TEORIA DE CIRCUITOS. CURSO PRÁCTICA 4. RESPUESTA FRECUENCIAL EN REGIMEN PERMANENTE SENOIDAL

Tamaño: px
Comenzar la demostración a partir de la página:

Download "TEORIA DE CIRCUITOS. CURSO PRÁCTICA 4. RESPUESTA FRECUENCIAL EN REGIMEN PERMANENTE SENOIDAL"

Transcripción

1 1 INGENIERIA TENIA INDUSTRIAL. ELETRONIA INDUSTRIAL TEORIA DE IRUITOS. URSO PRÁTIA 4. RESPUESTA FREUENIAL EN REGIMEN PERMANENTE SENOIDAL PRIMERA PARTE: SIMULAIÓN EN PSPIE INTRODUIÓN El objetivo de esta práctica es simular con PSPIE el comportamiento de ciertos circuitos lineales, formados por resistores, inductores y condensadores, en el dominio frecuencial. Para ello se determinará la respuesta frecuencial H(w) lineal y logarítmica para barridos de frecuencias de la señal de entrada. 1. SIMULAIÓN DE IRUITOS LINEALES EN REGIMEN PERMANENTE SENOIDAL 1.1. ALULO DE LA FUNIÓN DE TRANSFERENIA DE UN IRUITO En el siguiente circuito debe calcularse la función de transferencia entre fasores de salida y entrada, tal como se indican en la figura 1. Para estimar su respuesta frecuencial se va a realizar un barrido de frecuencias mediante PSPIE en la fuente de tensión de entrada, representando tanto el módulo lineal y la fase de H(w) versus frecuencia. Acto seguido, se representará el módulo de H(w) en db a escala logarítmica. ómo se comporta este circuito? úantos ceros y polos tendrá su función de transferencia y dónde estarán situados? Tiene frecuencia de resonancia este circuito? En este caso particular, cuál será el desfase entre tensiones de salida y entrada?. Recuerda que el código en PSPIE para la simulación lineal para un rango de [1 Hz-10MHz] y 1000 puntos es:.a LIN Hz 100 MEG Y que para la simulación logarítmica para un rango de [1Hz-10MHz] y 10 puntos por década:.a DE 10 1Hz 10MEG 1 ΚΩ 10 mh 5 cos wot 2µF 1ΚΩ Figura 1 P ara visualizar en el PROBE la fase de H(w), se empleará (menú Trace-Add) el operador analógico P( ), que devuelve grados IRUITO RL PARALELO Dado el siguiente circuito RL paralelo se va a estudiar la respuesta frecuencial de la admitancia equivalente de entrada (desde los terminales A y B). Para ello calcularás primero

2 2 analíticamente Yin(w) y su frecuencia de resonancia. Después, mediante simulación PSPIE, el circuito se excitará con un generador de tensión senoidal de amplitud 10V. La salida será en este caso la intensidad que atraviesa dicho generador y el cociente entre el fasor de la intensidad y el fasor de la tensión de entrada la admitancia Yin(w) en cuestión. Para estimar su respuesta frecuencial se va a realizar un barrido de frecuencias en la excitación de [1Hz-200KHz], representándose el módulo y la fase de Yin (w) en lineal para dicho margen. Observando la gráfica resultante, compara con los resultados obtenidos analíticamente. uál será la frecuencia de resonancia de este circuito? En este caso particular, cuál será el desfase entre tensiones de salida y entrada?, cuál será la impedancia de entrada?. 1mΩ A 220Ω 22mH 4.7nF B Figura 2 Nota: la resistencia Rs de valor 1mΩ no tiene efecto ninguno en la respuesta y en el cálculo analítico debe considerarse un cortocircuito (Rs=0 Ω) FILTRO PASO BAJO ON DOS POLOS PRÓXIMOS En el circuito de la figura 3 se sabe que la función de transferencia entre fasores de tensiones de ( ) salida y entrada tiene una constante 1 en D y dos polos, situados en ( 2R) ( 3 5) ( 2R) rad/s. on estos datos, calcula analíticamente la función de transferencia para los valores de R y de la figura 3 y representa su diagrama de Bode. Mediante simulación PSPIE estima ahora su respuesta frecuencial exacta barriendo la frecuencia de entrada en el margen [1-10MHz]. ompara el diagrama de Bode obtenido analíticamente y la respuesta frecuencial logarítmica obtenida por simulación. Por qué crees que no concuerdan? Qué representación de las obtenidas será más fiable para calcular la respuesta del filtro a entradas de amplitud 10V y frecuencias: 0 Hz, 100 Hz, 54KHz, 100KHz, 250 KHz, 1MHz.? alcúlalas para la representación más precisa. En qué margen de frecuencias se obtienen resultados más próximos? A qué se debe? Por qué crees que este filtro se denomina paso bajo? 3 5 y R R Vi(t) = 4.7nF R = 1.5 KΩ Figura 3

3 SINTONIZADOR 470Ω Vi(t) 6.8nF 1.5 mh Figura 4 En el circuito de la figura 4 calcula analíticamente las funciones de transferencia, impedancia de entrada equivalente desde los terminales de entrada, y H(w) entre las tensiones de salida y de entrada. alcula analíticamente la frecuencia de resonancia. Qué vale H(w) para esta frecuencia? Representa, mediante simulación PSPIE, el módulo lineal y logarítmico y la fase de H(w) y para el margen de frecuencias [1-300 KHz]. Por qué crees que este circuito se denomina un sintonizador? 1.5. FILTRO ATIVO PASO BAJO alcula la función de transferencia Vo/Vin entre la tensión de salida y la tensión de entrada alimentando esta última con una señal senoidal de 1V de amplitud y fase nula. El análisis será del tipo:.ac dec Hz 10MEG análisis ac en décadas entre 10Hz y 100MHz (100 puntos) 1 V1 - Vin(t) R1 R2-2 V2 - Figura 5. Análisis transitorio y frecuencial Imprime los diagramas de módulo y fase de la función de transferencia para un barrido de frecuencia máxima de 10KHz. Observando el módulo y la fase con PROBE, sabrías determinar cuáles son los polos, ceros y ganancia en continua de la función de transferencia? (para ello, fíjate con la ganancia a -3dB y con las pendientes). Qué función realiza el circuito?. Haz otro barrido de frecuencias hasta 10MHz. Observa la función de transferència y fíjate que sólo se parece a la calculada analíticamente para bajas frecuencias. Pregunta al profesor las posibles causas de este comportamiento.

4 4 SEGUNDA PARTE: MONTAJE INTRODUIÓN El objetivo de esta práctica es comprobar experimentalmente los resultados obtenidos en la parte de simulación anterior. Para ello se montarán sobre la ProtoBoard los circuitos lineales simulados en PSPIE de esta parte, formados por resistores, inductores y condensadores. 1. MONTAJE DE IRUITOS LINEALES EN REGIMEN PERMANENTE SENOIDAL 1.1. ALULO DE LA FUNIÓN DE TRANSFERENIA DE UN IRUITO El circuito de la figura 1 se excitará con una señal senoidal, sin offset, de amplitud 5V (10V pico a pico). omo el valor del condensador de 2uF no es un valor nominal, pondremos dos condensadores de 1uF en paralelo. ompara la señal de entrada y la señal de salida con el osciloscopio para diferentes frecuencias de la tensión de entrada: 0 Hz (D), 100 Hz, 1KHz, 10KHz, 100KHz, 1MHz. Evalúa cómo va variando la amplitud y la fase conforme vamos aumentando la frecuencia. Representa en una tabla la amplitud y el desfase para cada frecuencia de la señal de salida. ompara estos resultados con los que hubieras obtenido mediante análisis manual del circuito y con el módulo y fase de la función de transferencia obtenida en la simulación PSPIE del apartado 1.1 de esta misma práctica (primera parte de simulación) IRUITO RL PARALELO Dado el siguiente circuito RL paralelo (figura 6) se va a estudiar la respuesta frecuencial de la admitancia equivalente de entrada (desde los terminales A y B). 10Ω A 220Ω 22mH 4.7nF B Figura 6 Para ello el circuito se excitará con un generador de tensión senoidal de amplitud 200 mvpp. La señal de salida será en este caso la intensidad que atraviesa dicho generador. Experimentalmente, para el cálculo del módulo de la admitancia Yin(w), dividiremos la amplitud de tensión de entrada (100mV) y la amplitud de corriente de salida (a calcular con el osciloscopio). El desfase de Yin(w) será el desfase de la corriente referida respecto a la tensión de entrada. Para estimar su respuesta frecuencial se va a realizar un barrido de frecuencias en la excitación de: 0 Hz (D), 100 Hz, 1KHz, 15.5 KHz, 20 KHz, 40 KHz, 100 KHz, 1MHz midiendo con el osciloscopio el módulo y la fase de Yin. Representa en una gráfica las curvas del módulo y la fase de Yin(w). La medida de la intensidad será la diferencia de la tensión medida con la sonda en A y la tensión en, dividiendo el resultado por 10. Observando la gráfica resultante, compara con los resultados obtenidos por simulación en la primera parte de la práctica. uál será la frecuencia de resonancia de este circuito? En este caso particular, cuál será el desfase entre tensiones de salida y entrada?, cuál será la impedancia de entrada a diferencia de lo simulado en la parte práctica previa?. Recuerda que la

5 5 frecuencia de resonancia es aquella para la que tensión e intensidad de corriente de entrada están en fase. Para ello deberás ajustar la frecuencia de la señal senoidal hasta que ambas señales estén en fase FILTRO PASO BAJO ON DOS POLOS PRÓXIMOS Monta el circuito de la figura 3 y excítalo con una señal senoidal de amplitud 10V y frecuencias sucesivas de 0 Hz, 100 Hz, 54KHz, 100KHz, 250 KHz, 1MHz. alcula para cada frecuencia anterior y con el osciloscopio la señal de salida vo(t), su amplitud y su desfase con respecto a la señal de entrada. El módulo de la función de transferencia H(w) será la razón de la amplitud de salida y la amplitud de entrada (10V), y su fase el desfase de vo(t) en relación con vi(t). ompara los resultados obtenidos con los simulados en la primera parte de la práctica SINTONIZADOR Monta en la protoboard el circuito de la figura 4. Excita el circuito con una señal senoidal de 1V de amplitud (2Vpp) y calcula mediante el osciloscopio la intensidad que pasa por la resistencia de 470Ω Iinput (resta de tensiones entre terminales A y y división por 470) y la tensión de salida vo(t) para las siguientes frecuencias: O Hz, 100 Hz, 1KHz, 20KHz, 40KHz, 50KHz, 60 KHz y 100KHz. Grafica las funciones de transferencia, impedancia de entrada equivalente desde los terminales de entrada, y H(w) entre las tensiones de salida y de entrada para las anteriores frecuencias y compara con los resultados obtenidos en la primera parte de la práctica FILTRO ATIVO PASO BAJO Analiza el comportamiento teórico del circuito de la figura 5. Para ello calcula la función de transferencia Vo/Vin entre la tensión de salida i tensión de entrada, considerando el amplificador operacional como ideal. Representa los diagramas de Bode de módulo y fase de la función de transferencia. Qué función realiza el circuito? Monta el circuito sobre la protoboard, considerando que =1uF y R=1K. onectando una señal senoidal de 1V de amplitud y barriendo la frecuencia para cada década con el generador de funciones desde 0 Hz (c.c) hata 100KHz, mide vo(t) para cada frecuencia (mide con el osciloscopio) y haz una tabla. ompara los resultados con los obtenidos del análisis.

El sistema a identificar es el conjunto motor eléctrico-freno siguiente:

El sistema a identificar es el conjunto motor eléctrico-freno siguiente: Sistema a identificar El sistema a identificar es el conjunto motor eléctrico-freno siguiente: Relación entrada-salida Las variables de entrada-salida a considerar para la identificación del sistema es

Más detalles

Electrónica de Comunicaciones. Septiembre de 2009.

Electrónica de Comunicaciones. Septiembre de 2009. Electrónica de omunicaciones. Septiembre de 2009. (Teoría) IMPORTANTE: La revisión de la parte teórica del examen tendrá lugar el día 15 de septiembre, a las 10:30 h en el Seminario Heaviside. 1. TEST

Más detalles

CIRCUITOS ELECTRÓNICOS. Práctica nº 1. Software de simulación de circuitos

CIRCUITOS ELECTRÓNICOS. Práctica nº 1. Software de simulación de circuitos CIRCUITOS ELECTRÓNICOS Práctica nº 1 Software de simulación de circuitos Trabajo a realizar en la práctica La práctica consiste en introducir al alumno en la utilización de la herramienta software LTspice

Más detalles

Respuesta en Frecuencia de un Circuito RC

Respuesta en Frecuencia de un Circuito RC de un Circuito RC Omar X. Avelar & Diego I. Romero SISTEMAS ELECTRICOS INDUSTRIALES (ESI 13AA) Instituto Tecnológico y de Estudios Superiores de Occidente () Departamento de Electrónica, Sistemas e Informática

Más detalles

RESPUESTA FRECUENCIAL Función de transferencia del amplificador

RESPUESTA FRECUENCIAL Función de transferencia del amplificador Función de transferencia del amplificador A (db) A (db) A 0 3 db A M 3 db Amplificador directamente acoplado ω BW=ω H -ω L GB=A M ω H ω L ω H ω Amplificador capacitivamente acoplado Ancho de Banda Producto

Más detalles

Tema 3: Criterios serie paralelo y mixto. Resolución de problemas.

Tema 3: Criterios serie paralelo y mixto. Resolución de problemas. Tema 3. Circuitos serie paralelo y mixto. Resolución de problemas En el tema anterior viste como se comportaban las resistencias, bobinas y condensadores cuando se conectaban a un circuito de corriente

Más detalles

EXP207 REGLAS DE FUNCIONAMIENTO EN OP-AMPS.

EXP207 REGLAS DE FUNCIONAMIENTO EN OP-AMPS. EXP207 REGLAS DE FUNCIONAMIENTO EN OP-AMPS. I.- OBJETIVOS. Comprobar experimentalmente las reglas de funcionamiento líneas del amplificador lineal del amplificador operacional. Comprobar el funcionamiento

Más detalles

Laboratorio Amplificador Diferencial Discreto

Laboratorio Amplificador Diferencial Discreto Objetivos Laboratorio mplificador Diferencial Discreto Verificar el funcionamiento de un amplificador discreto. Textos de Referencia Principios de Electrónica, Cap. 17, mplificadores Diferenciales. Malvino,

Más detalles

Circuitos de RF y las Comunicaciones Analógicas. Capítulo II: Circuitos resonantes y Redes de acople

Circuitos de RF y las Comunicaciones Analógicas. Capítulo II: Circuitos resonantes y Redes de acople Capítulo II: Circuitos resonantes y Redes de acople 21 22 2. Circuitos Resonantes y Redes de Acople En este capítulo se estudiaran los circuitos resonantes desde el punto de vista del factor de calidad

Más detalles

COMPONENTES PASIVOS Y CIRCUITOS RESONANTES

COMPONENTES PASIVOS Y CIRCUITOS RESONANTES Práctica 1 COMPONENTES PASIVOS Y CIRCUITOS RESONANTES El objetivo de esta práctica es estudiar en el laboratorio el comportamiento en frecuencia de componentes pasivos y redes RLC. También se estudiará

Más detalles

PRACTICA Nº 1 MEDICIONES SOBRE CIRCUITOS ELECTRONICOS

PRACTICA Nº 1 MEDICIONES SOBRE CIRCUITOS ELECTRONICOS UNIVERSIDAD SIMON BOLIVAR DPTO. ELECTRONICA Y CIRCUITOS CIRCUITOS ELECTRONICOS I EC1177 PRACTICA Nº 1 MEDICIONES SOBRE CIRCUITOS ELECTRONICOS OBJETIVO Familiarizar al estudiante con los conceptos fundamentales

Más detalles

FILTROS PASIVOS Y ACTIVOS. Comprobar experimentalmente la respuesta en frecuencia de los filtros activos y pasivos

FILTROS PASIVOS Y ACTIVOS. Comprobar experimentalmente la respuesta en frecuencia de los filtros activos y pasivos FACULTAD NACIONAL DE INGENIERIA INGENIERIA ELECTRICA-ELECTRONICA LABORATORIO DE TELECOMUNICACIONES Materia: Telecomunicaciones I (ELT 3632) LABORATORIO 2 OBJETIVO FILTROS PASIVOS Y ACTIVOS Comprobar experimentalmente

Más detalles

intensidad de carga. c) v 1 = 10 V, v 2 = 5 V. d) v 1 = 5 V, v 2 = 5 V.

intensidad de carga. c) v 1 = 10 V, v 2 = 5 V. d) v 1 = 5 V, v 2 = 5 V. 1. En el circuito regulador de tensión de la figura: a) La tensión de alimentación es de 300V y la tensión del diodo de avalancha de 200V. La corriente que pasa por el diodo es de 10 ma y por la carga

Más detalles

Practicas de Fundamentos de Electrotecnia ITI. Curso 2005/2006

Practicas de Fundamentos de Electrotecnia ITI. Curso 2005/2006 Practicas de Fundamentos de Electrotecnia ITI. Curso 005/006 Práctica 4 : Modelo equivalente de un transformador real. Medidas de potencia en vacío y cortocircuito. OBJETIVO En primer lugar, el alumno

Más detalles

INTRODUCCIÓN A LA CORRIENTE ALTERNA. USO DEL OSCILOSCOPIO

INTRODUCCIÓN A LA CORRIENTE ALTERNA. USO DEL OSCILOSCOPIO INTRODUCCIÓN A LA CORRIENTE ALTERNA. USO DEL OSCILOSCOPIO OBJETIVO Estudio de las diferentes partes de un osciloscopio y realización de medidas con este instrumento. Introducción Un osciloscopio consta

Más detalles

RECOMENDACIÓN UIT-R BS *,** Medición del nivel de tensión del ruido de audiofrecuencia en radiodifusión sonora

RECOMENDACIÓN UIT-R BS *,** Medición del nivel de tensión del ruido de audiofrecuencia en radiodifusión sonora Rec. UIT-R BS.468-4 1 RECOMENDACIÓN UIT-R BS.468-4 *,** Medición del nivel de tensión del ruido de audiofrecuencia en radiodifusión sonora La Asamblea de Radiocomunicaciones de la UIT, (1970-1974-1978-1982-1986)

Más detalles

SIMULACIONES INTERACTIVAS DE FUNDAMENTOS DE CIRCUITOS

SIMULACIONES INTERACTIVAS DE FUNDAMENTOS DE CIRCUITOS SIMULACIONES INTERACTIVAS DE FUNDAMENTOS DE CIRCUITOS ANTONIO JOSE SALAZAR GOMEZ UNIVERSIDAD DE LOS ANDES FACULTAD DE INGENIERIA DEPARTAMENTO DE INGENIERIA ELECTRICA Y ELECTRONICA TABLA DE CONTENIDO 1.

Más detalles

CIRCUITOS y SISTEMAS I

CIRCUITOS y SISTEMAS I CIRCUITOS y SISTEMAS I I II - III LEYES IV - V MÉTODOS VI ANÁLISIS TEMPORAL INTRODUCCIÓN componentes + general conexiones simplificativos VII asociaciones ANÁLISIS FRECUENCIAL 4,5 horas (4,5 + 4) horas

Más detalles

Electrónica 2. Práctico 3 Alta Frecuencia

Electrónica 2. Práctico 3 Alta Frecuencia Electrónica 2 Práctico 3 Alta Frecuencia Los ejercicios marcados con son opcionales. Además cada ejercicio puede tener un número, que indica el número de ejercicio del libro del curso (Microelectronic

Más detalles

Herramientas Integradas para Laboratorios de Electrónica

Herramientas Integradas para Laboratorios de Electrónica Herramientas Integradas para Laboratorios de Electrónica NI Educational Laboratory Virtual Instrumentation Suite (NI ELVIS) Integración y funcionalidad con múltiples instrumentos. Combina instrumentación,

Más detalles

[PRÁCTICAS DE SIMULACIÓN ELECTRÓNICA]

[PRÁCTICAS DE SIMULACIÓN ELECTRÓNICA] 2013 [PRÁCTICAS DE SIMULACIÓN ELECTRÓNICA] 3º E.S.O. PRACTICA Nº 1. RESISTENCIAS VARIABLES POTENCIÓMETRO Monta los circuitos de la figura y observa que ocurre cuando el potenciómetro es de 100Ω, de 1kΩ

Más detalles

Tema: Uso del analizador espectral.

Tema: Uso del analizador espectral. Sistemas de Comunicación I. Guía 1 1 I Facultad: Ingeniería Escuela: Electrónica Asignatura: Sistemas de comunicación Tema: Uso del analizador espectral. Objetivos Conocer el funcionamiento de un Analizador

Más detalles

Práctica 3: Señales en el Tiempo y Dominio de

Práctica 3: Señales en el Tiempo y Dominio de Práctica 3: Señales en el Tiempo y Dominio de Frecuencia Número de Equipo: Nombres: Fecha: Horario: Dia de clase: Profesor: Objetivos: Al finalizar esta práctica, usted será capaz de: Predecir el contenido

Más detalles

Ejercicios corriente alterna

Ejercicios corriente alterna Ejercicios corriente alterna 1. EJERCICIO 2. (2.5 puntos) A una resistencia de 15Ω en serie con una bobina de 200 mh y un condensador de 100µF se aplica una tensión alterna de 127 V, 50 Hz. Hallar: a)

Más detalles

Practica 5 Amplificador operacional

Practica 5 Amplificador operacional Practica 5 Amplificador operacional Objetivo: Determinar las características básicas de un circuito amplificador operacional. Examinar las ventajas de la realimentación negativa. Equipo: Generador de funciones

Más detalles

TRABAJO PRÁCTICO NÚMERO 3: Diodos II. Construir y estudiar un circuito rectificador de media onda y un circuito rectificador de onda completa.

TRABAJO PRÁCTICO NÚMERO 3: Diodos II. Construir y estudiar un circuito rectificador de media onda y un circuito rectificador de onda completa. TRABAJO PRÁCTICO NÚMERO 3: Diodos II Diodo como rectificador Objetivos Construir y estudiar un circuito rectificador de media onda y un circuito rectificador de onda completa. Introducción teórica De la

Más detalles

Apuntes para el diseño de un amplificador multietapas con TBJs

Apuntes para el diseño de un amplificador multietapas con TBJs Apuntes para el diseño de un amplificador multietapas con TBJs Autor: Ing. Aída A. Olmos Cátedra: Electrónica I - Junio 2005 - Facultad de Ciencias Exactas y Tecnología UNIVERSIDAD NACIONAL DE TUCUMAN

Más detalles

Experimento 3: Circuitos rectificadores con y sin filtro

Experimento 3: Circuitos rectificadores con y sin filtro Instituto Tecnológico de Costa Rica Escuela de Ingeniería Electrónica Profesores: Ing. Johan Carvajal, Ing. Adolfo Chaves, Ing. Eduardo Interiano, Ing. Francisco Navarro Laboratorio de Elementos Activos

Más detalles

SISTEMAS DE COMUNICACIÓN A & D -- Práctica de laboratorio FRECUENCIA MODULADA EN EL DOMINIO DEL TIEMPO Y FRECUENCIA

SISTEMAS DE COMUNICACIÓN A & D -- Práctica de laboratorio FRECUENCIA MODULADA EN EL DOMINIO DEL TIEMPO Y FRECUENCIA 1 SISTEMAS DE COMUNICACIÓN A & D -- Práctica de laboratorio FRECUENCIA MODULADA EN EL DOMINIO DEL TIEMPO Y FRECUENCIA I. OBJETIVOS 1. Implementar un modulador de frecuencia utilizando el XR-2206. 2. Complementar

Más detalles

UNIDAD DE TRABAJO Nº2. INSTALACIONES DE MEGAFONÍA. UNIDAD DE TRABAJO Nº2.1. Descripción de Componentes. Simbología FILTROS

UNIDAD DE TRABAJO Nº2. INSTALACIONES DE MEGAFONÍA. UNIDAD DE TRABAJO Nº2.1. Descripción de Componentes. Simbología FILTROS UNIDAD DE TRABAJO Nº2. INSTALACIONES DE MEGAFONÍA UNIDAD DE TRABAJO Nº2.1. Descripción de Componentes. Simbología Introducción. FILTROS En el tema de ALTAVOCES, el apartado 2.4 hacia referencia a los tipos

Más detalles

Práctica 1 Medidas con osciloscopio y análisis de circuitos.

Práctica 1 Medidas con osciloscopio y análisis de circuitos. Práctica 1 Medidas con osciloscopio y análisis de circuitos. Descripción de la práctica: -En esta práctica, se aplicarán los conocimientos teóricos obtenidos en clase, sobre el uso del osciloscopio, y

Más detalles

Mantenimiento de equipos electrónicos. El generador de funciones y el generador de baja frecuencia.

Mantenimiento de equipos electrónicos. El generador de funciones y el generador de baja frecuencia. Mantenimiento de equipos electrónicos El generador de funciones y el generador de baja frecuencia 1/11 Aplicaciones de los generadores de funciones y generadores de baja frecuencia y diferencias entre

Más detalles

Ángel Hernández Mejías (angeldpe@hotmail.com) 1º Desarrollo de Productos Electrónicos, Electrónica Analógica www.padrepiquer.com 1

Ángel Hernández Mejías (angeldpe@hotmail.com) 1º Desarrollo de Productos Electrónicos, Electrónica Analógica www.padrepiquer.com 1 1º Desarrollo de Productos Electrónicos, Electrónica Analógica www.padrepiquer.com 1 Índice Índice... Pág. 2 Breve descripción de la práctica... Pág. 3 Enumeración de recursos comunes... Pág. 3 Desarrollo

Más detalles

EXAMEN DE CIRCUITOS NOMBRE: TEST DE TRANSITORIO Y CORRIENTE ALTERNA 1ª PREGUNTA RESPUESTA

EXAMEN DE CIRCUITOS NOMBRE: TEST DE TRANSITORIO Y CORRIENTE ALTERNA 1ª PREGUNTA RESPUESTA EXAMEN DE CICUITOS NOMBE: TEST DE TANSITOIO Y COIENTE ALTENA 1ª PEGUNTA ESPUESTA 2 Ω ri I 10 Ω 100 V A En el circuito de la figura, la corriente del generador Equivalente de Norton del circuito entre los

Más detalles

CORRIENTE CONTINUA I : RESISTENCIA INTERNA DE UNA FUENTE

CORRIENTE CONTINUA I : RESISTENCIA INTERNA DE UNA FUENTE eman ta zabal zazu Departamento de Física de la Materia Condensada universidad del país vasco euskal herriko unibertsitatea FACULTAD DE CIENCIA Y TECNOLOGÍA UNIVERSIDAD DEL PAÍS VASCO DEPARTAMENTO de FÍSICA

Más detalles

Objetivos: Introducción: ε(t)

Objetivos: Introducción: ε(t) Guía 08 : Filtros de Frecuencia Objetivos: Introducción al análisis de circuitos de corriente alterna (A) Introducción al concepto de Impedancia Filtros pasa bajos y pasa altos, circuitos Integrador y

Más detalles

PRÁCTICA Nº 4: SIMULACIÓN DE CIRCUITOS EN RÉGIMEN TRANSITORIO Y CORRIENTE ALTERNA

PRÁCTICA Nº 4: SIMULACIÓN DE CIRCUITOS EN RÉGIMEN TRANSITORIO Y CORRIENTE ALTERNA PRÁCTICA Nº 4: SIMULACIÓN DE CIRCUITOS EN RÉGIMEN TRANSITORIO Y CORRIENTE ALTERNA 4.1. Medidas con el osciloscopio El osciloscopio es un instrumento que sirve para visualizar señales periódicas. Nos permite,

Más detalles

Práctica 5. Demodulador FSK mediante PLL

Práctica 5. Demodulador FSK mediante PLL Práctica 5. Demodulador FS mediante PLL 5.. Objetivos Estudiar el funcionamiento de un PLL y su aplicación para la demodulación de una señal modulada FS. 5.. El PLL LM565 El LM565 es un circuito de fase

Más detalles

Condensador con tensión alterna sinusoidal

Condensador con tensión alterna sinusoidal Capacitancia e Inductancia en Circuito de Corriente Alterna 1.- OBJETIVO: Experiencia Nº 10 El objetivo fundamental en este experimento es el estudio de la corriente alterna en un circuito RC y RL. 2.-

Más detalles

Introducción a la Física Experimental. Experimento guiado. Abril M. López Quelle

Introducción a la Física Experimental. Experimento guiado. Abril M. López Quelle Introducción a la Física Experimental. Experimento guiado. Abril 2009. M. López Quelle Circuito RC en corriente alterna. Comportamiento de un filtro RC. 1.- Breve introducción teóricateoría previa Utilizamos

Más detalles

Técnicas Avanzadas de Control Memoria de ejercicios

Técnicas Avanzadas de Control Memoria de ejercicios Memoria de ejercicios Curso: 2007/08 Titulación: Ingeniero Técnico Industrial Especialidad: Electrónica Industrial Alumno: Adolfo Hilario Tutor: Adolfo Hilario Caballero Índice general Presentación. 2..

Más detalles

Procesamiento Analógico de Señales

Procesamiento Analógico de Señales Procesamiento Analógico de Señales Departamento de Electrónica y Automática Facultad de Ingeniería Análisis de AC en SIMetrix Andrés Lage Angel Veca Mario Ruiz Edición 2013 Análisis de AC en SIMetrix Una

Más detalles

1.-Relé. 2.-Condensador. 3.-LED. 4.-Piezoeléctrico. 5.-Diodo. 6.-Transistor.

1.-Relé. 2.-Condensador. 3.-LED. 4.-Piezoeléctrico. 5.-Diodo. 6.-Transistor. 1.-Relé. 2.-Condensador. 3.-LED. 4.-Piezoeléctrico. 5.-Diodo. 6.-Transistor. 1.-Relé. Realiza el montaje de la figura comprobando el funcionamiento del relé. V=12v B1 V= Prueba ahora los contactos NC.

Más detalles

Práctica 4 Control de posición y velocidad de un motor de corriente continua

Práctica 4 Control de posición y velocidad de un motor de corriente continua Práctica 4 Control de posición y velocidad de un motor de corriente continua Maqueta de control de posición y velocidad Practicas de Regulación Automática Maqueta de control de posición y velocidad Caja

Más detalles

MODELOS DE PEQUEÑA SEÑAL: EL MODELO HÍBRIDO π Se eliminan las fuentes DC. El modelo también aplica para transistores pnp sin cambio de polaridades

MODELOS DE PEQUEÑA SEÑAL: EL MODELO HÍBRIDO π Se eliminan las fuentes DC. El modelo también aplica para transistores pnp sin cambio de polaridades MODELOS DE PEQUEÑA SEÑAL: EL MODELO HÍBRIDO π Se eliminan las fuentes DC El modelo también aplica para transistores pnp sin cambio de polaridades MODELOS DE PEQUEÑA SEÑAL: EL MODELO T Se eliminan las fuentes

Más detalles

PRÁCTICA 3. OSCILOSCOPIOS HM 604 Y HM 1004 (III): TEST DE COMPONENTES Y MODULACIÓN EN FRECUENCIA.

PRÁCTICA 3. OSCILOSCOPIOS HM 604 Y HM 1004 (III): TEST DE COMPONENTES Y MODULACIÓN EN FRECUENCIA. PRÁCTICA 3. OSCILOSCOPIOS HM 604 Y HM 1004 (III): TEST DE COMPONENTES Y MODULACIÓN EN FRECUENCIA. 3.1.- Objetivos: Realización de test de componentes activos y pasivos para obtener, a partir de la curva

Más detalles

Componentes Electrónicos. Prácticas - Laboratorio. Práctica 2: Diodos

Componentes Electrónicos. Prácticas - Laboratorio. Práctica 2: Diodos Prácticas Laboratorio Práctica 2: Diodos Ernesto Ávila Navarro Práctica 2: Diodos (Montaje y medida en laboratorio) Índice: 1. Material de prácticas 2. Medida de las características del diodo 2.2. Diodo

Más detalles

LABORATORIO No. 3 MODELAMIENTO Y ANALISIS DINAMICO DE SISTEMAS ELECTRICOS

LABORATORIO No. 3 MODELAMIENTO Y ANALISIS DINAMICO DE SISTEMAS ELECTRICOS UNIVERSIDAD FRANCISCO DE PAULA SANTANDER FACULTAD DE INGENIERIA INGENIERÍA ELECTRÓNICA 1 SISTEMAS DINAMICOS 1160601 LABORATORIO No. 3 MODELAMIENTO Y ANALISIS DINAMICO DE SISTEMAS ELECTRICOS INSTRUCCIONES

Más detalles

ESCUELA SUPERIOR DE INGENIEROS DE SAN SEBASTIÁN TECNUN UNIVERSIDAD DE NAVARRA. Práctica 2 de Laboratorio ESTUDIO DEL RÉGIMEN TRANSITORIO

ESCUELA SUPERIOR DE INGENIEROS DE SAN SEBASTIÁN TECNUN UNIVERSIDAD DE NAVARRA. Práctica 2 de Laboratorio ESTUDIO DEL RÉGIMEN TRANSITORIO ESCUELA SUPERIOR DE INGENIEROS DE SAN SEBASTIÁN TECNUN UNIVERSIDAD DE NAVARRA Práctica de Laboratorio ESTUDIO DEL RÉGIMEN TRANSITORIO EL OSCILOSCOPIO DIGITAL Circuitos. Estudio del Régimen Transitorio.

Más detalles

Montaje en placa protoboard de un circuito detector de oscuridad. 1) Nombre y apellidos: Curso y grupo: 2) Nombre y apellidos: Curso y grupo:

Montaje en placa protoboard de un circuito detector de oscuridad. 1) Nombre y apellidos: Curso y grupo: 2) Nombre y apellidos: Curso y grupo: Montaje en placa protoboard de un circuito detector de oscuridad. Miembros del grupo: 1) 2) 3) 4) 5) 1 PRÁCTICAS DE ELECTRÓNICA ANALÓGICA. PRÁCTICA 1. Montajes en placa protoboard. Medida de magnitudes

Más detalles

Práctica 3. LABORATORIO

Práctica 3. LABORATORIO Práctica 3. LABORATORIO Electrónica de Potencia Convertidor DC/AC (inversor) de 220Hz controlado por ancho de pulso con modulación sinusoidal SPWM 1. Diagrama de Bloques En esta práctica, el alumnado debe

Más detalles

Amplificador de 10W con TDA2003

Amplificador de 10W con TDA2003 Amplificador de 10W con TDA2003 Un amplificador es un dispositivo que sirve para aumentar la potencia entregada a una carga (en este caso una bocina) y por lo tanto tener un sonido mas potente. Tabla de

Más detalles

TRABAJO PRÁCTICO Nº 2 ANÁLISIS DE CIRCUITOS DE CORRIENTE CONTINUA

TRABAJO PRÁCTICO Nº 2 ANÁLISIS DE CIRCUITOS DE CORRIENTE CONTINUA E.T. Nº 17 - D.E. X Reg. PRÁCTCAS UNFCADAS 1 ntroducción Teórica TRABAJO PRÁCTCO Nº 2 ANÁLSS DE CRCUTOS DE CORRENTE CONTNUA a Multímetro digital: El multímetro digital es un instrumento electrónico de

Más detalles

PROBLEMAS DE EXAMEN. 1.- La figura representa un convertidor alterna/alterna con control por fase bidireccional con carga resistiva:

PROBLEMAS DE EXAMEN. 1.- La figura representa un convertidor alterna/alterna con control por fase bidireccional con carga resistiva: POBLEMAS DE EXAMEN 1.- La figura representa un convertidor alterna/alterna con control por fase bidireccional con carga resistiva: 1 V in = 2 V s sen(wt) i in 2 a) Explicar brevemente el funcionamiento

Más detalles

elab 3D Práctica 2 Diodos

elab 3D Práctica 2 Diodos UNIVERSIDAD POLITÉCNICA DE MADRID ESCUELA TECNICA SUPERIOR DE INGENIERIA Y SISTEMAS DE TELECOMUNICACIÓN elab 3D Práctica 2 Diodos Curso 2013/2014 Departamento de Sistemas Electrónicos y de Control 1. Introducción

Más detalles

Sistemas Elec. Digitales. Instrumentación del laboratorio. Pag. 1 1. INSTRUMENTACIÓN DEL LABORATORIO.

Sistemas Elec. Digitales. Instrumentación del laboratorio. Pag. 1 1. INSTRUMENTACIÓN DEL LABORATORIO. Sistemas Elec. Digitales. Instrumentación del laboratorio. Pag. 1 1. INSTRUMENTACIÓN DEL LABORATORIO. Sistemas Elec. Digitales. Instrumentación del laboratorio. Pag. 2 1.1. Fuente de alimentación CPS250

Más detalles

Ejercicio 2.1. Calcular el valor de tensión del generador VX

Ejercicio 2.1. Calcular el valor de tensión del generador VX Ejercicio 2.1. Calcular el valor de tensión del generador y los valores de tensión sobre cada una de las resistencias. Solución: 13.88[ ] 720.63 640 2.18 1.98 10.34 9 [ ] [ ] 8 9 1 m 2 4 7 m 3 5 6 Ejercicio

Más detalles

Práctica de Electrónica de Circuitos II.

Práctica de Electrónica de Circuitos II. Práctica de Electrónica de Circuitos II. Diseño de un Oscilador de 500Khz mediante una red Clapp. Apartado A: Caracterización del transistor Bipolar. A1.- Elección del transistor: Dadas las características

Más detalles

Se agrupan ambos generadores de corriente, obteniéndose el circuito equivalente de la figura.

Se agrupan ambos generadores de corriente, obteniéndose el circuito equivalente de la figura. EJEMPLO Obtener el circuito equivalente Thevenin del circuito de la figura, mediante transformaciones Thevenin-Norton RESOLUCIÓN: Para agrupar los generadores de tensión V 1 y V 2 se aplica la transformación

Más detalles

Circuitos no lineales con amplificador operacional Guía 8 1/7

Circuitos no lineales con amplificador operacional Guía 8 1/7 1/7 ELECTRÓNICA ANALÓGICA II Guía de problemas Nº 8 Circuitos no lineales con amplificador operacional Problemas básicos 1. El comparador de la figura 1 tiene una ganancia a lazo abierto de 110 db. Cuánto

Más detalles

DEPARTAMENTO DE INGENIERÍA ELÉCTRICA E INFORMÁTICA INSTITUTO TECNOLÓGICO DE MASSACHUSETTS CAMBRIDGE, MASSACHUSETTS 02139

DEPARTAMENTO DE INGENIERÍA ELÉCTRICA E INFORMÁTICA INSTITUTO TECNOLÓGICO DE MASSACHUSETTS CAMBRIDGE, MASSACHUSETTS 02139 DEPARTAMENTO DE INGENIERÍA ELÉCTRICA E INFORMÁTICA INSTITUTO TECNOLÓGICO DE MASSACHUSETTS CAMBRIDGE, MASSACHUSETTS 019 TRABAJO DE LECTURA.101 Práctica introductoria de electrónica analógica Práctica En

Más detalles

Corriente Alterna: Circuitos serie paralelo y mixto. Resolución de problemas

Corriente Alterna: Circuitos serie paralelo y mixto. Resolución de problemas Corriente Alterna: Circuitos serie paralelo y mixto. Resolución de problemas En el tema anterior viste como se comportaban las resistencias, bobinas y condensadores cuando se conectaban a un circuito de

Más detalles

TEMA I. Teoría de Circuitos

TEMA I. Teoría de Circuitos TEMA I Teoría de Circuitos Electrónica II 2009-2010 1 1 Teoría de Circuitos 1.1 Introducción. 1.2 Elementos básicos 1.3 Leyes de Kirchhoff. 1.4 Métodos de análisis: mallas y nodos. 1.5 Teoremas de circuitos:

Más detalles

EL TRANSISTOR Características, polarización, estabilidad, clases de trabajo. El amplificador con transistor.

EL TRANSISTOR Características, polarización, estabilidad, clases de trabajo. El amplificador con transistor. EL TRANSISTOR Características, polarización, estabilidad, clases de trabajo. El amplificador con transistor. Autor: Ing. Aída A. Olmos Cátedra: Electrónica I Facultad de Ciencias Exactas y Tecnología UNIVERSIDAD

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS MATERIA: ELECTROTECNIA OFICIALES DE GRADO (MODELO DE EXAMEN) Curso 2013-2014 INSTRUCCIONES GENERALES Y

Más detalles

Electrónica II. Guía 4

Electrónica II. Guía 4 Electrónica II. Guía 4 1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica II. Lugar de ejecución: Fundamentos Generales (Edificio 3, 2da planta). COMPARADORES Objetivo General Verificar

Más detalles

TRABAJO PRACTICO No 7. MEDICION de DISTORSION EN AMPLIFICADORES DE AUDIO ANALIZADORES DE ESPECTRO DE AUDIO

TRABAJO PRACTICO No 7. MEDICION de DISTORSION EN AMPLIFICADORES DE AUDIO ANALIZADORES DE ESPECTRO DE AUDIO TRABAJO PRACTICO No 7 MEDICION de DISTORSION EN AMPLIFICADORES DE AUDIO ANALIZADORES DE ESPECTRO DE AUDIO INTRODUCCION TEORICA: La distorsión es un efecto por el cual una señal pura (de una única frecuencia)

Más detalles

Laboratorio de Electricidad PRACTICA - 9 EL OSCILOSCOPIO. MEDIDAS DE TENSIÓN ALTERNA

Laboratorio de Electricidad PRACTICA - 9 EL OSCILOSCOPIO. MEDIDAS DE TENSIÓN ALTERNA PRACTICA - 9 EL OSCILOSCOPIO. MEDIDAS DE TENSIÓN ALTERNA I - Finalidades 1.- Introducción y uso del osciloscopio. 2.- Efectuar medidas de tensiones alternas con el osciloscopio. alor máximo, valor pico

Más detalles

RESPUESTA EN FRECUENCIA DE BJT Y FET INTRODUCION

RESPUESTA EN FRECUENCIA DE BJT Y FET INTRODUCION RESPUESTA EN FRECUENCIA DE BJT Y FET INTRODUCION Hasta el momento no se han considerado los efectos de las capacitancías e inductancias en el análisis de los circuitos con transistores es decir se han

Más detalles

ELECTRONICA GENERAL. Tema 6. El Amplificador Operacional. 1.- En un amplificador operacional ideal, el CMRR es a) Infinito b) Cero c) 3dB

ELECTRONICA GENERAL. Tema 6. El Amplificador Operacional. 1.- En un amplificador operacional ideal, el CMRR es a) Infinito b) Cero c) 3dB Tema 6. El Amplificador Operacional. 1.- En un amplificador operacional ideal, el CMRR es a) Infinito b) Cero c) 3dB 2.- La realimentación negativa: a) Desestabiliza la ganancia del sistema, haciéndolo

Más detalles

SISTEMAS DE CONTROL PRÁCTICAS DE SISTEMAS DE CONTROL IDENTIFICACIÓN EN EL DOMINIO DE LA FRECUENCIA

SISTEMAS DE CONTROL PRÁCTICAS DE SISTEMAS DE CONTROL IDENTIFICACIÓN EN EL DOMINIO DE LA FRECUENCIA SISTEMAS DE CONTROL PRÁCTICAS DE SISTEMAS DE CONTROL IDENTIFICACIÓN EN EL DOMINIO DE LA FRECUENCIA 1. SISTEMA A IDENTIFICAR El sistema a identificar es el conjunto motor eléctrico-freno conocido de otras

Más detalles

Programa de Tecnologías Educativas Avanzadas. Bach. Pablo Sanabria Campos

Programa de Tecnologías Educativas Avanzadas. Bach. Pablo Sanabria Campos Programa de Tecnologías Educativas Avanzadas Bach. Pablo Sanabria Campos Agenda Conceptos básicos. Relación entre corriente, tensión y resistencia. Conductores, aislantes y semiconductores. Elementos importantes

Más detalles

EXAMENES ELECTROTECNIA TEORIA

EXAMENES ELECTROTECNIA TEORIA EXAMENES En este archivo presento el tipo de exámenes propuesto en la asignatura de Electrotecnia en la fecha indicada, con las puntuaciones indicadas sobre un total de diez puntos. Según la guía académica

Más detalles

Filtros Activos. Teoría. Autor: José Cabrera Peña

Filtros Activos. Teoría. Autor: José Cabrera Peña Filtros Activos Teoría Autor: José Cabrera Peña Definición y clasificaciones Un filtro es un sistema que permite el paso de señales eléctricas a un rango de frecuencias determinadas e impide el paso del

Más detalles

INACAP ELECTRICIDAD- 2 GUIA DE LABORATORIO 1 USO DEL OSCILOSCOPIO. 2.- 3.- Curso:

INACAP ELECTRICIDAD- 2 GUIA DE LABORATORIO 1 USO DEL OSCILOSCOPIO. 2.- 3.- Curso: INACAP ELECTRICIDAD- 2 GUIA DE LABORATORIO 1 USO DEL OSCILOSCOPIO Alumnos 1.- Fecha: 2.- 3.- Curso: OBJETIVO Usar el osciloscopio como instrumento para visualizar señales y medir en ellas voltaje, frecuencia

Más detalles

Laboratorio de Electricidad PRACTICA - 12 REACTANCIA DE UN CONDENSADOR Y CARACTERÍSTICAS DE UN CIRCUITO SERIE RC

Laboratorio de Electricidad PRACTICA - 12 REACTANCIA DE UN CONDENSADOR Y CARACTERÍSTICAS DE UN CIRCUITO SERIE RC PATA - 12 EATANA DE UN ONDENSADO Y AATEÍSTAS DE UN UTO SEE - Finalidades 1.- Determinar la reactancia capacitiva (X ) de un condensador. 2.- omprobar la fórmula: X? 1?? 3.- Determinar experimentalmente

Más detalles

Asignatura: CONTROL CLÁSICO Y MODERNO Departamento de Electrónica Facultad de Ingeniería U.Na.M 2015 GUIA DE LABORATORIO Nº2

Asignatura: CONTROL CLÁSICO Y MODERNO Departamento de Electrónica Facultad de Ingeniería U.Na.M 2015 GUIA DE LABORATORIO Nº2 GUIA DE LABORATORIO Nº2 Universidad Nacional de Misiones MÉTODOS CLÁSICOS PARA MODELACIÓN DE SISTEMAS 1. Objetivo de la práctica. Modelación a través de la Respuesta en frecuencia Este laboratorio tiene

Más detalles

CAPITULO 5. Corriente alterna 1. ANÁLISIS DE IMPEDANCIAS Y ÁNGULOS DE FASE EN CIRCUITOS, RL Y RLC SERIE.

CAPITULO 5. Corriente alterna 1. ANÁLISIS DE IMPEDANCIAS Y ÁNGULOS DE FASE EN CIRCUITOS, RL Y RLC SERIE. CAPITULO 5 Corriente alterna 1. ANÁLISIS DE IMPEDANCIAS Y ÁNGULOS DE FASE EN CIRCUITOS, RL Y RLC SERIE. Inductor o bobina Un inductor o bobina es un elemento que se opone a los cambios de variación de

Más detalles

Oscar Ignacio Botero H. Diana Marcela Domínguez P. SIMULADOR PROTEUS MÓDULO. VIRTUAL INSTRUMENTS MODE: (Instrumentos virtuales)

Oscar Ignacio Botero H. Diana Marcela Domínguez P. SIMULADOR PROTEUS MÓDULO. VIRTUAL INSTRUMENTS MODE: (Instrumentos virtuales) SIMULADOR PROTEUS MÓDULO VIRTUAL INSTRUMENTS MODE: (Instrumentos virtuales) En éste modo se encuentran las siguientes opciones 1. VOLTÍMETROS Y AMPERÍMETROS (AC Y DC) Instrumentos que operan en tiempo

Más detalles

Práctica 2. Circuitos con bobinas y condensadores en CC y CA

Práctica 2. Circuitos con bobinas y condensadores en CC y CA Electrotecnia y Electrónica (34519) Grado de Ingeniería Química Práctica 2. Circuitos con bobinas y condensadores en CC y CA Francisco Andrés Candelas Herías Con la colaboración de Alberto Seva Follana

Más detalles

UNIDAD DOS 2.1. DIODOS. 211.07.-La característica del diodo D está expresada por: donde: I 0 = Corriente inversa de saturación; KT/q 25 mv; m = 1,4

UNIDAD DOS 2.1. DIODOS. 211.07.-La característica del diodo D está expresada por: donde: I 0 = Corriente inversa de saturación; KT/q 25 mv; m = 1,4 UNIDAD DOS 2.1. DIODOS 211.07.-La característica del diodo D está expresada por: i D I 0.(e q.vd m.kt 1) 10 6.(e q.vd m. KT 1) [Amp] donde: I 0 = Corriente inversa de saturación; KT/q 25 mv; m = 1,4 a)

Más detalles

Laboratorio de Fundamentos Físicos de la Ingeniería LEY DE OHM

Laboratorio de Fundamentos Físicos de la Ingeniería LEY DE OHM Departamento de Física Aplicada E.T.S. Ingeniería Industrial U.C.L.M. Laboratorio de Fundamentos Físicos de la Ingeniería LEY DE OHM El objetivo fundamental de esta práctica es el conocimiento experimental

Más detalles

INFORME DE. puntos de medición

INFORME DE. puntos de medición UNIVERSIDADD SIMON BOLIVAR Departamento de Electrónica y Circuitos EC 1113 Circuitos Electrónicos (Laboratorio) INFORME DE PRACTICAA Nº2 Verificar Conceptos Teóricos Relacionados con: Características Corriente-Voltaje

Más detalles

ELECTRÓNICA ANALÓGICA FORMATO DEL REPORTE DE PRÁCTICAS DEL LABORATORIO

ELECTRÓNICA ANALÓGICA FORMATO DEL REPORTE DE PRÁCTICAS DEL LABORATORIO FORMATO DEL REPORTE DE PRÁCTICAS DEL LABORATORIO PORTADA Nombre de la universidad Facultad de Ingeniería Ensenada Carrera Materia Alumno Nombre y número de Práctica Nombre del maestro Lugar y fecha CONTENIDO

Más detalles

INTRODUCCIÓN A LA INSTRUMENTACIÓN BÁSICA. Nociones básicas sobre el manejo de LOS EQUIPOS DEL LABORATORIO

INTRODUCCIÓN A LA INSTRUMENTACIÓN BÁSICA. Nociones básicas sobre el manejo de LOS EQUIPOS DEL LABORATORIO INTRODUCCIÓN A LA INSTRUMENTACIÓN BÁSICA Esta documentación tiene como objetivo facilitar el primer contacto del alumno con la instrumentación básica de un. Como material de apoyo para el manejo de la

Más detalles

Práctica 2. Introducción a la simulación de sistemas mediante Simulink. Sistemas de primer, segundo y tercer orden. Objetivo

Práctica 2. Introducción a la simulación de sistemas mediante Simulink. Sistemas de primer, segundo y tercer orden. Objetivo Práctica 2 Introducción a la simulación de sistemas mediante Simulink. Sistemas de primer, segundo y tercer orden. Objetivo En esta práctica se pretende que el alumno tome contacto con una herramienta

Más detalles

COMPONENTES Y CIRCUITOS (CC)

COMPONENTES Y CIRCUITOS (CC) COMPONENTES Y CIRCUITOS (CC) La asignatura Componentes y Circuitos (CC) tiene carácter troncal dentro de las titulaciones de Ingeniería Técnica de Telecomunicación, especialidad en Sistemas de Telecomunicación

Más detalles

Sistemas Control Embebidos e Instrumentación Electrónica UNIVERSIDAD EAFIT Semestre 2010/2 2009/2

Sistemas Control Embebidos e Instrumentación Electrónica UNIVERSIDAD EAFIT Semestre 2010/2 2009/2 DIAGRAMA DE BODE Semestre 2010/2 El Diagrama de BODE se conforma por dos gráficas logarítmicas de: La magnitud de una función de transferencia senoidal: 20log G(jw) ; La unidad de medida que se usa, es

Más detalles

ARRANQUE DE LÁMPARAS FLUORESCENTES

ARRANQUE DE LÁMPARAS FLUORESCENTES 4 ARRANQUE DE LÁMPARAS FLUORESCENTES 4. INTRODUCCIÓN En el uso de sistemas de iluminación fluorescente es necesario alimentar a la lámpara de descarga con el voltaje adecuado para evitar un mal funcionamiento

Más detalles

Electrónica Analógica

Electrónica Analógica Universidad de Alcalá Departamento de Electrónica Electrónica Analógica Ejercicios Tema 3: Diodos Referencias: Texto base: Circuitos Electrónicos. Análisis simulación y diseño, de Norbert R. Malik. Capítulo

Más detalles

PRÁCTICA 4 Montaje y evaluación de sistemas secuenciales.

PRÁCTICA 4 Montaje y evaluación de sistemas secuenciales. Montaje y evaluación de sistemas secuenciales. 1.- Objetivos: El objetivo de este módulo es familiarizar al alumno con los sistemas secuenciales partiendo del más sencillo (un biestable) para llegar al

Más detalles

Laboratorio de Análisis de Circuitos. Práctica 2. Caracterización de elementos resistivos de un circuito

Laboratorio de Análisis de Circuitos. Práctica 2. Caracterización de elementos resistivos de un circuito Laboratorio de Análisis de Circuitos Práctica Caracterización de elementos resistivos de un circuito 1 Objetivos 1 Determinar experimentalmente el valor de la resistencia equivalente de un arreglo de resistores.

Más detalles

PRÁCTICA Nº 2. OSCILOSCOPIO. Describir las características y el funcionamiento del osciloscopio, generador de señales y oscilador de audio.

PRÁCTICA Nº 2. OSCILOSCOPIO. Describir las características y el funcionamiento del osciloscopio, generador de señales y oscilador de audio. PRÁCTICA Nº 2. OSCILOSCOPIO OBJETIVO Describir las características y el funcionamiento del osciloscopio, generador de señales y oscilador de audio. FUNDAMENTO TEÓRICO A continuación se presentan las definiciones

Más detalles

2.1 Diseño de un sistema básico de biotelemetría

2.1 Diseño de un sistema básico de biotelemetría 2.1 Diseño de un sistema básico de biotelemetría 2.1.1 Objetivos 4.9.1.1 Diseñar un sistema de modulación y demodulación de frecuencia. 4.9.1.2 Construir un sistema de acondicionamiento de una señal modulada

Más detalles

2 Electrónica Analógica

2 Electrónica Analógica TEMA II Electrónica Analógica Electrónica II 2009-2010 2 Electrónica Analógica 2.1 Amplificadores Operacionales. 2 2 A li i d l A lifi d O i l 2.2 Aplicaciones de los Amplificadores Operacionales. 2.3

Más detalles

DALCAME Grupo de Investigación Biomédica

DALCAME Grupo de Investigación Biomédica LABORATORIO DE CIRCUITOS ELECTRÓNICOS 1. Conducta de Entrada 2. Laboratorio Funcionamiento de un condensador Observar el efecto de almacenamiento de energía de un condensador: Condensador de 1000µF Medida

Más detalles

PRÁCTICAS DE ELECTRICIDAD Y ELECTRÓNICA CON CROCODILE. Lucía Defez Sánchez Profesora de la asignatura tecnología en la ESO

PRÁCTICAS DE ELECTRICIDAD Y ELECTRÓNICA CON CROCODILE. Lucía Defez Sánchez Profesora de la asignatura tecnología en la ESO PRÁCTICAS DE ELECTRICIDAD Y ELECTRÓNICA CON CROCODILE Lucía Defez Sánchez Profesora de la asignatura tecnología en la ESO 1 OBJETO Se elabora el presente cuaderno de prácticas con el fin de facilitar la

Más detalles

Sesión 6 Instrumentación básica y técnicas de medida

Sesión 6 Instrumentación básica y técnicas de medida Sesión 6 Instrumentación básica y técnicas de medida Componentes y Circuitos Electrónicos Isabel Pérez /José A. Garcia Souto www.uc3m.es/portal/page/portal/dpto_tecnologia_electronica/personal/isabelperez

Más detalles