Electrónica Analógica
|
|
|
- Alfredo Martín Farías Domínguez
- hace 9 años
- Vistas:
Transcripción
1 Universidad de Alcalá Departamento de Electrónica Electrónica Analógica Ejercicios Tema 3: Diodos Referencias: Texto base: Circuitos Electrónicos. Análisis simulación y diseño, de Norbert R. Malik. Capítulo 3, secciones 3.7, 3.9, 3.10 y 3.14
2 Electrónica, Tema 3. Problemas, pág.-2 Sección 1: ejercicios de estudio. Enunciados. Configuraciones y propiedades básicas Nota: Algunos de los problemas siguientes están extraídos del libro de Malik. En esos casos, la numeración del mismo se indica entre paréntesis y en las figuras. Algunos enunciados han sido cambiados ligeramente. D1.- (3.29 Malik) Los diodos de la figura P3.29 son ideales. Suponiendo que ambos diodos se encuentran en situación de corte, a) Cuál sería el circuito equivalente del circuito planteado? b) Qué diodo da una contradicción y cuál es dicha contradicción? (obtener resultado cuantitativo) Haciendo una nueva suposición acerca del estado de los diodos c) Cuál es el nuevo circuito equivalente? d) Calcular el valor de v o en la figura. D.2 (3.30 Malik) Hallar los valores de v o, i 1 e i 2 en el caso de que los diodos de la figura P3.30 sean ideales y se cumplan las siguientes condiciones a) v 1 =5V, v 2 =0.2V b) v 1 =0.1V, v 2 =0.3V c) v 1 =5.1V, v 2 =5.3V Si se emplea el modelo con tensión de codo de un diodo de silicio, cómo son los valores v o, i 1 e i 2 en los casos anteriores? D3- (3.32 Malik) Suponiendo que los diodos de la figura P3.32 son ideales, calcular i 1 e i 2 cuando a) v 1 =0.2V b) v 1 =-9V Si se emplea el modelo con tensión de codo de un diodo de GaAs, c) Calcular i 1 e i 2 para los valores de v 1 de los apartados a) y b) D.4 (3.35 Malik) Los dos diodos del circuito de la figura P3.35 tienen la misma curva característica, representada en la misma figura. Mientras que el diodo D 1 conduce, D 2 está cortado. a) Representar sobre la característica I-V los puntos de funcionamiento de cada uno de los diodos, indicando su valor numérico
3 Electrónica, Tema 3. Problemas, pág.-3 D.5- (3.36 Malik) Hallar los valores máximo y mínimo de V BB en el circuito regulador de la figura P3.36, teniendo en cuenta que el diodo zener de 5V tiene una corriente inversa mínima de 10mA y su potencia máxima disipada es de 1W. D.6- (3.38 Malik) Dibujar el circuito equivalente para el regulador de tensión zener de la figura 3.30 usando el modelo zener de la figura 3.29c. a) Para los valores de V BB = 9V, R 3 = 10Ω, V z = 6.8V y r z = 0.1Ω, escribir la ecuación de la tensión de salida en función de R L. b) Representar la ecuación obtenida en el apartado a) (esta sería la curva de regulación de tensión para el circuito regulador) D.7- (3.39 Malik) El diodo del circuito de la figura P3.39 es de silicio y su tensión de codo varía linealmente con la temperatura con una pendiente de -2mV/ºC. Escribir y representar la tensión de salida del circuito v o en función de T. D.8- (3.40 Malik) A 27ºC el diodo del circuito de la figura P3.40 está cortado. Si a dicha temperatura se tiene que I s = A y que ésta varía de acuerdo con la ecuación ( T T R ) 5 Is( T) = Is( TR) 2, calcule la temperatura a la que el diodo empieza a conducir apreciablemente (considere que esto ocurre con una tensión Vγ, de valor 0.5V para el Si)
4 Electrónica, Tema 3. Problemas, pág.-4 D.9- En el circuito de la Figura 1, calcule el margen de valores de R 2, para que el diodo D 2 conduzca con una corriente constante. R1 R2 v E (V) v E D1 D DATOS: R 1 = 47 Ω 0 Figura 1 t (s) I D1 I (ma) I D2 I (ma) V -4 V (V) 0,6-200 V 0,6 V (V) D.10- Calcular la tensión máxima en inverso (V RM ) y la tensión máxima en directo (I FM ) que debe soportar el diodo del circuito mostrado en la figura para que pueda trabajar con la tensión de entrada Ve mostrada en la figura. Considérese el diodo con una tensión de codo nula (Vγ=0). D.11 Considerar el circuito mostrado en la figura 6, junto con las características correspondientes a cada uno de los dos tipos de diodos: I D I Dz Ve(t) R1 D3 D1 R2 D2 -V RM =-60V x x Vγ=0.6V I FM =150mA V D -Vz =-5V x Vγ z =1V I FMz =100mA V Dz D4 Datos: R1=R2=1 kω ; v e (t)= A sen(ωt) x -I zm =-60mA a) Calcular los valores máximos que puede tomar la amplitud (A) del generador de tensión sin que se deteriore ninguno de los componentes. b) Si A=10V, calcular el punto de trabajo en los distintos diodos para los valores extremos de amplitud.
5 Electrónica, Tema 3. Problemas, pág.-5 Conformadores de onda. Limitadores. D.12 (3.43 Malik) Dibujar la función de transferencia para los circuitos mostrados en la figura P3.43: D.13 (3.44 Malik) Sobre el circuito de la figura P3.44, cuyo diodo tiene la característica representada en la misma, a) Escribir la ecuación para v o en función de v i cuando el diodo está cortado b) Hallar la tensión de entrada v i para la que el diodo empieza justo a conducir c) Escribir la ecuación para v o en función de v i cuando el diodo está conduciendo d) Representar la función de transferencia D.14 (3.46 Malik) En el circuito de la figura P3.46, ambos diodos tiene la misma característica, a) Cuando v i =0, ambos diodos están cortados con corriente cero. Redibujar el circuito remplazando los diodos por los modelos adecuados y escribir la expresión analítica de v o en función de v i [v o (v i )] b) Si v i crece, qué diodo empieza a conducir primero?, para qué valor de v i? c) Redibujar el circuito, modificando el modelo para el diodo que primero empiece a conducir y escribir en ese caso la expresión de v o (v i ) d) Para qué valor de v i conducirá el segundo diodo? e) Representar la ecuación de transferencia del circuito v o (v i ) a partir de ese valor
6 Electrónica, Tema 3. Problemas, pág.-6 D.15 (3.47 Malik) a) Diseñar un rectificador de media onda de forma que la componente de contínua de salida sea de 9.3V y el pico de corriente entregada por el diodo sea 0.1A, y hallar el TIP. Nota: suponer el diodo ideal b) Reemplazar el diodo ideal del diseño inicial por un diodo real con tensión de codo de 0.7V. Para este nuevo circuito, calcular la componente contínua de la tensión de salida, el pico de corriente del diodo y el TIP. D.16 (3.49 Malik) Diseñar un rectificador en puente de onda completa que porporcione una componente contínua de la tensión de salida de 10V cuando se empleen diodos reales con tensión de codo de 0.7V. Calcular el TIP requerido por los diodos y especificar V M. Obtener el valor de la resistencia de carga que da una corriente de pico del diodo de 20mA. D.17 (Hambley) Represente la tensión de salida v o (t) y la función de transferencia del circuito mostrado en la figura. Conformadores de onda con Operacionales. D.18 (3.57 Malik) Los diodos zener de la figura P3.57-(a y b) tienen V on = 0.7V y V z = 4V a) Representar las características de transferenca de ambos circuitos b) Repetir el apartado a) tras colocar una resistencia de carga R entre cada nodo de salida y tierra c) Qué conclusiones obtiene de la parte b)? FIGURA P3.57 D.19 (3.58 Malik) En la figura P3.58, la curva V-I define al diodo. a) Escribir la ecuación que relaciona v o y v i cuando v i >0 b) Ecribir la ecuación que relaciona v o y v i cuando v i < 0 c) Representar la función de transferencia d) Emplear las funciones de transferencia para representar la señal de salida v o (t) cuando la señal de entrada es v i (t) = 2 sin ωt
7 Electrónica, Tema 3. Problemas, pág.-7 D.20 (3.59 Malik) Repetir el ejercicio anterior (P3.15) con el circuito de la figura P3.59 (a la izquierda de este texto) D. 21 (3.64 Malik) a) Use el rectificador de precisión de onda completa de la figura P-17 en un sistema que produzca una corriente de salida contínua de 0-10mA con una resistencia de carga de 100Ω cuando la señal de entrada es sinusoidal con valor de pico 0-30V. La resistencia de entrada debe ser infinita y la de salida nula. Use tantos AO de ganancia infinita como desee. b) Diseñar otro sistema que difiera del anterior en que la resistencia de salida sea infinita y la corriente de salida de 0-10mA sea medida en una impedancia de carga arbitraria que tenga un terminal a tierra FIGURA P-17 D.22 (3.65 Malik) Los diodos zener del comparador de la figura P-18 tienen características como las representadas en la figura P3.58. a) Dibujar la función de transferencia del comparador v o (v d ), donde v d = v a -v b b) Dibujar la señal de salida respecto al tiempo si v d (t) = v a (t)-v b (t) es una onda cuadrada que conmuta instantáneamente entre -1V y +1V y el amplificador operacional no tiene limitaciones dinámicas. FIGURA P-18
8 Electrónica, Tema 3. Problemas, pág.-8 Sección 2: ejercicios de conjunto. Enunciados D.23 Considere el circuito mostrado en la figura formado por dos diodos rectificadores (D1 y D3) y uno Zener (D2) junto con dos fuentes de tensión en continua (V1 y V2) caracterizados por los valores que se adjuntan. Calcular el punto de trabajo de los distintos diodos así como la tensión de salida (V0). V0 DATOS V1 = 10 V V2 = 5 V R1 = R2 = 10 kω V γ = 0.6V V Z = 5 V D.24 (EA_Junio13/14)-Se dispone del circuito mostrado en la figura 2 formado por amplificadores ideales y diodos también ideales caracterizados por la ecuación de Shockley: i D =I S (exp(qv D /KT)-1). D1 v 1 R1 V CC - AO1 + -V CC v 01 R2 R2/2 D2 V CC - AO3 + -V CC v 0 v 2 R3 V CC - AO2 + -V CC v 02 R2 a) Calcule la expresión analítica de la salida del sistema (v 0 ) en función de v 1 y v 2. b) Calcule la expresión analítica de la salida parciales de los operacionales de entrada (AO1 y AO2), esto es: v 01 = f(v 1 ) y v 02 = f(v 2 ). c) Si el AO3 tuviera una corriente de polarización I B, y una corriente de offset nula cómo afectaría esto a la salida v 0? (Justifique la respuesta dando la expresión analítica de v 0 debida exclusivamente a I B )
UNIDAD DOS 2.1. DIODOS. 211.07.-La característica del diodo D está expresada por: donde: I 0 = Corriente inversa de saturación; KT/q 25 mv; m = 1,4
UNIDAD DOS 2.1. DIODOS 211.07.-La característica del diodo D está expresada por: i D I 0.(e q.vd m.kt 1) 10 6.(e q.vd m. KT 1) [Amp] donde: I 0 = Corriente inversa de saturación; KT/q 25 mv; m = 1,4 a)
CIRCUITOS DE POLARIZACIÓN DEL TRANSISTOR EN EMISOR COMÚN
1) POLARIZACIÓN FIJA El circuito estará formado por un transistor NPN, dos resistencias fijas: una en la base R B (podría ser variable) y otra en el colector R C, y una batería o fuente de alimentación
Práctica 4.- Característica del diodo Zener
A.- Objetivos Práctica 4.- Característica del diodo ener Laboratorio de Electrónica de Dispositivos 1.-Medir los efectos de la polarización directa e inversa en la corriente por el diodo zener. 2.-Determinar
Elemento de Control. Elemento de Muetreo. Figura 1 Estructura Básica Regulador de Voltaje
INTRODUCCIÓN: La región activa de un transistor es la región de operación intermedia entre corte y saturación y por lo tanto dependiendo de las polarizaciones el transistor se comportará como un amplificador.
Universidad Simón Bolívar Coordinación de Ingeniería Electrónica Laboratorio de Circuitos Electrónicos I (EC-1177) Informe Práctica Nº 3
Universidad Simón Bolívar Coordinación de Ingeniería Electrónica Laboratorio de Circuitos Electrónicos I (EC-1177) Informe Práctica Nº 3 DIODO ZENER, RECTIFICADOR DE ONDA COMPLETA Y REGULADOR CON ZENER
Figura 1 Figura 2. b) Obtener, ahora, un valor más preciso de V D para la temperatura T a. V AA
DODOS. Se desea diseñar el circuito de polarización de un diodo emisor de luz (LED) de arseniuro de galio (GaAs) conforme a la figura. La característica - del LED se representa en la figura, en la que
ELECTRONICA GENERAL. Tema 6. El Amplificador Operacional. 1.- En un amplificador operacional ideal, el CMRR es a) Infinito b) Cero c) 3dB
Tema 6. El Amplificador Operacional. 1.- En un amplificador operacional ideal, el CMRR es a) Infinito b) Cero c) 3dB 2.- La realimentación negativa: a) Desestabiliza la ganancia del sistema, haciéndolo
'UEWGNC7PKXGTUKVCTKC2QNKVÃEPKECFG+PIGPKGTÈC6ÃEPKEC+PFWUVTKCN 241$.'/#5 FGFKQFQU
'UEGNC7PKXGTUKVCTKC2QNKVÃEPKECFG+PIGPKGTÈC6ÃEPKEC+PFUVTKCN (/(&75Ï1,&$%È6,&$ 241$.'/#5 FGFKQFQU ','4%+%+15FGFKQFQU (/(&75Ï1,&$%È6,&$ D Hallar el valor de las tensiones y las corrientes señaladas en los
ELECTRÓNICA DE POTENCIA
ELECTRÓNICA DE POTENCIA RELACIÓN DE PROBLEMAS (3) PROBLEMA 12: Diodo de libre circulación En la figura 12 se muestra el circuito con diodo de libre circulación donde dicho diodo ha sido sustituido por
intensidad de carga. c) v 1 = 10 V, v 2 = 5 V. d) v 1 = 5 V, v 2 = 5 V.
1. En el circuito regulador de tensión de la figura: a) La tensión de alimentación es de 300V y la tensión del diodo de avalancha de 200V. La corriente que pasa por el diodo es de 10 ma y por la carga
TRABAJO PRÁCTICO NÚMERO 3: Diodos II. Construir y estudiar un circuito rectificador de media onda y un circuito rectificador de onda completa.
TRABAJO PRÁCTICO NÚMERO 3: Diodos II Diodo como rectificador Objetivos Construir y estudiar un circuito rectificador de media onda y un circuito rectificador de onda completa. Introducción teórica De la
Problemas Tema 6. Figura 6.3
Problemas Tema 6 6.1. Se conecta una fuente de voltaje V s =1mV y resistencia interna R s =1MΩ a los terminales de entrada de un amplificador con una ganancia de voltaje en circuito abierto A v0 =10 4,
CIRCUITOS RECTIFICADORES CON FILTRO
CIRCUITOS RECTIFICADORES CON FILTRO PRINCIPIO DE FILTRADO CAPACITIVO RECTIFICADOR DE MEDIA ONDA CON FILTRO CAPACITIVO FORMAS DE ONDA DE LAS CORRIENTES ANÁLISIS CUANDO EL DIODO CONDUCE Corriente en la carga
Tema: Circuitos no lineales DCSE
Tema: DCSE Índice Comparadores Schmitt triggers Rectificadores Interruptores analógicos Detectores de picos Circuitos de muestreo y retención Introducción Cómo conseguir circuitos no lineales Ausencia
Práctica 04. Diodo zener
2011 MI. Mario Alfredo Ibarra Carrillo Facultad de ingeniería 11/03/2011 2 3 Objetivos: 1. Que el alumno estudie las propiedades y comportamientos del diodo zener. 2. Que el alumno implemente un circuito
PROBLEMAS DE CIRCUITOS ELECTRÓNICOS 2º Curso de Grado en Ingeniería Informática 16/17. TEMA 3: Amplificadores operacionales
PROBLEMAS DE CIRCUITOS ELECTRÓNICOS 2º Curso de Grado en Ingeniería Informática 16/17 TEMA 3: Amplificadores operacionales 1.- Hallar v o en el circuito de la figura. 2.- El circuito representado es un
TEMA II: COMPONENTES PASIVOS.
TEMA II: COMPONENTES PASIVOS. PROBLEMA 2.1. De un determinado resistor variable, con ley de variación lineal, se conoce el valor de su corriente nominal I n = 30 ma, y de su resistencia nominal Rn = 2K.
Universidad Simón Bolívar Coordinación de Ingeniería Electrónica Laboratorio de Circuitos Electrónicos I (EC-1177) Informe Práctica Nº 2
Universidad Simón Bolívar Coordinación de Ingeniería Electrónica Laboratorio de Circuitos Electrónicos I (EC-1177) Informe Práctica Nº 2 CARACTERÍSTICAS DE LOS DIODOS, CIRCUITO RECTIFICADOR DE MEDIA ONDA
Tecnología Electrónica
Universidad de Alcalá Departamento de Electrónica Tecnología Electrónica Ejercicios Versión: 2017-02-23 Capítulos 1 y 2: Transistores: estructura, características y polarización Referencias: Texto base:
PREPARACIÓN DE LA PRÁCTICA 2: DIODOS Y ZENERS RECTIFICADORES Y REGULADORES. Hoja de datos del diodo rectificador 1N400X. Valores Máximos Absolutos
PREPARACIÓN DE LA PRÁCTICA 2: DIODOS Y ZENERS RECTIFICADORES Y REGULADORES Hoja de datos del diodo rectificador 1N400X Valores Máximos Absolutos Características Térmicas Características Eléctricas Hoja
En definitiva, la tensión sinusoidal de entrada, corriente alterna, se ha convertido en corriente continua.
12. Rectificador de media onda con filtro en C. Esquema eléctrico y principio de funcionamiento: un filtro de condensador es un circuito eléctrico formado por la asociación de diodo y condensador destinado
Circuitos de RF y las Comunicaciones Analógicas. Capítulo VII: Amplificadores de RF de potencia
Capítulo VII: Amplificadores de RF de potencia 109 110 7. Amplificadores RF de potencia 7.1 Introducción El amplificador de potencia (PA) es la última etapa de un trasmisor. Tiene la misión de amplificar
Departamento de Tecnología I.E.S. Mendiño. Electrónica Analógica 4º E.S.O. Alumna/o :...
Departamento de Tecnología I.E.S. Mendiño Electrónica Analógica 4º E.S.O. Alumna/o :... Electrónica Analógica 1.- El diodo. Los diodos son elementos electrónicos fabricados con silicio que sólo permiten
EJERCICIO 1 EJERCICIO 2
EJERCICIO 1 Se miden 0 Volt. en los terminales del diodo de la fig. siguiente, la tensión de la fuente indica +5 Volt. respecto de masa. Qué está mal en el circuito? EJERCICIO 2 En la fig. siguiente la
i = Is e v nv T ANÁLISIS MATEMÁTICO UTILIZANDO LA CARACTERÍSTICA REAL DEL DIODO (APROXIMACIONES SUCESIVAS)
ANÁLISIS MATEMÁTICO UTILIZANDO LA CARACTERÍSTICA REAL DEL DIODO (APROXIMACIONES SUCESIVAS) i Is e v nv T 1 Voltaje térmico VT kt/q k : Constante de Boltzman 1,38 x 10-23 joules/kelvin T temperatura en
ELECTRONICA GENERAL. Tema 3. Circuitos con Diodos.
Tema 3. Circuitos con Diodos. 1.- En los rectificadores con filtrado de condensador, se obtiene mejor factor de ondulación cuando a) la capacidad del filtro y la resistencia de carga son altas b) la capacidad
Para poder comenzar con el análisis de la primera etapa, es necesario definir la
Capítulo 1 1 Diseño del convertidor AC/DC 1.1 Justificación para los valores de entrada Para poder comenzar con el análisis de la primera etapa, es necesario definir la señal de entrada. nicialmente el
Aplicaciones del diodo
Tema 3 Aplicaciones del diodo Índice 1. Rectificación de ondas... 53 1.1. Rectificador de media onda... 55 1.2. Rectificador de onda completa... 56 1.3. Rectificador de media onda con condensador... 57
Electrónica Analógica
Universidad de Alcalá Departamento de Electrónica Electrónica Analógica Ejercicios Versión: 2014-09-03 Tema 1.1: Fundamentos de amplificación Referencias: Texto base: - Apuntes de la asignatura - Circuitos
TIEMPO: 1:30 h. PROBLEMA 1 Q 1. 0.8 pf. v s Q 2. A v = f H = R en =
TIEMPO: 1:30 h. PROBLEMA 1 Para el circuito de la figura calcular la ganancia del centro de la banda (A V ), la resistencia de entrada (R en ) y el polo dominante de alta frecuencia (f H ) empleando el
:: Electrónica Básica - Transistores en Circ. de Conmutación TRANSISTORES EN CIRCUITOS DE CONMUTACIÓN
Http://perso.wanadoo.es/luis_ju San Salvador de Jujuy República Argentina :: Electrónica Básica - Transistores en Circ. de Conmutación TRANSISTORES EN CIRCUITOS DE CONMUTACIÓN Muchas veces se presenta
DISTORSION ARMONICA FICHA TECNICA. REA00410. senoidales, esta señal no senoidal está compuesta por armónicas.
FICHA TECNICA. REA41 DISTORSION ARMONICA En México, el sistema eléctrico de potencia está diseñado para generar y operar con una señal senoidal de tensión y de corriente a una frecuencia de 6 Hz (frecuencia
Estudio Temporal de Sistemas Continuos de 1 er y 2º Orden
niversidad Carlos III de Madrid Departamento de Ingeniería de Sistemas y Automática SEÑALES Y SISTEMAS Práctica 1 Estudio Temporal de Sistemas Continuos de 1 er y 2º Orden 1 Introducción Teórica Se denomina
Electrónica 5 EM ITS Lorenzo Massa Pagina 1 Unidad 6 - Ing. Juan Jesús Luna
Electrónica 5 EM ITS Lorenzo Massa Pagina 1 Unidad 6: Amplificadores Operacionales 1 Introducción: El amplificador operacional (en adelante, op-amp) es un tipo de circuito integrado que se usa en un sinfín
LOS FILTROS PASIVOS DE PRIMER ORDEN.
LOS FILTROS PASIVOS DE PRIMER ORDEN. Un filtro es un circuito electrónico que posee una entrada y una salida. En la entrada se introducen señales alternas de diferentes frecuencias y en la salida se extraen
ELO I UNIDAD DOS 2.1. DIODOS La característica del diodo utilizado en el circuito está expresada por:
ELO I UNIA OS 2.1. IOOS 211.06.- La característica del diodo utilizado en el circuito está expresada por: i I 0.(e q.vd m.kt 1) 10 6.(e q.vd m. KT 1) [Amp] onde: I 0 = Corriente inversa de saturación;
EJERCICIO 1 EJERCICIO 2
EJERCICIO 1 Se miden 0 Volt. en los terminales del diodo de la fig. siguiente, la tensión de la fuente indica +5 Volt. respecto de masa. Qué está mal en el circuito? EJERCICIO 2 En la fig. siguiente la
Aplicaciones del diodo
Tema 3 Aplicaciones del diodo Índice 1. Rectificación de ondas... 1 1.1. Rectificador de media onda... 3 1.2. Rectificador de onda completa... 4 1.3. Rectificador de media onda con condensador... 5 2.
1.- La tensión v A es a) Triangular recortada b) Triangular c) Cuadrada (por estar saturado el AO).
D.. D.1.- En el circuito de la figura el interruptor S está cerrado y se abre en el instante t = 0. Los amplificadores operacionales son ideales y están alimentados entre + 16 V y - 16 V. La tensión v
FUENTE DE ALIMENTACION DE ONDA COMPLETA
FUENTE DE ALIMENTACION DE ONDA COMPLETA I. OBJETIVOS Definición de una fuente de baja tensión. Análisis de tensión alterna y continúa en dicha fuente. Partes básicas de una fuente de baja tensión. Contrastación
TRABAJO PRÁCTICO Nº 3 RECTIFICADORES
RABAJO PRÁCICO Nº 3 RECIFICADORES 1) Introducción eórica Las tensiones y corrientes en cd (corriente directa ó continua) sirven para alimentar a una gran variedad de dispositivos electrónicos. Dado que
1.- La señal de salida v o en t = 5ms. a) -60V b) 60V c) 75V d) -75V. 2.- La señal de salida v o en t = 15ms. a) -60V b) 60V c) 75V d) -75V
A. A.1.- En el circuito de la figura los diodos son ideales. La señal de entrada v i es sinusoidal de 50 Hz de frecuencia y 100 V de amplitud. En el primer semiperiodo v i es positiva. Calcular: 1.- La
Práctica 4. LABORATORIO
Práctica 4. LABORATORIO Electrónica de Potencia Convertidor DC/DC Cúk 1. Diagrama de Bloques En esta práctica, el alumnado debe implementar un convertidor DC/DC tipo Cúk. En la Fig1 se muestra el diagrama
2. GALGAS EXTENSOMÉTRICAS
Manual de Prácticas Pag.: 3-1 2. GALGAS EXTENSOMÉTRICAS 2.1. INTRODUCCIÓN. Esta sesión de prácticas tiene como objetivo profundizar en el conocimiento y manejo de las galgas extensométricas, sensores especialmente
Original de: Universidad de Jaén Escuela Politécnica Superior. Autor: Juan Domingo Aguilar Peña. Autorizado para: http://www.redeya.
Dispositivos de disparo Original de: Universidad de Jaén Escuela Politécnica Superior Autor: Juan Domingo Aguilar Peña Autorizado para: http://www.redeya.com 1.1 INTRODUCCIÓN A ciertos niveles, para disparar
Electrónica 1. Práctico 3 Diodos 1
Electrónica 1 Práctico 3 Diodos 1 Los ejercicios marcados con son opcionales. Además cada ejercicio puede tener un número, que indica el número de ejercicio del libro del curso (Microelectronic Circuits,
2.- 1 1 2 51 2,5 MW 0,6 1) A
Problemas Tema 4 Problema 1.- Un alternador de 2,5 MW, 50 Hz, tiene una constante del regulador de 1 MW/Hz. El generador tiene en vacío una frecuencia de 51 Hz. Calcular: 1) Cuál será la frecuencia a la
DIODOS REALES RELACIÓN CORRIENTE-VOLTAJE DE LA JUNTURA PN
DIODOS REALES RELACIÓN CORRIENTE-VOLTAJE DE LA JUNTURA PN V T = KT q V T =25,2 mv a 300ºK I D = Is(e V D nv T 1) Escalas expandidas o comprimidas para ver mas detalles DEPENDENCIA DE LA TEMPERATURA MODELO
Electrónica 2. Práctico 2 Osciladores
Electrónica 2 Práctico 2 Osciladores Los ejercicios marcados con son opcionales. Además cada ejercicio puede tener un número, que indica el número de ejercicio del libro del curso (Microelectronic Circuits,
UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS. INGENIERÍA ELECTRÓNICA. El porcentaje de sobrepico está dado por la ecuación: CONTROL II
UNIERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS. INGENIERÍA ELECTRÓNICA. CONTROL II El porcentaje de sobrepico está dado por la ecuación: PLANTA DE TERCER ORDEN MEDIANTE UN CIRCUITO ELECTRÓNICO. - Gerardo
UNIDAD DOS. 10mA 2K 3K 8K + V1 -
UNIDAD DOS 2.1. DIODOS 211.07.-La característica del diodo D está expresada por: i D I 0.(e q.vd m.kt 1) 10 6.(e q.vd m. KT 1) [Amp] donde: I0 = Corriente inversa de saturación; KT/q 25 mv; m = 1,4 a)
Aplicaciones del diodo
Tema 3 Aplicaciones del diodo Índice 1. Rectificación de ondas... 1 1.1. Rectificador de media onda... 3 1.2. Rectificador de onda completa... 4 1.3. Rectificador de media onda con condensador... 5 2.
Tecnología Electrónica
Universidad de Alcalá Departamento de Electrónica Tecnología Electrónica Ejercicios Versión: 2017-02-15 Capítulos 3 y 4: Transistores: modelos en pequeña señal y configuraciones básicas de amplificación
Amplificadores operacionales con diodos
5 Amplificadores operacionales con diodos 5.1 Introducción En este capítulo se estudian los circuitos amplificadores operacionales que incorporan diodos. Estos componentes no lineales hacen que la característica
B Acumuladores de corriente eléctrica
1 B Acumuladores de corriente eléctrica Condensadores Distintos tipos de condensadores. 2 3 Configuraciones para acoplar condensadores. Pilas y baterías a) Características de las pilas y baterías: Resistencia
Principios eléctricos y aplicaciones digitales. Objeto de Estudio 1 Electrónica Analógica
Principios eléctricos y aplicaciones digitales Objeto de Estudio 1 Electrónica Analógica Contenido 1.1 Corriente alterna y corriente directa 1.2 Dispositivos Pasivos 1.3 Dispositivos Activos 1.4 Amplificadores
Práctica 5. Demodulador FSK mediante PLL
Práctica 5. Demodulador FS mediante PLL 5.. Objetivos Estudiar el funcionamiento de un PLL y su aplicación para la demodulación de una señal modulada FS. 5.. El PLL LM565 El LM565 es un circuito de fase
Instrumentación Electrónica
Práctica de Laboratorio Práctica 4 Medidas de Temperatura Práctica de laboratorio Transductores de temperatura. En esta práctica tomaremos contacto con varios transductores de temperatura, para analizar
Universidad de Carabobo Facultad de Ingeniería Departamento de Electrónica y Comunicaciones Electrónica I Prof. César Martínez Reinoso
Guía de Ejercicios Parte II. Unión PN y Diodos 1. Una unión P-N tiene un dopado de átomos aceptantes de 10 17 cm -3 en el material tipo P y un dopado de impurezas donantes de 5*10 15 cm -3 en el lado N.
Pr.A Boletín de problemas de la Unidad Temática A.I: Características principales y utilización
Pr.A Boletín de problemas de la Unidad Temática A.I: Características principales y utilización Pr.A.1. El diodo 1. Obtener de forma gráfica la corriente que circula por el diodo del siguiente circuito
1.- Estudiar los diferentes modos de operaci on del BJT de la figura en función de v I (V BE ~ 0.7 V). IB VC VB IE
Ejercicios relativos al transistor bipolar Problemas de transistores BJT en estática 1.- Estudiar los diferentes modos de operaci on del BJT de la figura en función de v I (V BE ~ 0.7 V). IC IB VC VB
Ejercicios Resueltos de Dispositivos Electrónicos I 1 Examen Final de Junio de Ejercicio 2
Ejercicios Resueltos de ispositivos Electrónicos I Examen Final de Junio de 2000 - Ejercicio 2 Enunciado Obtener analíticamente y dibujar la gráfica de la función f el siguiente circuito. Ie z Ve z Para
Práctica No. 3 del Curso "Meteorología y Transductores". "Comparadores y generador PWM"
Objetivos. Práctica No. 3 del Curso "Meteorología y Transductores". "Comparadores y generador PWM" Comprobar en forma experimental el funcionamiento de los comparadores con Histéresis, así como el circuito
V cc t. Fuente de Alimentación
Fuente de Alimentación de Tensión Fuente de alimentación: dispositivo que convierte la tensión alterna de la red de suministro (0 ), en una o varias tensiones, prácticamente continuas, que alimentan a
Estabilidad en el dominio de la frecuencia Márgenes de estabilidad. Elizabeth Villota
Estabilidad en el dominio de la frecuencia Márgenes de estabilidad Elizabeth Villota 1 Función de transferencia de lazo Función de transferencia de lazo: 2 Función en lazo cerrado: 2 Diagrama de Nyquist
Celdas de Filtrado con Entrada Inductiva
Celdas de Filtrado con Entrada Inductiva Un circuito rectificador con carga capacitiva está limitado por el hecho que, para elevadas corrientes de carga, se requiere un capacitor de filtro de capacidad
EXAMEN DE ELECTRÓNICA ANALÓGICA 2º ELECTRONICOS
EJERCICIOS DE RESPUESTA CALCULADA 1.- Un amplificador no inversor se modifica mediante la adición de una tercera resistencia R 3, conectada entre el terminal v out y la fuente v in, tal como se muestra
5. EL TRANSISTOR TRABAJANDO EN CONMUTACION. En líneas generales, el transistor puede trabajar de dos formas diferenciadas:
5. EL TRANSISTOR TRABAJANDO EN CONMUTACION EL TRANSISTOR En líneas generales, el transistor puede trabajar de dos formas diferenciadas: 1." En la zona lineal de una recta de carga. 2. a En conmutación,
Tecnología Electrónica
Universidad de Alcalá Departamento de Electrónica Tecnología Electrónica Ejercicios Versión: 2017-03-01 Capítulo 5: Amplificadores multietapa y diferenciales Referencias: Texto base: Circuitos Electrónicos.
GUIA DIDACTICA DE ELECTRONICA N º8 1. IDENTIFICACION ASIGNATURA GRADO PERIODO I.H.S. TECNOLOGIA DECIMO SEGUNDO 6
1. IDENTIFICACION ASIGNATURA GRADO PERIODO I.H.S. TECNOLOGIA DECIMO SEGUNDO 6 DOCENTE(S) DEL AREA:NILSON YEZID VERA CHALA COMPETENCIA: USO Y APROPIACION DE LA TECNOLOGIA NIVEL DE COMPETENCIA: INTERPRETATIVA
Electrónica. Tema 2 Diodos. Copyright The McGraw-Hill Companies, Inc. Queda prohibida su reproducción o visualización sin permiso del editor.
Electrónica Tema 2 Diodos Contenido Ideas básicas Aproximaciones Resistencia interna y Resistencia en continua Rectas de carga Diodo zener Dispositivos optoelectrónicos Diodo Schottky 2 Diodo Es un dispositivo
ACOPLADORES DE IMPEDANCIA
Universidad de Cantabria - 009 Los acopladores de impedancia son elementos indispensables para conseguir la máxima transferencia de potencia entre circuitos, ya sean amplificadores, osciladores, mezcladores,
Medición de magnitudes de corriente alterna
Medición de magnitudes de corriente alterna Sara Campos Hernández División de Mediciones Electromagnéticas CENAM Contenido Introducción Patrones utilizados para medir señales alternas Instrumentación utilizada
PRÁCTICA 3. OSCILOSCOPIOS HM 604 Y HM 1004 (III): TEST DE COMPONENTES Y MODULACIÓN EN FRECUENCIA.
PRÁCTICA 3. OSCILOSCOPIOS HM 604 Y HM 1004 (III): TEST DE COMPONENTES Y MODULACIÓN EN FRECUENCIA. 3.1.- Objetivos: Realización de test de componentes activos y pasivos para obtener, a partir de la curva
ELECTRICIDAD. (Ejercicios resueltos) Alumno: Curso: Año:
(Ejercicios resueltos) Alumno: Curso: Año: La Ley de Ohm La Ley de Ohm dice que la intensidad de corriente que circula a través de un conductor es directamente proporcional a la diferencia de potencial
Parcial_2_Curso.2012_2013
Parcial_2_Curso.2012_2013 1. La función de transferencia que corresponde al diagrama de Bode de la figura es: a) b) c) d) Ninguna de ellas. w (rad/s) w (rad/s) 2. Dado el circuito de la figura, indique
TEMPORIZADORES Y RELOJES
TEMPORIZADORES Y RELOJES Circuitos de tiempo Astable No tiene estado estable. Se usa para generar relojes. Monoestable 1 estado estable y otro inestable. Se usa como temporizador. Biestable 2 estados estables.
Divisor de tensión y puente de Wheatstone
Divisor de tensión y puente de Wheatstone Experiencia 4 1.- OBJETIVOS 1. Derivar pequeñas tensiones a partir de una tensión disponible. 2. Si se conecta una carga al divisor de tensión (resistencia de
DISEÑO Y CONSTRUCCIÓN DE UN PROTOTIPO DE CAPNOGRAFO PORTATIL
DISEÑO Y CONSTRUCCIÓN DE UN PROTOTIPO DE CAPNOGRAFO P04 DISEÑO Y ELABORACIÓN DE LA FUENTE DE ALIMENTACIÓN Actividades A04-1: Diseño de las etapas que conforman la Fuente de Alimentación para equipo biomédico
PRACTICA Nº 2 CARACTERISTICAS DE LOS DIODOS, CIRCUITO RECTIFICADOR DE MEDIA ONDA. 1.-Explique como opera el osciloscopio en la modalidad X-Y.
UNIVERSIDAD SIMON BOLIVAR DPTO. ELECTRONICA Y CIRCUITOS CIRCUITOS ELECTRONICOS I EC1177 PRACTICA Nº 2 CARACTERISTICAS DE LOS DIODOS, CIRCUITO RECTIFICADOR DE MEDIA ONDA OBJETIVO Familiarizar al estudiante
EXAMEN DE ELECTRÓNICA ANALÓGICA 2º ELECTRONICOS
1 a PARTE DEL EXAMEN.- PREGUNTAS DE TEORÍA: 1) Propiedades dinámicas de la unión PN. Describa clara y concisamente el concepto de resistencia dinámica (incremental) de una unión PN. Demuestre cual es su
CAPITULO 7 LUGARES GEOMETRICOS 7.1 INTRODUCCION. Z R jx X jwl, si 0 W R Z
CAPITULO 7 LUGARES GEOMETRICOS 7. INTRODUCCION Si tenemos elementos que pueden variar sus valores en un circuito, ya sea una resistencia una reactancia o la frecuencia de la señal de entrada, las respuestas
Práctica 5 Control de la Maqueta de una Minicentral Hidroeléctrica
Práctica 5 Control de la Maqueta de una Minicentral Hidroeléctrica Maqueta de Minicentral hidroeléctrica Practicas de Regulación Automática VE A 1 VQ V1 Ka A 2 A K q V c K J1 f 1 n J 2 f 2 V Kv VG RL Dinamo
PROBLEMAS DE ELECTRÓNICA ANALÓGICA (Diodos)
PROBLEMAS DE ELECTRÓNCA ANALÓGCA (Diodos) Escuela Politécnica Superior Profesor. Darío García Rodríguez . En el circuito de la figura los diodos son ideales, calcular la intensidad que circula por la fuente
TEMA 4.1 OPAMP TEMA 4 AMPLIFICADOR OPERACIONAL FUNDAMENTOS DE ELECTRÓNICA
TEMA 4.1 OPAMP TEMA 4 AMPLIFICADOR OPERACIONAL FUNDAMENTOS DE ELECTRÓNICA 20 de marzo de 2015 TEMA 4.1 OPAMP Introducción Funcionamiento ideal Regiones de operación Lazo abierto Lazo cerrado TEMA 4.1 OPAMP
1º Escuela Técnica Superior de Ingeniería de Telecomunicación TECNOLOGÍA Y COMPONENTES ELECTRÓNICOS Y FOTÓNICOS. PROBLEMAS de transistores MOS
1º Escuela écnica Superior de Ingeniería de elecomunicación ECNOLOGÍA Y COMPONENES ELECRÓNICOS Y FOÓNICOS 4 PROBLEMAS de transistores MOS EJERCICIOS de diodos: ECNOLOGÍA Y COMPONENES ELECRÓNICOS Y FOÓNICOS
PRACTICA 2. ERRORES. Ejemplos:
PRACTICA 2. ERRORES 1. ERRORES EN LAS MEDIDAS. ERRORES ABSOLUTO Y RELATIVO. Siempre que se hace alguna medida, es inherente la comisión de errores, debido a distintas causas. Por ello, al expresar una
LECCION 1 MATERIALES SEMICONDUCTORES
LECCION 1 MATERIALES SEMICONDUCTORES Son materiales que tienen una resistencia eléctrica intermedia entre los conductores y los aislantes. Por efectos de temperatura en estos materiales hay electrones
DOCUMENTACIÓN GENÉRICA PLATAFORMA GUADALBOT
DOCUMENTACIÓN GENÉRICA PATAFORMA GUADABOT I.E.S VIRGEN DE AS NIEVES Control de motores de Corriente Continua-Puente en Página 2. Fundamento Página 3. Puentes en integrados. 293 y 293D Página 5. Control
PRÁCTICA 6. AMPLIFICADOR OPERACIONAL: INVERSOR, INTEGRADOR y SUMADOR
PRÁCTICA 6. AMPLIFICADOR OPERACIONAL: INVERSOR, INTEGRADOR y SUMADOR 1. Objetivo El objetivo de esta práctica es el estudio del funcionamiento del amplificador operacional, en particular de tres de sus
Electrónica Analógica Conocimientos previos Práctica 1
APELLIDOS:...NOMBRE:... APELLIDOS:...NOMBRE:... 1.- MANEJO DE LOS VOLTIMETROS Y AMPERIMETROS DEL SIMULADOR. CIRCUITO SERIE. Dado el circuito de la figura, realizar los cálculos necesarios para determinar
Microondas. Tema 4: Amplificadores de microondas con transistores. Pablo Luis López Espí
Microondas Tema 4: Amplificadores de microondas con transistores Pablo Luis López Espí 1 Amplificadores de microondas con transistores Estudio de los parámetros de un transistor. Diagrama de bloques de
EJERCICIOS DEL CAPÍTULO 9 - ELECTROMAGNETISMO
EJERCICIOS DEL CAPÍTULO 9 - ELECTROMAGNETISMO C9. 1 Aceleramos iones de los isótopos C-12, C-13 y C-14 con una d.d.p. de 100 kv y los hacemos llegar a un espectrógrafo de masas perpendicularmente a la
CAPITULO VI: Generadores de Sonido
CAPITULO VI GENERADORES DE SONIDOS GENERADOR DE CODIGO MORSE En el circuito de la fig. 6.1 se observa un 555 en configuración de multivibrador astable, funcionando como un práctico oscilador para código
Diseño de Amplificadores de Microondas. Enrique Román Abril 2005
Diseño de Amplificadores de Microondas Enrique Román Abril 2005 Temas Introducción al diseño de amplificadores Conceptos básicos de redes de dos puertos Ganancia Estabilidad Ruido Estrategia de diseño
EL3004-Circutios Electrónicos Analógicos
EL3004-Circutios Electrónicos Analógicos Clase No. 7: Operación del diodo Marcos Diaz Departamento de Ingeniería Eléctrica (DIE) Universidad de Chile Septiembre, 2011 Marcos Diaz (DIE, U. Chile) EL3004-Circuitos
Práctica No. 4 del Curso "Meteorología y Transductores". "Comparadores y generador PWM"
Objetivos. Práctica No. 4 del Curso "Meteorología y Transductores". "Comparadores y generador PWM" Comprobar en forma experimental el funcionamiento de los comparadores con Histéresis, así como el circuito
Para realizar los cálculos de la potencia, tensión y corriente deben estar en valores eficaces.
5. El Transformador. Se denomina transformador: a una máquina eléctrica que permite aumentar o disminuir el voltaje o tensión en un circuito eléctrico de corriente alterna, manteniendo la frecuencia. La
EXP204 REGULADOR DE VOLTAJE SERIE
EXP204 REGULADOR DE VOLTAJE SERIE I.- OBJETIVOS. Diseñar un regulador de voltaje serie ajustable Comprobar el funcionamiento del regulador. Medir la resistencia de salida del regulador Medir el por ciento
