ratorio de Operaciones Unitarias II
|
|
|
- María Elena Agüero Casado
- hace 9 años
- Vistas:
Transcripción
1 Labor ratorio de Operaciones Unitarias II República Bolivariana de Venezuela Ministerio del Poder Popular para la Educación Superior Instituto Universitario de Tecnología Alonso Gamero Laboratorio de Procesos Químicos Operaciones Unitarias II PRÁCTICA SECADOR DE BANDEJAS OBJETIVOS DE LA PRÁCTICA: Revalidar los conceptos teóricos estudiados. Conocer los principios básicos de la operación de secado mediante el uso de un secador de charolas que opera por lote a nivel laboratorio Identificar cuántos y cuáles periodos de secado se encuentran en el proceso. Observar mediante gráfica X vs t. Observar mediante gráfica dx / dt vs X. Determinar la velocidad de secado. FUNDAMENTOS TEÓRICOS: Introducción El término secado se refiere a la eliminación de humedad en una sustancia. Como referencia se resumen a continuación ciertos términos que se utilizan: Contenido de humedad de un sólido, se expresa por lo común como la cantidad de humedad por unidad de peso de sólido seco o húmedo. Contenido de humedad en base húmeda, es la que expresa la humedad de un material como porcentaje del peso del sólido mojado. Se definee como: %h = ([Wmaterial a secar Wmaterial seco] / Wmaterial a secar) * 100 (1) Contenido de humedad en base seca, es la que expresa la humedad de un material como porcentaje del peso del sólido seco. Se define como: %Xt = %h (2) Contenido de humedad en equilibrio (X*), es la humedad limitante a la cual un material dado se puede secar en condiciones específicas de temperatura y humedad del gas. Contenido crítico de humedad (Xc), es el contenido de humedad promedio cuando concluye el período de velocidad constante. Contenido de humedad libre (X), es el líquido que se puede separar a una temperatura y humedad dadas. Este valor llega a incluir tanto la humedad ocluida como la no ocluida (retenida).
2 Laboratorio de Operaciones Unitarias II Período de velocidad constante, es el lapso de secado durante el cual la velocidad de eliminación de agua por unidad de superficie deseada es constante o uniforme. Período de velocidad decreciente, es un lapso de desecación durante el cual la velocidad instantánea de secado disminuye en forma continua. Operaciones de Secado Las operaciones de secado pueden llevarse a cabo en lotes o en continuo. El secado por lotes es una operación relativamente cara, en consecuencia se limita a operaciones a pequeña escala, a plantas piloto, a trabajos de investigación y para secar materiales valiosos cuyo costo total será poco alterado por el costo agregado en la operación de secado. Para reducir el contenido de humedad en el secado de diversos materiales, es conveniente estimar el tamaño del secador, las diferentes condiciones de operación de humedad y temperatura para el gas empleado, y el tiempo requerido para lograr el grado de secado deseado. El contenido de humedad de equilibrio del material a secarse bajo condiciones específicas de humedad y temperatura del gas debe determinarse experimentalmente. Las mediciones de velocidad del secado por lotes son relativamente fáciles de obtener a partir de datos experimentales y proporcionan mucha información no sólo para la operación por lotes sino también para la continua. Secador de Charolas Un secador de charolas o bandejas es un equipo totalmente cerrado y aislado en el cual los sólidos se colocan en grupos de charolas en el caso de sólidos particulados. La transmisión de calor puede ser directa del gas a los sólidos, utilizando la circulación de grandes volúmenes de gas caliente, o indirecta, utilizando repisas o bases calentadas, serpentines de radiador o paredes refractarias al interior de la cubierta. En unidades de calor indirecto, exceptuando los equipos de repisas al vacío, casi siempre se necesita la circulación de una pequeña cantidad de gas para eliminar el vapor de humedad del comportamiento y evitar la saturación y condensación del gas. Las unidades de compartimientos se emplean para calentar y secar madera, cerámica, materiales en hojas (sostenidas en postes), objetos pintados y metálicos, y todas las formas de sólidos particulados. Secadores de charolas con aire caliente. El funcionamiento satisfactorio de los secadores de charolas depende del mantenimiento de una temperatura constante y una
3 Laboratorio de Operaciones Unitarias II velocidad de aire uniforme sobre todo del material que se esté secando. Conviene tener una circulación de aire con velocidades de 1 a 10 m/s para mejorar el coeficiente de transferencia de calor en la superficie y con el propósito de eliminar bolsas de aire estancado. La corriente de aire adecuada para este género de secadores depende de que el ventilador tenga una capacidad suficiente, del diseño de la red de ductos para modificar cambios repentinos de dirección y de desviadores correctamente ubicados. La corriente de aire no uniforme es uno de los problemas más graves que se presentan en el funcionamiento de los secadores de charolas. Los secadores de charolas pueden ser del tipo de carretillas de charolas o de charolas estacionarias. En el primer caso, las charolas se cargan sobre carretillas que se empujan hasta el interior del secador y, en el segundo, las charolas se cargan directamente en bastidores fijos dentro del secador. Las carretillas están provistas de ruedas con pestaña que corren sobre carriles, o bien, de ruedas planas giratorias. También se pueden suspender de monorrieles sobre los cuales se desplazan. Las carretillas cuentan por lo común con dos hileras de charolas, cada una de las cuales tiene de 18 a 48 charolas, según sean las dimensiones de éstas. Las charolas pueden ser cuadradas o rectangulares, con una superficie de 0.37 a 0.75 m 2 /charola y se fabrican de cualquier material que sea compatible con las condiciones de corrosión y temperatura prevalecientes. Cuando se amontonan en una carretilla, debe dejarse un espacio libre de no menos de 3.80 cm entre el material que contienen y la base de la que está inmediatamente encima. Cuando las características del material y el manejo lo permitan, las charolas deben tener bases perforadas para proveer una mayor superficie de secado. En general, se prefieren las charolas metálicas, ya que conducen el calor con mayor facilidad. Las cargas de las charolas varían comúnmente de 1.25 a 10.0 cm de profundidad. El aire se hace circular por medio de ventiladores de hélice o centrífugos; por lo común, el ventilador se monta dentro o directamente arriba del secador. La caída total de presión por las charolas, los calentadores y los ductos es, casi siempre, del orden de 2.5 a 5 cm de agua. La recirculación del aire es usualmente del orden del 80 al 95%, excepto durante la etapa inicial de desecación de evaporación rápida.
4 Laboratorio de Operaciones Unitarias II MATERIALES Y EQUIPOS: Cronómetro Flexómetro 2 Termómetros de 100 ºC Termopar digital 1 Anemómetro digital 2 Bandejas o recipientes donde se colocará el material a secar 2 Franelas 2 Cucharas 4 Probetas de 50 ml Posibles materiales a secar: arena, aserrín, papas, zanahorias, frutas con un alto contenido en humedad. Planta Piloto de Secador de Bandejas. EQUIPO EXPERIMENTAL El equipo de laboratorio consta de un ducto de aire montado sobre una armazón (estructura) la cual está a un altura confortable para tener condiciones de trabajo adecuadas (ver Figura 2). El aire entra dentro del ducto a través de un engranaje de seguridad por medio del motor de un ventilador impelente que conduce el aire en un flujo axial cuya velocidad puede ser controlada para producir un rango de velocidades de aire arriba de los 1.5 m/s en el ducto. El aire se calienta por medio de un banco de resistencias eléctricas controladas por medio de un regulador de potencia para proporcionar una variación en la temperatura del aire de hasta un máximo de 80 ºC. El aire pasa dentro de la sección central del ducto, donde 4 charolas con el material a secar son suspendidas en la corriente de aire. Las charolas están levantadas por un soporte, el cual está conectado a una balanza digital montada encima del ducto y donde el peso total está continuamente indicándose. Las charolas son insertadas o removidas del ducto a través de una puerta lateral con un panel de vidrio. Después de pasar por las charolas, el aire es descargado a la atmósfera y por medio de un anemómetro de aspa se mide la velocidad de aire. Las temperaturas de bulbo húmedo y bulbo seco son medidas usando un psicrómetro aspirado que está montado sobre el ducto. Dimensiones del equipo: Altura 1.40 m Largo 2.95 m
5 Laboratorio de Operaciones Unitarias II EQUIPO A UTILIZAR Secador de bandeja.
6 Laboratorio de Operaciones Unitarias II PROCEDIMIENTO EXPERIMENTAL: EXPERIMENTO A. Producir las curvas de secado y de velocidad de secado de un material sólido húmedo a temperatura constante y humedades (inicial y final) establecidas. 1) Colocar el control de velocidad del ventilador a la mitad de su posición 2) Colocar el control de temperatura a su máxima posición 3) Determinar las temperaturas a la entrada y a la salida de la zona de secado hasta alcanzar las condiciones de estado estacionario (Aproximadamente se tarda 30 min en estabilizarse el equipo) 4) Pesar cada una de las charolas 5) Agregar Kg. del material a secar a cada una de las charolas 6) Humedecer las muestras con 50 ml. de agua (si las muestras no contienen agua) 7) Llenar cada una de las charolas teniendo Kg. de muestra húmeda en cada charola e introducirlas al secador 8) Cada 5 min medir las temperaturas de bulbo húmedo y bulbo seco en la zona de Secado 9) Cada 5 min medir el flujo de aire a la salida del túnel por medio del anemómetro digital 10) Medir el área de secado 11) Medir el área de salida del flujo de aire EXPERIMENTO B Influencia del tamaño de partícula de un material sólido al ser secado a una temperatura y humedad fijas. 1) Repetir el procedimiento descrito para el experimento A, pero ahora utilizando otro material a secar con diferente tamaño de partícula. ECUACIONES Con respecto a una muestra a secar, la rapidez de secado puede determinarse suspendiendo la muestra en un gabinete o tubería, en una corriente de aire. Entonces, el peso de la muestra secada puede medirse como una función del tiempo. Si W es el peso del sólido húmedo en Kg totales de agua más sólido seco y Wa es el peso del sólido seco en Kg, Contenido de humedad en base húmeda h = (W-Ws) / W Contenido de unidad en base seca Xt = 1- h
7 Laboratorio de Operaciones Unitarias II La curva de velocidad de secado se obtiene graficando R en función del contenido de humedad (ver Figura 1). Otro método para obtener la curva de velocidad de secado consiste en calcular la pérdida de peso X para un incremento de tiempo t: Figura 1. Graficas típicas del contenido de humedad vs tiempo. Si se puede establecer la condición de secado constante, se puede determinar el contenido de humedad en el equilibrio X*. Con esto se procede a calcular el valor del contenido de humedad libre X para cada valor de Xt X = Xt X* Usando los valores de X calculados se hace una gráfica del contenido de humedad libre en función del tiempo tal como se muestra en la Figura 1. Para obtener la curva de velocidad de secado a partir de la gráfica de la Figura 1, se miden las pendientes de las tangentes de las curvas, lo cual proporciona los valores de dx/dt para distintos contenidos de humedad. Se calcula entonces la velocidad de secado R para cada punto con la expresión: R = - (Ws/A) (dx / dt) R = - (Ws / A) ( X / t) Además la velocidad de secado para el período de secado constante puede calcularse por la ecuación de transferencia de calor que se muestra a continuación r = hv (Tv Ti) / λw Donde el valor de hv depende del patrón de flujo del aire en relación a la superficie de secado. Para aire en flujo paralelo a una temperatura entre C y un flujo másico G de Kg/h m 2 o velocidad de m/s hv = G 0.8 G = ρg v Otra correlación ampliamente utilizada en la práctica para el caso de flujo paralelo es: hv = (5.90 G 0.71 ) / de 0.29
8 Laboratorio de Operaciones Unitarias II de = 4 (Área de sección transversal para el flujo) / perímetro Para flujo perpendicular con G de Kg /hr m 2 o velocidad de m/s NOMENCLATURA hv = 1.17 G 0.37 A: Área de la zona de secado (m 2 ) de: Diámetro equivalente del espacio para el flujo de aire (m) G: Velocidad másica del aire (Kg/ m 2 s) h: Contenido de humedad en base húmeda (Kg H 2 O / Kg totales) hv: Coeficiente de transferencia de calor convectivo (W/ m 2 ºK) r: Velocidad de secado durante el periodo de secado constante (Kg / m 2 seg) R: Velocidad de secado (Kg / m 2 seg) Tv: Temperatura del gas seco (Temperatura de bulbo seco) (ºK) Ti: Temperatura interfacial (Temperatura de bulbo húmedo) (ºK) t: Tiempo (min o seg) v: Velocidad del aire (m/s) W: Peso del sólido húmedo (kg) Ws: Peso del sólido seco X: Contenido de humedad libre (Kg H 2 O / Kg s.s.) Xc: Contenido de humedad crítico (Kg H 2 O / Kg s.s.) Xt: Contenido de humedad en base seca (Kg H 2 O / Kg s.s.) X*: Contenido de humedad en equilibrio (Kg H 2 O / Kg s.s.) λw: Calor latente (J/ K) ρg: Densidad del aire a la temperatura de operación (Kg / m 3 ) EL INFORME DEBE INCLUIR Con respecto al Experimento A 1) Gráfica X vs t. 2) Gráfica dx / dt vs X. 3) Cuántos y cuáles períodos de secado se encuentran en el proceso 4) Mencionar a que contenido de humedad en el equilibrio se llegó, y cuál es su significado físico, ó bien, su importancia. 5) Si existe un período de secado constante, determinar la tasa de secado durante éste. Con respecto al Experimento B 1) Gráfica X vs t (incluyendo la gráfica del experimento A). 2) Gráfica dx / dt vs X (incluyendo la gráfica del experimento A). 3) Cuántos y cuáles períodos de secado se encuentran en el proceso.
9 Laboratorio de Operaciones Unitarias II - 9-4) Mencionar el efecto que tiene el tamaño de partícula en el contenido de humedad en el equilibrio. 5) Si existe un período de secado constante, determinar la velocidad de secado durante éste. BIBLIOGRAFÍA: Foust S. Alan (1993), Principios de Operaciones Unitarias, 4a Ed., CECSA, Cap. 18. Geankoplis, C.J. (1995), Procesos de Transporte y Operaciones Unitarias, 2ª Ed. CECSA Perry, R. H., Chilton C.H., (1986), Manual del Ingeniero Químico, 5a Ed., McGraw Hill, Vol. II, Treybal R.E., (1993), Operaciones de Transferencia de Masa, 2ª Ed., McGraw Hill, Cap. 12
UNIDAD IZTAPALAPA DIVISIÓN DE CIENCIAS BASICAS E INGENIERIA INGENIERIA QUIMICA. Dr. Jaime Vernon Carter
UNIVERSIDAD AUTONOMA METROPOLITANA UNIDAD IZTAPALAPA DIVISIÓN DE CIENCIAS BASICAS E INGENIERIA INGENIERIA QUIMICA Laboratorio de Operaciones Unitarias Autor: Dr. Jaime Vernon Carter PRACTICA 6 SECADOR
El propósito principal de la deshidratación de alimentos es prolongar la durabilidad
1.1 INTRODUCCIÓN El propósito principal de la deshidratación de alimentos es prolongar la durabilidad del producto final. El objetivo primordial del proceso de deshidratación es reducir el contenido de
Universidad de Los Andes Facultad de Ingeniería Escuela de Ingeniería Química Dpto. de Operaciones Unitarias y Proyectos TEMA 2 SECADO
Universidad de Los Andes Facultad de Ingeniería Escuela de Ingeniería Química Dpto. de Operaciones Unitarias y Proyectos TEMA 2 SECADO Prof. Yoana Castillo [email protected] CONTENIDO Generalidades
CAPITULO 5 PROCESO DE SECADO. Se entiende por secado de alimentos la extracción deliberada del agua que contienen,
CAPITULO 5 PROCESO DE SECADO 5.1 SECADO DE ALIMENTOS Se entiende por secado de alimentos la extracción deliberada del agua que contienen, operación que se lleva a cabo en la mayoría de los casos evaporando
ratorio de Operaciones Unitarias II
Labor ratorio de Operaciones Unitarias II - 1 - República Bolivariana de Venezuela Ministerio del Poder Popular para la Educación Superior Instituto Universitario de Tecnología Alonso Gamero Laboratorio
PRÁCTICA 3: SECADO DE SÓLIDOS
Universidad Nacional Experimental Francisco De Miranda Área De Tecnología Programa De Ingeniería Química Departamento De Energética Laboratorio De Operaciones Unitarias II PRÁCTICA 3: SECADO DE SÓLIDOS
Secado. evaporación en una corriente gaseosa. Calor Directo. Discontínuo o Lotes. Equipos. Calor Indirecto. Contínuo. Facultad de Ingenieria UBA 1
Secado Eliminación de la humedad de sólidos y/o líquidospor evaporación en una corriente gaseosa. Equipos Discontínuo o Lotes Contínuo Calor Directo Calor Indirecto Facultad de Ingenieria UBA 1 Secado
PRACTICA No. 1. SECADO DE SÓLIDOS
UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA ÁREA DE TECNOLOGIA COMPLEJO ACADEMICO EL SABINO DEPARTAMENTO DE ENERGETICA LABORATORIO DE OPERACIONES UNITARIAS PRACTICA No. 1. SECADO DE SÓLIDOS
Laboratorio de Operaciones Unitarias II - 1 -
Laboratorio de Operaciones Unitarias II - 1 - República Bolivariana de Venezuela Ministerio del Poder Popular para la Educación Superior Instituto Universitario de Tecnología Alonso Gamero Laboratorio
Figura 4.1 Lodo proveniente de la PTAR de la Maltera de la empresa Cuauhtémoc Moctezuma, ubicado en el municipio de Rafael Lara Grajales.
4. MATERIALES Y MÉTODOS 4.1 Materia prima En este proyecto se utilizaron los lodos provenientes de la digestión anaerobia de la planta de tratamiento de agua residual de la Maltera de la empresa Cuauhtémoc
Secado. Eliminación de la humedad de sólidos y/o líquidos por evaporación en una corriente gaseosa. Calor Directo. Discontínuo o Lotes.
Secado Eliminación de la humedad de sólidos y/o líquidos por evaporación en una corriente gaseosa. Equipos Discontínuo o Lotes Contínuo Calor Directo Calor Indirecto Facultad de Ingenieria - UBA 1 Secado
PRACTICA N 1: PROPIEDADES DE LOS FLUIDOS: DENSIDAD Y VISCOSIDAD.
PRACTICA N 1: PROPIEDADES DE LOS FLUIDOS: DENSIDAD Y VISCOSIDAD. INTRODUCCIÓN Para comprender los conceptos relacionados con la estática y dinámica de los fluidos es necesario familiarizarse con algunas
El proceso de secado consiste en la remoción de humedad de una sustancia, involucrando los fenómenos de transferencia de calor y masa, en forma
SECADOR DE BANDEJA El proceso El proceso de secado consiste en la remoción de humedad de una sustancia, involucrando los fenómenos de transferencia de calor y masa, en forma simultanea. La transferencia
Análisis de aplicaciones de las operaciones unitarias de humidificación y evaporación mediante hoja de cálculo
Análisis de aplicaciones de las operaciones unitarias de humidificación y evaporación mediante hoja de cálculo M.C. María de los Ángeles Olán Acosta Dr. Juan Barajas Fernández Resumen Se propone la utilización
Ejercicios N 2. Ingeniería Industrial
Ejercicios N 2 1. Calcule la perdida de calor por m 2 de área superficial en la pared aislante temporal de un cuarto de almacenamiento en frio, si la temperatura exterior del corcho es de 299.9 K y la
QUÉ ES LA TEMPERATURA?
1 QUÉ ES LA TEMPERATURA? Nosotros experimentamos la temperatura todos los días. Cuando estamos en verano, generalmente decimos Hace calor! y en invierno Hace mucho frío!. Los términos que frecuentemente
ÍNDICE DE CONTENIDOS
ÍNDICE DE CONTENIDOS CERTIFICACIÓN DE LA ELABORACIÓN DEL PROYECTO LEGALIZACIÓN DEL PROYECTO DEDICATORIA AGRADECIMIENTO ÍNDICE DE CONTENIDOS RESUMEN Pag. ii iii iv v vi xviii CAPÍTULO 1: GENERALIDADES 1.1
Dr. Joaquín Palacios A.
Dr. Joaquín Palacios A. La operación de secado es un proceso que implica transferencia de masa entre un gas y un sólido, donde la humedad contenida en el sólido se transfiere por evaporación hacia la fase
2.3 Servicios auxiliares Corriente eléctrica de 110 volts. 2.5 Fotografía del equipo
Experimento 4 Balance de materia y energía en una torre de enfriamiento de agua. 1. PROBLEMA Encontrar el flujo de aire (m3/h) necesario para enfriar 4.35 L/min de agua, de una temperatura cercana a 40
TRANSFERENCIA DE MASA II CURVA DE SECADO
TANFEENIA DE MAA II UVA DE EADO EJEMPLO DE UVA DE EADO Para determinar la factibilidad de secar cierto producto alimenticio, se obtuvieron datos de secado con un secador de bandejas y flujo de aire sobre
OPERACIONES UNITARIAS
OPERACIONES UNITARIAS 2016 TEMA 2 - CALOR INTRODUCCION MECANISMOS DE TRANSFERENCIA DE CALOR Prácticamente en todas las operaciones que realiza el ingeniero interviene la producción o absorción de energía
Secado Sergio Huerta Ochoa UAM-Iztapalapa
Secado Sergio Huerta Ochoa UAM-Iztapalapa El secado es el último paso en la recuperación de ciertos productos biotecnológicos Consiste en la reducción del contenido de solvente del producto por medio de
El ambiente al que están expuestos los productos tiene un fuerte efecto sobre su vida poscosecha.
PSICROMETRIA PSICROMETRIA La mayoría de las frutas y hortalizas son producidas para ser vendidas frescas por lo que requiere para su conservación un apropiado manejo poscosecha. El ambiente al que están
PROCESOS DE SEPARACIÓN I II UNIDAD AGITACIÓN Y MEZCLADO
PROCESOS DE SEPARACIÓN I II UNIDAD AGITACIÓN Y MEZCLADO Equipo de agitación Los líquidos se agitan con más frecuencia en tanques o recipientes, generalmente de forma cilíndrica y provista de un eje vertical.
CAPITULO 9. ANALISIS DE RESULTADOS. El secado con este tipo de partícula, ha sido el más difícil de controlar y también, en el que
CAPITULO 9. ANALISIS DE RESULTADOS. 9.1 Secado de silica gel azul. El secado con este tipo de partícula, ha sido el más difícil de controlar y también, en el que los resultados no son satisfactorios. Uno
REPRODUCIR EL PROCESO PSICROMÉTRICO CALENTAMIENTO SENSIBLE 1. INTRODUCCIÓN
Designación REPRODUCIR EL PROCESO PSICROMÉTRICO CALENTAMIENTO SENSIBLE Resumen: En esta guía de laboratorio se encuentra el proceso para reproducir un proceso de calentamiento sensible al aire utilizando
PREPARACIÓN DE AIRE COMPRIMIDO.
PROFESOR: JUAN PLAZA L. PREPARACIÓN DE AIRE COMPRIMIDO. 1 AIRE COMPRIMIDO. El aire comprimido se refiere a una tecnología o aplicación técnica que hace uso de aire que ha sido sometido a presión por medio
PROCESOS DE SEPARACIÓN II 1714 DEPARTAMENTO DE INGENIERÍA QUÍMICA. NÚMERO DE HORAS/SEMANA Teoría 5 Práctica 2 CRÉDITOS 12
PROCESOS DE SEPARACIÓN II 1714 DEPARTAMENTO DE INGENIERÍA QUÍMICA UBICACIÓN SEMESTRE TIPO DE ASIGNATURA TEÓRICO-PRÁCTICA. NÚMERO DE HORAS/SEMANA Teoría 5 Práctica 2 CRÉDITOS 12 INTRODUCCIÓN. Esta materia
Lo que se debe aprender a hacer se aprende haciéndolo. Aristóteles.
TERMODINÁMICA Departamento de Física Carreras: Ing. Industrial y Mecánica Trabajo Práctico N 4: PRIMER PRINCIPIO Lo que se debe aprender a hacer se aprende haciéndolo. Aristóteles. 1) Se enfría a volumen
UNIDAD 3. Solución del ejemplo de secado que aparece en las láminas de la Unidad 3.
UNIDAD 3. Solución del ejemplo de secado que aparece en las láminas de la Unidad 3. En un secador de cabina se deshidrata un alimento poroso (capilaridad) de 60 mm de espesor con una humedad inicial de
REPRODUCIR EL PROCESO PSICROMÉTRICO ENFRIAMIENTO SENSIBLE 1. INTRODUCCIÓN
REPRODUCIR EL PROCESO PSICROMÉTRICO ENFRIAMIENTO SENSIBLE Resumen: En esta guía de laboratorio se encuentra el proceso para reproducir un proceso de enfriamiento sensible al aire utilizando un evaporador
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE CIENCIAS QUIMICAS Y AMBIENTALES
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE CIENCIAS QUIMICAS Y AMBIENTALES AÑO: 2016 PERIODO: SEGUNDO TÈRMINO LABORATORIO DE MATERIA: PROFESOR:
F - INGENIERÍA TÉRMICA Y TRANSFERENCIA DE CALOR
IT 03.2 - TRANSMISIÓN DE CALOR POR CONVECCIÓN NATURAL Y FORZADA (pag. F - 1) TC 01.1 - ALIMENTADOR PARA INTERCAMBIADORES DE CALOR (pag. F - 3) TC 01.2 - INTERCAMBIADOR DE CALOR DE PLACAS (pag. F - 5) TC
3. Convección interna forzada
Tubos circulares resisten grandes diferencias de presión dentro y fuera del tubo (Equipos de transferencia) Tubos no circulares costos de fabricación e instalación más bajos (Sistemas de calefacción) Para
TRANSFERENCIA DE CALOR POR CONVECCIÓN
TRANSFERENCIA DE CALOR POR CONVECCIÓN Nos hemos concentrado en la transferencia de calor por conducción y hemos considerado la convección solo hasta el punto en que proporciona una posible condición de
Centro de desarrollo tecnológico Sustentable SISTEMA DE POST-COMBUSTIÓN Y REDUCCIÓN DE EMISIONES PARA HORNOS DE COMBUSTIÓN OBJETIVOS
Centro de desarrollo tecnológico Sustentable CORPORACION PARA EL MEJORAMIENTO DEL AIRE DE QUITO SISTEMA DE POST-COMBUSTIÓN Y REDUCCIÓN DE EMISIONES PARA HORNOS DE COMBUSTIÓN EXPOSITOR. Ing. Emérita Delgado
LABORATORIO DE OPERACIONES UNITARIAS I
UNIVERSIDAD DEL ZULIA FACULTAD DE INGENIERÍA ESCUELA DE INGENIERÍA QUÍMICA DEPARTAMENTO DE INGENIERÍA QUÍMICA BÁSICA LABORATORIO DE OPERACIONES UNITARIAS I PRÁCTICA 4. MEDIDORES DE FLUJO PARA FLUIDOS INCOMPRESIBLES
TALLER BÁSICO DE MECÁNICA DE SUELOS Próctor Modificado Próctor Estándar
TALLER BÁSICO DE MECÁNICA DE SUELOS Próctor Modificado Próctor Estándar Expositor: Luisa Shuan Lucas DEFINICIÓN COMPACTACIÓN La compactación es un proceso de estabilización mecánica del suelo que mejora
DETERMINACIÓN DE LOS FACTORES DE CONTRACCIÓN DE LOS SUELOS. ASTM D-427, AASHTO T-92, J. E. Bowles ( Experimento Nº 4), MTC E
Referencia DETERMINACIÓN DE LOS FACTORES DE CONTRACCIÓN DE LOS SUELOS ASTM D-7, AASHTO T-9, J. E. Bowles ( Experimento Nº ), MTC E -000 OBJETIVO Obtener datos, por medio de los cuales pueden calcularse
Material de uso frecuente en el laboratorio de química. Figura Nombre Uso / Características. Crisol. Espátula de porcelana. Capsula de porcelana
Material de uso frecuente en el laboratorio de química. En un Laboratorio de Química se utiliza una amplia variedad de instrumentos o herramientas que, en su conjunto, se denominan material de laboratorio.
HUMEDAD ATMOSFÉRICA
www.uwm.edu/~vlarson/research.htm HUMEDAD ATMOSFÉRICA Cantidad de vapor de agua que contiene el aire; es la fuente de precipitaciones; influye en los procesos de evapotranspiración y derretimiento de nieves.
1.- DATOS DE LA ASIGNATURA. Nombre de la asignatura: Operaciones Unitarias II. Carrera: Ingeniería Química. Clave de la asignatura: QUM 0523
1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Operaciones Unitarias II Ingeniería Química QUM 0523 3 2 8 2.- HISTORIA DEL PROGRAMA
ESCUELA POLITÉCNICA NACIONAL FACULTAD DE INGENIERÍA QUÍMICA Y AGROINDUSTRIA CARRERA DE INGENIERÍA QUÍMICA
ESCUELA POLITÉCNICA NACIONAL FACULTAD DE INGENIERÍA QUÍMICA Y AGROINDUSTRIA CARRERA DE INGENIERÍA QUÍMICA PRUEBA DE EVALUACIÓN ESTUDIANTIL DE FIN DE CARRERA PERÍODO 2014-A 24 ABRIL - 2014 1. La solución
Anexo 7. Enfriador Evaporativo ANEXO 7. DISEÑO DEL ENFRIADOR EVAPORATIVO
ANEXO 7. DISEÑO DEL ENFRIADOR EVAPORATIVO La corriente de gases a la salida del post-quemador, exenta de hidrocarburos y con aún partículas en suspensión, es conducida hacia un enfriador evaporativo para
Secador Solar de Alimentos
Secador Solar de Alimentos La evaporación de agua gracias a un secador solar de alimentos, un dosel de cultivos, cuelo, superficie de un lago o piel animal (sudoración) sucede debido a la radiación solar,
, la sustancia está en estado sólido; a T 2., en estado líquido, y a T 3
CAMBIO DE ENTALPÍA DE FUSIÓN DEL HIELO (CALOR LATENTE DE FUSIÓN DEL HIELO) Objetivos Determinar el calor latente de fusión del hielo. Cuestionario previo Facultad de Química, UNAM 1. Por qué la energía
PRÁCTICA 2: CONDUCTIVIDAD TÉRMICA DE LOS METALES
PRÁCTICA 2: CONDUCTIVIDAD TÉRMICA DE LOS METALES 1. OBJETIVO En esta práctica se determina la conductividad térmica del cobre y del aluminio midiendo el flujo de calor que atraviesa una barra de cada uno
Determinación de Humedad en la Atmósfera. Desarrollado por Carolina Meruane y René Garreaud DGF Abril 2006 Revisado por R. Muñoz, Diciembre 2015
Determinación de Humedad en la Atmósfera Desarrollado por Carolina Meruane y René Garreaud DGF Abril 2006 Revisado por R. Muñoz, Diciembre 2015 Aviso: si bien se ha tratado de corregir errores que tenía
Área de Ciencias Naturales LABORATORIO DE FISICA. Física II. Actividad experimental No.1. Propiedades Particulares de la Materia
Área de Ciencias Naturales LABORATORIO DE FISICA Física II ALUMNO(A): GRUPO: EQUIPO: PROFESOR(A): FECHA: CALIFICACION: Actividad experimental No.1 Propiedades Particulares de la Materia EXPERIMENTO No.
Práctica 7 Algunas propiedades térmicas del agua
Página 1/20 Práctica 7 Algunas propiedades térmicas del agua Página 1 Página 2/20 1. Seguridad en la ejecución 1 2 Peligro o fuente de energía La resistencia de inmersión debe estar cubierta de agua. No
CAPITULO 9 EXPERIMENTOS DE SECADO. Se realizaron experimentos con semilla de cilantro.[12] Para las pruebas se utilizó
94 CAPITULO 9 EXPERIMENTOS DE SECADO 9.1 Pruebas de secado Se realizaron experimentos con semilla de cilantro.[12] Para las pruebas se utilizó una altura de lecho estático de entre 6 y 7cm, esto, con la
CAPITULO 7 ESTUDIO DEL EQUIPO PARA REALIZAR LAS PRUEBAS. El equipo lo constituyen; un calentador de vapor, una bomba de vacío, y una
64 CAPITULO 7 ESTUDIO DEL EQUIPO PARA REALIZAR LAS PRUEBAS 7.1 Descripción del equipo El equipo lo constituyen; un calentador de vapor, una bomba de vacío, y una columna de acero inoxidable como elementos
Examen: FÍSICA. 5. A que temperatura tienen el mismo valor la escala Centígrada y la escala Fahrenheit? A) -57 C B) 17.7 C C) 32 C D) -40 C
Examen: FÍSICA 1. En un recipiente de paredes adiabáticas se mezclan 4.5 kg de agua a 37 ºC, 62 kg de agua a 2 ºC y 17 kg de agua a 47 ºC. Si se desprecian cualquier tipo de vaporización, la temperatura
APLICACIÓN DE SIMUSOL EN SECADORES SOLARES: SECADOR SOLAR TIPO CABINA
UNIVERSIDAD NACIONAL JORGE BASADRE GROHMANNTACNA Facultad de Ciencias Escuela Académico Profesional de Física Aplicada APLICACIÓN DE SIMUSOL EN SECADORES SOLARES: SECADOR SOLAR TIPO CABINA Autores: Dr.
Enunciados Lista 5 Nota: 7.2* 7.7* 7.9* 7.14* 7.20* 7.21*
Nota: Los ejercicios 7.14, 7.20, 7.21. 7.26, 7.59, 7.62, 7.67, 7.109 y 7.115 tienen agregados y/o sufrieron modificaciones respecto al Van Wylen. 7.2* Considere una máquina térmica con ciclo de Carnot
Introducción y Conceptos.
Introducción y Conceptos. Introducción y Conceptos. EQUIPOS DE TRANSFERENCIA DE CALOR Introducción y Conceptos. Los equipos de transferencia de calor tales como intercambiadores de calor, las calderas,
MORENO ENRIQUEZ JESUS ALFONSO
RALPH ROSCOE PROCTOR Fue un arquitecto estadounidense, conocido como el inventor de la prueba Proctor. Proctor, estudio ingeniería civil en la Universidad del Sur de California en Los Angeles en 1916,
Modelo de secadero solar.
18 III. Modelo de secadero solar. III.1 Introducción El secado es una operación básica que consiste en reducir la humedad de un producto cualquiera, de forma que el producto final presente unas características
República Bolivariana de Venezuela Ministerio del Poder Popular para la Defensa UNEFA Núcleo Falcón Extensión Punto Fijo
República Bolivariana de Venezuela Ministerio del Poder Popular para la Defensa UNEFA Núcleo Falcón Extensión Punto Fijo Guía de Ejercicios de Primera Ley de Termodinámica 1.- Entra agua a los tubos de
Instituto Tecnológico de Ciudad Juárez Laboratorio de Física Fundamento de Física Práctica # 6 Mediciones
Instituto Tecnológico de Ciudad Juárez Laboratorio de Física Fundamento de Física Práctica # 6 Mediciones I. Introducción. A partir del desarrollo el concepto de número, el hombre tuvo la necesidad de
PRÁCTICA 3F. CALIBRACIÓN DE MEDIDORES DE FLUJO VOLUMÉTRICO. unidad de tiempo, pasa a través de determinada sección transversal.
PRÁCTICA 3F. CALIBRACIÓN DE MEDIDORES DE FLUJO VOLUMÉTRICO A.- Objetivo Calibrar los siguientes medidores de flujo volumétrico: placa orificio, tobera y venturi, mediante el cálculo de los coeficientes
TECNOLOGÍA DE SECADO DE LECHE
INFORME TÉCNICO TECNOLOGÍA DE SECADO DE LECHE 1 tecnología de secado de leche El descubrimiento de secado por spray constituyó un avance sumamente importante en la producción de deshidratados sensibles
Secado de la Madera. Ing. Florencio Trujillo Cuellar
Secado de la Madera Ing. Florencio Trujillo Cuellar Equipos para el Secado Industrial de la Madera Tipos de Secado Industrial 1. Secado Convencional 2. Secado de Altas Temperaturas 3. Secado por Condensación
SECADOR SOLAR CON AIRE FORZADO PARA SECADO DE HIPOCOTILOS DE MACA A 30 C, 40 C Y 50 C
SECADOR SOLAR CON AIRE FORZADO PARA SECADO DE HIPOCOTILOS DE MACA A 30 C, 40 C Y 50 C MSc. Ing. Pedro Bertín Flores Larico UNSA-cer-ee-unas XXII Simposio Peruano de Energía Solar, 2015 Arequipa TIPOS DE
Física Térmica - Práctico 3
- Práctico 3 Instituto de Física, Facultad de Ingeniería, Universidad de la República La numeración entre paréntesis de cada problema, corresponde a la numeración del libro Fundamentos de Termodinámica
Planeación del curso de OPERACIONES DE TRANSFERENCIA DE MASA III
Información general Planeación del curso de OPERACIONES DE TRANSFERENCIA DE MASA III EE: Operaciones de Transferencia de Masa III Grupo: IQ-1-VII No. Créditos: 11 Curso Académico: Teórico Práctico Teoría:
LABORATORIO DE OPERACIONES UNITARIAS II GUÍA DE LABORATORIO SEMESTRE CONVECCIÓN
LABORATORIO DE OPERACIONES UNITARIAS II Página 1 de 8 LABORATORIO DE OPERACIONES UNITARIAS II GUÍA DE LABORATORIO SEMESTRE 2010-1 CONVECCIÓN Diana Catalina Correa I. OBJETIVOS 1.1. GENERAL 1.1.1 Determinar
Práctica No 10. Capacidad térmica de un calorímetro (constante calorimétrica)
Práctica No 10 Capacidad térmica de un calorímetro (constante calorimétrica) 1. Objetivo general: Determinar la capacidad térmica (constante calorimétrica), del calorímetro que se le proporcione. 2. Marco
PUNTO DE INFLAMACION MEDIANTE LA COPA ABIERTA TAG MTC E
PUNTO DE INFLAMACION MEDIANTE LA COPA ABIERTA TAG MTC E 312-2000 Este Modo Operativo está basado en las Normas ASTM D 3143 y AASHTO T 79, las mismas que se han adaptado al nivel de implementación y a las
TRANSFERENCIA DE MASA II OPERACIONES DE HUMIDIFICACION
TRANSFERENCIA DE MASA II OPERACIONES DE HUMIDIFICACION OPERACIONES DE HUMIDIFICACIÓN Las operaciones consideradas se ocupan de la transferencia de masa interfacial y de energía, que resultan cuando un
Enunciados Lista 3. Nota: Realizar diagrama P-v del proceso.
5.9 El agua en un depósito rígido cerrado de 150 lt se encuentra a 100 ºC con 90% de calidad. El depósito se enfría a -10 ºC. Calcule la transferencia de calor durante el proceso. 5.14 Considere un Dewar
Resumen Validación y funcionamiento del generador patrón de humedad
Página:1 de 6 Resumen Validación y funcionamiento del 1. Introducción Los generadores de humedad de punto de rocío y de punto escarcha (GH) producen una corriente de gas con un punto de condensación conocido.
Física 2 Biólogos y Geólogos. Termometría-Sensores de temperatura
Física 2 Biólogos y Geólogos Curso de Verano 2007 Guía de laboratorio N 8 Termometría-Sensores de temperatura Objetivos Estudiar las características básicas de diferentes termómetros y sensores de temperatura.
TRANSFERENCIA DE MASA II EQUIPOS DE SECADO
RANSFERENCIA DE MASA II EQUIPOS DE SECADO CLASIFICACIÓN DE LAS OPERACIONES DE SECADO MÉODO DE OPERACIÓN LOES CONINUO CLASIFICACIÓN DE LAS OPERACIONES DE SECADO MÉODO DE OBENCIÓN DEL CALOR SECADORES DIRECOS
Carrera: Ingeniería Química. Asignatura: Operaciones con Transferencia de Masa I. Área del Conocimiento: Ingeniería Aplicada de marzo de 2003
Carrera: Ingeniería Química Asignatura: Operaciones con Transferencia de Masa I Área del Conocimiento: Ingeniería Aplicada Generales de la Asignatura: Nombre de la Asignatura: Clave Asignatura: Nivel:
UNIDAD 3. Solución de los ejemplos de Psicrometría que aparecen en las láminas de la Unidad Deshidratación
UNIDAD 3. Solución de los ejemplos de Psicrometría que aparecen en las láminas de la Unidad 3. 3.1. Deshidratación Ejemplo 1. Se tiene un aire a una temperatura de bulbo seco de 90 o C y una humedad absoluta
Determinación de la constante de enfriamiento de un líquido.
Determinación de la constante de enfriamiento de un líquido. Laboratorio de Física: 1210 Unidad 3 Temas de interés. 1. Medidas directa e indirectas. 2. Regresión lineal. 3. Análisis gráfico mediante cambio
FENÓMENOS DE TRASPORTE EN METALURGIA EXTRACTIVA Clase 04/06 Transporte de Calor
FENÓMENOS DE TRASPORTE EN METALURGIA EXTRACTIVA Clase 04/06 Transporte de Calor Prof. Leandro Voisin A, MSc., Dr. Académico Universidad de Chile. Jefe del Laboratorio de Pirometalurgia. Investigador Senior
Balance de energía en un diafragma
Balance de energía en un diafragma Objetivos de la práctica! Estudiar el perfil de presiones que se produce a lo largo de una tubería en la que se encuentra instalado un diafragma.! Determinar el coeficiente
LA MATERIA 3RA UNIDAD PROFESORA KATHERINE HUERTA
LA MATERIA 3RA UNIDAD PROFESORA KATHERINE HUERTA EN ESTA UNIDAD APRENDEREMOS A: DEMOSTRAR QUE LA MATERIA TIENE MASA Y OCUPA ESPACIO. COMPARAR LOS ESTADOS FÍSICOS DE LA MATERIA. MEDIR LA MASA, EL VOLUMEN
Enunciados Lista 5. Nota: Realizar un diagrama T-s que sufre el agua.
7.2 Considere una máquina térmica con ciclo de Carnot donde el fluido del trabajo es el agua. La transferencia de calor al agua ocurre a 300 ºC, proceso durante el cual el agua cambia de líquido saturado
Física Térmica - Práctico 5
- Práctico 5 Instituto de Física, Facultad de Ingeniería, Universidad de la República La numeración entre paréntesis de cada problema, corresponde a la numeración del libro Fundamentos de Termodinámica
Formas de transmisión de la energía
CALOR TEMA 6 1 Formas de transmisión de la energía la energía se puede transmitir entre cuerpos se realiza mediante alguna de los siguientes formas: trabajo (cuando intervienen fuerzas y hay un desplazamiento)
ESCUELA UNIVERSITARIA DE INGENIERÍA TÉCNICA INDUSTRIAL UNIVERSIDAD POLITÉCNICA DE MADRID DPTO. QUÍMICA INDUSTRIAL Y POLÍMEROS
ESCUELA UNIVERSITARIA DE INGENIERÍA TÉCNICA INDUSTRIAL UNIVERSIDAD POLITÉCNICA DE MADRID DPTO. QUÍMICA INDUSTRIAL Y POLÍMEROS ASIGNATURA: INGENIERÍA DE LA REACCIÓN QUÍMICA PRÁCCA 5: INTERCAMBIO DE CALOR
Práctica 7 Gasto másico y potencia y eficiencia de una bomba. M del Carmen Maldonado Susano
Práctica 7 Gasto másico y potencia y eficiencia de una bomba Abierto Sistemas Cerrado Aislado Energía Cinética Es la energía que pose un cuerpo o sistema debido a la velocidad. Ec 1 mv 2 Joule 2 Energía
IQ SECADO POR CONVECCIÓN
El objetivo del equipo IQ 01.5 es analizar el secado por convección del elemento a estudiar, modificando el ambiente en el que se encuentra y reflejar los datos de los cambios producidos. Este proceso
"DETERMINACIÓN DE LA CONDUCTIVIDAD TÉRMICA"
EXPERIMENTO FA4 LABORATORIO DE FISICA AMBIENTAL "DETERMINACIÓN DE LA CONDUCTIVIDAD TÉRMICA" MATERIAL: 1 (1) GENERADOR DE VAPOR. 2 (1) RECIPIENTE PARA HIELO. 3 (1) RECIPIENTE COLECTOR DE AGUA DE DESHIELO.
PROBLEMAS DE SEMINARIOS (Transferencia de Calor)
PROBLEMAS DE SEMINARIOS (Transferencia de Calor) 1.- Una plancha de Niquel de 0,4 cm de grosor, tiene una diferencia térmica de 32 ºC entre sus caras. Dicha plancha transmite 200 Kcal/hr a través de un
CAPÍTULO 5 PRESENTACIÓN Y DESCRIPCIÓN DEL EQUIPO EXPERIMENTAL EXISTENTE
CAPÍTULO 5 PRESENTACIÓN Y DESCRIPCIÓN DEL EQUIPO EXPERIMENTAL EXISTENTE 5.1 Introducción En este capítulo se hace una presentación y análisis del equipo experimental para desarrollar las pruebas, esto
DETERMINACION DE LOS FACTORES DE CONTRACCION DE LOS SUELOS I.N.V. E - 127
E - 127-1 DETERMINACION DE LOS FACTORES DE CONTRACCION DE LOS SUELOS I.N.V. E - 127 1. OBJETO Este método de ensayo tiene como fin obtener datos, por medio de los cuales pueden calcularse las siguientes
REPÚBLICA BOLIVARIANA DE VENEZUELA MINISTERIO DEL PODER POPULAR PARA LA DEFENSA UNEFA FALCÓN EXTENSIÓN PUNTO FIJO
REPÚBLICA BOLIVARIANA DE VENEZUELA MINISTERIO DEL PODER POPULAR PARA LA DEFENSA UNEFA FALCÓN EXTENSIÓN PUNTO FIJO GUÍAS DE EJERCICIOS DE TRANSFERENCIA DE CALOR EN SUPERFICIES EXTENDIDAS 1.- Se va a enfriar
Práctica No.1. Propiedades físico-hidráulicas de los canales abiertos y métodos de aforo y Práctica No.2. Flujo uniforme en canales abiertos
Prácticas No. 1 y 2. PropiedadesFísico-HIdráulicas y Flujo Uniforme. Práctica No.1. Propiedades físico-hidráulicas de los canales abiertos y métodos de aforo y Práctica No.2. Flujo uniforme en canales
17. CURVA CARACTERÍSTICA DE UNA LÁMPARA
17. CURVA CARACTERÍSTICA DE UNA LÁMPARA OBJETIVO Medir las resistencias de los filamentos metálicos y de carbón de dos tipos de lámpara al variar la intensidad de corriente que pasa por los mismos. Representar
Hidrología. Ciencia que estudia las propiedades, distribución y circulación del agua
/1/01 Hidrología Ciencia que estudia las propiedades, distribución y circulación del agua Semana 5 - Manejo Estadístico de Datos Hidrometeorológicos (precipitación). Manejo de Data de Variables Hidrometeorológicas
