PROBLEMAS DE SEMINARIOS (Transferencia de Calor)

Tamaño: px
Comenzar la demostración a partir de la página:

Download "PROBLEMAS DE SEMINARIOS (Transferencia de Calor)"

Transcripción

1 PROBLEMAS DE SEMINARIOS (Transferencia de Calor) 1.- Una plancha de Niquel de 0,4 cm de grosor, tiene una diferencia térmica de 32 ºC entre sus caras. Dicha plancha transmite 200 Kcal/hr a través de un área de 5 cm 2. Calcule la conductividad térmica del Niquel en unidades erg. Resp: R = 0,13 (cal/cm C s) 2.- La temperatura en la cara interior de una estufa es de 460 ºF. La pared interior está construida de ladrillo de 8 pulg de espesor. La conductividad térmica promedio del ladrillo es 2,2 Btu/(hr) (pie 2 ) (ºF/pie). El exterior de la estufa está cubierto con planchas de asbesto de 3 de espesor. La conductividad térmica promedio del asbesto es de 0,11 Btu/(hr) (pie 2 ) (ºF/pie). La cara exterior de la aislación tiene una temperatura de 100 ºF. Calcular la cantidad de calor pérdida a través de 2 pie 2 de pared de estufa en 3 horas. Resp: Q = 835,5 (Btu) 3.- Una pared de horno está formada por 15 cm de refractario, 15 cm de ladrillo aislante, y otros 15 cm de ladrillo de construcción, siendo las conductividades: 1,27; 0,22 y 0,60 Kcal/(hr) (m 2 ) (ºC/m), respectivamente. La cara interna del refractario está a 1100 ºC y la cara externa del ladrillo de construcción de 40 ºC. Cuál es la pérdida de calor por m 2 de pared de horno? Cuáles son las temperaturas de las externas e internas del ladrillo aislante? Resp: q = 1010 Kcal/(hr) (m 2 ); t = 981 ºC; t = 291 ºC 4.- En una muralla de ladrillo refractario de 20 x 10 y 3 de espesor, se instala una ventanilla circular de vidrio de 1 pie de diámetro y 1 de grosor. Si la temperatura de la pared interna es de 1000 ºF y la externa de 100 ºF, calcule la cantidad de calor conducida a través de la muralla y vidrio en 1 hora. (k vidrio = 0,40 Btu/(hr) (pie 2 ) (ºF/pie) y k ladrillo = 0,711 Btu/(hr) (pie 2 ) (ºF/pie)). Resp: q = (Btu/hr) 5.- Qué cantidad de calor se pierde horariamente en un horno giratorio de 10 metros de longitud por 0,90 m de diámetro interno, si está recubierto de ladrillo aislante (K = 0,074 cal/ (hr) (m 2 ) (ºC/m) de 50 cm de espesor y la diferencia de temperatura entrelas superficies internas y externas del ladrillo es de 280 ºC. (considere sólo el manto, ya que las pérdidas de calor en las capas son pequeñas). Resp: q = 1743,4 (kcal/h) 6.- Una cañería cuyo diámetro exterior es de 6 pulgadas es aislada con una capa de magnesia (k = 0,064) de 1 y luego asbesto de 4 (k = 0,12). Si la temperatura en la superficie exterior de asbesto es de 50 ªC y la de la pared de la cañería es de 150 ºC, calcular: a) La pérdida de calor en Btu/hr a través de 1000 pies lineales de cañería. b) La temperatura en el espacio comprendido entre el asbesto y la magnesia. Resp: q = (Btu/hr) ; T x = 202,4 F

2 7.- Una cañería de 6 pulg de diámetro está aislada con una capa de asbesto de 1 pulg (k = 0,12) y 5 pulg de corcho (k = 0,025). Termocuplas indican una temperatura de 300 ºF para la pared de la cañería y de 100 ºF para la superficie exterior del corcho. Calcular la pérdida de calor en Btu/hr a través de 500 pie lineales de cañería y la temperatura existente en el espacio comprendido entre el asbesto y el corcho. Resp: q = (Btu/h) ; T x = 286,3 F 8.- Un tubo de caldera de 10 pies lineales de largo, 3,5 pulg de diámetro externo y 2,9 pulg de diámetro interno, calentado por los gases de combustión, contienen vapor saturado a 120 lbf/pulg absolutas. Suponer un coeficiente individual interno de superficie de convección de 2000 Btu/(hr)(pie 2 )(ºF) y un flujo térmico de Btu/(hr)(pie) basado en el área externa. a) Temperatura en la superficie exterior del tubo. b) Espesor que tendría la incrustación de la pared interior del tubo de la caldera si la temperatura externa del tubo no excede de 700 ºF. Suponer que el valor de k para el acero = 25 Btu/(hr)(pie)(ºF/pie) y k para la incrustación = 0,3 Btu/(hr)(pie)(ºF/pie). Resp: a) t = 426,1 F ; b) 5 incor = 0,0181 pulg 9.- Se tiene una cañería de 100 pies de largo con 2,5 pulg de diámetro. Esta cañería conduce un vapor de condensación con una presión de 10,2 lb/pulg manométricas. La temperatura en la pared metálica de la cañería es de 238 ºF. Cuál es la cantidad de calor transferido por hora desde el vapor a la cañería?. Resp: q = (Btu/h) 10.- Un estanque de 3 pies de alto con una base de 1,5 por un pie y totalmente cerrado, está colocado verticalmente sobre el suelo. Su temperatura externa es de 200 ºF. Calcule la pérdida de calor por convección natural hacia el aire que rodea dicho estanque, si la temperatura ambiental es de 60 ºF. Resp: 2.501,9 (Btu/h) 11.- Por una cañería estándar de acero de 6 interior, fluye agua con una velocidad lineal media de 10 pie/seg. La cañería es calentada exteriormente, de modo que la temperatura promedio de la masa principal del fluido es de 100 ºF. Se pide calcular el coeficiente de superficie de convección (h c ) si : µ agua a 100 ºF = 0,684 cp p agua a 100 ºF = 62,0 lb/pie 3 Cp agua a 100 ºF = 1,0 Btu/(lb)(ºF) K agua a 100 ºF = 0,363 Btu/(hr)(pie 2 )(ºF/pie) Resp: h c = 1460 Btu/(hr)(pie 2 )(ºF/pie)

3 12.- Alcohol anhidro entra por una cañería estándar de una pulgada a 70 ºF y sale a 125 ºF. La velocidad lineal promedio del alcohol en la cañería es de 1 pie/seg. La cañería está calefaccionada con vapor saturado a 212 ºF. El coeficiente de superficie de convección del vapor de agua es de El calor específico promedio del alcohol a la temperatura promedio del alcohol, puede tomarse como 0,685 Btu/(lb)(ºF), la densidad media, como 0,78 g/cm, la conductividad térmica media como 0,104 Btu/(hr)(pie)(ºF/pie), y la viscosidad media, como 0,92 cp. Calcular: a) el coeficiente individual de superficie de convección para el alcohol y b) la longitud de cañería que se necesita. Conductividad térmica del acero: 26 Btu/(hr)(pie 2 )(ºF/pie) Diámetro interior cañería 1 = 1,049 Diámetro exterior cañería 1 = 1,315 Resp: h alcohol = 227; L = 19,7 pie 13.- Agua fluye a través de una cañería de cobre de 5 de diámetro exterior y 4,5 de diámetro interior. La cañería es calentada con vapor y el coeficiente integral de transferencia térmica, se ha encontrado que es de 425 Btu/(hr)(pie 2 área interna)(ºf). El coeficiente de film del agua es de 600 Btu /(hr)(pie 2 )(ºF). La conductividad térmica media del cobre para este caso, es de 220 Btu /(hr)(pie 2 )(ºF). Calcule el coeficiente de film del vapor Una estufa a radiador de fierro esmaltado con una superficie total de 15 pie 2 y cuyo coeficiente de emisividad a la temperatura de 120 ºF es de 0,82 está colocado en una habitación en la que el aire tiene una temperatura de 40 ºF. Cual será la cantidad neta de calor que irradia el artefacto por hora?. Resp: 1.067,5 (Btu/h) 15.- Calcular la radiación desde cada pie lineal de cañería estandar de acero de 1 que transporta fluido a 240 ºF (ε cañería = 0,79) y que pasa por el centro de un tubo hecho con planchas de aluminio comercial a 80 ºF (ε = 0,09) que tiene diámetro externo de cañería 1 = 1,315. Resp: q/l = 33,3 Btu/(hr)(pie lineal cañería) 16.- Por una cañería de acero de 2 de diámetro (k = 26 Btu /(hr)(pie 2 )(ºF)), fluye agua en condiciones tales que el coeficiente individual de superficie de convección hc es 500 Btu /(hr)(pie)(ºf). El promedio de t (diferencia de temperatura entre el vapor y el agua) en el punto en que el agua entra al calentador es de 150 ºF, y el promedio de t a la salida del calentador es de 50 ºF. Debe usarse un promedio logarítmico de diferencia de temperatura. Si la cañería es de 10 pies de largo, calcular la cantidad de calor que gana el agua por hora.

4 Datos: el diámetro interior correspondiente a una cañería de acero estandar de 2 es de 2,067 y el espesor de pared es de 0,154. No hay incrustaciones sobre la cañería. Resp: ,6 (Btu/h) 17.- Un intercambiador de calor de doble tubo, consiste en un tubo de cobre de 1 pulg Nº 18 dentro de una cañería de acero de 2 pulg, por el tubo interior fluye agua mientras que por el espacio anular fluye aceite en contracorriente con el agua. En un punto determinado del intercambiador, la temperatura del aceite es de 350 ºF, mientras que la temperatura del agua en el mismo punto es de 95 ºF. Los coeficientes individuales de transferencia térmica en este punto son de 100 Btu /(hr)(pie 2 )(ºF) para el aceite y de 400 Btu /(hr)(pie 2 )(ºF) para el agua. Calcule: a) La cantidad de calor transferido por hora y por pie lineal en este punto. b) La temperatura exterior del tubo de cobre (k = 215). Tubo de cobre de 1 Nº 8 ; Espesor pared = 0,00408 pie Diámetro int. = 0,902 pulg Diámetro ext. = 1 pulg 18.- Se proyecta calentar agua de 80 a 150 ºF en una cañería estandar de acerode 3 mediante vapor saturado a 218 ºF que se condensa en el exterior de la cañería. El coeficiente de film del agua es de 500 Btu /(hr)(pie 2 )(ºF) y el del vapor de 2000 Btu /(hr)(pie 2 )(ºF). Que largo de cañería es necesario si el agua fluye a una velocidad de lb/hr? Diámetro ext. cañería 3 = 3,5 Diámetro int. cañería = 3,068 k acero = 26 Btu /(pie 2 )(ºF/pie) Resp: L = 54,38 pie 19.- En un determinado proceso se necesitan lb/hr de glicerina a 200 ºF. LA glicerina que está en el estanque de almacenamiento que provee de glicerina al proceso, se encuentra a 70 ºF. Para que alcance la temperatura requerida se proyecta calentarla en una cañería de cobre (D ext = 4 ; D int = 3,5 ) mediante vapor saturado a 220 ºF, que se condensa en el exterior de la cañería. Que largo daría Ud. A esta cañería para que logre su objetivo, si se considera que el coeficiente de superficie de convección de la glicerina para este caso es de 300 Btu /(hr)(pie 2 )(ºF) y el del vapor de 2000? C p = prom. de la glicerina = 0,58 Btu/lb ºF K pro cobre = 218 Btu /(hr)(pie 2 )(ºF/pie) Resp: L = 49,2 pie

5 20.- Para calentar kg/hr de aire desde 20 ºC hasta 80ºC se emplea un intercambiador de calor multitubular formado por unhaz de tubos de 2, por el interior de los cuales se hace circular el aire, a la vez que se condensa vapor de agua a 3,5 atm de sobrepresión en el exterior de los mismos. La velocidad másica del aire es kg/m 2 h, su calor específico puede considerar sea constante e igual a 0,24 Kcal/Kg ºC y el coeficiente integral de transmisión de calor referido a la superficie interna es de 60 Kcal/m 2 h ºC. Determínese las características del intercambiador para trabajar en estas condiciones, indicand el número de tubos y la longitud de los mismos. Resp: N: 99 tubos : L = 1,6 m Kg/hr de pasta de tomate son enfriados desde 93 ºC hasta 32ºC en un intercambiador de calor. El coeficiente integral de transferencia de calor, basado en el área interna es 855 W/m.k, calcule el área de transferencia de calor requerida para flujo paralelo y en contracorriente. El agua de enfriameinto entra a 21 ºC y sale a 27 ºC. El calor específico de la pasta de tomate es 3560 J/kg ºK 1W.h = 860 calorías 1 caloría = 4,18168 Yode Resp: A // = 10,4 m 2 ; A cc = 9,04 m Calcule la pérdida de calor de un autoclave horizontal de 1,5424 m de diámetro interno y 9,144 m de largo. Dentro del autoclave hay vapor a 121 ºC. La temperatura ambiente es de 25 ºC. El autoclave tiene paredes de acero (k = 42 W/ m. ºK) y el espesor de éstas es de 0,635 m. hc vapor = 6000 W/m 2.ºk Temperatura de la superficie externa = 120,89 ºC Resp: q = Kcal/h

Física II TRANSFERENCIA DE CALOR INGENIERÍA DE SONIDO

Física II TRANSFERENCIA DE CALOR INGENIERÍA DE SONIDO TRANSFERENCIA DE CALOR INGENIERÍA DE SONIDO Primer cuatrimestre 2012 Titular: Valdivia Daniel Jefe de Trabajos Prácticos: Gronoskis Alejandro Jefe de Trabajos Prácticos: Auliel María Inés TRANSFERENCIA

Más detalles

GUIA N o 2: TRANSMISIÓN DE CALOR Física II

GUIA N o 2: TRANSMISIÓN DE CALOR Física II GUIA N o 2: TRANSMISIÓN DE CALOR Física II Segundo Cuatrimestre 2013 Docentes: Ing. Daniel Valdivia Lic. Maria Ines Auliel Universidad Nacional de Tres de febrero Depto de Ingeniería Sede Caseros II Buenos

Más detalles

Convección Problemas de convección 1.1. PROBLEMAS DE CONVECCIÓN 1

Convección Problemas de convección 1.1. PROBLEMAS DE CONVECCIÓN 1 1.1. PROBLEMAS DE CONVECCIÓN 1 Convección 1.1. Problemas de convección Problema 1 Una placa cuadrada de 0,1 m de lado se sumerge en un flujo uniforme de aire a presión de 1 bar y 20 C con una velocidad

Más detalles

Diseño Termohidráulico de Intercambiadores de Calor.

Diseño Termohidráulico de Intercambiadores de Calor. Diseño Termohidráulico de Intercambiadores de Calor. Horario de clases: Martes y Jueves, 10:00-13:00 hrs. Horario de asesorías: Miércoles de 12:00-14:00 hrs. Aula: B-306 Trimestre: 13I Curso: 2122096 1

Más detalles

T 1 T 2. x L. Con frecuencia es importante el valor de la resistencia térmica multiplicado por el área de flujo de calor, en este caso sera

T 1 T 2. x L. Con frecuencia es importante el valor de la resistencia térmica multiplicado por el área de flujo de calor, en este caso sera 1. ey de Fourier ué flujo de calor es necesario hacer pasar a través de una barra circular de madera de 5 cm de diámetro y 10 cm de longitud, cuya temperatura en los extremos es de 50 C y 10 C en sus extremos?

Más detalles

INSTITUTO TECNOLÓGICO DE DURANGO DEPARTAMENTO DE INGENIERÍAS QUÍMICA Y BIOQUÍMICA SEMESTRE AGOSTO-DICIEMBRE 2006

INSTITUTO TECNOLÓGICO DE DURANGO DEPARTAMENTO DE INGENIERÍAS QUÍMICA Y BIOQUÍMICA SEMESTRE AGOSTO-DICIEMBRE 2006 Problema 10B.6 (modificado) Adaptado de Bird, Stewart & Lightfoot, Transport Phenomena, second edition, 2001, Ed. Wiley. Espesor de aislamiento para la pared de un horno La pared de un horno consiste de

Más detalles

PROBLEMAS TRANSMISIÓN DE CALOR

PROBLEMAS TRANSMISIÓN DE CALOR PROBLEMAS TRANSMISIÓN DE CALOR CD_1 El muro de una cámara frigorífica de conservación de productos congelados está compuesto por las siguientes capas (de fuera a dentro): - Revoco de cemento de 2 cm de

Más detalles

FÍSICA APLICADA. 1- Completar el siguiente cuadro; utilizando la ecuación de conversión: CENTIGRADO FAHRENHEIT KELVIN 40 F

FÍSICA APLICADA. 1- Completar el siguiente cuadro; utilizando la ecuación de conversión: CENTIGRADO FAHRENHEIT KELVIN 40 F UNIDAD 5: TEMPERATURA Y CALOR 5. A: Temperatura y dilatación Temperatura, energía y calor. Medición de la temperatura. Escalas de temperatura. Dilatación lineal, superficial y volumétrica. Dilatación anómala

Más detalles

INGENIERÍA TÉRMICA CURSO 2014/15

INGENIERÍA TÉRMICA CURSO 2014/15 1. Se desea limitar la pérdida de calor a través de la pared de una caldera a 1900 kcal/h.m 2. La pared plana es de un material que tiene una conductividad térmica de 1 kcal/h.m.ºc. Si la superficie interior

Más detalles

OPERACIONES UNITARIAS

OPERACIONES UNITARIAS OPERACIONES UNITARIAS 2016 TEMA 2 - CALOR INTRODUCCION MECANISMOS DE TRANSFERENCIA DE CALOR Prácticamente en todas las operaciones que realiza el ingeniero interviene la producción o absorción de energía

Más detalles

Tema 1: Introducción. Rafael Royo, José Miguel Corberán. Curso Diapositiva 1. Tema1: Introducción INTRODUCCIÓN. JM Corberán, R Royo (UPV) 1

Tema 1: Introducción. Rafael Royo, José Miguel Corberán. Curso Diapositiva 1. Tema1: Introducción INTRODUCCIÓN. JM Corberán, R Royo (UPV) 1 Diapositiva 1 INTRODUCCIÓN. JM Corberán, R Royo (UPV) 1 Diapositiva 2 ÍNDICE 1. CONCEPTOS PREVIOS DE TERMODINÁMICA 2. INTRODUCCIÓN A LOS MODOS DE TRANSMISIÓN DE CALOR 2.1. CONDUCCIÓN 2.2. CONVECCIÓN 2.3.

Más detalles

INTERCAMBIADORES DE CALOR DE TUBOS CONCÉNTRICOS. María Claudia Romero, Natalia Ballesteros, Julián Vargas Echeverry

INTERCAMBIADORES DE CALOR DE TUBOS CONCÉNTRICOS. María Claudia Romero, Natalia Ballesteros, Julián Vargas Echeverry INTERCAMBIADORES DE CALOR DE TUBOS CONCÉNTRICOS María Claudia Romero, Natalia Ballesteros, Julián Vargas Echeverry Resumen En un intercambiador de calor participan dos o más corrientes de proceso, unas

Más detalles

RAFAEL BARRANTES SEGURA ID: UM19138SME Master in Mechanical Engineering. Heat Exchanger Design ATLANTIC INTERNATIONAL UNIVERSITY

RAFAEL BARRANTES SEGURA ID: UM19138SME Master in Mechanical Engineering. Heat Exchanger Design ATLANTIC INTERNATIONAL UNIVERSITY RAFAEL BARRANTES SEGURA ID: UM19138SME26986 Master in Mechanical Engineering Heat Exchanger Design ATLANTIC INTERNATIONAL UNIVERSITY HONOLULU, HAWAII SPRING, 2012 TABLA DE CONTENIDO BIBLIOGRAFÍA... 93

Más detalles

REPÚBLICA BOLIVARIANA DE VENEZUELA MINISTERIO DEL PODER POPULAR PARA LA DEFENSA UNEFA FALCÓN EXTENSIÓN PUNTO FIJO

REPÚBLICA BOLIVARIANA DE VENEZUELA MINISTERIO DEL PODER POPULAR PARA LA DEFENSA UNEFA FALCÓN EXTENSIÓN PUNTO FIJO REPÚBLICA BOLIVARIANA DE VENEZUELA MINISTERIO DEL PODER POPULAR PARA LA DEFENSA UNEFA FALCÓN EXTENSIÓN PUNTO FIJO GUÍAS DE EJERCICIOS DE TRANSFERENCIA DE CALOR EN SUPERFICIES EXTENDIDAS 1.- Se va a enfriar

Más detalles

ANEXO 1: Tablas de las propiedades del aire a 1 atm de presión. ҪENGEL, Yunus A. y John M. CIMBALA, Mecánica de fluidos: Fundamentos y

ANEXO 1: Tablas de las propiedades del aire a 1 atm de presión. ҪENGEL, Yunus A. y John M. CIMBALA, Mecánica de fluidos: Fundamentos y I ANEXO 1: Tablas de las propiedades del aire a 1 atm de presión ҪENGEL, Yunus A. y John M. CIMBALA, Mecánica de fluidos: Fundamentos y aplicaciones, 1ª edición, McGraw-Hill, 2006. Tabla A-9. II ANEXO

Más detalles

Termodinámica y Máquinas Térmicas

Termodinámica y Máquinas Térmicas Termodinámica y Máquinas Térmicas Tema 09. Transmisión de Calor Inmaculada Fernández Diego Severiano F. Pérez Remesal Carlos J. Renedo Estébanez DPTO. DE INGENIERÍA ELÉCTRICA Y ENERGÉTICA Este tema se

Más detalles

La radiación es la energía de calor transferida por radiación electromagnética. Depende del medio en el que ocurra, de las temperaturas relativas y

La radiación es la energía de calor transferida por radiación electromagnética. Depende del medio en el que ocurra, de las temperaturas relativas y RADIACIÓN La radiación es la energía de calor transferida por radiación electromagnética. Depende del medio en el que ocurra, de las temperaturas relativas y la superficie que absorba o emita la energía.

Más detalles

República Bolivariana de Venezuela Ministerio del Poder Popular para la Defensa UNEFA Núcleo Falcón Extensión Punto Fijo

República Bolivariana de Venezuela Ministerio del Poder Popular para la Defensa UNEFA Núcleo Falcón Extensión Punto Fijo República Bolivariana de Venezuela Ministerio del Poder Popular para la Defensa UNEFA Núcleo Falcón Extensión Punto Fijo Guía de Ejercicios de Primera Ley de Termodinámica 1.- Entra agua a los tubos de

Más detalles

Capítulo IV. Transferencia de calor a régimen transitorio

Capítulo IV. Transferencia de calor a régimen transitorio Capítulo IV Transferencia de calor a régimen transitorio Transferencia de calor a régimen transitorio La transferencia de calor a régimen transitorio se puede presentar en ingeniería de calor ya sea en

Más detalles

Eficiencia energética en conductos de climatización. Claire Plateaux

Eficiencia energética en conductos de climatización. Claire Plateaux Eficiencia energética en conductos de climatización Claire Plateaux Introducción Informe Anual De Consumos Energéticos IDAE - 2009 Sector Residencial + Servicio : 27% del consumo total Acondicionamiento

Más detalles

Problema 1. Problema 2

Problema 1. Problema 2 Problemas de clase, octubre 2016, V1 Problema 1 Una máquina frigorífica utiliza el ciclo estándar de compresión de vapor. Produce 50 kw de refrigeración utilizando como refrigerante R-22, si su temperatura

Más detalles

Ejercicio 2. Finalmente, mientras más separados los baffles menor es la transferencia de calor, es decir, existe un relación indirecta.

Ejercicio 2. Finalmente, mientras más separados los baffles menor es la transferencia de calor, es decir, existe un relación indirecta. Ejercicio Profesor: omás Vargas. Auxiliar: Melanie olet. Ayudante: orge Monardes Diego Guiachetti. 1.- En un tercambiador de carcasa y tubos, el fluido que circula por el exterior de los tubos (por la

Más detalles

TRANSFERENCIA DE CALOR POR CONVECCIÓN

TRANSFERENCIA DE CALOR POR CONVECCIÓN MARZO, 2016 REPÚBLICA BOLIVARIANA DE VENEZUELA MINISTERIO DEL PODER POPULAR PARA LA DEFENSA UNIVERSIDAD NACIONAL EXPERIMENTAL POLITÉCNICA DE LA FUERZA ARMADA NACIONAL BOLIVARIANA CÁTEDRA: TRANSFERENCIA

Más detalles

GRADO EN INGENIERÍA MECÁNICA (GR. 1, 4) CURSO 2013-2014 Enunciados de problemas de Transmisión de Calor

GRADO EN INGENIERÍA MECÁNICA (GR. 1, 4) CURSO 2013-2014 Enunciados de problemas de Transmisión de Calor Conducción de calor 11.1.- Calcula la distribución de temperatura de un muro de espesor L y conductividad térmica K sin generación interna de calor, cuando la superficie interna y externa mantienen temperaturas

Más detalles

Termodinámica y Termotecnia

Termodinámica y Termotecnia Termodinámica y Termotecnia Tema 10. Transmisión de Calor Inmaculada Fernández Diego Severiano F. Pérez Remesal Carlos J. Renedo Estébanez DPTO. DE INGENIERÍA ELÉCTRICA Y ENERGÉTICA Este tema se publica

Más detalles

TEMPERATURA Y CALOR. Tomás Rada Crespo Ph.D.

TEMPERATURA Y CALOR. Tomás Rada Crespo Ph.D. TEMPERATURA Y CALOR Tomás Rada Crespo Ph.D. Temperatura y Calor Tengo Calor!!!! Tengo Frio!!!! Este café esta frío!!!! Uff qué temperatura!!!! Esta gaseosa esta caliente!!!! En el lenguaje cotidiano, es

Más detalles

TEMA 1. INTERCAMBIADORES DE CALOR

TEMA 1. INTERCAMBIADORES DE CALOR TEMA 1. INTERCAMBIADORES DE CALOR 1 Índice Clasificación. Regeneradores. Mezcladores o de contacto directo. Intercambiadores de lecho compacto. Intercambiadores de llama directa. Clasificación de los recuperadores.

Más detalles

TEMPERATURA Y CALOR. Oxford 2º ESO

TEMPERATURA Y CALOR. Oxford 2º ESO TEMPERATURA Y CALOR Oxford 2º ESO TEMPERATURA Temperatura: de un cuerpo es la magnitud que expresa la agitación térmica de sus partículas que lo forman relacionado con su energía cinética, E c. E c partículas

Más detalles

Climatización por Suelo Radiante/Refrescante de Saunier Duval

Climatización por Suelo Radiante/Refrescante de Saunier Duval Climatización por Suelo Radiante/Refrescante de Saunier Duval 1. Introducción 2. Confort 3. Simulación mediante Fluent del comportamiento de una instalación 1. Calefacción 2. Refrigeración 4. Ventajas

Más detalles

INDICE 1.- CÁLCULO DE CHIMENEA DE EVACUACIÓN DE HUMOS SEGÚN LA NORMA EN DATOS DE PARTIDA... 2

INDICE 1.- CÁLCULO DE CHIMENEA DE EVACUACIÓN DE HUMOS SEGÚN LA NORMA EN DATOS DE PARTIDA... 2 INDICE 1.- CÁLCULO DE CHIMENEA DE EVACUACIÓN DE HUMOS SEGÚN LA NORMA EN 13384-1.... 2 1.1.- DATOS DE PARTIDA.... 2 1.2.- CAUDAL DE LOS PRODUCTOS DE COMBUSTIÓN.... 2 1.3.- DENSIDAD MEDIA DE LOS HUMOS...

Más detalles

1 TERMODINAMICA Departamento de Física - UNS Carreras: Ing. Industrial y Mecánica

1 TERMODINAMICA Departamento de Física - UNS Carreras: Ing. Industrial y Mecánica TERMODINAMICA Departamento de Física - UNS Carreras: Ing. Industrial y Mecánica Trabajo Práctico N : PROCESOS Y CICLOS DE POTENCIA DE VAPOR Procesos con vapor ) En un cierto proceso industrial se comprimen

Más detalles

Enunciados Lista 3. FIGURA P5.14 Nota: Se modificaron los porcentajes respecto al ejercicio del libro.

Enunciados Lista 3. FIGURA P5.14 Nota: Se modificaron los porcentajes respecto al ejercicio del libro. 5.9 * El agua en un depósito rígido cerrado de 50 lt se encuentra a 00 ºC con 90% de calidad. El depósito se enfría a -0 ºC. Calcule la transferencia de calor durante el proceso. 5.4 * Considere un Dewar

Más detalles

HIDRAULICA DE POTENCIA. Unidad 1. Bases físicas de la hidráulica

HIDRAULICA DE POTENCIA. Unidad 1. Bases físicas de la hidráulica HIDRAULICA DE POTENCIA Unidad 1. Bases físicas de la hidráulica Presión Este término se refiere a los efectos de una fuerza que actúa distribuida sobre una superficie. La fuerza causante de la presión

Más detalles

CINETICA DE CONGELACIÓN DE ALIMENTOS ALIMENTOS

CINETICA DE CONGELACIÓN DE ALIMENTOS ALIMENTOS CINETICA DE CONGELACIÓN DE ALIMENTOS CURVA TIPICA DE CONGELACIÓN DE ALIMENTOS 20 15 a 10 5 Temperatura ( C) 0-5 -10 Tramo a-b Periodo de pre-enfriamiento b Tramo b-c Periodo de cambio de fase c Tramo c-d

Más detalles

DISEÑO DE CÁMARAS FRIGORÍFICAS

DISEÑO DE CÁMARAS FRIGORÍFICAS DISEÑO DE CÁMARAS FRIGORÍFICAS OBJETIVO Velocidad de extracción de Calor velocidad de ingreso de calor El aire en el interior debe ser mantenido a temperatura constante de diseño. El evaporador es diseñado

Más detalles

Dentro de las más conocidas, tenemos: Celcius, Fahrenheit, kelvin. Física II Mg. José Castillo Ventura 1

Dentro de las más conocidas, tenemos: Celcius, Fahrenheit, kelvin. Física II Mg. José Castillo Ventura 1 Dentro de las más conocidas, tenemos: Celcius, Fahrenheit, kelvin 100 100 180 Mg. José Castillo Ventura 1 Kelvin Grado Celcius Grado Farenheit Kelvin K = K K = C + 273,15 K = (F + 459,67)5/9 Grado Celcius

Más detalles

UTN Facultad Regional La Plata Integración III

UTN Facultad Regional La Plata Integración III Balance de energía El concepto de balance de energía macroscópico, es similar al concepto del balance de materia macroscópico. Acumulación Transferencia Transferencia Generación Consumo de energía de energía

Más detalles

OPERACIONES BÁSICAS I EJERCICIOS DE FLUJO DE FLUIDOS

OPERACIONES BÁSICAS I EJERCICIOS DE FLUJO DE FLUIDOS OPERACIONES BÁSICAS I EJERCICIOS DE FLUJO DE FLUIDOS 1. Por una tubería de 0.15 m de diámetro interno circula un aceite petrolífero de densidad 0.855 g/cm 3 a 20 ºC, a razón de 1.4 L/s. Se ha determinado

Más detalles

CALEFACCIÓN TEMA I. DEPARTAMENTO DE CONSTRUCCION ARQUITECTONICA ESCUELA TECNICA SUPERIOR DE ARQUITECTURA LAS PALMAS DE GRAN CANARIA

CALEFACCIÓN TEMA I. DEPARTAMENTO DE CONSTRUCCION ARQUITECTONICA ESCUELA TECNICA SUPERIOR DE ARQUITECTURA LAS PALMAS DE GRAN CANARIA DEPARTAMENTO DE CONSTRUCCION ARQUITECTONICA ESCUELA TECNICA SUPERIOR DE ARQUITECTURA LAS PALMAS DE GRAN CANARIA CALEFACCIÓN TEMA I. CONCEPTOS FÍSICOS BÁSICOS. MANUEL ROCA SUÁREZ JUAN CARRATALÁ FUENTES

Más detalles

LABORATORIO DE OPERACIONES UNITARIAS II GUÍA DE LABORATORIO SEMESTRE INTERCAMBIADORES DE CALOR DE TUBOS Y CORAZA

LABORATORIO DE OPERACIONES UNITARIAS II GUÍA DE LABORATORIO SEMESTRE INTERCAMBIADORES DE CALOR DE TUBOS Y CORAZA Página 1 de 11 GUÍA DE LABORATORIO SEMESTRE 2010-1 INTERCAMBIADORES DE CALOR DE TUBOS Y CORAZA María Claudia Romero; Natalia Ballesteros; Julián Vargas Echeverry OBJETIVOS OBJETIVO GENERAL Calcular los

Más detalles

PROBLEMARIO No. 2. Veinte problemas con respuesta sobre los Temas 3 y 4 [Trabajo y Calor. Primera Ley de la Termodinámica]

PROBLEMARIO No. 2. Veinte problemas con respuesta sobre los Temas 3 y 4 [Trabajo y Calor. Primera Ley de la Termodinámica] Universidad Simón olívar Departamento de Termodinámica y Fenómenos de Transferencia -Junio-007 TF - Termodinámica I Prof. Carlos Castillo PROLEMARIO No. Veinte problemas con respuesta sobre los Temas y

Más detalles

Enunciados Lista 6. Nota: Los ejercicios 8.37 y 8.48 fueron modificados respecto al Van Wylen.

Enunciados Lista 6. Nota: Los ejercicios 8.37 y 8.48 fueron modificados respecto al Van Wylen. Nota: Los ejercicios 8.37 y 8.48 fueron modificados respecto al Van Wylen. 8.1* El compresor en un refrigerador recibe refrigerante R-134a a 100 kpa y 20 ºC, y lo comprime a 1 MPa y 40 ºC. Si el cuarto

Más detalles

AGRADECIMIENTOS DEDICATORIA ABSTRACT

AGRADECIMIENTOS DEDICATORIA ABSTRACT INDICE GENERAL AGRADECIMIENTOS DEDICATORIA RESUMEN ABSTRACT i ii iii iv CAPITULO 1 Descripción Del Problema. 1 Introducción 2 1.1 Antecedentes y motivación 3 1.2 Descripción del problema 3 1.3 Solución

Más detalles

FISICOQUÍMICA Y BIOFÍSICA UNLA

FISICOQUÍMICA Y BIOFÍSICA UNLA FISICOQUÍMICA Y BIOFÍSICA UNLA 1º CUATRIMESTRE Profesor: Ing. Juan Montesano. Instructor: Ing. Diego García. PRÁCTICA 5 Primer Principio Sistemas Abiertos PRÁCTICA 5: Primer Principio Sistemas abiertos.

Más detalles

Bajo. Capítulo I. Generalidades sobre Intercambiadores de calor. Intercambiadores de calor

Bajo. Capítulo I. Generalidades sobre Intercambiadores de calor. Intercambiadores de calor Capítulo I Generalidades sobre Intercambiadores de calor. Intercambiadores de calor Bajo la denominación general de intercambiadores de calor, se engloba a todos aquellos dispositivos utilizados para transferir

Más detalles

NOCIONES BASICAS ES LA MATERIA QUE INTEGRA UN CUERPO SÓLIDO, UN LIQUIDO O UN GAS.

NOCIONES BASICAS ES LA MATERIA QUE INTEGRA UN CUERPO SÓLIDO, UN LIQUIDO O UN GAS. SUSTANCIA: ES LA MATERIA QUE INTEGRA UN CUERPO SÓLIDO, UN LIQUIDO O UN GAS. SUSTANCIA DE TRABAJO: ES LA PORCIÓN DE MATERIA QUE ACTUANDO EN UN SISTEMA ES CAPAZ DE ABSORBER O CEDER ENERGÍA. EN ESE PROCESO

Más detalles

AISLACION INDUSTRIAL

AISLACION INDUSTRIAL AISLACION INDUSTRIAL Dirección: América Central 1751 San Ramón 1. INTRODUCCIÓN La necesidad de aislación térmica en la industria obedece a una serie de factores cuyo control está directamente relacionado

Más detalles

TRANSMITANCIA TÉRMICA BLOQUES DE HORMIGÓN

TRANSMITANCIA TÉRMICA BLOQUES DE HORMIGÓN DERROCHE INNECESARIO DE ENERGÍA FACTORES QUE PUEDEN PRODUCIR Excesivos gastos de calefacción originados por techos con deficiente aislación, demasiada superficie de ventanas o paños transparentes, sobre

Más detalles

XVIII.- INTERCAMBIADORES DE CALOR MÉTODO DE LA EFICIENCIA

XVIII.- INTERCAMBIADORES DE CALOR MÉTODO DE LA EFICIENCIA XVIII.- INTERCAMBIADORES DE CALOR MÉTODO DE LA EFICIENCIA XVIII..- EFICACIA DE LOS INTERCAMBIADORES DE CALOR En muchas situaciones lo único que se conoce es la descripción física del intercambiador, como

Más detalles

TERMAS SOLARES

TERMAS SOLARES TERMAS SOLARES www.termassolares.com ENERGÍA INNOVADORA Energía Innovadora SAC, es sinónimo de calidad en soluciones de energía eólica y energía solar en el Perú. Desde nuestra fundación en Arequipa en

Más detalles

Problemas de Estática y Dinámica DINÁMICA DE FLUIDOS

Problemas de Estática y Dinámica DINÁMICA DE FLUIDOS Problemas de Estática y Dinámica DINÁMICA DE FLUIDOS (1 er Q.:prob pares, 2 ndo Q.:prob impares) 1. En el esquema adjunto las secciones de la tubería son 40 y 12 cm 2, y la velocidad del agua en la primera

Más detalles

INTERCAMBIADORES. Intercambiador de Calor: Sistemas de Recuperación

INTERCAMBIADORES. Intercambiador de Calor: Sistemas de Recuperación Intercambiador de Calor: Sistemas de Recuperación El calor es una energía en tránsito. Según el segundo principio de la termodinámica, éste pasa espontáneamente de los cuerpos de mayor temperatura a los

Más detalles

ESTO NO ES UN EXAMEN, ES UNA HOJA DEL CUADERNILLO DE EJERCICIOS. Heroica Escuela Naval

ESTO NO ES UN EXAMEN, ES UNA HOJA DEL CUADERNILLO DE EJERCICIOS. Heroica Escuela Naval CUADERNILLO DE FÍSICA. TERCER GRADO. I.- SUBRAYE LA RESPUESTA CORRECTA EN LOS SIGUIENTES ENUNCIADOS. 1.- CUANDO DOS CUERPOS CON DIFERENTE TEMPERATURA SE PONEN EN CONTACTO, HAY TRANSMISIÓN DE: A) FUERZA.

Más detalles

Estos tres procesos de transferencia están caracterizados por el mismo tipo general de ecuación:

Estos tres procesos de transferencia están caracterizados por el mismo tipo general de ecuación: TRANSFERENCIA DE CALOR I ESTADO ESTABLE Semejanzas entre los Procesos de Transferencia de Momento, Calor y Masa Las diversas operaciones unitarias pueden clasificarse en tres procesos fundamentales de

Más detalles

Formulario de Termodinámica Aplicada Conceptos Básicos Formula Descripción Donde F= fuerza (newton) Fuerza ( )

Formulario de Termodinámica Aplicada Conceptos Básicos Formula Descripción Donde F= fuerza (newton) Fuerza ( ) Conceptos Básicos Formula Descripción Donde F= fuerza (newton) Fuerza ( ) a = aceleración (m/s 2 ) Peso P= peso (newton) ( ) g = gravedad (9.087 m/s 2 ) Trabajo ( ) 1 Joule = 1( N * m) W = trabajo (newton

Más detalles

TERMOTANQUES SOLARES. Agua caliente sanitaria para hogar e industria. Utilizan la radiación solar para calentar el agua

TERMOTANQUES SOLARES. Agua caliente sanitaria para hogar e industria. Utilizan la radiación solar para calentar el agua TERMOTANQUES SOLARES Agua caliente sanitaria para hogar e industria Utilizan la radiación solar para calentar el agua Termosolar Compacto de Acero Inoxidable Características Tanque exterior de Acero Inoxidable

Más detalles

Fuentes de agua refrigerada

Fuentes de agua refrigerada Fuentes de agua refrigerada Estos aparatos, especialmente concebidos para el enfriamiento de agua para beber, se presentan generalmente bajo la forma de muebles metálicos construidos bajo el estilo de

Más detalles

GUIA DE PROBLEMAS N 5

GUIA DE PROBLEMAS N 5 GUIA DE PROBLEMAS N 5 PROBLEMA N 1 Se produce un vacío parcial en una caja estanca, que tiene una tapa cuya área es 7,5 10-3 m 2. Si se requiere una fuerza de 480N para desprender la tapa de la caja y

Más detalles

ANEXO GUÍA DE PROBLEMAS

ANEXO GUÍA DE PROBLEMAS ANEXO GUÍA DE PROBLEMAS Unidad 5.A: TEMPERATURA Problemas propuestos 1) Expresar en grados Fahrenheit el cero absoluto. 2) Transformar 175 K a grados centígrados. 3) A qué temperatura Celsius equivalen

Más detalles

Calor CALOR T > Fig.1

Calor CALOR T > Fig.1 C U R S O: FÍSICA MENCIÓN MATERIAL: FM-18 Calor Cuando dos sistemas a diferentes temperaturas se colocan juntos, finalmente alcanzarán una temperatura intermedia. A partir de esta observación, se puede

Más detalles

Soluciones Analíticas de Navier Stokes.

Soluciones Analíticas de Navier Stokes. 1 Soluciones Analíticas de Navier Stokes. Problema 1 Un fluido newtoniano fluye en el huelgo formado por dos placas horizontales. La placa superior se mueve con velocidad u w, la inferior está en reposo.

Más detalles

Descripción del condensador del Laboratorio de Ingeniería Química

Descripción del condensador del Laboratorio de Ingeniería Química Descripción del condensador del Laboratorio de Ingeniería Química Nota: El condensador es de 2 pasos por los tubos y un paso por la coraza, con 11 tubing de 3 / 4 calibre 16. Material de construcción acero

Más detalles

DILATACIÓN PREGUNTAS PROBLEMAS

DILATACIÓN PREGUNTAS PROBLEMAS DILATACIÓN 1. Qué es la temperatura? PREGUNTAS PROBLEMAS 1. Dos barras idénticas de fierro (α = 12 x 10-6 /Cº) de 1m de longitud, fijas en uno de sus extremos se encuentran a una temperatura de 20ºC si

Más detalles

TECNOLOGÍA DE FLUIDOS Y CALOR

TECNOLOGÍA DE FLUIDOS Y CALOR Departamento de Física Aplicada I Escuela Universitaria Politécnica TECNOLOGÍA DE FLUIDOS Y CALOR TABLAS DE MECÁNICA DE FLUIDOS A. Propiedades del agua... 1 B. Propiedades de líquidos comunes... 2 C. Propiedades

Más detalles

Calentamiento de agua para piscinas. Principios básicos y Normativa

Calentamiento de agua para piscinas. Principios básicos y Normativa Calentamiento de agua para piscinas Principios básicos y Normativa Comportamiento de la temperatura del agua El agua de las piscinas necesita de un aporte externo de energía para poder mantener el confort

Más detalles

QUÉ ES LA TEMPERATURA?

QUÉ ES LA TEMPERATURA? 1 QUÉ ES LA TEMPERATURA? Nosotros experimentamos la temperatura todos los días. Cuando estamos en verano, generalmente decimos Hace calor! y en invierno Hace mucho frío!. Los términos que frecuentemente

Más detalles

Capítulo 10: ciclos de refrigeración. El ciclo de refrigeración por compresión es un método común de transferencia de calor de una

Capítulo 10: ciclos de refrigeración. El ciclo de refrigeración por compresión es un método común de transferencia de calor de una Capítulo 0: ciclos de refrigeración El ciclo de refrigeración por compresión es un método común de transferencia de calor de una temperatura baja a una alta. ENTRA IMAGEN capítulo 0-.- CAOR ambiente 2.-

Más detalles

TEMPERATURA. E c partículas agitación térmica Tª

TEMPERATURA. E c partículas agitación térmica Tª TEMPERATURA Y CALOR TEMPERATURA Temperatura: de un cuerpo es la magnitud que expresa la agitación térmica de sus partículas que lo forman relacionado con su energía cinética, E c. E c partículas agitación

Más detalles

Capitulo 4: Dinámica de los fluidos I (Análisis global del comportamiento dinámico de los fluidos).

Capitulo 4: Dinámica de los fluidos I (Análisis global del comportamiento dinámico de los fluidos). Capitulo 4: Dinámica de los fluidos I (Análisis global del comportamiento dinámico de los fluidos). 1) Explique los siguientes conceptos y/o ecuaciones: a) Circulación. B) Volumen de control. B) Teorema

Más detalles

Documento: El diseño correcto en los sistemas de intercambio de calor por lotes Fecha: 13 Enero 2015 Autor: Arnold Kleijn.

Documento: El diseño correcto en los sistemas de intercambio de calor por lotes Fecha: 13 Enero 2015 Autor: Arnold Kleijn. Documento: El diseño correcto en los sistemas de intercambio de calor por lotes Fecha: 13 Enero 2015 Autor: Arnold Kleijn -1- Resumen En este artículo vamos a ver con detalle el sistema de intercambio

Más detalles

Respuesta: a) La fracción molar de NaCl es 0,072 b) La concentración másica volumétrica de NaCl es 0,231 g/cc

Respuesta: a) La fracción molar de NaCl es 0,072 b) La concentración másica volumétrica de NaCl es 0,231 g/cc Ejercicio 1: La densidad a 4 ºC de una solución acuosa de NaCl al 20% en peso es 1,155 g/cc a) Calcule la fracción molar de NaCl b) Calcule la concentración másica volumétrica de NaCl La masa molecular

Más detalles

TEMA 1. MECANISMOS BÁSICOS DE TRANSMISIÓN DE CALOR

TEMA 1. MECANISMOS BÁSICOS DE TRANSMISIÓN DE CALOR TEMA 1. MECANISMOS BÁSICOS DE TRANSMISIÓN DE CALOR El calor: Es una forma de energía en tránsito. La Termodinámica y La Transferencia de calor. Diferencias. TERMODINAMICA 1er. Principio.Permite determinar

Más detalles

Ahorro Energético Integral Aplicado a la Mediana y Pequeña Industria, a los Centros Comerciales, a los Edificios

Ahorro Energético Integral Aplicado a la Mediana y Pequeña Industria, a los Centros Comerciales, a los Edificios Ahorro Energético Integral Aplicado a la Mediana y Pequeña Industria, a los Centros Comerciales, a los Edificios TRANSMISION DEL CALOR, AISLAMIENTO TÉRMICO Por el peso que tienen en el consumo mundial

Más detalles

UNIDAD 1: DISEÑO DE CÁMARAS FRIGORÍFICAS GUIA DE PROBLEMAS RESUELTOS

UNIDAD 1: DISEÑO DE CÁMARAS FRIGORÍFICAS GUIA DE PROBLEMAS RESUELTOS UNIDAD 1: DISEÑO DE CÁMARAS FRIGORÍFICAS GUIA DE PROBLEMAS RESUELTOS 1. Una Cámara de refrigeración para almacenamiento de Kiwi tiene las siguientes dimensiones: 3,6 m x 8 m x 28 m. Fue diseñado para operar

Más detalles

Ingeniería del calor Antonio Valiente Barderas. Capítulo VIII. Cambiadores de calor de flujo cruzado.

Ingeniería del calor Antonio Valiente Barderas. Capítulo VIII. Cambiadores de calor de flujo cruzado. Capítulo VIII Cambiadores de calor de flujo cruzado. 375 Cambiadores de calor de flujo cruzado Introducción E n muchas aplicaciones prácticas, sobre todo en el calentamiento y enfriamiento de gases, es

Más detalles

INDUSTRIAS I HORNO ROTATIVO

INDUSTRIAS I HORNO ROTATIVO INDUSTRIAS I HORNO ROTATIVO Ing. Bruno A. Celano Gomez Abril 2015 HORNO ROTATIVO Continuo Calentamiento Externo Llama libre Aplicaciones: cemento, cal, aluminio, etc. Horno Rotativo Diagrama Horno Rotativo

Más detalles

PROBLEMARIO DE TRANSFERENCIA DE CALOR

PROBLEMARIO DE TRANSFERENCIA DE CALOR Universidad de Los Andes Facultad de Ingeniería Escuela de Ing. Mecánica Depto. de Ciencias Térmicas PROBLEMARIO DE TRANSFERENCIA DE CALOR Prof. Manuel V. Avila M. Mérida, 03-02-98 1. MODOS DE TRANSFERENCIA

Más detalles

GUIA DE EJERCICIOS DE OPERACIONES UNITARIAS II SECADO

GUIA DE EJERCICIOS DE OPERACIONES UNITARIAS II SECADO LABORATORIO DE OPERACIONES UNITARIAS FACULTAD DE CS QUÍMICAS Y FARMACÉUTICAS UNIVERSIDAD DE CHILE GUIA DE EJERCICIOS DE OPERACIONES UNITARIAS II SECADO 1.- Una plancha de cartón de dimensiones 100 cm x

Más detalles

Y TECNOLOGÍA DEL MEDIO AMBIENTE UNIVERSIDAD DE OVIEDO BASES DE LA INGENERÍA QUÍMICA 1º GIQ CURSO 2014/15

Y TECNOLOGÍA DEL MEDIO AMBIENTE UNIVERSIDAD DE OVIEDO BASES DE LA INGENERÍA QUÍMICA 1º GIQ CURSO 2014/15 DEPARTAMENTO DE INGENIERÍA QUÍMICA Y TECNOLOGÍA DEL MEDIO AMBIENTE UNIVERSIDAD DE OVIEDO BASES DE LA INGENERÍA QUÍMICA 1º GIQ CURSO 2014/15 PRÁCTICAS DE AULA PROBLEMAS PROBLEMA 1.1.- Transformar las siguientes

Más detalles

Productos de Fibra Cerámica para Aplicaciones de Alta Temperatura

Productos de Fibra Cerámica para Aplicaciones de Alta Temperatura 3M Nextel Productos de Fibra Cerámica para Aplicaciones de Alta Temperatura Información de Producto 1. PRODUCTO Nextel 312, productos textiles de fibra cerámica para aplicaciones de alta temperatura. 2.

Más detalles

GRADO: INGENIERÍA MECÁNICA CURSO: 3º CUATRIMESTRE: 1º PLANIFICACIÓN SEMANAL DE LA ASIGNATURA

GRADO: INGENIERÍA MECÁNICA CURSO: 3º CUATRIMESTRE: 1º PLANIFICACIÓN SEMANAL DE LA ASIGNATURA DENOMINACIÓN ASIGNATURA: TRANSFERENCIA DE CALOR GRADO: INGENIERÍA MECÁNICA CURSO: 3º CUATRIMESTRE: 1º PLANIFICACIÓN SEMANAL DE LA ASIGNATURA SEMANA SESIÓN 1 1 DESCRIPCIÓN DEL CONTENIDO DE LA SESIÓN Presentación

Más detalles

Dónde: -Por una superficie de 1 m 2, -Por un grosor de 1 m, -Cuando la diferencia de temperatura entre las dos caras es de 1 K.

Dónde: -Por una superficie de 1 m 2, -Por un grosor de 1 m, -Cuando la diferencia de temperatura entre las dos caras es de 1 K. Aislamiento térmico Aislamiento térmico es la capacidad de los materiales para oponerse al paso del calor por conducción a través de ellos. Se evalúa por la resistencia térmica que tienen. La medida de

Más detalles

CONVERSIONES DENSIDAD Y PRESIÓN

CONVERSIONES DENSIDAD Y PRESIÓN APLICACIONES DE PROPIEDADES DE LA MATERIA CONVERSIONES 1.- REALICE LAS SIGUIENTES CONVERSIONES DE UNIDADES: a) 500 psia convertir a: bar, mmhg, m.c.a, N/m2, Pasc, Torr, inhg, lb/ft2, kg/cm2. b) 150 bar

Más detalles

Medición de la Conductividad

Medición de la Conductividad Medición de la Conductividad 1.1. Introducción Las soluciones de la Ley de Fourier en su formulación diferencial, empleando las condiciones de borde adecuadas, permite resolver el problema de conducción

Más detalles

Anexo1: Ejemplo práctico: Cálculo disipador con ventilación forzada.

Anexo1: Ejemplo práctico: Cálculo disipador con ventilación forzada. Anexo1. Ejemplo práctico, pg 1 Anexo1: Ejemplo práctico: Cálculo disipador con ventilación forzada. Para clarificar conceptos y ver la verdadera utilidad del asunto, haremos el siguiente ejemplo práctico

Más detalles

Módulo 2: Termodinámica. mica Temperatura y calor

Módulo 2: Termodinámica. mica Temperatura y calor Módulo 2: Termodinámica mica Temperatura y calor 1 Termodinámica y estado interno Para describir el estado externo de un objeto o sistema se utilizan en mecánica magnitudes físicas como la masa, la velocidad

Más detalles

TRANSFERENCIA DE CALOR. Ejemplos de los tres métodos se muestran en la figura 19.1

TRANSFERENCIA DE CALOR. Ejemplos de los tres métodos se muestran en la figura 19.1 TRANSFERENCIA DE CALOR Se ha referido al calor como una forma de energía de tránsito. Siempre que exista una diferencia de temperaturas entre dos cuerpos o entre dos porciones de un mismo cuerpo, se dice

Más detalles

CALOR Y TEMPERATURA CALOR

CALOR Y TEMPERATURA CALOR CALOR Y TEMPERATURA El calor y la temperatura no son sinónimos, podemos decir que están estrictamente relacionados ya que la temperatura puede determinarse por la cantidad de calor acumulado. El calor

Más detalles

Examen de TECNOLOGIA DE MAQUINAS Septiembre 95 Nombre...

Examen de TECNOLOGIA DE MAQUINAS Septiembre 95 Nombre... Examen de TECNOLOGIA DE MAQUINAS Septiembre 95 Nombre... Sea el eje de una turbina de vapor que se apoya sobre dos cojinetes completos tal y como se puede ver en la figura. El eje pesa 2000 Kg y su centro

Más detalles

Universidad Nacional Experimental Francisco de Miranda Programa de Ingeniería Química Unidad Curricular: Operaciones Unitarias I

Universidad Nacional Experimental Francisco de Miranda Programa de Ingeniería Química Unidad Curricular: Operaciones Unitarias I Prof. Ing. Mahuli González Universidad Nacional Experimental Francisco de Miranda Programa de Ingeniería Química Unidad Curricular: Operaciones Unitarias I INTERCAMBIADORES DE CALOR Equipos donde se realiza

Más detalles

i) V Dado que el hule tiene un coeficiente de expansión térmica negativo, al calentarse este material reduce su tamaño.

i) V Dado que el hule tiene un coeficiente de expansión térmica negativo, al calentarse este material reduce su tamaño. PROBLEMA 1 Responda verdadero (V) o falso (F) justificando las falsas. Sea breve en su respuesta (no más de 4 líneas). En caso que corresponda puede apoyarse también haciendo breves cálculos para responder

Más detalles

EJERCICIOS DE FÍSICA II Profesor: José Fernando Pinto Parra

EJERCICIOS DE FÍSICA II Profesor: José Fernando Pinto Parra Ejercicios de Dinámica de los Fluidos: REPÚBLICA BOLIVARIANA DE VENEZUELA EJERCICIOS DE FÍSICA II Profesor: José Fernando Pinto Parra. Entre dos líneas de corriente bidimensionales de un escurrimiento

Más detalles

COLEGIO DE BACHILLERES DEL ESTADO DE QUERÉTARO Plantel No. 7 El Marqués GUIA DE REGULARIZACIÓN DE FÍSICA II UNIDAD 1

COLEGIO DE BACHILLERES DEL ESTADO DE QUERÉTARO Plantel No. 7 El Marqués GUIA DE REGULARIZACIÓN DE FÍSICA II UNIDAD 1 UNIDAD 1 I. INTRODUCCIÓN 1. Investiga y resume los siguientes conceptos: a. HIDRODINÁMICA: b. HIDROSTÁTICA: c. HIDRÁULICA 2. Investiga y resume en qué consiste cada una de las características de los fluidos

Más detalles

Tipología de Radiadores

Tipología de Radiadores EFICIENCIA ENERGÉTICA y MAXIMO CONFORT Tipología de Radiadores Ponente: Josep Castellà Director Técnico Zehnder Group Ibérica Tipología de Radiadores - Características comunes a todos los Radiadores -

Más detalles

TRANSFERENCIA DE CALOR

TRANSFERENCIA DE CALOR Conducción Convección Radiación TRANSFERENCIA DE CALOR Ing. Rubén Marcano Temperatura es una propiedad que depende del nivel de interacción molecular. Específicamente la temperatura es un reflejo del nivel

Más detalles

Equipo requerido Cantidad Observaciones Generador de vapor 1 Cámara de vapor y base 1 Piezas planas de diversos

Equipo requerido Cantidad Observaciones Generador de vapor 1 Cámara de vapor y base 1 Piezas planas de diversos No 9 LABORATORIO DE FISICA MOLECULAR CONDUCTIVIDAD TERMICA DEPARTAMENTO DE FISICA Y GEOLOGIA UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS Objetivos 1. Comprender el proceso de transferencia de

Más detalles

Labranza y temperatura del suelo. Francisco Rojo

Labranza y temperatura del suelo. Francisco Rojo Labranza y temperatura del suelo Francisco Rojo Temperatura y Flujo de Calor en el suelo, en cero labranza Francisco Rojo Rübke 2005 Procesos influenciados por el aumento de la Temperatura Actividad Microbiológica

Más detalles

control de las características térmicas de los materiales

control de las características térmicas de los materiales control de las características térmicas de los materiales Universidad de Chile Facultad de Arquitectura y Urbanismo Todos los cuerpos emiten calor produciendo flujo térmico entre un elemento de mayor temperatura

Más detalles