Etapas de la Traducción. la traducción consta de tres partes

Documentos relacionados
Traducción en Procariotas. en los procariotas la traducción se produce junto con la transcripción

Transcripción y Traducción en Procariontes vs. Eucariontes

Trascripción. Traducción

Ácidos nucleicos. 3ª y 4ª Parte: Transcripción y traducción I & II. Tema 11 de Biología NS Diploma BI Curso Ácidos nucleicos 1/33

Bases moleculares de la herencia. Código genético y Traducción.

DOGMA CENTRAL DE LA BIOLOGIA

Tema 19. Traducción II. Activación de los aminoácidos y fases de la traducción

Clave Genética y Síntesis de Proteínas

ADN. Estructura primaria del ADN. Cadena lineal de nucleótidos que se unen por enlace fosfodiéster en sentido carbono 5 3 Nucleótidos

El flujo de la información genética: TRADUCCIÓN

ADN. Estructura primaria del ADN. Cadena lineal de nucleótidos que se unen por enlace fosfodiéster en sentido carbono 5 3 Nucleótidos

FISIOLOGÍA GENERAL Jesús Merino Pérez y María José Noriega Borge

ADN, ARN Y SÍNTESIS DE PROTEÍNAS

Orígenes de replicación en los cromosomas eucariotas

El código genético es universal y degenerado

Código Genético y Traducción

A qué da lugar el mensaje del ADN?

BIOSINTESIS de PROTEINA = TRADUCCION

Ácidos nucléicos. Los ácidos nucleicos fueron descubiertos por Freidrich Miescher en Mirel Nervenis

La síntesis de proteínas

Lectura para aprender más

BIOQUÍMICA GENERAL. Practicar con ética, y responsabilidad el análisis de las propiedades, procesos y funciones del ADN y Código genético.

El ADN portador de la información genética.

RECOMENDACIONES DE SELECTIVIDAD

Capítulo 12 REGULACIÓN DE LA EXPRESIÓN GÉNICA. Factores de Transcripción. Metilación. Procesamiento del ARN. Post-traduccional

Genética molecular I SÍNTESIS DE ARN (TRANSCRIPCIÓN)

3 Replicación, trascripción y traducción del material genético.

Tema 15. EXPRESIÓN DE LA INFORMACIÓN GENÉTICA

ARN mensajero. Síntesis y procesamiento. Corte y empalme. Capping. Poliadenilación. Estabilidad. Genética 1 er Curso. Facultad de Medicina TEMA 0-3

Clase 10. del DNA a las proteínas. Traducción

Alianza para el Aprendizaje de Ciencias y Matemáticas

EL A.D.N. Existen 2 tipos de Acidos Nucleicos : ADN (Acido Desoxirribonucleico) y ARN (Acido Ribonucleico) Diferencias entre ADN y ARN

Tema 22: DEL ADN A LAS PROTEÍNAS (EXPRESIÓN GÉNICA)

Tema 18. Traducción I. Código genético y RNA de transferencia

Dogma central de la Biología Molecular. Replicación ADN. Transcripción ARN. Traducción. Proteínas

Dogma central. ADN - ARN - Proteínas

El Dogma Central de la Biología Molecular v.1. Manuel J. Gómez Laboratorio de Bioinformática Centro de Astrobiología INTA- CSIC

TEMA 2 LA INFORMACIÓN GENÉTICA COLEGIO LEONARDO DA VINCI BIOLOGÍA Y GEOLOGÍA 4º ESO CURSO 2014/15

GENÉTICA MOLECULAR. El ADN, LA MOLÉCULA DE LA HERENCIA

ADN ARN Proteínas. La información genética es portada por el ADN y se hereda con él.

Dr. Antonio Barbadilla

CAPÍTULO 2 FLUJO DE LA INFORMACIÓN BIOLÓGICA FACULTAD DE AGRONOMÍA CURSO DE BIOQUÍMICA

Material de apoyo Transcripcio n y traduccio n

Flujo de información en la célula

DOGMA CENTRAL DE LA BIOLOGÍA MOLECULAR (Francis Crick 1970) (Excepción de la transcriptasa inversa) ADN Transcripción ARN traducción PROTEINAS

Tema XI: Ácidos nucléicos (Introducción)

ACIDOS NUCLEICOS. Dra. Elena Alvarado León Área de Genética y Biología Celular Depto. De Morfología Humana Fac. de Medicina UNT

TEMA 5: LOS ÁCIDOS NUCLEICOS

Acidos Nucleicos. Cap.3 Dra. Millie L. González

TRABAJO PRÁCTICO N 2 CICLO CELULAR - ACIDOS NUCLEICOS - SÍNTESIS DE PROTEÍNAS

TEMA 5 ACIDOS NUCLEICOS

Tema 15. DEL ADN A LAS PROTEÍNAS

Modificaciones de Proteínas

Síntesis de proteínas (Traducción): descodificación del ARNm

UNIDAD 5. AMINOÁCIDOS Y PROTEÍNAS

F.I.G.: Experimento de Volkin and Astrachan, 1956

Tema 15: DEL ADN A LAS PROTEÍNAS (EXPRESIÓN GÉNICA)

Del ADN a las Proteínas

CÓDIGO GENÉTICO Y SÍNTESIS DE PROTEÍNAS

Transcripción. replicación DNA. transcripción RNA. traducción. Prot. Introducción. Transcripción procariótica. Prof.

Flujo de información en la célula Transcripción

Biosíntesis de Ácidos nucleicos (ARN) y Proteínas

TRANSMISION DE LA INFORMACION GENENTICA

Bioquímica ACIDOS NUCLEICOS. Tema:5. Dra. Silvia Varas.

ESTRUCTURA DEL ADN. Dogma general de la genética. Tres procesos: Replicación: obtener copias exactas. Transcripción: transferir la información al ARN

TEMA 4 REGULACIÓN DE LA EXPRESIÓN GÉNICA EN PROCARIOTAS

ÁCIDOS NUCLEICOS. Por: Wilfredo Santiago

CARACTERÍSTICAS QUÍMICAS

ACTIVIDADES 2º BACHILLERATO C. Y T. GENÉTICA MOLECULAR

CÓMO SE PUEDE DETERMINAR LA SECUENCIA DEL DNA A PARTIR DE UNA PROTEÍNA? DR. MANUEL E. AQUINO

Tema 6 Expresión y Regulación de Genes Cap. 10, pág

Los elementos químicos más abundantes en los seres vivos son: Agua y proteínas. Carbono, oxígeno, hidrógeno, nitrógeno, fósforo y azufre.

Pensamiento: Científico tecnológico

GUÌA DE APOYO 4º MEDIO NOMBRE CURSO 4º MEDIO. I.- Complete las siguientes aseveraciones, utilizando los términos adecuados.

Proteínas y Ácidos Nucleicos

Machete 6: Unidad 4, Capítulo 1

Biología Profundización

TEMA 5: LOS ÁCIDOS NUCLEICOS

Acción y Regulación de los Genes. Cátedra de Genética FAZ - UNT

Transcripción y Procesamiento del RNA

Introducción. Expresión génica. Regulación de la expresión génica en procariotas

Procesamiento de proteínas y modificaciones post-traduccionales

LA TRANSCRIPCIÓN El paso de la información del ADN al ARN. Realizado por José Mayorga Fernández

EICOS OS CL ID ÁC NU

Regulación génica. Necesaria tanto en procariotas como eucariotas. Todas las células del cuerpo tienen el mismo material genético

TEMA 15 LOS GENES Y SU FUNCIÓN. IES Enric Valor Nieves Martinez Danta 1

UD 5: LOS ÁCIDOS NUCLEICOS

Tema 8. El funcionamiento del DNA

Descodificación: adaptador

EDICIÓN EDICIÓN Nº 123

SUMARIO Ácidos nucleicos. Estructura general. Tipos principales: ADN y ARN. ADN. Estructura primaria. Estructura secundaria o modelo de Watson y Crick

Estructura y función del ADN

Los nucleótidos están formados de: Una base nitrogenada Un azúcar de cinco carbonos Uno o más grupos fosfato

BIOLOGÍA MOLECULAR U.D. 2 ÁCIDOS NUCLEICOS II

Capítulo 24. Replicación, Transcripción y Traducción

TEMA 14. Fisiología celular. Genética molecular.

Actividad: Estructura del ADN y su duplicación

BLOQUE I. Reproducción Celular

Ácidos nucleicos. 3ª y 4ª Parte: Transcripción y traducción I & II. Tema 12 de Biología NS Diploma BI Curso

TEMA 3: Expresión Génica

Transcripción:

Traducción

Etapas de la Traducción la traducción consta de tres partes

Iniciación el ribosoma se desplaza en dirección 5-3 hasta encontrar una señal que le indique el inicio de la traducción la señal de inicio de la traducción siempre es el triplete o codón AUG

Iniciación una vez reconocido AUG, se produce el apareamiento del codón de iniciación con su respectivo ARNt, que posee el anticodón UAC luego de apareado el ARNt, se produce el ensamblaje de la subunidad mayor del ribosoma

Iniciación al término de la iniciación, las dos subunidades del ribosoma quedan ensambladas y el primer ARNt cargado con Met ocupa el sitio P complejo de iniciación

Elongación en el sitio P se localiza el ARNt con un aminoácido y en el sitio A se encuentra un codón del ARNm expuesto un ARNt con un anticodón complementario este codón se fija sobre el ARNm por puentes hidrogeno entre las bases

Elongación la enzima peptidil-transferasa separa la Met de su ARNt y la une por su extremo carboxilo al extremo amino del aminoácido siguiente se forma un dipéptido, con los aminoácidos correspondientes al mensaje codificado por el ARNm

Elongación cuando la Met está unida al segundo aminoácido, el primer ARNt se libera y el ribosoma se mueve hacia el extremo 3 del ARNm para que se pueda leer el siguiente codón del ARNm la translocación del ribosoma se produce por medio de la enzima translocasa

Elongación este proceso se repite con cada triplete formándose una cadena polipeptídica la elongación termina cuando aparece una señal que indica la terminación de la traducción

Terminación se produce cuando en el sitio A del ribosoma queda ubicado un codón de terminación (UAA, UAG, UGA) estos codones no son reconocidos por ningún ARNt

Terminación esto permite que en el sitio P ingresen proteínas llamadas factores de terminación los factores hacen que la peptidil-transferasa corte el último aminoácido incorporado, se libere el polipéptido y se desensamblen los ribosomas

Traducción en Procariotas en los procariotas la traducción se produce junto con la transcripción

Traducción en Eucariotas en los eucariotas la traducción se produce en el citoplasma

ARNm Procariota y Eucariota los procariotas tienen ARNm policistrónicos

ARNm Procariota y Eucariota En la mayoría de las bacterias, la síntesis se inicia con un residuo de metionina modificado (Nformilmetionina), mientras que en eucariotas se inicia con metionina sin modificar. En procariotas y eucariotas la traducción comienza siempre con triplete AUG que codifica el aminoácido metionina. En algunas bacterias hay codones alternativos, como GUG, que cuando está al principio de la cadena polipeptídica, incorporan metionina en lugar del aminoácido normal (GUG=valina).

Señales de Inicio de la Traducción la señal de inicio es diferente en procariotas y eucariotas

Proteínas necesarias para la Traducción

Factores de Traducción Procariotas Eucariotas Función IF-1 eif-1 Se une al complejo iniciador y lo estabiliza IF-2 eif-2 Une el complejo Met-ARNt + GTP al ribosoma IF-3 eif-3 Evita la reasociación de las subunidades ribosómicas eif-4 (A, B, E, G) Participan de la localización del codón de iniciación eif-5 Libera eif-2 y eif-3 del ribosoma y permite la unión de la subunidad mayor eif-6 Participa en la disociación de las subunidades del ribosoma

Iniciación en Procariotas Se unen tres los factores de iniciación (IF-1, IF-2 e IF-3) a la subunidad ribosómica 30S. Se libera IF-3 permitiendo que la subunidad ribosómica 50S se asocie al complejo. Se unen el ARNm y el ARNt iniciador, que es reconocido específicamente por el factor IF-2 (que une GTP). Se forma el complejo de iniciación 70S, compuesto por ARNm y ARNt iniciador unidos al ribosoma, preparado para catalizar un enlace peptídico. La unión provoca la hidrólisis del GTP unido a IF-2, lo que permite la salida de los factores IF-1 e IF-2 (ahora unido a GDP).

Iniciación en Eucariotas Los factores eif-1, eif-1a y eif-3 se unen a la subunidad ribosómica 40S El factor eif-2 (unido a GTP) se asocia con el ARNt metionina iniciador El cap del ARNm es reconocido por el eif-4e, que se une al factor eif-4g y a una proteína asociada a la cola poli-a en el extremo 3' del ARNm (PABP) Los factores eif-4e y eif-4g junto con eif-4a y eif-4b dirigen el ARNm hacia la subunidad ribosómica 40S, mediante interacción entre los factores eif-4g y eif-3. La subunidad 40S unida al ARNt iniciador y a los elf chequea el ARNm hasta identificar el codón de iniciación AUG Cuando AUG es reconocido, eif- 5 provoca la hidrólisis del GTP unido a eif-2. Se liberan los eif y la subunidad 60S se une a la 40S para formar el complejo de iniciación

Elongación El ARNt iniciador se halla en el sitio P, listo para entrar otro ARNt cargado al sitio A por apareamiento de bases con el segundo codón El aminoacil ARNt es llevado al ribosoma por un factor de elongación (EF-Tu en procariotas y eef-1α en eucariotas), unido a GTP. Cuando el ARNt correcto se inserta en el sitio A, el GTP es hidrolizado a GDP y el factor de elongación se libera. Otro factor de elongación, acoplado a hidrólisis de GTP produce la translocación del ribosoma quedando un nuevo codón en un sitio A libre. Cuando EF se libera, se forma el enlace peptídico entre el aminoácido iniciador y el segundo aminoacil ARNt en el sitio A.

Terminación Los procariotas tienen dos factores de liberación que reconocen codones de terminación: RF-1 reconoce UAA o UAG y RF-2 reconoce UAA o UGA. Las células eucariotas tienen un único factor de liberación (erf-1) que reconoce los tres codones de terminación. Además, procariotas y eucariotas, también tienen factores de liberación (RF-3 y erf-3 respectivamente) que no reconocen codones de terminación específicos pero actúan con RF-1 o erf-1.

cada ARNm es traducido varias veces la traducción simultánea de un mismo ARNm permite incrementar la tasa de síntesis de proteínas

Plegamiento y Procesamiento de Proteínas en la traducción, la secuencia de nucleótidos del ARN se convierte en la secuencia de aminoácidos de la cadena polipeptídica, pero esto no significa que la proteína sea funcional

Plegamiento y Procesamiento de Proteínas la conformación tridimensional de las proteínas depende de la interacción entre sus aminoácidos. es decir, el plegamiento de una proteína y su conformación tridimensional están determinados por su propia secuencia de aminoácidos.

Chaperonas Las chaperonas actúan como catalizadores que facilitan el ensamblaje sin formar parte del complejo ensamblado. Catalizan el plegamiento de las proteínas ayudando al proceso de autoensamblaje. En concreto, su función es unirse y estabilizar las cadenas polipeptídicas no plegadas. En ausencia de chaperonas, las cadenas polipeptídicas no plegadas o parcialmente plegadas son inestables en la célula o se pliegan de forma incorrecta. La unión de las chaperonas estabiliza las formas no plegadas y permiten que la cadena polipeptídica adquiera una conformación activa

Chaperonas que se unen a las cadenas polipeptídicas nacientes se unen a las cadenas polipeptídicas a la vez que se sintetizan en los ribosomas. previenen el plegamiento incorrecto o la agregación de la porción amino terminal del polipéptido antes de que la síntesis de éste finalice. este tipo de interacción es importante en proteínas en que el extremo carboxilo terminal (sintetizado en último lugar) es necesario para el plegamiento del extremo amino terminal. la chaperona unida estabiliza la porción amino terminal en una conformación extendida hasta que se sintetice el resto de la cadena polipeptídica. así puede plegarse correctamente la cadena polipeptídica completa.

Chaperonas estabilizan los polipéptidos no plegados durante su transporte a los orgánulos subcelulares Las proteínas se transportan a través de la membrana mitocondrial en una conformación parcialmente plegada estabilizada por chaperonas que se unen en el citosol. Las chaperonas del interior de la mitocondria facilitan la transferencia del polipéptido al atravesar la membrana y su plegamiento posterior en el interior del organelo. Además, participan en el ensamblaje de proteínas formadas por múltiples cadenas polipeptídicas.

Proteínas de Choque Térmico (HSP) son proteínas altamente conservadas tanto en células procariotas como eucariotas. estabilizan y facilitan el plegamiento de proteínas parcialmente desnaturalizadas por exposición a temperaturas elevadas. muchas de ellas se expresan y tienen funciones en condiciones normales de crecimiento celular. actúan como chaperonas moleculares, necesarias para el plegamiento de los polipéptidos y su transporte en condiciones normales, así como en condiciones de estrés ambiental.

Familia Hsp60 son también llamadas chaperoninas y facilitan el plegamiento de las proteínas en su conformación nativa. están formada por 14 subunidades de alrededor de 60 kda cada una, organizadas en anillos apilados para formar una estructura en forma de doble dona o toroide. las cadenas polipeptídicas son protegidas del citosol mediante la unión a la cavidad del cilindro de la chaperonina. la unión de la chaperonina impide la agregación de los segmentos no plegados del polipéptido la unión de los polipéptidos es una reacción reversible acoplada a la hidrólisis de ATP, como fuente de energía. la hidrólisis de ATP dirige la liberación y unión de las regiones no plegadas a la chaperonina y así el polipéptido se pliega gradualmente en una conformación correcta.

Estructura Tridimensional de una Chaperonina

Acción Secuencial de Hsp70 y Hsp60 la chaperonina Hsp60 produce el plegamiento de la cadena polipeptídica. primero la Hsp70 estabiliza los polipéptidos nacientes hasta que la síntesis de proteínas finalice. luego, el polipéptido extendido se transfiere a la chaperonina Hsp60 finalmente se produce una proteína plegada correctamente en la conformación tridimensional funcional