASES DEL SUELO PROPIEDADES INDICES CARACTERISTICAS O FASES DEL SUELO

TALLER BÁSICO DE MECÁNICA DE SUELOS Límite Líquido Límite Plástico

Métodos De la Compactación Del Campo para los Suelos

1. CRITERIOS A UTILIZAR EN LA DESCRIPCIÓN Y CLASIFICACIÓN DE LOS SUELOS

Para base y subbase se harán los ensayos definidos en la especificación correspondiente.

CAPITULO IV DESCRIPCIÓN Y CLASIFICACIÓN DE SUELOS

4. CAPA ROMPEDORA. Para evitar lo posible la ascención capilar del terreno natural a las terracerías por

2.1. RELACIONES HUMEDAD-DENSIDAD (COMPACTACION).

LÍMITE PLÁSTICO E ÍNDICE DE PLASTICIDAD DE SUELOS I.N.V. E

DENSIDAD, DENSIDAD RELATIVA (GRAVEDAD ESPECÍFICA) Y ABSORCIÓN DEL AGREGADO GRUESO.

UNIVERSIDAD DE SUCRE FACULTAD DE INGENIERIA DEPARTAMENTO DE INGENIERIA CIVIL ASIGNATURA: LAB. GEOTACNIA I INFORME

SECCION 304 SUB-BASE DE SUELO MEJORADO CON CEMENTO AL 2% DE CEMENTO

INFORME DE ESTUDIO GEOTÉCNICO

1.1. DETERMINACIÓN DEL CONTENIDO DE HUMEDAD.

Propiedades básicas de suelos

7. CARACTERÍSTICAS GEOTÉCNICAS DE LOS DIQUES DEL ATRATO.

OBRAS DE TIERRA. JAIME SUAREZ DIAZ UNIVERSIDAD INDUSTRIAL DE SANTANDER Bucaramanga - Colombia

A continuación se presenta los resultados obtenidos en las pruebas realizadas en

Práctica 7 Arenas para moldeo

Clasificación de suelos. (84.07) Mecánica de Suelos y Geología FIUBA

7.2. Características de los suelos

INFORME TECNICO ESTUDIO GEOTECNICO

El diseño de la mezcla (dosificación) es un proceso que interrelaciona:

DETERMINACIÓN DE LA HUMEDAD EN SUELOS MEDIANTE UN PROBADOR CON CARBURO DE CALCIO I.N.V. E

XIV CONGRESO NACIONAL DE INGENIERIA CIVIL DISEÑO DE MEZCLAS DE CONCRETO COMPACTADO CON RODILLO

MINISTERIO DE TRANSPORTE Y OBRAS PÚBLICAS DIRECCIÓN NACIONAL DE HIDROGRAFÍA NUEVA PALMIRA DEPTO. DE COLONIA

LABORATORIO TECNOLOGIA DEL HORMIGON THA 2201 GUIAS DE LABORATORIO CLASE N 1

CMT. CARACTERÍSTICAS DE LOS MATERIALES

Estabilización e Impermeabilización de todo tipo de suelo en el Mundo

TEMA 4: CAPAS GRANULARES

Los negros de humo para cementos, hormigones y morteros.

DENSIDAD, DENSIDAD RELATIVA (GRAVEDAD ESPECÍFICA) Y ABSORCIÓN DEL AGREGADO FINO.

1. EL PAVIMENTO DE CONCRETO

SUELOS IDENTIFICACIÓN SENCILLA IDENTIFICACION SENCILLA IDENTIFICACION SENCILLA

NORMA TÉCNICA FONDONORMA SUELOS. ENSAYO DE COMPACTACIÓN PROCTOR MODIFICADO

INVESTIGACIONES GEOTÉCNICAS

Recomendaciones generales del cemento

Proctor vs. RAMCODES

Manual de Construcción y de Control de Calidad

El mapa de formaciones superficiales representa los materiales que se encuentran sobre la superficie del territorio y no forman roca consolidada.

Hernán Verdugo Fabiani Profesor de Matemática y Física

Cálculo de asientos a partir del ensayo de penetración dinámica, o estática

Normalización de soluciones de NaOH 0,1N y HCl 0,1N.

2.3 EQUIPOS PARA MEDIR LA HUMEDAD DEL SUELO

Procesos de fundición

Para obtener la distribución de tamaños, se emplean tamices normalizados y numerados, dispuestos en orden decreciente.

DETERMINACIÓN DE INDICES FÍSICOS PARA LA CARACTERIZACIÓN DE ARCILLAS GRISES DEL DEPARTAMENTO DE OBERÁ - MISIONES

ESTUDIO DE PREDISEÑO DE FUNDACIONES CONTENIDO

Curso Laboratorista Vial Clase C. Rodolfo Jeria H. Laboratorio Nacional de Vialidad

: Proyecto Acceso Antepuerto EPA. Parque Industrial Puerta de América, km 1, Ruta 11-Ch, Comuna de Arica. 454

T.P. N 7 - VISITA A TALLER DE CERÁMICA

TALLER BÁSICO DE MECÁNICA DE SUELOS Próctor Modificado Próctor Estándar

38. UNIVERSIDAD DE LOS ANDES - CENTRO DE INVESTIGACIONES EN MATERIALES Y OBRAS CIVILES "CIMOC"

MÉTODO DE ENSAYO PARA DETERMINAR EL CONTENIDO DE HUMEDAD DE UN SUELO

INFORME TECNICO RETRACCION PLASTICA REDTECNICA GRUPO POLPAICO

GUIA DE EJERCICIOS DE OPERACIONES UNITARIAS II SECADO

Cemento. Agregados. Concreto premezclado. Agregados. Catálogo de Productos. Holcim (Costa Rica) S.A.

3.1. ENSAYO COMPRESION NO CONFINADA (CNC).

RESISTENCIA A LA FLEXIÓN DE MORTEROS DE CEMENTO HIDRÁULICO MTC E

CAPÍTULO 12 ESFUERZO CORTANTE EN SUELOS

Rendimiento de Tractores

NOMBRE FECHA ID GRADO 4 CIENCIAS

Práctica 1A Ensayo de Granulometría Prácticas de Laboratorio

DIEGO ROBLES BOLAÑOS INGENIERO CIVIL PROYECTO SALON COMUNAL VEREDA LA OVEJERA MUNICIPIO DE EL TAMBO DEPARTAMENTO DE NARIÑO ESTUDIO DE SUELOS

ESTUDIO GEOTECNICO PROYECTO : DIQUE DE COLAS SAN ANTONIO UBICACIÓN : PROVINCIA TOMAS FRIAS DEPARTAMENTO POTOSI

Avery Dennison Tintas Serie Años 1 Parte Solvente* Manual de instrucciones #8.40 Revisado: Mayo 2011

CONTENIDO DE AIRE EN MORTEROS DE CEMENTO MTC E

Muestreo de biocombustibles sólidos

Laboratorio de: MATERIALES DE CONSTRUCCION NORMAS:

1.2 Caso práctico: Aplicación de áridos en hormigones convencionales

SUELOS Y FUNDACIONES

Ensayos de hormigón endurecido: determinación de la resistencia a compresión de probetas.

CONFERENCIA SOBRE MUROS DE CONTENCIÓN. ANTONIO BLANCO BLASCO

DETERMINACIÓN EN LABORATORIO DEL CONTENIDO DE AGUA (HUMEDAD) DEL SUELO, ROCA Y MEZCLAS DE SUELO -AGREGADO I.N.V. E

INSTITUTO TECNOLÓGICO DE COSTA RICA ESCUELA DE INGENIERIA EN CONSTRUCCION. Laboratorio de suelos

UNIDAD 2. Contenido de Humedad del Agua en el Suelo

CONTROL DE CALIDAD DE MEZCLAS BITUMINOSAS MEDIANTE EL ENSAYO DE RESISTENCIA A TRACCIÓN INDIRECTA DE BARCELONA

CAPITULO 4 Pruebas y Resultados de los Especimenes Realizados.

INGENIERÍA EN GEOTECNIA Y CONSTRUCCIÓN S.A.C

Aspectos del Suelo en la Producción de Hortalizas

RESISTENCIA A LA COMPRESION DE CILINDROS PREPARADOS DE SUELO CEMENTO I.N.V. E-809

IRAW EATHERDe F GRADO DEL PELIGRO DEL FUEGO ENCIENDA EL ÍNDICE DEL TIEMPO

Transcripción:

Universidad Nacional de Ingeniería FIC CISMID Ing. Luis Chang Chang Laboratorio Geotécnico Centro Peruano Japonés de Investigaciones Sísmicas y Mitigación de Desastres (CISMID)

Indice 1. Definiciones 2. Proceso de Compactación 3. Procedimientos de Compactación 4. Esfuerzos de Compactación 5. Ensayo de Compactación y el Equipo 6. La Energía de Compactación 7. Material para la Compactación 8. Método de Compactación 9. Como Dibujar la Parábola de OCH 10. Como controlar la Compactación 11. Tipos de Curvas de Compactación 12. Método de un Punto para obtener γ d(máx) 13. Comparación Entre los 3 Métodos 14. Valores Aproximados de OCH 15. Efectos de la Compactación del Suelo 16. Aplicaciones de la Compactación 17. Equipo de Compactación para el Campo

1. Definiciones Compactación proceso de empaquetamiento de las partículas de suelo mas cercanamente posible por medio mecánico aumentando la densidad seca. OCH humedad del suelo que produce una máxima densidad seca. Máxima Densidad Seca usando una compactación al OCH. Compactación Relativa porcentaje entre la densidad seca del suelo y su máxima densidad seca. Densidad seca Contenido de humedad relación entre densidad seca y el contenido de humedad bajo un esfuerzo de compactación.

Porcentaje de vacíos de aire volumen de vacíos de aire expresado como un porcentaje del volumen total del suelo. Línea de vacíos de aire la línea muestra la densidad seca contenido de humedad relación para un suelo conteniendo un porcentaje constante de vacíos de aire. Línea de saturación Cero (línea Cero de vacíos de aire) la línea muestra la Densidad seca Contenido de humedad para un suelo de cero de vacíos de aire. 2. Proceso de Compactación Las partículas sólidas son empaquetadas lo mas cercanamente por medios mecánicos aumentando la densidad seca. Se reduce la relación de vacíos. Poca o no reducción del contenido de agua. Los vacíos no pueden eliminarse por compactación, por control de ellos se reducen al mínimo.

Fig 1. Representación de la compactación de los granos de suelo.

- A bajo contenido de agua el grano de suelo es rodeado por una delgada película de agua. - El agua adicional permite juntar los granos mas fácilmente. - El aire es desplazado y la densidad seca es incrementado. - La adición de agua permite expulsar el aire durante la compactación. - Los granos de suelo se muestran lo mas cercanos posibles hasta cierto punto y de ahí aumenta la cohesión.. - Cuando la cantidad de agua excede lo requerido, el exceso de agua empuja los granos de suelo hacia fuera y la densidad adquirida disminuye. - A mayor contenido de humedad, el aire es desplazado por la compactación y la densidad continúa disminuyendo.

Fig. 2. Principio de Compactación.

Fig. 3. Representación del suelo con la relación de vacíos.

3. Procedimiento de Compactación - Ver que el molde, la extensión collar y la base estén limpia, seca y ensamblada al molde. - La muestra sería secada al aire para tamizarla fácilmente o secada al horno a menos de 50 o C. - Si la cantidad de muestra la es correcta, dividirla en tantos montones como capas necesarias para compactarlas. - La altura de una capa es de apróx 4.5 cm., si son 3 capas sería 13 cm. - Colocar el molde sobre una base sólida como el piso de concreto. - Escarificar y alisar ligeramente la superficie del suelo compactado con una espátula o cuchillo para el buen contacto entre las capas. - Siempre limpiar el martillo. - No disturbar el suelo compactado en el molde. - Si resulta cavidades de extraer pequeñas gravillas, la superficie sería rellenado con material fino. - Limpiar la superficie del molde antes de pesarlo. - La muestra requerida para el contenido de humedad depende del tamaño máximo de los granos.

Fig. 4. Procedimiento de compactación.

Fig. 5. Relaciones entre la Densidad Seca y la Humedad de un suelo sujeto a un esfuerzo de compactación.

Fig. 6. Curvas Densidad Seca Humedad para varios esfuerzos de compactación.

Fig. 7. Condición mas económica de compactación.

4. Esfuerzos de Compactación La energía aplicada durante la compactación con un martillo que cae de una altura es la siguiente: Ec = (Wr. H. Nb. Nl) / V cm. Kg / cm3 Los ensayos tanto Proctor Estándar como Proctor Modificado deben cumplir con una determinada energía de compactación correspondiente a cada una de ellas. Donde: Wr H Nb Nl V masa del martillo kg altura de caída del martillo cm número de golpes por capas número de capas volumen del molde cm3

5. Ensayo de Compactación y el Equipo Tabla 1. Especificaciones de los métodos Designación ASTM Designación AASHTO Energía Ft-lbf/ft3 Diámetro y volumen del molde Peso del martillo y altura de caída Número de capas y golpes por capa Límites del tamaño superior de partículas PS D-698 * ( A ) T 99 (A) 12375 4 in. 0.033 5.5 lb 12 in. 3 25 No. 4 ( B ) (B) 12,375 4 in. 0.033 5.5 lb 12 in. 3 25 No. 4 ( C ) (C) 12,320 6 in. 0.075 5.5 lb 12 in. 3 56 ¾ PM D-1557 + ( A ) T 180 (A) 56,250 4 in. 0.033 10 lb 18 in. 5 25 No. 4 ( B ) ( C ) (B) (C) 56,250 56,000 4 in. 0.033 6 in. 0.075 10 lb 18 in. 10 lb 18 in. 5 25 5 56 No. 4 ¾ * Ensayo de Compactación Proctor Estándar + Ensayo de Compactación Proctor Modificado

Fig. 8. Equipo de Compactación Proctor Estándar.

Fig. 9. Equipo de Compactación Proctor Modificado.

Fig. 10. Equipo Estándar de Compactación Mecánico (ELE International / Soil Product Division Lake Bluff,Ill).

6. La Energía de Compactación ASTM D 698 Proctor Estándar Wr masa del martillo = 5.5 lb H altura de caída del martillo = 12 in = 1 ft Nb número de golpes por capas = 25 E = 12,375 Lb.ft/ft3. Nl número de capas = 3 V volumen del molde cm3 = 1/30 ft3 Suelo a Utilizar: Método A Método B Método C Porción que pasa la malla No. 4. Porción que pasa la malla 3/8. Porción que pasa la malla ¾. Se usa si 20%o menos por peso Se usa si el suelo retenido en la Se usa si mas de 20% por peso de material es retenido en la malla No. 4 es mas del 20%, y de material es retenido en la malla malla No. 4. 20% o menos por peso es de 3/8, y menos de 30% por peso retenido en la malla 3/8. es retenido en la malla de ¾

ASTM D 1557 Proctor Modificado Wr masa del martillo = 10 lb H altura de caída del martillo = 18 in = 1.5 ft Nb número de golpes por capas = 25 E = 56,250 Lb.ft/ft3. Nl número de capas = 5 V volumen del molde cm3 = 1/30 ft3 Suelo a Utilizar: Método A Método B Método C Porción que pasa la malla No. 4. Porción que pasa la malla 3/8. Porción que pasa la malla ¾. Se usa si 20%o menos por peso Se usa si el suelo retenido en la Se usa si mas de 20% por peso de material es retenido en la malla No. 4 es más del 20%, y de material es retenido en la malla malla No. 4. 20% o menos por peso es de 3/8, y menos de 30% por peso retenido en la malla 3/8. es retenido en la malla de ¾.

7. Material para la Compactación El material para la compactación puede ser de grano grueso como fino de la clasificación SUCS: GP, GW, GM, GC, SP, SW, SM, SC, CL, CH, ML, MH, OH y las combinaciones de estos suelos. Los mas recomendables son los suelos gruesos mezclados con suelos finos de baja plasticidad y los no recomendables son los suelos orgánicos y turbas. 8. Métodos de Compactación Los métodos de compactación a usar son los siguientes: - Ensayo de Compactación Proctor Estándar ASTM D 698. - Ensayo de Compactación Proctor Modificado ASTM D 1557.

9. Como Dibujar la Parábola de OCH Fig. 11. Determinación del valor óptimo por medio de la parábola.

- Dibujar la línea horizontal que pasa por A y la perpendicular que pasa por B y C. - Dibujar la línea DE que es // a la línea AB. E es perpendicular a la línea que pasa por C. - H es el punto de intersección de la línea FG y la línea base. La perpendicular Bisector de la línea AH es el eje de la parábola. - J es el punto de intersección de la línea AB y el eje. Dibujar la línea horizontal JK. K es perpendicular a la línea que pasa por B. - Dibujar la línea KH. El punto mas alto O de la parábola, es el punto de intersección del eje y la línea KH. - Las coordenadas de O es la Máxima Densidad Seca γ d y el Óptimo Contenido de Humedad W opt.

10. Como Controlar la Compactación La forma mas eficaz de controlar la compactación es el hacer el uso de otros ensayos como: - Método Cono de Arena (ASTM D 1556). - Método del Volúmetro o del Globo de Hule (ASTM D 2167). - Método Nuclear (ASTM D 2922 y D 3017).

11. Tipos de Curvas de Compactación - La forma típica de curvas de compactación para 5 tipos de suelos se muestran en la Fig. 12. Para fácil comparación se ha referido para una misma gravedad específica y una común línea cero de vacíos. - En general, los suelos arcillosos, las arenas bien gradadas y los suelos limosos tienen un pico definido en la curva de compactación. Los suelos uniformemente gradado, consistente de un rango limitado de tamaños de partículas, la curva es mas aplanada y la condición óptima no es fácil de definir. - El doble pico es frecuentemente obtenido de arenas finas uniformemente gradadas. Para estos materiales el contenido de humedad para una óptima compactación es menos crítica que para aquellos suelos que poseen una curva de compactación mas empinada.

Fig. 12. Curvas de compactación para algunos suelos típicos.

Fig. 13. Curvas típicas de compactación para cinco suelos diferentes (ASTM D 698).

Fig. 14. Curvas de compactación Proctor Estándar y Modificada para un limo arcilloso (método A).

Suelo No. Descripción W l (%) I p (%) 1 Arena margosa bien gradada 16 NP 2 Greda arenosa bien gradada 16 NP 3 Greda arenosa medio gradada 22 4 4 Arcilla limosa arenosa pobre 28 9 5 Arcilla limosa pobre 36 15 6 Loess limoso 26 2 7 Arcilla dura 67 40 8 Arena pobremente gradada - NP Fig. 15. Curvas de compactación para varios tipos de suelos.

Fig. 16. Curva de Ensayo de Compactación Proctor Estándar y Modificado para un suelo arcilloso glacial cerca de Peoria, Illinois (USA).

Fig. 17. Curva de compactación para arena, limo y arcilla.

12. Método de un Punto para Obtener γ d(máx) Lee y Suedkamp (1972), efectuaron 700 pruebas de compactación en 35 muestras de suelo en porciones de suelo que pasaron la malla No. 4 (método A), los agruparon en 4 tipos de curvas dependiendo de las propiedades del suelo. Límite líquido del suelo 30 a 70 Menor que 30 Mayor que 70 Tipo de curva de compactación esperada Tipo I Tipo II y III Tipo III y IV Conociendo el valor de γ y el contenido de humedad w se entra a la Fig. 19, se aproxima entre que curvas está y luego se va a la Tabla 2.

Fig. 18. Varios tipos de curvas de compactación.

Fig. 19. Curva de compactación Ohio (Lee y Suedkamp, 1972). Tabla 2. Peso específico seco máximo y contenido de agua óptimo para las curvas de compactación ( Johnson y Salberg).

13. Comparación entre los 3 Métodos Tabla 3. Valores de los 3 métodos. Muestras Método AASHO Standar T-99 C (1) Método AASHO Estándar T-80C (2) Método Estático de California (3) Diferencias en % Entre (1) y (2) Entre (3) y 2) A 1.780 1.906 1.909 7.2 -- B 1.913 2.065 2.045 8.0 1.0 C 1.772 1.969 2.125 11.1 7.8 D 1.735 1.962 2.086 13.2 6.3 E 1.6192 1.881 2.002 16.2 6.5 F 1.784 1.960 2.072 9.8 5.7 -Las densidades obtenidas por el método AASHO Standard T-99 es 5 % menor que las alcanzadas por los otros dos métodos. - Por el Método Estático (California) y el Método AASHO Standard T-180 C dan valores similares. - Sin embargo, se afirma que no existe una relación definitiva entre estos métodos, pues muchas veces las diferencias entre las densidades obtenidas entre el Standard y los otros es mayor del 5 %. -Cuando se emplea el Método Estático de California se obtiene una densidad diferente y casi siempre mayor, a la alcanzada mediante el AASHO Standard T-180 C.

14. Valores Aproximados de OCH. Tabla 4. Rango aproximado de OCH vs. Tipo de suelo Tipo de suelo Valor probable ( % ) OCH Ensayo Proctor Modificado Arena Mezcla de arena y limo Limo Arcilla 6-10 8-12 11-15 13-21

15. Efectos de la compactación del suelo Tabla 5. Mejoramiento del suelo Mejoramiento Alta resistencia al cortante. Baja compresibilidad. Alto valor de CBR. Baja permeabilidad Bajo susceptibilidad al congelamiento. Efectos sobre la masa de relleno Mayor estabilidad Menor asentamiento bajo carga estática. Menor deformación bajo carga repetida. Bajo tendencia a absorber agua. Menor probabilidad al congelamiento.

16. Aplicaciones de la Compactación Los suelos pueden ser usados como relleno para muchos propósitos: 1. Rellenar una excavación o vacíos adyacente a una estructura. 2. Servir de apoyo a una estructura. 3. Como sub - base para carreteras y ferrocarriles o aeropuertos. 4. Estructuras como terraplenes o presas de tierra. La compactación aumenta la densidad del suelo, mejora las propiedades ingenieriles del suelo. Lo mas importante es el mejoramiento y los efectos resultantes sobre la masa de relleno.

17. Equipo de Compactación para el Campo - Compactación vibratorio (tipo plancha) - Rodillo liso vibratorio autopropulsado 7 23 ton. - Rodillo liso vibratorio de tiro 70 210 HP - Rodillo neumático autopropulsado 60 135 HP - Rodillo pata de cabra vibratorio autopropulsado 84 180 HP - Rodillo pata de cabra vibratorio de tiro 8 22 ton. - Rodillo tandem estático autopropulsado 3 15 ton. - Tractor de tiro 27 158 HP. - Rodillo de tres ruedas autopropulsado 58 HP. 3 15 ton.

Fig. 20. Equipo de Compactación Manual.

Fig. 21. Diversos Equipos de Compactación.

Fig. 22. Rodillo liso, vibratorio, neumático y pata de cabra.

Fig. 23. Rodillo liso en plena acción.

Fig. 24. Rodillo Pata de Cabra en Pasto Grande (Moquegua).

Fig. 25. Rodillo Pata de Cabra con Cuchara.

Fig. 26. Huellas de compactación de un rodillo Pata de Cabra.

Bibliografía - Bowles, Joseph E. (1981), Manual de Laboratorio de Suelos en Ingeniería Civil. McGraw-Hill Book Company - Bowles, Joseph E. (1984), Physical and Geotechnical Properties of Soils. McGraw-Hill Book Company. - Das, Braja M. (2001), Fundamentos de Ingeniería Geotécnica, Thomson Learning. - Das, Braja M. (2001), Principios de Ingeniería de Cimentaciones, International Thomson Editores. - Head, K. H. (1980), Manual of Soil Laboratory Testing, Volume 1, 2. Pentech Press London: Plymouth. - JICA TIATC (1988), Irrigation and Drainage Course, Soil Test - Lambe, T. W. (1951), Soil Testing for Engineers, John Wiley and Son, New York. - McCarthy, David F. (1988), Essentials of soil Mechanics and Foundations: Basic Geotechnics, Prentice Hall, Englewood Cliffs, New Jersey 07632. - Universidad Nacional de Ingeniería FIC ( ), Laboratorio de Mecánica de Suelos. - Valle Rodas, Raúl (1982), Carreteras, Calles y Aeropistas, El Ateneo. - Vivar Romero, Germán (1990-1991), Diseño y Construcción de Pavimentos, Ediciones CIP.